ip_output.c revision 189359
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_output.c 189359 2009-03-04 03:45:34Z bms $");
34
35#include "opt_ipfw.h"
36#include "opt_inet.h"
37#include "opt_ipsec.h"
38#include "opt_route.h"
39#include "opt_mac.h"
40#include "opt_mbuf_stress_test.h"
41#include "opt_mpath.h"
42#include "opt_sctp.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/kernel.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/protosw.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/sysctl.h>
55#include <sys/ucred.h>
56#include <sys/vimage.h>
57
58#include <net/if.h>
59#include <net/netisr.h>
60#include <net/pfil.h>
61#include <net/route.h>
62#ifdef RADIX_MPATH
63#include <net/radix_mpath.h>
64#endif
65#include <net/vnet.h>
66
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#include <netinet/in_pcb.h>
71#include <netinet/in_var.h>
72#include <netinet/ip_var.h>
73#include <netinet/ip_options.h>
74#include <netinet/vinet.h>
75#ifdef SCTP
76#include <netinet/sctp.h>
77#include <netinet/sctp_crc32.h>
78#endif
79
80#ifdef IPSEC
81#include <netinet/ip_ipsec.h>
82#include <netipsec/ipsec.h>
83#endif /* IPSEC*/
84
85#include <machine/in_cksum.h>
86
87#include <security/mac/mac_framework.h>
88
89#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
90				x, (ntohl(a.s_addr)>>24)&0xFF,\
91				  (ntohl(a.s_addr)>>16)&0xFF,\
92				  (ntohl(a.s_addr)>>8)&0xFF,\
93				  (ntohl(a.s_addr))&0xFF, y);
94
95#ifdef VIMAGE_GLOBALS
96u_short ip_id;
97#endif
98
99#ifdef MBUF_STRESS_TEST
100int mbuf_frag_size = 0;
101SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
102	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
103#endif
104
105#if defined(IP_NONLOCALBIND)
106static int ip_nonlocalok = 0;
107SYSCTL_INT(_net_inet_ip, OID_AUTO, nonlocalok,
108	CTLFLAG_RW|CTLFLAG_SECURE, &ip_nonlocalok, 0, "");
109#endif
110
111static void	ip_mloopback
112	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
113
114
115extern int in_mcast_loop;
116extern	struct protosw inetsw[];
117
118/*
119 * IP output.  The packet in mbuf chain m contains a skeletal IP
120 * header (with len, off, ttl, proto, tos, src, dst).
121 * The mbuf chain containing the packet will be freed.
122 * The mbuf opt, if present, will not be freed.
123 * In the IP forwarding case, the packet will arrive with options already
124 * inserted, so must have a NULL opt pointer.
125 */
126int
127ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
128    struct ip_moptions *imo, struct inpcb *inp)
129{
130	INIT_VNET_NET(curvnet);
131	INIT_VNET_INET(curvnet);
132	struct ip *ip;
133	struct ifnet *ifp = NULL;	/* keep compiler happy */
134	struct mbuf *m0;
135	int hlen = sizeof (struct ip);
136	int mtu;
137	int len, error = 0;
138	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
139	struct in_ifaddr *ia = NULL;
140	int isbroadcast, sw_csum;
141	struct route iproute;
142	struct in_addr odst;
143#ifdef IPFIREWALL_FORWARD
144	struct m_tag *fwd_tag = NULL;
145#endif
146	M_ASSERTPKTHDR(m);
147
148	if (ro == NULL) {
149		ro = &iproute;
150		bzero(ro, sizeof (*ro));
151	}
152
153	if (inp != NULL) {
154		M_SETFIB(m, inp->inp_inc.inc_fibnum);
155		INP_LOCK_ASSERT(inp);
156	}
157
158	if (opt) {
159		len = 0;
160		m = ip_insertoptions(m, opt, &len);
161		if (len != 0)
162			hlen = len;
163	}
164	ip = mtod(m, struct ip *);
165
166	/*
167	 * Fill in IP header.  If we are not allowing fragmentation,
168	 * then the ip_id field is meaningless, but we don't set it
169	 * to zero.  Doing so causes various problems when devices along
170	 * the path (routers, load balancers, firewalls, etc.) illegally
171	 * disable DF on our packet.  Note that a 16-bit counter
172	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
173	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
174	 * for Counting NATted Hosts", Proc. IMW'02, available at
175	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
176	 */
177	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
178		ip->ip_v = IPVERSION;
179		ip->ip_hl = hlen >> 2;
180		ip->ip_id = ip_newid();
181		V_ipstat.ips_localout++;
182	} else {
183		hlen = ip->ip_hl << 2;
184	}
185
186	dst = (struct sockaddr_in *)&ro->ro_dst;
187again:
188	/*
189	 * If there is a cached route,
190	 * check that it is to the same destination
191	 * and is still up.  If not, free it and try again.
192	 * The address family should also be checked in case of sharing the
193	 * cache with IPv6.
194	 */
195	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
196			  dst->sin_family != AF_INET ||
197			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
198		RTFREE(ro->ro_rt);
199		ro->ro_rt = (struct rtentry *)NULL;
200	}
201#ifdef IPFIREWALL_FORWARD
202	if (ro->ro_rt == NULL && fwd_tag == NULL) {
203#else
204	if (ro->ro_rt == NULL) {
205#endif
206		bzero(dst, sizeof(*dst));
207		dst->sin_family = AF_INET;
208		dst->sin_len = sizeof(*dst);
209		dst->sin_addr = ip->ip_dst;
210	}
211	/*
212	 * If routing to interface only, short circuit routing lookup.
213	 * The use of an all-ones broadcast address implies this; an
214	 * interface is specified by the broadcast address of an interface,
215	 * or the destination address of a ptp interface.
216	 */
217	if (flags & IP_SENDONES) {
218		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
219		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
220			V_ipstat.ips_noroute++;
221			error = ENETUNREACH;
222			goto bad;
223		}
224		ip->ip_dst.s_addr = INADDR_BROADCAST;
225		dst->sin_addr = ip->ip_dst;
226		ifp = ia->ia_ifp;
227		ip->ip_ttl = 1;
228		isbroadcast = 1;
229	} else if (flags & IP_ROUTETOIF) {
230		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
231		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
232			V_ipstat.ips_noroute++;
233			error = ENETUNREACH;
234			goto bad;
235		}
236		ifp = ia->ia_ifp;
237		ip->ip_ttl = 1;
238		isbroadcast = in_broadcast(dst->sin_addr, ifp);
239	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
240	    imo != NULL && imo->imo_multicast_ifp != NULL) {
241		/*
242		 * Bypass the normal routing lookup for multicast
243		 * packets if the interface is specified.
244		 */
245		ifp = imo->imo_multicast_ifp;
246		IFP_TO_IA(ifp, ia);
247		isbroadcast = 0;	/* fool gcc */
248	} else {
249		/*
250		 * We want to do any cloning requested by the link layer,
251		 * as this is probably required in all cases for correct
252		 * operation (as it is for ARP).
253		 */
254		if (ro->ro_rt == NULL)
255#ifdef RADIX_MPATH
256			rtalloc_mpath_fib(ro,
257			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
258			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
259#else
260			in_rtalloc_ign(ro, 0,
261			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
262#endif
263		if (ro->ro_rt == NULL) {
264			V_ipstat.ips_noroute++;
265			error = EHOSTUNREACH;
266			goto bad;
267		}
268		ia = ifatoia(ro->ro_rt->rt_ifa);
269		ifp = ro->ro_rt->rt_ifp;
270		ro->ro_rt->rt_rmx.rmx_pksent++;
271		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
272			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
273		if (ro->ro_rt->rt_flags & RTF_HOST)
274			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
275		else
276			isbroadcast = in_broadcast(dst->sin_addr, ifp);
277	}
278	/*
279	 * Calculate MTU.  If we have a route that is up, use that,
280	 * otherwise use the interface's MTU.
281	 */
282	if (ro->ro_rt != NULL && (ro->ro_rt->rt_flags & (RTF_UP|RTF_HOST))) {
283		/*
284		 * This case can happen if the user changed the MTU
285		 * of an interface after enabling IP on it.  Because
286		 * most netifs don't keep track of routes pointing to
287		 * them, there is no way for one to update all its
288		 * routes when the MTU is changed.
289		 */
290		if (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)
291			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
292		mtu = ro->ro_rt->rt_rmx.rmx_mtu;
293	} else {
294		mtu = ifp->if_mtu;
295	}
296	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
297		m->m_flags |= M_MCAST;
298		/*
299		 * IP destination address is multicast.  Make sure "dst"
300		 * still points to the address in "ro".  (It may have been
301		 * changed to point to a gateway address, above.)
302		 */
303		dst = (struct sockaddr_in *)&ro->ro_dst;
304		/*
305		 * See if the caller provided any multicast options
306		 */
307		if (imo != NULL) {
308			ip->ip_ttl = imo->imo_multicast_ttl;
309			if (imo->imo_multicast_vif != -1)
310				ip->ip_src.s_addr =
311				    ip_mcast_src ?
312				    ip_mcast_src(imo->imo_multicast_vif) :
313				    INADDR_ANY;
314		} else
315			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
316		/*
317		 * Confirm that the outgoing interface supports multicast.
318		 */
319		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
320			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
321				V_ipstat.ips_noroute++;
322				error = ENETUNREACH;
323				goto bad;
324			}
325		}
326		/*
327		 * If source address not specified yet, use address
328		 * of outgoing interface.
329		 */
330		if (ip->ip_src.s_addr == INADDR_ANY) {
331			/* Interface may have no addresses. */
332			if (ia != NULL)
333				ip->ip_src = IA_SIN(ia)->sin_addr;
334		}
335
336		if ((imo == NULL && in_mcast_loop) ||
337		    (imo && imo->imo_multicast_loop)) {
338			/*
339			 * Loop back multicast datagram if not expressly
340			 * forbidden to do so, even if we are not a member
341			 * of the group; ip_input() will filter it later,
342			 * thus deferring a hash lookup and mutex acquisition
343			 * at the expense of a cheap copy using m_copym().
344			 */
345			ip_mloopback(ifp, m, dst, hlen);
346		} else {
347			/*
348			 * If we are acting as a multicast router, perform
349			 * multicast forwarding as if the packet had just
350			 * arrived on the interface to which we are about
351			 * to send.  The multicast forwarding function
352			 * recursively calls this function, using the
353			 * IP_FORWARDING flag to prevent infinite recursion.
354			 *
355			 * Multicasts that are looped back by ip_mloopback(),
356			 * above, will be forwarded by the ip_input() routine,
357			 * if necessary.
358			 */
359			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
360				/*
361				 * If rsvp daemon is not running, do not
362				 * set ip_moptions. This ensures that the packet
363				 * is multicast and not just sent down one link
364				 * as prescribed by rsvpd.
365				 */
366				if (!V_rsvp_on)
367					imo = NULL;
368				if (ip_mforward &&
369				    ip_mforward(ip, ifp, m, imo) != 0) {
370					m_freem(m);
371					goto done;
372				}
373			}
374		}
375
376		/*
377		 * Multicasts with a time-to-live of zero may be looped-
378		 * back, above, but must not be transmitted on a network.
379		 * Also, multicasts addressed to the loopback interface
380		 * are not sent -- the above call to ip_mloopback() will
381		 * loop back a copy. ip_input() will drop the copy if
382		 * this host does not belong to the destination group on
383		 * the loopback interface.
384		 */
385		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
386			m_freem(m);
387			goto done;
388		}
389
390		goto sendit;
391	}
392
393	/*
394	 * If the source address is not specified yet, use the address
395	 * of the outoing interface.
396	 */
397	if (ip->ip_src.s_addr == INADDR_ANY) {
398		/* Interface may have no addresses. */
399		if (ia != NULL) {
400			ip->ip_src = IA_SIN(ia)->sin_addr;
401		}
402	}
403
404	/*
405	 * Verify that we have any chance at all of being able to queue the
406	 * packet or packet fragments, unless ALTQ is enabled on the given
407	 * interface in which case packetdrop should be done by queueing.
408	 */
409#ifdef ALTQ
410	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
411	    ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
412	    ifp->if_snd.ifq_maxlen))
413#else
414	if ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
415	    ifp->if_snd.ifq_maxlen)
416#endif /* ALTQ */
417	{
418		error = ENOBUFS;
419		V_ipstat.ips_odropped++;
420		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
421		goto bad;
422	}
423
424	/*
425	 * Look for broadcast address and
426	 * verify user is allowed to send
427	 * such a packet.
428	 */
429	if (isbroadcast) {
430		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
431			error = EADDRNOTAVAIL;
432			goto bad;
433		}
434		if ((flags & IP_ALLOWBROADCAST) == 0) {
435			error = EACCES;
436			goto bad;
437		}
438		/* don't allow broadcast messages to be fragmented */
439		if (ip->ip_len > mtu) {
440			error = EMSGSIZE;
441			goto bad;
442		}
443		m->m_flags |= M_BCAST;
444	} else {
445		m->m_flags &= ~M_BCAST;
446	}
447
448sendit:
449#ifdef IPSEC
450	switch(ip_ipsec_output(&m, inp, &flags, &error, &ro, &iproute, &dst, &ia, &ifp)) {
451	case 1:
452		goto bad;
453	case -1:
454		goto done;
455	case 0:
456	default:
457		break;	/* Continue with packet processing. */
458	}
459	/* Update variables that are affected by ipsec4_output(). */
460	ip = mtod(m, struct ip *);
461	hlen = ip->ip_hl << 2;
462#endif /* IPSEC */
463
464	/* Jump over all PFIL processing if hooks are not active. */
465	if (!PFIL_HOOKED(&inet_pfil_hook))
466		goto passout;
467
468	/* Run through list of hooks for output packets. */
469	odst.s_addr = ip->ip_dst.s_addr;
470	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
471	if (error != 0 || m == NULL)
472		goto done;
473
474	ip = mtod(m, struct ip *);
475
476	/* See if destination IP address was changed by packet filter. */
477	if (odst.s_addr != ip->ip_dst.s_addr) {
478		m->m_flags |= M_SKIP_FIREWALL;
479		/* If destination is now ourself drop to ip_input(). */
480		if (in_localip(ip->ip_dst)) {
481			m->m_flags |= M_FASTFWD_OURS;
482			if (m->m_pkthdr.rcvif == NULL)
483				m->m_pkthdr.rcvif = V_loif;
484			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
485				m->m_pkthdr.csum_flags |=
486				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
487				m->m_pkthdr.csum_data = 0xffff;
488			}
489			m->m_pkthdr.csum_flags |=
490			    CSUM_IP_CHECKED | CSUM_IP_VALID;
491#ifdef SCTP
492			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
493				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
494#endif
495			error = netisr_queue(NETISR_IP, m);
496			goto done;
497		} else
498			goto again;	/* Redo the routing table lookup. */
499	}
500
501#ifdef IPFIREWALL_FORWARD
502	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
503	if (m->m_flags & M_FASTFWD_OURS) {
504		if (m->m_pkthdr.rcvif == NULL)
505			m->m_pkthdr.rcvif = V_loif;
506		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
507			m->m_pkthdr.csum_flags |=
508			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
509			m->m_pkthdr.csum_data = 0xffff;
510		}
511#ifdef SCTP
512		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
513			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
514#endif
515		m->m_pkthdr.csum_flags |=
516			    CSUM_IP_CHECKED | CSUM_IP_VALID;
517
518		error = netisr_queue(NETISR_IP, m);
519		goto done;
520	}
521	/* Or forward to some other address? */
522	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
523	if (fwd_tag) {
524		dst = (struct sockaddr_in *)&ro->ro_dst;
525		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
526		m->m_flags |= M_SKIP_FIREWALL;
527		m_tag_delete(m, fwd_tag);
528		goto again;
529	}
530#endif /* IPFIREWALL_FORWARD */
531
532passout:
533	/* 127/8 must not appear on wire - RFC1122. */
534	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
535	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
536		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
537			V_ipstat.ips_badaddr++;
538			error = EADDRNOTAVAIL;
539			goto bad;
540		}
541	}
542
543	m->m_pkthdr.csum_flags |= CSUM_IP;
544	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
545	if (sw_csum & CSUM_DELAY_DATA) {
546		in_delayed_cksum(m);
547		sw_csum &= ~CSUM_DELAY_DATA;
548	}
549#ifdef SCTP
550	if (sw_csum & CSUM_SCTP) {
551		sctp_delayed_cksum(m);
552		sw_csum &= ~CSUM_SCTP;
553	}
554#endif
555	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
556
557	/*
558	 * If small enough for interface, or the interface will take
559	 * care of the fragmentation for us, we can just send directly.
560	 */
561	if (ip->ip_len <= mtu ||
562	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
563	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
564		ip->ip_len = htons(ip->ip_len);
565		ip->ip_off = htons(ip->ip_off);
566		ip->ip_sum = 0;
567		if (sw_csum & CSUM_DELAY_IP)
568			ip->ip_sum = in_cksum(m, hlen);
569
570		/*
571		 * Record statistics for this interface address.
572		 * With CSUM_TSO the byte/packet count will be slightly
573		 * incorrect because we count the IP+TCP headers only
574		 * once instead of for every generated packet.
575		 */
576		if (!(flags & IP_FORWARDING) && ia) {
577			if (m->m_pkthdr.csum_flags & CSUM_TSO)
578				ia->ia_ifa.if_opackets +=
579				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
580			else
581				ia->ia_ifa.if_opackets++;
582			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
583		}
584#ifdef MBUF_STRESS_TEST
585		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
586			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
587#endif
588		/*
589		 * Reset layer specific mbuf flags
590		 * to avoid confusing lower layers.
591		 */
592		m->m_flags &= ~(M_PROTOFLAGS);
593		error = (*ifp->if_output)(ifp, m,
594				(struct sockaddr *)dst, ro->ro_rt);
595		goto done;
596	}
597
598	/* Balk when DF bit is set or the interface didn't support TSO. */
599	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
600		error = EMSGSIZE;
601		V_ipstat.ips_cantfrag++;
602		goto bad;
603	}
604
605	/*
606	 * Too large for interface; fragment if possible. If successful,
607	 * on return, m will point to a list of packets to be sent.
608	 */
609	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
610	if (error)
611		goto bad;
612	for (; m; m = m0) {
613		m0 = m->m_nextpkt;
614		m->m_nextpkt = 0;
615		if (error == 0) {
616			/* Record statistics for this interface address. */
617			if (ia != NULL) {
618				ia->ia_ifa.if_opackets++;
619				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
620			}
621			/*
622			 * Reset layer specific mbuf flags
623			 * to avoid confusing upper layers.
624			 */
625			m->m_flags &= ~(M_PROTOFLAGS);
626
627			error = (*ifp->if_output)(ifp, m,
628			    (struct sockaddr *)dst, ro->ro_rt);
629		} else
630			m_freem(m);
631	}
632
633	if (error == 0)
634		V_ipstat.ips_fragmented++;
635
636done:
637	if (ro == &iproute && ro->ro_rt) {
638		RTFREE(ro->ro_rt);
639	}
640	return (error);
641bad:
642	m_freem(m);
643	goto done;
644}
645
646/*
647 * Create a chain of fragments which fit the given mtu. m_frag points to the
648 * mbuf to be fragmented; on return it points to the chain with the fragments.
649 * Return 0 if no error. If error, m_frag may contain a partially built
650 * chain of fragments that should be freed by the caller.
651 *
652 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
653 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
654 */
655int
656ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
657    u_long if_hwassist_flags, int sw_csum)
658{
659	INIT_VNET_INET(curvnet);
660	int error = 0;
661	int hlen = ip->ip_hl << 2;
662	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
663	int off;
664	struct mbuf *m0 = *m_frag;	/* the original packet		*/
665	int firstlen;
666	struct mbuf **mnext;
667	int nfrags;
668
669	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
670		V_ipstat.ips_cantfrag++;
671		return EMSGSIZE;
672	}
673
674	/*
675	 * Must be able to put at least 8 bytes per fragment.
676	 */
677	if (len < 8)
678		return EMSGSIZE;
679
680	/*
681	 * If the interface will not calculate checksums on
682	 * fragmented packets, then do it here.
683	 */
684	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
685	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
686		in_delayed_cksum(m0);
687		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
688	}
689#ifdef SCTP
690	if (m0->m_pkthdr.csum_flags & CSUM_SCTP &&
691	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
692		sctp_delayed_cksum(m0);
693		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
694	}
695#endif
696	if (len > PAGE_SIZE) {
697		/*
698		 * Fragment large datagrams such that each segment
699		 * contains a multiple of PAGE_SIZE amount of data,
700		 * plus headers. This enables a receiver to perform
701		 * page-flipping zero-copy optimizations.
702		 *
703		 * XXX When does this help given that sender and receiver
704		 * could have different page sizes, and also mtu could
705		 * be less than the receiver's page size ?
706		 */
707		int newlen;
708		struct mbuf *m;
709
710		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
711			off += m->m_len;
712
713		/*
714		 * firstlen (off - hlen) must be aligned on an
715		 * 8-byte boundary
716		 */
717		if (off < hlen)
718			goto smart_frag_failure;
719		off = ((off - hlen) & ~7) + hlen;
720		newlen = (~PAGE_MASK) & mtu;
721		if ((newlen + sizeof (struct ip)) > mtu) {
722			/* we failed, go back the default */
723smart_frag_failure:
724			newlen = len;
725			off = hlen + len;
726		}
727		len = newlen;
728
729	} else {
730		off = hlen + len;
731	}
732
733	firstlen = off - hlen;
734	mnext = &m0->m_nextpkt;		/* pointer to next packet */
735
736	/*
737	 * Loop through length of segment after first fragment,
738	 * make new header and copy data of each part and link onto chain.
739	 * Here, m0 is the original packet, m is the fragment being created.
740	 * The fragments are linked off the m_nextpkt of the original
741	 * packet, which after processing serves as the first fragment.
742	 */
743	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
744		struct ip *mhip;	/* ip header on the fragment */
745		struct mbuf *m;
746		int mhlen = sizeof (struct ip);
747
748		MGETHDR(m, M_DONTWAIT, MT_DATA);
749		if (m == NULL) {
750			error = ENOBUFS;
751			V_ipstat.ips_odropped++;
752			goto done;
753		}
754		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
755		/*
756		 * In the first mbuf, leave room for the link header, then
757		 * copy the original IP header including options. The payload
758		 * goes into an additional mbuf chain returned by m_copym().
759		 */
760		m->m_data += max_linkhdr;
761		mhip = mtod(m, struct ip *);
762		*mhip = *ip;
763		if (hlen > sizeof (struct ip)) {
764			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
765			mhip->ip_v = IPVERSION;
766			mhip->ip_hl = mhlen >> 2;
767		}
768		m->m_len = mhlen;
769		/* XXX do we need to add ip->ip_off below ? */
770		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
771		if (off + len >= ip->ip_len) {	/* last fragment */
772			len = ip->ip_len - off;
773			m->m_flags |= M_LASTFRAG;
774		} else
775			mhip->ip_off |= IP_MF;
776		mhip->ip_len = htons((u_short)(len + mhlen));
777		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
778		if (m->m_next == NULL) {	/* copy failed */
779			m_free(m);
780			error = ENOBUFS;	/* ??? */
781			V_ipstat.ips_odropped++;
782			goto done;
783		}
784		m->m_pkthdr.len = mhlen + len;
785		m->m_pkthdr.rcvif = NULL;
786#ifdef MAC
787		mac_netinet_fragment(m0, m);
788#endif
789		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
790		mhip->ip_off = htons(mhip->ip_off);
791		mhip->ip_sum = 0;
792		if (sw_csum & CSUM_DELAY_IP)
793			mhip->ip_sum = in_cksum(m, mhlen);
794		*mnext = m;
795		mnext = &m->m_nextpkt;
796	}
797	V_ipstat.ips_ofragments += nfrags;
798
799	/* set first marker for fragment chain */
800	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
801	m0->m_pkthdr.csum_data = nfrags;
802
803	/*
804	 * Update first fragment by trimming what's been copied out
805	 * and updating header.
806	 */
807	m_adj(m0, hlen + firstlen - ip->ip_len);
808	m0->m_pkthdr.len = hlen + firstlen;
809	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
810	ip->ip_off |= IP_MF;
811	ip->ip_off = htons(ip->ip_off);
812	ip->ip_sum = 0;
813	if (sw_csum & CSUM_DELAY_IP)
814		ip->ip_sum = in_cksum(m0, hlen);
815
816done:
817	*m_frag = m0;
818	return error;
819}
820
821void
822in_delayed_cksum(struct mbuf *m)
823{
824	struct ip *ip;
825	u_short csum, offset;
826
827	ip = mtod(m, struct ip *);
828	offset = ip->ip_hl << 2 ;
829	csum = in_cksum_skip(m, ip->ip_len, offset);
830	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
831		csum = 0xffff;
832	offset += m->m_pkthdr.csum_data;	/* checksum offset */
833
834	if (offset + sizeof(u_short) > m->m_len) {
835		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
836		    m->m_len, offset, ip->ip_p);
837		/*
838		 * XXX
839		 * this shouldn't happen, but if it does, the
840		 * correct behavior may be to insert the checksum
841		 * in the appropriate next mbuf in the chain.
842		 */
843		return;
844	}
845	*(u_short *)(m->m_data + offset) = csum;
846}
847
848/*
849 * IP socket option processing.
850 */
851int
852ip_ctloutput(struct socket *so, struct sockopt *sopt)
853{
854	struct	inpcb *inp = sotoinpcb(so);
855	int	error, optval;
856
857	error = optval = 0;
858	if (sopt->sopt_level != IPPROTO_IP) {
859		if ((sopt->sopt_level == SOL_SOCKET) &&
860		    (sopt->sopt_name == SO_SETFIB)) {
861			inp->inp_inc.inc_fibnum = so->so_fibnum;
862			return (0);
863		}
864		return (EINVAL);
865	}
866
867	switch (sopt->sopt_dir) {
868	case SOPT_SET:
869		switch (sopt->sopt_name) {
870		case IP_OPTIONS:
871#ifdef notyet
872		case IP_RETOPTS:
873#endif
874		{
875			struct mbuf *m;
876			if (sopt->sopt_valsize > MLEN) {
877				error = EMSGSIZE;
878				break;
879			}
880			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
881			if (m == NULL) {
882				error = ENOBUFS;
883				break;
884			}
885			m->m_len = sopt->sopt_valsize;
886			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
887					    m->m_len);
888			if (error) {
889				m_free(m);
890				break;
891			}
892			INP_WLOCK(inp);
893			error = ip_pcbopts(inp, sopt->sopt_name, m);
894			INP_WUNLOCK(inp);
895			return (error);
896		}
897
898#if defined(IP_NONLOCALBIND)
899		case IP_NONLOCALOK:
900			if (! ip_nonlocalok) {
901				error = ENOPROTOOPT;
902				break;
903			}
904			/* FALLTHROUGH */
905#endif
906		case IP_TOS:
907		case IP_TTL:
908		case IP_MINTTL:
909		case IP_RECVOPTS:
910		case IP_RECVRETOPTS:
911		case IP_RECVDSTADDR:
912		case IP_RECVTTL:
913		case IP_RECVIF:
914		case IP_FAITH:
915		case IP_ONESBCAST:
916		case IP_DONTFRAG:
917			error = sooptcopyin(sopt, &optval, sizeof optval,
918					    sizeof optval);
919			if (error)
920				break;
921
922			switch (sopt->sopt_name) {
923			case IP_TOS:
924				inp->inp_ip_tos = optval;
925				break;
926
927			case IP_TTL:
928				inp->inp_ip_ttl = optval;
929				break;
930
931			case IP_MINTTL:
932				if (optval >= 0 && optval <= MAXTTL)
933					inp->inp_ip_minttl = optval;
934				else
935					error = EINVAL;
936				break;
937
938#define	OPTSET(bit) do {						\
939	INP_WLOCK(inp);							\
940	if (optval)							\
941		inp->inp_flags |= bit;					\
942	else								\
943		inp->inp_flags &= ~bit;					\
944	INP_WUNLOCK(inp);						\
945} while (0)
946
947			case IP_RECVOPTS:
948				OPTSET(INP_RECVOPTS);
949				break;
950
951			case IP_RECVRETOPTS:
952				OPTSET(INP_RECVRETOPTS);
953				break;
954
955			case IP_RECVDSTADDR:
956				OPTSET(INP_RECVDSTADDR);
957				break;
958
959			case IP_RECVTTL:
960				OPTSET(INP_RECVTTL);
961				break;
962
963			case IP_RECVIF:
964				OPTSET(INP_RECVIF);
965				break;
966
967			case IP_FAITH:
968				OPTSET(INP_FAITH);
969				break;
970
971			case IP_ONESBCAST:
972				OPTSET(INP_ONESBCAST);
973				break;
974			case IP_DONTFRAG:
975				OPTSET(INP_DONTFRAG);
976				break;
977#if defined(IP_NONLOCALBIND)
978			case IP_NONLOCALOK:
979				OPTSET(INP_NONLOCALOK);
980				break;
981#endif
982			}
983			break;
984#undef OPTSET
985
986		/*
987		 * Multicast socket options are processed by the in_mcast
988		 * module.
989		 */
990		case IP_MULTICAST_IF:
991		case IP_MULTICAST_VIF:
992		case IP_MULTICAST_TTL:
993		case IP_MULTICAST_LOOP:
994		case IP_ADD_MEMBERSHIP:
995		case IP_DROP_MEMBERSHIP:
996		case IP_ADD_SOURCE_MEMBERSHIP:
997		case IP_DROP_SOURCE_MEMBERSHIP:
998		case IP_BLOCK_SOURCE:
999		case IP_UNBLOCK_SOURCE:
1000		case IP_MSFILTER:
1001		case MCAST_JOIN_GROUP:
1002		case MCAST_LEAVE_GROUP:
1003		case MCAST_JOIN_SOURCE_GROUP:
1004		case MCAST_LEAVE_SOURCE_GROUP:
1005		case MCAST_BLOCK_SOURCE:
1006		case MCAST_UNBLOCK_SOURCE:
1007			error = inp_setmoptions(inp, sopt);
1008			break;
1009
1010		case IP_PORTRANGE:
1011			error = sooptcopyin(sopt, &optval, sizeof optval,
1012					    sizeof optval);
1013			if (error)
1014				break;
1015
1016			INP_WLOCK(inp);
1017			switch (optval) {
1018			case IP_PORTRANGE_DEFAULT:
1019				inp->inp_flags &= ~(INP_LOWPORT);
1020				inp->inp_flags &= ~(INP_HIGHPORT);
1021				break;
1022
1023			case IP_PORTRANGE_HIGH:
1024				inp->inp_flags &= ~(INP_LOWPORT);
1025				inp->inp_flags |= INP_HIGHPORT;
1026				break;
1027
1028			case IP_PORTRANGE_LOW:
1029				inp->inp_flags &= ~(INP_HIGHPORT);
1030				inp->inp_flags |= INP_LOWPORT;
1031				break;
1032
1033			default:
1034				error = EINVAL;
1035				break;
1036			}
1037			INP_WUNLOCK(inp);
1038			break;
1039
1040#ifdef IPSEC
1041		case IP_IPSEC_POLICY:
1042		{
1043			caddr_t req;
1044			struct mbuf *m;
1045
1046			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1047				break;
1048			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1049				break;
1050			req = mtod(m, caddr_t);
1051			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1052			    m->m_len, (sopt->sopt_td != NULL) ?
1053			    sopt->sopt_td->td_ucred : NULL);
1054			m_freem(m);
1055			break;
1056		}
1057#endif /* IPSEC */
1058
1059		default:
1060			error = ENOPROTOOPT;
1061			break;
1062		}
1063		break;
1064
1065	case SOPT_GET:
1066		switch (sopt->sopt_name) {
1067		case IP_OPTIONS:
1068		case IP_RETOPTS:
1069			if (inp->inp_options)
1070				error = sooptcopyout(sopt,
1071						     mtod(inp->inp_options,
1072							  char *),
1073						     inp->inp_options->m_len);
1074			else
1075				sopt->sopt_valsize = 0;
1076			break;
1077
1078		case IP_TOS:
1079		case IP_TTL:
1080		case IP_MINTTL:
1081		case IP_RECVOPTS:
1082		case IP_RECVRETOPTS:
1083		case IP_RECVDSTADDR:
1084		case IP_RECVTTL:
1085		case IP_RECVIF:
1086		case IP_PORTRANGE:
1087		case IP_FAITH:
1088		case IP_ONESBCAST:
1089		case IP_DONTFRAG:
1090			switch (sopt->sopt_name) {
1091
1092			case IP_TOS:
1093				optval = inp->inp_ip_tos;
1094				break;
1095
1096			case IP_TTL:
1097				optval = inp->inp_ip_ttl;
1098				break;
1099
1100			case IP_MINTTL:
1101				optval = inp->inp_ip_minttl;
1102				break;
1103
1104#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1105
1106			case IP_RECVOPTS:
1107				optval = OPTBIT(INP_RECVOPTS);
1108				break;
1109
1110			case IP_RECVRETOPTS:
1111				optval = OPTBIT(INP_RECVRETOPTS);
1112				break;
1113
1114			case IP_RECVDSTADDR:
1115				optval = OPTBIT(INP_RECVDSTADDR);
1116				break;
1117
1118			case IP_RECVTTL:
1119				optval = OPTBIT(INP_RECVTTL);
1120				break;
1121
1122			case IP_RECVIF:
1123				optval = OPTBIT(INP_RECVIF);
1124				break;
1125
1126			case IP_PORTRANGE:
1127				if (inp->inp_flags & INP_HIGHPORT)
1128					optval = IP_PORTRANGE_HIGH;
1129				else if (inp->inp_flags & INP_LOWPORT)
1130					optval = IP_PORTRANGE_LOW;
1131				else
1132					optval = 0;
1133				break;
1134
1135			case IP_FAITH:
1136				optval = OPTBIT(INP_FAITH);
1137				break;
1138
1139			case IP_ONESBCAST:
1140				optval = OPTBIT(INP_ONESBCAST);
1141				break;
1142			case IP_DONTFRAG:
1143				optval = OPTBIT(INP_DONTFRAG);
1144				break;
1145			}
1146			error = sooptcopyout(sopt, &optval, sizeof optval);
1147			break;
1148
1149		/*
1150		 * Multicast socket options are processed by the in_mcast
1151		 * module.
1152		 */
1153		case IP_MULTICAST_IF:
1154		case IP_MULTICAST_VIF:
1155		case IP_MULTICAST_TTL:
1156		case IP_MULTICAST_LOOP:
1157		case IP_MSFILTER:
1158			error = inp_getmoptions(inp, sopt);
1159			break;
1160
1161#ifdef IPSEC
1162		case IP_IPSEC_POLICY:
1163		{
1164			struct mbuf *m = NULL;
1165			caddr_t req = NULL;
1166			size_t len = 0;
1167
1168			if (m != 0) {
1169				req = mtod(m, caddr_t);
1170				len = m->m_len;
1171			}
1172			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1173			if (error == 0)
1174				error = soopt_mcopyout(sopt, m); /* XXX */
1175			if (error == 0)
1176				m_freem(m);
1177			break;
1178		}
1179#endif /* IPSEC */
1180
1181		default:
1182			error = ENOPROTOOPT;
1183			break;
1184		}
1185		break;
1186	}
1187	return (error);
1188}
1189
1190/*
1191 * Routine called from ip_output() to loop back a copy of an IP multicast
1192 * packet to the input queue of a specified interface.  Note that this
1193 * calls the output routine of the loopback "driver", but with an interface
1194 * pointer that might NOT be a loopback interface -- evil, but easier than
1195 * replicating that code here.
1196 */
1197static void
1198ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1199    int hlen)
1200{
1201	register struct ip *ip;
1202	struct mbuf *copym;
1203
1204	/*
1205	 * Make a deep copy of the packet because we're going to
1206	 * modify the pack in order to generate checksums.
1207	 */
1208	copym = m_dup(m, M_DONTWAIT);
1209	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1210		copym = m_pullup(copym, hlen);
1211	if (copym != NULL) {
1212		/* If needed, compute the checksum and mark it as valid. */
1213		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1214			in_delayed_cksum(copym);
1215			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1216			copym->m_pkthdr.csum_flags |=
1217			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1218			copym->m_pkthdr.csum_data = 0xffff;
1219		}
1220		/*
1221		 * We don't bother to fragment if the IP length is greater
1222		 * than the interface's MTU.  Can this possibly matter?
1223		 */
1224		ip = mtod(copym, struct ip *);
1225		ip->ip_len = htons(ip->ip_len);
1226		ip->ip_off = htons(ip->ip_off);
1227		ip->ip_sum = 0;
1228		ip->ip_sum = in_cksum(copym, hlen);
1229#if 1 /* XXX */
1230		if (dst->sin_family != AF_INET) {
1231			printf("ip_mloopback: bad address family %d\n",
1232						dst->sin_family);
1233			dst->sin_family = AF_INET;
1234		}
1235#endif
1236		if_simloop(ifp, copym, dst->sin_family, 0);
1237	}
1238}
1239