ip_output.c revision 175892
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_output.c 175892 2008-02-02 14:11:31Z bz $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_mbuf_stress_test.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/priv.h>
46#include <sys/proc.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/socketvar.h>
50#include <sys/sysctl.h>
51#include <sys/ucred.h>
52
53#include <net/if.h>
54#include <net/netisr.h>
55#include <net/pfil.h>
56#include <net/route.h>
57
58#include <netinet/in.h>
59#include <netinet/in_systm.h>
60#include <netinet/ip.h>
61#include <netinet/in_pcb.h>
62#include <netinet/in_var.h>
63#include <netinet/ip_var.h>
64#include <netinet/ip_options.h>
65
66#ifdef IPSEC
67#include <netinet/ip_ipsec.h>
68#include <netipsec/ipsec.h>
69#endif /* IPSEC*/
70
71#include <machine/in_cksum.h>
72
73#include <security/mac/mac_framework.h>
74
75#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
76				x, (ntohl(a.s_addr)>>24)&0xFF,\
77				  (ntohl(a.s_addr)>>16)&0xFF,\
78				  (ntohl(a.s_addr)>>8)&0xFF,\
79				  (ntohl(a.s_addr))&0xFF, y);
80
81u_short ip_id;
82
83#ifdef MBUF_STRESS_TEST
84int mbuf_frag_size = 0;
85SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
86	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
87#endif
88
89static void	ip_mloopback
90	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
91
92
93extern	struct protosw inetsw[];
94
95/*
96 * IP output.  The packet in mbuf chain m contains a skeletal IP
97 * header (with len, off, ttl, proto, tos, src, dst).
98 * The mbuf chain containing the packet will be freed.
99 * The mbuf opt, if present, will not be freed.
100 * In the IP forwarding case, the packet will arrive with options already
101 * inserted, so must have a NULL opt pointer.
102 */
103int
104ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
105    struct ip_moptions *imo, struct inpcb *inp)
106{
107	struct ip *ip;
108	struct ifnet *ifp = NULL;	/* keep compiler happy */
109	struct mbuf *m0;
110	int hlen = sizeof (struct ip);
111	int mtu;
112	int len, error = 0;
113	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
114	struct in_ifaddr *ia = NULL;
115	int isbroadcast, sw_csum;
116	struct route iproute;
117	struct in_addr odst;
118#ifdef IPFIREWALL_FORWARD
119	struct m_tag *fwd_tag = NULL;
120#endif
121	M_ASSERTPKTHDR(m);
122
123	if (ro == NULL) {
124		ro = &iproute;
125		bzero(ro, sizeof (*ro));
126	}
127
128	if (inp != NULL)
129		INP_LOCK_ASSERT(inp);
130
131	if (opt) {
132		len = 0;
133		m = ip_insertoptions(m, opt, &len);
134		if (len != 0)
135			hlen = len;
136	}
137	ip = mtod(m, struct ip *);
138
139	/*
140	 * Fill in IP header.  If we are not allowing fragmentation,
141	 * then the ip_id field is meaningless, but we don't set it
142	 * to zero.  Doing so causes various problems when devices along
143	 * the path (routers, load balancers, firewalls, etc.) illegally
144	 * disable DF on our packet.  Note that a 16-bit counter
145	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
146	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
147	 * for Counting NATted Hosts", Proc. IMW'02, available at
148	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
149	 */
150	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
151		ip->ip_v = IPVERSION;
152		ip->ip_hl = hlen >> 2;
153		ip->ip_id = ip_newid();
154		ipstat.ips_localout++;
155	} else {
156		hlen = ip->ip_hl << 2;
157	}
158
159	dst = (struct sockaddr_in *)&ro->ro_dst;
160again:
161	/*
162	 * If there is a cached route,
163	 * check that it is to the same destination
164	 * and is still up.  If not, free it and try again.
165	 * The address family should also be checked in case of sharing the
166	 * cache with IPv6.
167	 */
168	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
169			  dst->sin_family != AF_INET ||
170			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
171		RTFREE(ro->ro_rt);
172		ro->ro_rt = (struct rtentry *)NULL;
173	}
174#ifdef IPFIREWALL_FORWARD
175	if (ro->ro_rt == NULL && fwd_tag == NULL) {
176#else
177	if (ro->ro_rt == NULL) {
178#endif
179		bzero(dst, sizeof(*dst));
180		dst->sin_family = AF_INET;
181		dst->sin_len = sizeof(*dst);
182		dst->sin_addr = ip->ip_dst;
183	}
184	/*
185	 * If routing to interface only, short circuit routing lookup.
186	 * The use of an all-ones broadcast address implies this; an
187	 * interface is specified by the broadcast address of an interface,
188	 * or the destination address of a ptp interface.
189	 */
190	if (flags & IP_SENDONES) {
191		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
192		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
193			ipstat.ips_noroute++;
194			error = ENETUNREACH;
195			goto bad;
196		}
197		ip->ip_dst.s_addr = INADDR_BROADCAST;
198		dst->sin_addr = ip->ip_dst;
199		ifp = ia->ia_ifp;
200		ip->ip_ttl = 1;
201		isbroadcast = 1;
202	} else if (flags & IP_ROUTETOIF) {
203		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
204		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
205			ipstat.ips_noroute++;
206			error = ENETUNREACH;
207			goto bad;
208		}
209		ifp = ia->ia_ifp;
210		ip->ip_ttl = 1;
211		isbroadcast = in_broadcast(dst->sin_addr, ifp);
212	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
213	    imo != NULL && imo->imo_multicast_ifp != NULL) {
214		/*
215		 * Bypass the normal routing lookup for multicast
216		 * packets if the interface is specified.
217		 */
218		ifp = imo->imo_multicast_ifp;
219		IFP_TO_IA(ifp, ia);
220		isbroadcast = 0;	/* fool gcc */
221	} else {
222		/*
223		 * We want to do any cloning requested by the link layer,
224		 * as this is probably required in all cases for correct
225		 * operation (as it is for ARP).
226		 */
227		if (ro->ro_rt == NULL)
228			rtalloc_ign(ro, 0);
229		if (ro->ro_rt == NULL) {
230			ipstat.ips_noroute++;
231			error = EHOSTUNREACH;
232			goto bad;
233		}
234		ia = ifatoia(ro->ro_rt->rt_ifa);
235		ifp = ro->ro_rt->rt_ifp;
236		ro->ro_rt->rt_rmx.rmx_pksent++;
237		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
238			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
239		if (ro->ro_rt->rt_flags & RTF_HOST)
240			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
241		else
242			isbroadcast = in_broadcast(dst->sin_addr, ifp);
243	}
244	/*
245	 * Calculate MTU.  If we have a route that is up, use that,
246	 * otherwise use the interface's MTU.
247	 */
248	if (ro->ro_rt != NULL && (ro->ro_rt->rt_flags & (RTF_UP|RTF_HOST))) {
249		/*
250		 * This case can happen if the user changed the MTU
251		 * of an interface after enabling IP on it.  Because
252		 * most netifs don't keep track of routes pointing to
253		 * them, there is no way for one to update all its
254		 * routes when the MTU is changed.
255		 */
256		if (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)
257			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
258		mtu = ro->ro_rt->rt_rmx.rmx_mtu;
259	} else {
260		mtu = ifp->if_mtu;
261	}
262	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
263		struct in_multi *inm;
264
265		m->m_flags |= M_MCAST;
266		/*
267		 * IP destination address is multicast.  Make sure "dst"
268		 * still points to the address in "ro".  (It may have been
269		 * changed to point to a gateway address, above.)
270		 */
271		dst = (struct sockaddr_in *)&ro->ro_dst;
272		/*
273		 * See if the caller provided any multicast options
274		 */
275		if (imo != NULL) {
276			ip->ip_ttl = imo->imo_multicast_ttl;
277			if (imo->imo_multicast_vif != -1)
278				ip->ip_src.s_addr =
279				    ip_mcast_src ?
280				    ip_mcast_src(imo->imo_multicast_vif) :
281				    INADDR_ANY;
282		} else
283			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
284		/*
285		 * Confirm that the outgoing interface supports multicast.
286		 */
287		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
288			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
289				ipstat.ips_noroute++;
290				error = ENETUNREACH;
291				goto bad;
292			}
293		}
294		/*
295		 * If source address not specified yet, use address
296		 * of outgoing interface.
297		 */
298		if (ip->ip_src.s_addr == INADDR_ANY) {
299			/* Interface may have no addresses. */
300			if (ia != NULL)
301				ip->ip_src = IA_SIN(ia)->sin_addr;
302		}
303
304		IN_MULTI_LOCK();
305		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
306		if (inm != NULL &&
307		   (imo == NULL || imo->imo_multicast_loop)) {
308			IN_MULTI_UNLOCK();
309			/*
310			 * If we belong to the destination multicast group
311			 * on the outgoing interface, and the caller did not
312			 * forbid loopback, loop back a copy.
313			 */
314			ip_mloopback(ifp, m, dst, hlen);
315		}
316		else {
317			IN_MULTI_UNLOCK();
318			/*
319			 * If we are acting as a multicast router, perform
320			 * multicast forwarding as if the packet had just
321			 * arrived on the interface to which we are about
322			 * to send.  The multicast forwarding function
323			 * recursively calls this function, using the
324			 * IP_FORWARDING flag to prevent infinite recursion.
325			 *
326			 * Multicasts that are looped back by ip_mloopback(),
327			 * above, will be forwarded by the ip_input() routine,
328			 * if necessary.
329			 */
330			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
331				/*
332				 * If rsvp daemon is not running, do not
333				 * set ip_moptions. This ensures that the packet
334				 * is multicast and not just sent down one link
335				 * as prescribed by rsvpd.
336				 */
337				if (!rsvp_on)
338					imo = NULL;
339				if (ip_mforward &&
340				    ip_mforward(ip, ifp, m, imo) != 0) {
341					m_freem(m);
342					goto done;
343				}
344			}
345		}
346
347		/*
348		 * Multicasts with a time-to-live of zero may be looped-
349		 * back, above, but must not be transmitted on a network.
350		 * Also, multicasts addressed to the loopback interface
351		 * are not sent -- the above call to ip_mloopback() will
352		 * loop back a copy if this host actually belongs to the
353		 * destination group on the loopback interface.
354		 */
355		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
356			m_freem(m);
357			goto done;
358		}
359
360		goto sendit;
361	}
362
363	/*
364	 * If the source address is not specified yet, use the address
365	 * of the outoing interface.
366	 */
367	if (ip->ip_src.s_addr == INADDR_ANY) {
368		/* Interface may have no addresses. */
369		if (ia != NULL) {
370			ip->ip_src = IA_SIN(ia)->sin_addr;
371		}
372	}
373
374	/*
375	 * Verify that we have any chance at all of being able to queue the
376	 * packet or packet fragments, unless ALTQ is enabled on the given
377	 * interface in which case packetdrop should be done by queueing.
378	 */
379#ifdef ALTQ
380	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
381	    ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
382	    ifp->if_snd.ifq_maxlen))
383#else
384	if ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
385	    ifp->if_snd.ifq_maxlen)
386#endif /* ALTQ */
387	{
388		error = ENOBUFS;
389		ipstat.ips_odropped++;
390		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
391		goto bad;
392	}
393
394	/*
395	 * Look for broadcast address and
396	 * verify user is allowed to send
397	 * such a packet.
398	 */
399	if (isbroadcast) {
400		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
401			error = EADDRNOTAVAIL;
402			goto bad;
403		}
404		if ((flags & IP_ALLOWBROADCAST) == 0) {
405			error = EACCES;
406			goto bad;
407		}
408		/* don't allow broadcast messages to be fragmented */
409		if (ip->ip_len > mtu) {
410			error = EMSGSIZE;
411			goto bad;
412		}
413		m->m_flags |= M_BCAST;
414	} else {
415		m->m_flags &= ~M_BCAST;
416	}
417
418sendit:
419#ifdef IPSEC
420	switch(ip_ipsec_output(&m, inp, &flags, &error, &ro, &iproute, &dst, &ia, &ifp)) {
421	case 1:
422		goto bad;
423	case -1:
424		goto done;
425	case 0:
426	default:
427		break;	/* Continue with packet processing. */
428	}
429	/* Update variables that are affected by ipsec4_output(). */
430	ip = mtod(m, struct ip *);
431	hlen = ip->ip_hl << 2;
432#endif /* IPSEC */
433
434	/* Jump over all PFIL processing if hooks are not active. */
435	if (!PFIL_HOOKED(&inet_pfil_hook))
436		goto passout;
437
438	/* Run through list of hooks for output packets. */
439	odst.s_addr = ip->ip_dst.s_addr;
440	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
441	if (error != 0 || m == NULL)
442		goto done;
443
444	ip = mtod(m, struct ip *);
445
446	/* See if destination IP address was changed by packet filter. */
447	if (odst.s_addr != ip->ip_dst.s_addr) {
448		m->m_flags |= M_SKIP_FIREWALL;
449		/* If destination is now ourself drop to ip_input(). */
450		if (in_localip(ip->ip_dst)) {
451			m->m_flags |= M_FASTFWD_OURS;
452			if (m->m_pkthdr.rcvif == NULL)
453				m->m_pkthdr.rcvif = loif;
454			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
455				m->m_pkthdr.csum_flags |=
456				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
457				m->m_pkthdr.csum_data = 0xffff;
458			}
459			m->m_pkthdr.csum_flags |=
460			    CSUM_IP_CHECKED | CSUM_IP_VALID;
461
462			error = netisr_queue(NETISR_IP, m);
463			goto done;
464		} else
465			goto again;	/* Redo the routing table lookup. */
466	}
467
468#ifdef IPFIREWALL_FORWARD
469	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
470	if (m->m_flags & M_FASTFWD_OURS) {
471		if (m->m_pkthdr.rcvif == NULL)
472			m->m_pkthdr.rcvif = loif;
473		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
474			m->m_pkthdr.csum_flags |=
475			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
476			m->m_pkthdr.csum_data = 0xffff;
477		}
478		m->m_pkthdr.csum_flags |=
479			    CSUM_IP_CHECKED | CSUM_IP_VALID;
480
481		error = netisr_queue(NETISR_IP, m);
482		goto done;
483	}
484	/* Or forward to some other address? */
485	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
486	if (fwd_tag) {
487		dst = (struct sockaddr_in *)&ro->ro_dst;
488		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
489		m->m_flags |= M_SKIP_FIREWALL;
490		m_tag_delete(m, fwd_tag);
491		goto again;
492	}
493#endif /* IPFIREWALL_FORWARD */
494
495passout:
496	/* 127/8 must not appear on wire - RFC1122. */
497	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
498	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
499		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
500			ipstat.ips_badaddr++;
501			error = EADDRNOTAVAIL;
502			goto bad;
503		}
504	}
505
506	m->m_pkthdr.csum_flags |= CSUM_IP;
507	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
508	if (sw_csum & CSUM_DELAY_DATA) {
509		in_delayed_cksum(m);
510		sw_csum &= ~CSUM_DELAY_DATA;
511	}
512	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
513
514	/*
515	 * If small enough for interface, or the interface will take
516	 * care of the fragmentation for us, we can just send directly.
517	 */
518	if (ip->ip_len <= mtu ||
519	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
520	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
521		ip->ip_len = htons(ip->ip_len);
522		ip->ip_off = htons(ip->ip_off);
523		ip->ip_sum = 0;
524		if (sw_csum & CSUM_DELAY_IP)
525			ip->ip_sum = in_cksum(m, hlen);
526
527		/*
528		 * Record statistics for this interface address.
529		 * With CSUM_TSO the byte/packet count will be slightly
530		 * incorrect because we count the IP+TCP headers only
531		 * once instead of for every generated packet.
532		 */
533		if (!(flags & IP_FORWARDING) && ia) {
534			if (m->m_pkthdr.csum_flags & CSUM_TSO)
535				ia->ia_ifa.if_opackets +=
536				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
537			else
538				ia->ia_ifa.if_opackets++;
539			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
540		}
541#ifdef MBUF_STRESS_TEST
542		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
543			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
544#endif
545		/*
546		 * Reset layer specific mbuf flags
547		 * to avoid confusing lower layers.
548		 */
549		m->m_flags &= ~(M_PROTOFLAGS);
550
551		error = (*ifp->if_output)(ifp, m,
552				(struct sockaddr *)dst, ro->ro_rt);
553		goto done;
554	}
555
556	/* Balk when DF bit is set or the interface didn't support TSO. */
557	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
558		error = EMSGSIZE;
559		ipstat.ips_cantfrag++;
560		goto bad;
561	}
562
563	/*
564	 * Too large for interface; fragment if possible. If successful,
565	 * on return, m will point to a list of packets to be sent.
566	 */
567	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
568	if (error)
569		goto bad;
570	for (; m; m = m0) {
571		m0 = m->m_nextpkt;
572		m->m_nextpkt = 0;
573		if (error == 0) {
574			/* Record statistics for this interface address. */
575			if (ia != NULL) {
576				ia->ia_ifa.if_opackets++;
577				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
578			}
579			/*
580			 * Reset layer specific mbuf flags
581			 * to avoid confusing upper layers.
582			 */
583			m->m_flags &= ~(M_PROTOFLAGS);
584
585			error = (*ifp->if_output)(ifp, m,
586			    (struct sockaddr *)dst, ro->ro_rt);
587		} else
588			m_freem(m);
589	}
590
591	if (error == 0)
592		ipstat.ips_fragmented++;
593
594done:
595	if (ro == &iproute && ro->ro_rt) {
596		RTFREE(ro->ro_rt);
597	}
598	return (error);
599bad:
600	m_freem(m);
601	goto done;
602}
603
604/*
605 * Create a chain of fragments which fit the given mtu. m_frag points to the
606 * mbuf to be fragmented; on return it points to the chain with the fragments.
607 * Return 0 if no error. If error, m_frag may contain a partially built
608 * chain of fragments that should be freed by the caller.
609 *
610 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
611 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
612 */
613int
614ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
615    u_long if_hwassist_flags, int sw_csum)
616{
617	int error = 0;
618	int hlen = ip->ip_hl << 2;
619	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
620	int off;
621	struct mbuf *m0 = *m_frag;	/* the original packet		*/
622	int firstlen;
623	struct mbuf **mnext;
624	int nfrags;
625
626	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
627		ipstat.ips_cantfrag++;
628		return EMSGSIZE;
629	}
630
631	/*
632	 * Must be able to put at least 8 bytes per fragment.
633	 */
634	if (len < 8)
635		return EMSGSIZE;
636
637	/*
638	 * If the interface will not calculate checksums on
639	 * fragmented packets, then do it here.
640	 */
641	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
642	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
643		in_delayed_cksum(m0);
644		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
645	}
646
647	if (len > PAGE_SIZE) {
648		/*
649		 * Fragment large datagrams such that each segment
650		 * contains a multiple of PAGE_SIZE amount of data,
651		 * plus headers. This enables a receiver to perform
652		 * page-flipping zero-copy optimizations.
653		 *
654		 * XXX When does this help given that sender and receiver
655		 * could have different page sizes, and also mtu could
656		 * be less than the receiver's page size ?
657		 */
658		int newlen;
659		struct mbuf *m;
660
661		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
662			off += m->m_len;
663
664		/*
665		 * firstlen (off - hlen) must be aligned on an
666		 * 8-byte boundary
667		 */
668		if (off < hlen)
669			goto smart_frag_failure;
670		off = ((off - hlen) & ~7) + hlen;
671		newlen = (~PAGE_MASK) & mtu;
672		if ((newlen + sizeof (struct ip)) > mtu) {
673			/* we failed, go back the default */
674smart_frag_failure:
675			newlen = len;
676			off = hlen + len;
677		}
678		len = newlen;
679
680	} else {
681		off = hlen + len;
682	}
683
684	firstlen = off - hlen;
685	mnext = &m0->m_nextpkt;		/* pointer to next packet */
686
687	/*
688	 * Loop through length of segment after first fragment,
689	 * make new header and copy data of each part and link onto chain.
690	 * Here, m0 is the original packet, m is the fragment being created.
691	 * The fragments are linked off the m_nextpkt of the original
692	 * packet, which after processing serves as the first fragment.
693	 */
694	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
695		struct ip *mhip;	/* ip header on the fragment */
696		struct mbuf *m;
697		int mhlen = sizeof (struct ip);
698
699		MGETHDR(m, M_DONTWAIT, MT_DATA);
700		if (m == NULL) {
701			error = ENOBUFS;
702			ipstat.ips_odropped++;
703			goto done;
704		}
705		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
706		/*
707		 * In the first mbuf, leave room for the link header, then
708		 * copy the original IP header including options. The payload
709		 * goes into an additional mbuf chain returned by m_copy().
710		 */
711		m->m_data += max_linkhdr;
712		mhip = mtod(m, struct ip *);
713		*mhip = *ip;
714		if (hlen > sizeof (struct ip)) {
715			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
716			mhip->ip_v = IPVERSION;
717			mhip->ip_hl = mhlen >> 2;
718		}
719		m->m_len = mhlen;
720		/* XXX do we need to add ip->ip_off below ? */
721		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
722		if (off + len >= ip->ip_len) {	/* last fragment */
723			len = ip->ip_len - off;
724			m->m_flags |= M_LASTFRAG;
725		} else
726			mhip->ip_off |= IP_MF;
727		mhip->ip_len = htons((u_short)(len + mhlen));
728		m->m_next = m_copy(m0, off, len);
729		if (m->m_next == NULL) {	/* copy failed */
730			m_free(m);
731			error = ENOBUFS;	/* ??? */
732			ipstat.ips_odropped++;
733			goto done;
734		}
735		m->m_pkthdr.len = mhlen + len;
736		m->m_pkthdr.rcvif = NULL;
737#ifdef MAC
738		mac_netinet_fragment(m0, m);
739#endif
740		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
741		mhip->ip_off = htons(mhip->ip_off);
742		mhip->ip_sum = 0;
743		if (sw_csum & CSUM_DELAY_IP)
744			mhip->ip_sum = in_cksum(m, mhlen);
745		*mnext = m;
746		mnext = &m->m_nextpkt;
747	}
748	ipstat.ips_ofragments += nfrags;
749
750	/* set first marker for fragment chain */
751	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
752	m0->m_pkthdr.csum_data = nfrags;
753
754	/*
755	 * Update first fragment by trimming what's been copied out
756	 * and updating header.
757	 */
758	m_adj(m0, hlen + firstlen - ip->ip_len);
759	m0->m_pkthdr.len = hlen + firstlen;
760	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
761	ip->ip_off |= IP_MF;
762	ip->ip_off = htons(ip->ip_off);
763	ip->ip_sum = 0;
764	if (sw_csum & CSUM_DELAY_IP)
765		ip->ip_sum = in_cksum(m0, hlen);
766
767done:
768	*m_frag = m0;
769	return error;
770}
771
772void
773in_delayed_cksum(struct mbuf *m)
774{
775	struct ip *ip;
776	u_short csum, offset;
777
778	ip = mtod(m, struct ip *);
779	offset = ip->ip_hl << 2 ;
780	csum = in_cksum_skip(m, ip->ip_len, offset);
781	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
782		csum = 0xffff;
783	offset += m->m_pkthdr.csum_data;	/* checksum offset */
784
785	if (offset + sizeof(u_short) > m->m_len) {
786		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
787		    m->m_len, offset, ip->ip_p);
788		/*
789		 * XXX
790		 * this shouldn't happen, but if it does, the
791		 * correct behavior may be to insert the checksum
792		 * in the appropriate next mbuf in the chain.
793		 */
794		return;
795	}
796	*(u_short *)(m->m_data + offset) = csum;
797}
798
799/*
800 * IP socket option processing.
801 */
802int
803ip_ctloutput(struct socket *so, struct sockopt *sopt)
804{
805	struct	inpcb *inp = sotoinpcb(so);
806	int	error, optval;
807
808	error = optval = 0;
809	if (sopt->sopt_level != IPPROTO_IP) {
810		return (EINVAL);
811	}
812
813	switch (sopt->sopt_dir) {
814	case SOPT_SET:
815		switch (sopt->sopt_name) {
816		case IP_OPTIONS:
817#ifdef notyet
818		case IP_RETOPTS:
819#endif
820		{
821			struct mbuf *m;
822			if (sopt->sopt_valsize > MLEN) {
823				error = EMSGSIZE;
824				break;
825			}
826			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
827			if (m == NULL) {
828				error = ENOBUFS;
829				break;
830			}
831			m->m_len = sopt->sopt_valsize;
832			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
833					    m->m_len);
834			if (error) {
835				m_free(m);
836				break;
837			}
838			INP_LOCK(inp);
839			error = ip_pcbopts(inp, sopt->sopt_name, m);
840			INP_UNLOCK(inp);
841			return (error);
842		}
843
844		case IP_TOS:
845		case IP_TTL:
846		case IP_MINTTL:
847		case IP_RECVOPTS:
848		case IP_RECVRETOPTS:
849		case IP_RECVDSTADDR:
850		case IP_RECVTTL:
851		case IP_RECVIF:
852		case IP_FAITH:
853		case IP_ONESBCAST:
854		case IP_DONTFRAG:
855			error = sooptcopyin(sopt, &optval, sizeof optval,
856					    sizeof optval);
857			if (error)
858				break;
859
860			switch (sopt->sopt_name) {
861			case IP_TOS:
862				inp->inp_ip_tos = optval;
863				break;
864
865			case IP_TTL:
866				inp->inp_ip_ttl = optval;
867				break;
868
869			case IP_MINTTL:
870				if (optval > 0 && optval <= MAXTTL)
871					inp->inp_ip_minttl = optval;
872				else
873					error = EINVAL;
874				break;
875
876#define	OPTSET(bit) do {						\
877	INP_LOCK(inp);							\
878	if (optval)							\
879		inp->inp_flags |= bit;					\
880	else								\
881		inp->inp_flags &= ~bit;					\
882	INP_UNLOCK(inp);						\
883} while (0)
884
885			case IP_RECVOPTS:
886				OPTSET(INP_RECVOPTS);
887				break;
888
889			case IP_RECVRETOPTS:
890				OPTSET(INP_RECVRETOPTS);
891				break;
892
893			case IP_RECVDSTADDR:
894				OPTSET(INP_RECVDSTADDR);
895				break;
896
897			case IP_RECVTTL:
898				OPTSET(INP_RECVTTL);
899				break;
900
901			case IP_RECVIF:
902				OPTSET(INP_RECVIF);
903				break;
904
905			case IP_FAITH:
906				OPTSET(INP_FAITH);
907				break;
908
909			case IP_ONESBCAST:
910				OPTSET(INP_ONESBCAST);
911				break;
912			case IP_DONTFRAG:
913				OPTSET(INP_DONTFRAG);
914				break;
915			}
916			break;
917#undef OPTSET
918
919		/*
920		 * Multicast socket options are processed by the in_mcast
921		 * module.
922		 */
923		case IP_MULTICAST_IF:
924		case IP_MULTICAST_VIF:
925		case IP_MULTICAST_TTL:
926		case IP_MULTICAST_LOOP:
927		case IP_ADD_MEMBERSHIP:
928		case IP_DROP_MEMBERSHIP:
929		case IP_ADD_SOURCE_MEMBERSHIP:
930		case IP_DROP_SOURCE_MEMBERSHIP:
931		case IP_BLOCK_SOURCE:
932		case IP_UNBLOCK_SOURCE:
933		case IP_MSFILTER:
934		case MCAST_JOIN_GROUP:
935		case MCAST_LEAVE_GROUP:
936		case MCAST_JOIN_SOURCE_GROUP:
937		case MCAST_LEAVE_SOURCE_GROUP:
938		case MCAST_BLOCK_SOURCE:
939		case MCAST_UNBLOCK_SOURCE:
940			error = inp_setmoptions(inp, sopt);
941			break;
942
943		case IP_PORTRANGE:
944			error = sooptcopyin(sopt, &optval, sizeof optval,
945					    sizeof optval);
946			if (error)
947				break;
948
949			INP_LOCK(inp);
950			switch (optval) {
951			case IP_PORTRANGE_DEFAULT:
952				inp->inp_flags &= ~(INP_LOWPORT);
953				inp->inp_flags &= ~(INP_HIGHPORT);
954				break;
955
956			case IP_PORTRANGE_HIGH:
957				inp->inp_flags &= ~(INP_LOWPORT);
958				inp->inp_flags |= INP_HIGHPORT;
959				break;
960
961			case IP_PORTRANGE_LOW:
962				inp->inp_flags &= ~(INP_HIGHPORT);
963				inp->inp_flags |= INP_LOWPORT;
964				break;
965
966			default:
967				error = EINVAL;
968				break;
969			}
970			INP_UNLOCK(inp);
971			break;
972
973#ifdef IPSEC
974		case IP_IPSEC_POLICY:
975		{
976			caddr_t req;
977			struct mbuf *m;
978
979			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
980				break;
981			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
982				break;
983			req = mtod(m, caddr_t);
984			error = ipsec4_set_policy(inp, sopt->sopt_name, req,
985			    m->m_len, (sopt->sopt_td != NULL) ?
986			    sopt->sopt_td->td_ucred : NULL);
987			m_freem(m);
988			break;
989		}
990#endif /* IPSEC */
991
992		default:
993			error = ENOPROTOOPT;
994			break;
995		}
996		break;
997
998	case SOPT_GET:
999		switch (sopt->sopt_name) {
1000		case IP_OPTIONS:
1001		case IP_RETOPTS:
1002			if (inp->inp_options)
1003				error = sooptcopyout(sopt,
1004						     mtod(inp->inp_options,
1005							  char *),
1006						     inp->inp_options->m_len);
1007			else
1008				sopt->sopt_valsize = 0;
1009			break;
1010
1011		case IP_TOS:
1012		case IP_TTL:
1013		case IP_MINTTL:
1014		case IP_RECVOPTS:
1015		case IP_RECVRETOPTS:
1016		case IP_RECVDSTADDR:
1017		case IP_RECVTTL:
1018		case IP_RECVIF:
1019		case IP_PORTRANGE:
1020		case IP_FAITH:
1021		case IP_ONESBCAST:
1022		case IP_DONTFRAG:
1023			switch (sopt->sopt_name) {
1024
1025			case IP_TOS:
1026				optval = inp->inp_ip_tos;
1027				break;
1028
1029			case IP_TTL:
1030				optval = inp->inp_ip_ttl;
1031				break;
1032
1033			case IP_MINTTL:
1034				optval = inp->inp_ip_minttl;
1035				break;
1036
1037#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1038
1039			case IP_RECVOPTS:
1040				optval = OPTBIT(INP_RECVOPTS);
1041				break;
1042
1043			case IP_RECVRETOPTS:
1044				optval = OPTBIT(INP_RECVRETOPTS);
1045				break;
1046
1047			case IP_RECVDSTADDR:
1048				optval = OPTBIT(INP_RECVDSTADDR);
1049				break;
1050
1051			case IP_RECVTTL:
1052				optval = OPTBIT(INP_RECVTTL);
1053				break;
1054
1055			case IP_RECVIF:
1056				optval = OPTBIT(INP_RECVIF);
1057				break;
1058
1059			case IP_PORTRANGE:
1060				if (inp->inp_flags & INP_HIGHPORT)
1061					optval = IP_PORTRANGE_HIGH;
1062				else if (inp->inp_flags & INP_LOWPORT)
1063					optval = IP_PORTRANGE_LOW;
1064				else
1065					optval = 0;
1066				break;
1067
1068			case IP_FAITH:
1069				optval = OPTBIT(INP_FAITH);
1070				break;
1071
1072			case IP_ONESBCAST:
1073				optval = OPTBIT(INP_ONESBCAST);
1074				break;
1075			case IP_DONTFRAG:
1076				optval = OPTBIT(INP_DONTFRAG);
1077				break;
1078			}
1079			error = sooptcopyout(sopt, &optval, sizeof optval);
1080			break;
1081
1082		/*
1083		 * Multicast socket options are processed by the in_mcast
1084		 * module.
1085		 */
1086		case IP_MULTICAST_IF:
1087		case IP_MULTICAST_VIF:
1088		case IP_MULTICAST_TTL:
1089		case IP_MULTICAST_LOOP:
1090		case IP_MSFILTER:
1091			error = inp_getmoptions(inp, sopt);
1092			break;
1093
1094#ifdef IPSEC
1095		case IP_IPSEC_POLICY:
1096		{
1097			struct mbuf *m = NULL;
1098			caddr_t req = NULL;
1099			size_t len = 0;
1100
1101			if (m != 0) {
1102				req = mtod(m, caddr_t);
1103				len = m->m_len;
1104			}
1105			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1106			if (error == 0)
1107				error = soopt_mcopyout(sopt, m); /* XXX */
1108			if (error == 0)
1109				m_freem(m);
1110			break;
1111		}
1112#endif /* IPSEC */
1113
1114		default:
1115			error = ENOPROTOOPT;
1116			break;
1117		}
1118		break;
1119	}
1120	return (error);
1121}
1122
1123/*
1124 * Routine called from ip_output() to loop back a copy of an IP multicast
1125 * packet to the input queue of a specified interface.  Note that this
1126 * calls the output routine of the loopback "driver", but with an interface
1127 * pointer that might NOT be a loopback interface -- evil, but easier than
1128 * replicating that code here.
1129 */
1130static void
1131ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1132    int hlen)
1133{
1134	register struct ip *ip;
1135	struct mbuf *copym;
1136
1137	copym = m_copy(m, 0, M_COPYALL);
1138	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1139		copym = m_pullup(copym, hlen);
1140	if (copym != NULL) {
1141		/* If needed, compute the checksum and mark it as valid. */
1142		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1143			in_delayed_cksum(copym);
1144			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1145			copym->m_pkthdr.csum_flags |=
1146			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1147			copym->m_pkthdr.csum_data = 0xffff;
1148		}
1149		/*
1150		 * We don't bother to fragment if the IP length is greater
1151		 * than the interface's MTU.  Can this possibly matter?
1152		 */
1153		ip = mtod(copym, struct ip *);
1154		ip->ip_len = htons(ip->ip_len);
1155		ip->ip_off = htons(ip->ip_off);
1156		ip->ip_sum = 0;
1157		ip->ip_sum = in_cksum(copym, hlen);
1158		/*
1159		 * NB:
1160		 * It's not clear whether there are any lingering
1161		 * reentrancy problems in other areas which might
1162		 * be exposed by using ip_input directly (in
1163		 * particular, everything which modifies the packet
1164		 * in-place).  Yet another option is using the
1165		 * protosw directly to deliver the looped back
1166		 * packet.  For the moment, we'll err on the side
1167		 * of safety by using if_simloop().
1168		 */
1169#if 1 /* XXX */
1170		if (dst->sin_family != AF_INET) {
1171			printf("ip_mloopback: bad address family %d\n",
1172						dst->sin_family);
1173			dst->sin_family = AF_INET;
1174		}
1175#endif
1176
1177#ifdef notdef
1178		copym->m_pkthdr.rcvif = ifp;
1179		ip_input(copym);
1180#else
1181		if_simloop(ifp, copym, dst->sin_family, 0);
1182#endif
1183	}
1184}
1185