ip_output.c revision 178167
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_output.c 178167 2008-04-13 05:45:14Z qingli $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/priv.h>
47#include <sys/proc.h>
48#include <sys/protosw.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51#include <sys/sysctl.h>
52#include <sys/ucred.h>
53
54#include <net/if.h>
55#include <net/netisr.h>
56#include <net/pfil.h>
57#include <net/route.h>
58#ifdef RADIX_MPATH
59#include <net/radix_mpath.h>
60#endif
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/ip.h>
65#include <netinet/in_pcb.h>
66#include <netinet/in_var.h>
67#include <netinet/ip_var.h>
68#include <netinet/ip_options.h>
69
70#ifdef IPSEC
71#include <netinet/ip_ipsec.h>
72#include <netipsec/ipsec.h>
73#endif /* IPSEC*/
74
75#include <machine/in_cksum.h>
76
77#include <security/mac/mac_framework.h>
78
79#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
80				x, (ntohl(a.s_addr)>>24)&0xFF,\
81				  (ntohl(a.s_addr)>>16)&0xFF,\
82				  (ntohl(a.s_addr)>>8)&0xFF,\
83				  (ntohl(a.s_addr))&0xFF, y);
84
85u_short ip_id;
86
87#ifdef MBUF_STRESS_TEST
88int mbuf_frag_size = 0;
89SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
90	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
91#endif
92
93static void	ip_mloopback
94	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
95
96
97extern	struct protosw inetsw[];
98
99/*
100 * IP output.  The packet in mbuf chain m contains a skeletal IP
101 * header (with len, off, ttl, proto, tos, src, dst).
102 * The mbuf chain containing the packet will be freed.
103 * The mbuf opt, if present, will not be freed.
104 * In the IP forwarding case, the packet will arrive with options already
105 * inserted, so must have a NULL opt pointer.
106 */
107int
108ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
109    struct ip_moptions *imo, struct inpcb *inp)
110{
111	struct ip *ip;
112	struct ifnet *ifp = NULL;	/* keep compiler happy */
113	struct mbuf *m0;
114	int hlen = sizeof (struct ip);
115	int mtu;
116	int len, error = 0;
117	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
118	struct in_ifaddr *ia = NULL;
119	int isbroadcast, sw_csum;
120	struct route iproute;
121	struct in_addr odst;
122#ifdef IPFIREWALL_FORWARD
123	struct m_tag *fwd_tag = NULL;
124#endif
125	M_ASSERTPKTHDR(m);
126
127	if (ro == NULL) {
128		ro = &iproute;
129		bzero(ro, sizeof (*ro));
130	}
131
132	if (inp != NULL)
133		INP_LOCK_ASSERT(inp);
134
135	if (opt) {
136		len = 0;
137		m = ip_insertoptions(m, opt, &len);
138		if (len != 0)
139			hlen = len;
140	}
141	ip = mtod(m, struct ip *);
142
143	/*
144	 * Fill in IP header.  If we are not allowing fragmentation,
145	 * then the ip_id field is meaningless, but we don't set it
146	 * to zero.  Doing so causes various problems when devices along
147	 * the path (routers, load balancers, firewalls, etc.) illegally
148	 * disable DF on our packet.  Note that a 16-bit counter
149	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
150	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
151	 * for Counting NATted Hosts", Proc. IMW'02, available at
152	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
153	 */
154	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
155		ip->ip_v = IPVERSION;
156		ip->ip_hl = hlen >> 2;
157		ip->ip_id = ip_newid();
158		ipstat.ips_localout++;
159	} else {
160		hlen = ip->ip_hl << 2;
161	}
162
163	dst = (struct sockaddr_in *)&ro->ro_dst;
164again:
165	/*
166	 * If there is a cached route,
167	 * check that it is to the same destination
168	 * and is still up.  If not, free it and try again.
169	 * The address family should also be checked in case of sharing the
170	 * cache with IPv6.
171	 */
172	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
173			  dst->sin_family != AF_INET ||
174			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
175		RTFREE(ro->ro_rt);
176		ro->ro_rt = (struct rtentry *)NULL;
177	}
178#ifdef IPFIREWALL_FORWARD
179	if (ro->ro_rt == NULL && fwd_tag == NULL) {
180#else
181	if (ro->ro_rt == NULL) {
182#endif
183		bzero(dst, sizeof(*dst));
184		dst->sin_family = AF_INET;
185		dst->sin_len = sizeof(*dst);
186		dst->sin_addr = ip->ip_dst;
187	}
188	/*
189	 * If routing to interface only, short circuit routing lookup.
190	 * The use of an all-ones broadcast address implies this; an
191	 * interface is specified by the broadcast address of an interface,
192	 * or the destination address of a ptp interface.
193	 */
194	if (flags & IP_SENDONES) {
195		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
196		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
197			ipstat.ips_noroute++;
198			error = ENETUNREACH;
199			goto bad;
200		}
201		ip->ip_dst.s_addr = INADDR_BROADCAST;
202		dst->sin_addr = ip->ip_dst;
203		ifp = ia->ia_ifp;
204		ip->ip_ttl = 1;
205		isbroadcast = 1;
206	} else if (flags & IP_ROUTETOIF) {
207		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
208		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
209			ipstat.ips_noroute++;
210			error = ENETUNREACH;
211			goto bad;
212		}
213		ifp = ia->ia_ifp;
214		ip->ip_ttl = 1;
215		isbroadcast = in_broadcast(dst->sin_addr, ifp);
216	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
217	    imo != NULL && imo->imo_multicast_ifp != NULL) {
218		/*
219		 * Bypass the normal routing lookup for multicast
220		 * packets if the interface is specified.
221		 */
222		ifp = imo->imo_multicast_ifp;
223		IFP_TO_IA(ifp, ia);
224		isbroadcast = 0;	/* fool gcc */
225	} else {
226		/*
227		 * We want to do any cloning requested by the link layer,
228		 * as this is probably required in all cases for correct
229		 * operation (as it is for ARP).
230		 */
231		if (ro->ro_rt == NULL)
232#ifdef RADIX_MPATH
233			rtalloc_mpath(ro,
234			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr));
235#else
236			rtalloc_ign(ro, 0);
237#endif
238		if (ro->ro_rt == NULL) {
239			ipstat.ips_noroute++;
240			error = EHOSTUNREACH;
241			goto bad;
242		}
243		ia = ifatoia(ro->ro_rt->rt_ifa);
244		ifp = ro->ro_rt->rt_ifp;
245		ro->ro_rt->rt_rmx.rmx_pksent++;
246		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
247			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
248		if (ro->ro_rt->rt_flags & RTF_HOST)
249			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
250		else
251			isbroadcast = in_broadcast(dst->sin_addr, ifp);
252	}
253	/*
254	 * Calculate MTU.  If we have a route that is up, use that,
255	 * otherwise use the interface's MTU.
256	 */
257	if (ro->ro_rt != NULL && (ro->ro_rt->rt_flags & (RTF_UP|RTF_HOST))) {
258		/*
259		 * This case can happen if the user changed the MTU
260		 * of an interface after enabling IP on it.  Because
261		 * most netifs don't keep track of routes pointing to
262		 * them, there is no way for one to update all its
263		 * routes when the MTU is changed.
264		 */
265		if (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)
266			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
267		mtu = ro->ro_rt->rt_rmx.rmx_mtu;
268	} else {
269		mtu = ifp->if_mtu;
270	}
271	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
272		struct in_multi *inm;
273
274		m->m_flags |= M_MCAST;
275		/*
276		 * IP destination address is multicast.  Make sure "dst"
277		 * still points to the address in "ro".  (It may have been
278		 * changed to point to a gateway address, above.)
279		 */
280		dst = (struct sockaddr_in *)&ro->ro_dst;
281		/*
282		 * See if the caller provided any multicast options
283		 */
284		if (imo != NULL) {
285			ip->ip_ttl = imo->imo_multicast_ttl;
286			if (imo->imo_multicast_vif != -1)
287				ip->ip_src.s_addr =
288				    ip_mcast_src ?
289				    ip_mcast_src(imo->imo_multicast_vif) :
290				    INADDR_ANY;
291		} else
292			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
293		/*
294		 * Confirm that the outgoing interface supports multicast.
295		 */
296		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
297			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
298				ipstat.ips_noroute++;
299				error = ENETUNREACH;
300				goto bad;
301			}
302		}
303		/*
304		 * If source address not specified yet, use address
305		 * of outgoing interface.
306		 */
307		if (ip->ip_src.s_addr == INADDR_ANY) {
308			/* Interface may have no addresses. */
309			if (ia != NULL)
310				ip->ip_src = IA_SIN(ia)->sin_addr;
311		}
312
313		IN_MULTI_LOCK();
314		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
315		if (inm != NULL &&
316		   (imo == NULL || imo->imo_multicast_loop)) {
317			IN_MULTI_UNLOCK();
318			/*
319			 * If we belong to the destination multicast group
320			 * on the outgoing interface, and the caller did not
321			 * forbid loopback, loop back a copy.
322			 */
323			ip_mloopback(ifp, m, dst, hlen);
324		}
325		else {
326			IN_MULTI_UNLOCK();
327			/*
328			 * If we are acting as a multicast router, perform
329			 * multicast forwarding as if the packet had just
330			 * arrived on the interface to which we are about
331			 * to send.  The multicast forwarding function
332			 * recursively calls this function, using the
333			 * IP_FORWARDING flag to prevent infinite recursion.
334			 *
335			 * Multicasts that are looped back by ip_mloopback(),
336			 * above, will be forwarded by the ip_input() routine,
337			 * if necessary.
338			 */
339			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
340				/*
341				 * If rsvp daemon is not running, do not
342				 * set ip_moptions. This ensures that the packet
343				 * is multicast and not just sent down one link
344				 * as prescribed by rsvpd.
345				 */
346				if (!rsvp_on)
347					imo = NULL;
348				if (ip_mforward &&
349				    ip_mforward(ip, ifp, m, imo) != 0) {
350					m_freem(m);
351					goto done;
352				}
353			}
354		}
355
356		/*
357		 * Multicasts with a time-to-live of zero may be looped-
358		 * back, above, but must not be transmitted on a network.
359		 * Also, multicasts addressed to the loopback interface
360		 * are not sent -- the above call to ip_mloopback() will
361		 * loop back a copy if this host actually belongs to the
362		 * destination group on the loopback interface.
363		 */
364		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
365			m_freem(m);
366			goto done;
367		}
368
369		goto sendit;
370	}
371
372	/*
373	 * If the source address is not specified yet, use the address
374	 * of the outoing interface.
375	 */
376	if (ip->ip_src.s_addr == INADDR_ANY) {
377		/* Interface may have no addresses. */
378		if (ia != NULL) {
379			ip->ip_src = IA_SIN(ia)->sin_addr;
380		}
381	}
382
383	/*
384	 * Verify that we have any chance at all of being able to queue the
385	 * packet or packet fragments, unless ALTQ is enabled on the given
386	 * interface in which case packetdrop should be done by queueing.
387	 */
388#ifdef ALTQ
389	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
390	    ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
391	    ifp->if_snd.ifq_maxlen))
392#else
393	if ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
394	    ifp->if_snd.ifq_maxlen)
395#endif /* ALTQ */
396	{
397		error = ENOBUFS;
398		ipstat.ips_odropped++;
399		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
400		goto bad;
401	}
402
403	/*
404	 * Look for broadcast address and
405	 * verify user is allowed to send
406	 * such a packet.
407	 */
408	if (isbroadcast) {
409		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
410			error = EADDRNOTAVAIL;
411			goto bad;
412		}
413		if ((flags & IP_ALLOWBROADCAST) == 0) {
414			error = EACCES;
415			goto bad;
416		}
417		/* don't allow broadcast messages to be fragmented */
418		if (ip->ip_len > mtu) {
419			error = EMSGSIZE;
420			goto bad;
421		}
422		m->m_flags |= M_BCAST;
423	} else {
424		m->m_flags &= ~M_BCAST;
425	}
426
427sendit:
428#ifdef IPSEC
429	switch(ip_ipsec_output(&m, inp, &flags, &error, &ro, &iproute, &dst, &ia, &ifp)) {
430	case 1:
431		goto bad;
432	case -1:
433		goto done;
434	case 0:
435	default:
436		break;	/* Continue with packet processing. */
437	}
438	/* Update variables that are affected by ipsec4_output(). */
439	ip = mtod(m, struct ip *);
440	hlen = ip->ip_hl << 2;
441#endif /* IPSEC */
442
443	/* Jump over all PFIL processing if hooks are not active. */
444	if (!PFIL_HOOKED(&inet_pfil_hook))
445		goto passout;
446
447	/* Run through list of hooks for output packets. */
448	odst.s_addr = ip->ip_dst.s_addr;
449	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
450	if (error != 0 || m == NULL)
451		goto done;
452
453	ip = mtod(m, struct ip *);
454
455	/* See if destination IP address was changed by packet filter. */
456	if (odst.s_addr != ip->ip_dst.s_addr) {
457		m->m_flags |= M_SKIP_FIREWALL;
458		/* If destination is now ourself drop to ip_input(). */
459		if (in_localip(ip->ip_dst)) {
460			m->m_flags |= M_FASTFWD_OURS;
461			if (m->m_pkthdr.rcvif == NULL)
462				m->m_pkthdr.rcvif = loif;
463			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
464				m->m_pkthdr.csum_flags |=
465				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
466				m->m_pkthdr.csum_data = 0xffff;
467			}
468			m->m_pkthdr.csum_flags |=
469			    CSUM_IP_CHECKED | CSUM_IP_VALID;
470
471			error = netisr_queue(NETISR_IP, m);
472			goto done;
473		} else
474			goto again;	/* Redo the routing table lookup. */
475	}
476
477#ifdef IPFIREWALL_FORWARD
478	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
479	if (m->m_flags & M_FASTFWD_OURS) {
480		if (m->m_pkthdr.rcvif == NULL)
481			m->m_pkthdr.rcvif = loif;
482		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
483			m->m_pkthdr.csum_flags |=
484			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
485			m->m_pkthdr.csum_data = 0xffff;
486		}
487		m->m_pkthdr.csum_flags |=
488			    CSUM_IP_CHECKED | CSUM_IP_VALID;
489
490		error = netisr_queue(NETISR_IP, m);
491		goto done;
492	}
493	/* Or forward to some other address? */
494	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
495	if (fwd_tag) {
496		dst = (struct sockaddr_in *)&ro->ro_dst;
497		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
498		m->m_flags |= M_SKIP_FIREWALL;
499		m_tag_delete(m, fwd_tag);
500		goto again;
501	}
502#endif /* IPFIREWALL_FORWARD */
503
504passout:
505	/* 127/8 must not appear on wire - RFC1122. */
506	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
507	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
508		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
509			ipstat.ips_badaddr++;
510			error = EADDRNOTAVAIL;
511			goto bad;
512		}
513	}
514
515	m->m_pkthdr.csum_flags |= CSUM_IP;
516	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
517	if (sw_csum & CSUM_DELAY_DATA) {
518		in_delayed_cksum(m);
519		sw_csum &= ~CSUM_DELAY_DATA;
520	}
521	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
522
523	/*
524	 * If small enough for interface, or the interface will take
525	 * care of the fragmentation for us, we can just send directly.
526	 */
527	if (ip->ip_len <= mtu ||
528	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
529	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
530		ip->ip_len = htons(ip->ip_len);
531		ip->ip_off = htons(ip->ip_off);
532		ip->ip_sum = 0;
533		if (sw_csum & CSUM_DELAY_IP)
534			ip->ip_sum = in_cksum(m, hlen);
535
536		/*
537		 * Record statistics for this interface address.
538		 * With CSUM_TSO the byte/packet count will be slightly
539		 * incorrect because we count the IP+TCP headers only
540		 * once instead of for every generated packet.
541		 */
542		if (!(flags & IP_FORWARDING) && ia) {
543			if (m->m_pkthdr.csum_flags & CSUM_TSO)
544				ia->ia_ifa.if_opackets +=
545				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
546			else
547				ia->ia_ifa.if_opackets++;
548			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
549		}
550#ifdef MBUF_STRESS_TEST
551		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
552			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
553#endif
554		/*
555		 * Reset layer specific mbuf flags
556		 * to avoid confusing lower layers.
557		 */
558		m->m_flags &= ~(M_PROTOFLAGS);
559
560		error = (*ifp->if_output)(ifp, m,
561				(struct sockaddr *)dst, ro->ro_rt);
562		goto done;
563	}
564
565	/* Balk when DF bit is set or the interface didn't support TSO. */
566	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
567		error = EMSGSIZE;
568		ipstat.ips_cantfrag++;
569		goto bad;
570	}
571
572	/*
573	 * Too large for interface; fragment if possible. If successful,
574	 * on return, m will point to a list of packets to be sent.
575	 */
576	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
577	if (error)
578		goto bad;
579	for (; m; m = m0) {
580		m0 = m->m_nextpkt;
581		m->m_nextpkt = 0;
582		if (error == 0) {
583			/* Record statistics for this interface address. */
584			if (ia != NULL) {
585				ia->ia_ifa.if_opackets++;
586				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
587			}
588			/*
589			 * Reset layer specific mbuf flags
590			 * to avoid confusing upper layers.
591			 */
592			m->m_flags &= ~(M_PROTOFLAGS);
593
594			error = (*ifp->if_output)(ifp, m,
595			    (struct sockaddr *)dst, ro->ro_rt);
596		} else
597			m_freem(m);
598	}
599
600	if (error == 0)
601		ipstat.ips_fragmented++;
602
603done:
604	if (ro == &iproute && ro->ro_rt) {
605		RTFREE(ro->ro_rt);
606	}
607	return (error);
608bad:
609	m_freem(m);
610	goto done;
611}
612
613/*
614 * Create a chain of fragments which fit the given mtu. m_frag points to the
615 * mbuf to be fragmented; on return it points to the chain with the fragments.
616 * Return 0 if no error. If error, m_frag may contain a partially built
617 * chain of fragments that should be freed by the caller.
618 *
619 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
620 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
621 */
622int
623ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
624    u_long if_hwassist_flags, int sw_csum)
625{
626	int error = 0;
627	int hlen = ip->ip_hl << 2;
628	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
629	int off;
630	struct mbuf *m0 = *m_frag;	/* the original packet		*/
631	int firstlen;
632	struct mbuf **mnext;
633	int nfrags;
634
635	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
636		ipstat.ips_cantfrag++;
637		return EMSGSIZE;
638	}
639
640	/*
641	 * Must be able to put at least 8 bytes per fragment.
642	 */
643	if (len < 8)
644		return EMSGSIZE;
645
646	/*
647	 * If the interface will not calculate checksums on
648	 * fragmented packets, then do it here.
649	 */
650	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
651	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
652		in_delayed_cksum(m0);
653		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
654	}
655
656	if (len > PAGE_SIZE) {
657		/*
658		 * Fragment large datagrams such that each segment
659		 * contains a multiple of PAGE_SIZE amount of data,
660		 * plus headers. This enables a receiver to perform
661		 * page-flipping zero-copy optimizations.
662		 *
663		 * XXX When does this help given that sender and receiver
664		 * could have different page sizes, and also mtu could
665		 * be less than the receiver's page size ?
666		 */
667		int newlen;
668		struct mbuf *m;
669
670		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
671			off += m->m_len;
672
673		/*
674		 * firstlen (off - hlen) must be aligned on an
675		 * 8-byte boundary
676		 */
677		if (off < hlen)
678			goto smart_frag_failure;
679		off = ((off - hlen) & ~7) + hlen;
680		newlen = (~PAGE_MASK) & mtu;
681		if ((newlen + sizeof (struct ip)) > mtu) {
682			/* we failed, go back the default */
683smart_frag_failure:
684			newlen = len;
685			off = hlen + len;
686		}
687		len = newlen;
688
689	} else {
690		off = hlen + len;
691	}
692
693	firstlen = off - hlen;
694	mnext = &m0->m_nextpkt;		/* pointer to next packet */
695
696	/*
697	 * Loop through length of segment after first fragment,
698	 * make new header and copy data of each part and link onto chain.
699	 * Here, m0 is the original packet, m is the fragment being created.
700	 * The fragments are linked off the m_nextpkt of the original
701	 * packet, which after processing serves as the first fragment.
702	 */
703	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
704		struct ip *mhip;	/* ip header on the fragment */
705		struct mbuf *m;
706		int mhlen = sizeof (struct ip);
707
708		MGETHDR(m, M_DONTWAIT, MT_DATA);
709		if (m == NULL) {
710			error = ENOBUFS;
711			ipstat.ips_odropped++;
712			goto done;
713		}
714		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
715		/*
716		 * In the first mbuf, leave room for the link header, then
717		 * copy the original IP header including options. The payload
718		 * goes into an additional mbuf chain returned by m_copy().
719		 */
720		m->m_data += max_linkhdr;
721		mhip = mtod(m, struct ip *);
722		*mhip = *ip;
723		if (hlen > sizeof (struct ip)) {
724			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
725			mhip->ip_v = IPVERSION;
726			mhip->ip_hl = mhlen >> 2;
727		}
728		m->m_len = mhlen;
729		/* XXX do we need to add ip->ip_off below ? */
730		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
731		if (off + len >= ip->ip_len) {	/* last fragment */
732			len = ip->ip_len - off;
733			m->m_flags |= M_LASTFRAG;
734		} else
735			mhip->ip_off |= IP_MF;
736		mhip->ip_len = htons((u_short)(len + mhlen));
737		m->m_next = m_copy(m0, off, len);
738		if (m->m_next == NULL) {	/* copy failed */
739			m_free(m);
740			error = ENOBUFS;	/* ??? */
741			ipstat.ips_odropped++;
742			goto done;
743		}
744		m->m_pkthdr.len = mhlen + len;
745		m->m_pkthdr.rcvif = NULL;
746#ifdef MAC
747		mac_netinet_fragment(m0, m);
748#endif
749		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
750		mhip->ip_off = htons(mhip->ip_off);
751		mhip->ip_sum = 0;
752		if (sw_csum & CSUM_DELAY_IP)
753			mhip->ip_sum = in_cksum(m, mhlen);
754		*mnext = m;
755		mnext = &m->m_nextpkt;
756	}
757	ipstat.ips_ofragments += nfrags;
758
759	/* set first marker for fragment chain */
760	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
761	m0->m_pkthdr.csum_data = nfrags;
762
763	/*
764	 * Update first fragment by trimming what's been copied out
765	 * and updating header.
766	 */
767	m_adj(m0, hlen + firstlen - ip->ip_len);
768	m0->m_pkthdr.len = hlen + firstlen;
769	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
770	ip->ip_off |= IP_MF;
771	ip->ip_off = htons(ip->ip_off);
772	ip->ip_sum = 0;
773	if (sw_csum & CSUM_DELAY_IP)
774		ip->ip_sum = in_cksum(m0, hlen);
775
776done:
777	*m_frag = m0;
778	return error;
779}
780
781void
782in_delayed_cksum(struct mbuf *m)
783{
784	struct ip *ip;
785	u_short csum, offset;
786
787	ip = mtod(m, struct ip *);
788	offset = ip->ip_hl << 2 ;
789	csum = in_cksum_skip(m, ip->ip_len, offset);
790	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
791		csum = 0xffff;
792	offset += m->m_pkthdr.csum_data;	/* checksum offset */
793
794	if (offset + sizeof(u_short) > m->m_len) {
795		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
796		    m->m_len, offset, ip->ip_p);
797		/*
798		 * XXX
799		 * this shouldn't happen, but if it does, the
800		 * correct behavior may be to insert the checksum
801		 * in the appropriate next mbuf in the chain.
802		 */
803		return;
804	}
805	*(u_short *)(m->m_data + offset) = csum;
806}
807
808/*
809 * IP socket option processing.
810 */
811int
812ip_ctloutput(struct socket *so, struct sockopt *sopt)
813{
814	struct	inpcb *inp = sotoinpcb(so);
815	int	error, optval;
816
817	error = optval = 0;
818	if (sopt->sopt_level != IPPROTO_IP) {
819		return (EINVAL);
820	}
821
822	switch (sopt->sopt_dir) {
823	case SOPT_SET:
824		switch (sopt->sopt_name) {
825		case IP_OPTIONS:
826#ifdef notyet
827		case IP_RETOPTS:
828#endif
829		{
830			struct mbuf *m;
831			if (sopt->sopt_valsize > MLEN) {
832				error = EMSGSIZE;
833				break;
834			}
835			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
836			if (m == NULL) {
837				error = ENOBUFS;
838				break;
839			}
840			m->m_len = sopt->sopt_valsize;
841			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
842					    m->m_len);
843			if (error) {
844				m_free(m);
845				break;
846			}
847			INP_LOCK(inp);
848			error = ip_pcbopts(inp, sopt->sopt_name, m);
849			INP_UNLOCK(inp);
850			return (error);
851		}
852
853		case IP_TOS:
854		case IP_TTL:
855		case IP_MINTTL:
856		case IP_RECVOPTS:
857		case IP_RECVRETOPTS:
858		case IP_RECVDSTADDR:
859		case IP_RECVTTL:
860		case IP_RECVIF:
861		case IP_FAITH:
862		case IP_ONESBCAST:
863		case IP_DONTFRAG:
864			error = sooptcopyin(sopt, &optval, sizeof optval,
865					    sizeof optval);
866			if (error)
867				break;
868
869			switch (sopt->sopt_name) {
870			case IP_TOS:
871				inp->inp_ip_tos = optval;
872				break;
873
874			case IP_TTL:
875				inp->inp_ip_ttl = optval;
876				break;
877
878			case IP_MINTTL:
879				if (optval > 0 && optval <= MAXTTL)
880					inp->inp_ip_minttl = optval;
881				else
882					error = EINVAL;
883				break;
884
885#define	OPTSET(bit) do {						\
886	INP_LOCK(inp);							\
887	if (optval)							\
888		inp->inp_flags |= bit;					\
889	else								\
890		inp->inp_flags &= ~bit;					\
891	INP_UNLOCK(inp);						\
892} while (0)
893
894			case IP_RECVOPTS:
895				OPTSET(INP_RECVOPTS);
896				break;
897
898			case IP_RECVRETOPTS:
899				OPTSET(INP_RECVRETOPTS);
900				break;
901
902			case IP_RECVDSTADDR:
903				OPTSET(INP_RECVDSTADDR);
904				break;
905
906			case IP_RECVTTL:
907				OPTSET(INP_RECVTTL);
908				break;
909
910			case IP_RECVIF:
911				OPTSET(INP_RECVIF);
912				break;
913
914			case IP_FAITH:
915				OPTSET(INP_FAITH);
916				break;
917
918			case IP_ONESBCAST:
919				OPTSET(INP_ONESBCAST);
920				break;
921			case IP_DONTFRAG:
922				OPTSET(INP_DONTFRAG);
923				break;
924			}
925			break;
926#undef OPTSET
927
928		/*
929		 * Multicast socket options are processed by the in_mcast
930		 * module.
931		 */
932		case IP_MULTICAST_IF:
933		case IP_MULTICAST_VIF:
934		case IP_MULTICAST_TTL:
935		case IP_MULTICAST_LOOP:
936		case IP_ADD_MEMBERSHIP:
937		case IP_DROP_MEMBERSHIP:
938		case IP_ADD_SOURCE_MEMBERSHIP:
939		case IP_DROP_SOURCE_MEMBERSHIP:
940		case IP_BLOCK_SOURCE:
941		case IP_UNBLOCK_SOURCE:
942		case IP_MSFILTER:
943		case MCAST_JOIN_GROUP:
944		case MCAST_LEAVE_GROUP:
945		case MCAST_JOIN_SOURCE_GROUP:
946		case MCAST_LEAVE_SOURCE_GROUP:
947		case MCAST_BLOCK_SOURCE:
948		case MCAST_UNBLOCK_SOURCE:
949			error = inp_setmoptions(inp, sopt);
950			break;
951
952		case IP_PORTRANGE:
953			error = sooptcopyin(sopt, &optval, sizeof optval,
954					    sizeof optval);
955			if (error)
956				break;
957
958			INP_LOCK(inp);
959			switch (optval) {
960			case IP_PORTRANGE_DEFAULT:
961				inp->inp_flags &= ~(INP_LOWPORT);
962				inp->inp_flags &= ~(INP_HIGHPORT);
963				break;
964
965			case IP_PORTRANGE_HIGH:
966				inp->inp_flags &= ~(INP_LOWPORT);
967				inp->inp_flags |= INP_HIGHPORT;
968				break;
969
970			case IP_PORTRANGE_LOW:
971				inp->inp_flags &= ~(INP_HIGHPORT);
972				inp->inp_flags |= INP_LOWPORT;
973				break;
974
975			default:
976				error = EINVAL;
977				break;
978			}
979			INP_UNLOCK(inp);
980			break;
981
982#ifdef IPSEC
983		case IP_IPSEC_POLICY:
984		{
985			caddr_t req;
986			struct mbuf *m;
987
988			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
989				break;
990			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
991				break;
992			req = mtod(m, caddr_t);
993			error = ipsec4_set_policy(inp, sopt->sopt_name, req,
994			    m->m_len, (sopt->sopt_td != NULL) ?
995			    sopt->sopt_td->td_ucred : NULL);
996			m_freem(m);
997			break;
998		}
999#endif /* IPSEC */
1000
1001		default:
1002			error = ENOPROTOOPT;
1003			break;
1004		}
1005		break;
1006
1007	case SOPT_GET:
1008		switch (sopt->sopt_name) {
1009		case IP_OPTIONS:
1010		case IP_RETOPTS:
1011			if (inp->inp_options)
1012				error = sooptcopyout(sopt,
1013						     mtod(inp->inp_options,
1014							  char *),
1015						     inp->inp_options->m_len);
1016			else
1017				sopt->sopt_valsize = 0;
1018			break;
1019
1020		case IP_TOS:
1021		case IP_TTL:
1022		case IP_MINTTL:
1023		case IP_RECVOPTS:
1024		case IP_RECVRETOPTS:
1025		case IP_RECVDSTADDR:
1026		case IP_RECVTTL:
1027		case IP_RECVIF:
1028		case IP_PORTRANGE:
1029		case IP_FAITH:
1030		case IP_ONESBCAST:
1031		case IP_DONTFRAG:
1032			switch (sopt->sopt_name) {
1033
1034			case IP_TOS:
1035				optval = inp->inp_ip_tos;
1036				break;
1037
1038			case IP_TTL:
1039				optval = inp->inp_ip_ttl;
1040				break;
1041
1042			case IP_MINTTL:
1043				optval = inp->inp_ip_minttl;
1044				break;
1045
1046#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1047
1048			case IP_RECVOPTS:
1049				optval = OPTBIT(INP_RECVOPTS);
1050				break;
1051
1052			case IP_RECVRETOPTS:
1053				optval = OPTBIT(INP_RECVRETOPTS);
1054				break;
1055
1056			case IP_RECVDSTADDR:
1057				optval = OPTBIT(INP_RECVDSTADDR);
1058				break;
1059
1060			case IP_RECVTTL:
1061				optval = OPTBIT(INP_RECVTTL);
1062				break;
1063
1064			case IP_RECVIF:
1065				optval = OPTBIT(INP_RECVIF);
1066				break;
1067
1068			case IP_PORTRANGE:
1069				if (inp->inp_flags & INP_HIGHPORT)
1070					optval = IP_PORTRANGE_HIGH;
1071				else if (inp->inp_flags & INP_LOWPORT)
1072					optval = IP_PORTRANGE_LOW;
1073				else
1074					optval = 0;
1075				break;
1076
1077			case IP_FAITH:
1078				optval = OPTBIT(INP_FAITH);
1079				break;
1080
1081			case IP_ONESBCAST:
1082				optval = OPTBIT(INP_ONESBCAST);
1083				break;
1084			case IP_DONTFRAG:
1085				optval = OPTBIT(INP_DONTFRAG);
1086				break;
1087			}
1088			error = sooptcopyout(sopt, &optval, sizeof optval);
1089			break;
1090
1091		/*
1092		 * Multicast socket options are processed by the in_mcast
1093		 * module.
1094		 */
1095		case IP_MULTICAST_IF:
1096		case IP_MULTICAST_VIF:
1097		case IP_MULTICAST_TTL:
1098		case IP_MULTICAST_LOOP:
1099		case IP_MSFILTER:
1100			error = inp_getmoptions(inp, sopt);
1101			break;
1102
1103#ifdef IPSEC
1104		case IP_IPSEC_POLICY:
1105		{
1106			struct mbuf *m = NULL;
1107			caddr_t req = NULL;
1108			size_t len = 0;
1109
1110			if (m != 0) {
1111				req = mtod(m, caddr_t);
1112				len = m->m_len;
1113			}
1114			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1115			if (error == 0)
1116				error = soopt_mcopyout(sopt, m); /* XXX */
1117			if (error == 0)
1118				m_freem(m);
1119			break;
1120		}
1121#endif /* IPSEC */
1122
1123		default:
1124			error = ENOPROTOOPT;
1125			break;
1126		}
1127		break;
1128	}
1129	return (error);
1130}
1131
1132/*
1133 * Routine called from ip_output() to loop back a copy of an IP multicast
1134 * packet to the input queue of a specified interface.  Note that this
1135 * calls the output routine of the loopback "driver", but with an interface
1136 * pointer that might NOT be a loopback interface -- evil, but easier than
1137 * replicating that code here.
1138 */
1139static void
1140ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1141    int hlen)
1142{
1143	register struct ip *ip;
1144	struct mbuf *copym;
1145
1146	copym = m_copy(m, 0, M_COPYALL);
1147	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1148		copym = m_pullup(copym, hlen);
1149	if (copym != NULL) {
1150		/* If needed, compute the checksum and mark it as valid. */
1151		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1152			in_delayed_cksum(copym);
1153			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1154			copym->m_pkthdr.csum_flags |=
1155			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1156			copym->m_pkthdr.csum_data = 0xffff;
1157		}
1158		/*
1159		 * We don't bother to fragment if the IP length is greater
1160		 * than the interface's MTU.  Can this possibly matter?
1161		 */
1162		ip = mtod(copym, struct ip *);
1163		ip->ip_len = htons(ip->ip_len);
1164		ip->ip_off = htons(ip->ip_off);
1165		ip->ip_sum = 0;
1166		ip->ip_sum = in_cksum(copym, hlen);
1167		/*
1168		 * NB:
1169		 * It's not clear whether there are any lingering
1170		 * reentrancy problems in other areas which might
1171		 * be exposed by using ip_input directly (in
1172		 * particular, everything which modifies the packet
1173		 * in-place).  Yet another option is using the
1174		 * protosw directly to deliver the looped back
1175		 * packet.  For the moment, we'll err on the side
1176		 * of safety by using if_simloop().
1177		 */
1178#if 1 /* XXX */
1179		if (dst->sin_family != AF_INET) {
1180			printf("ip_mloopback: bad address family %d\n",
1181						dst->sin_family);
1182			dst->sin_family = AF_INET;
1183		}
1184#endif
1185
1186#ifdef notdef
1187		copym->m_pkthdr.rcvif = ifp;
1188		ip_input(copym);
1189#else
1190		if_simloop(ifp, copym, dst->sin_family, 0);
1191#endif
1192	}
1193}
1194