ip_output.c revision 164033
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 * $FreeBSD: head/sys/netinet/ip_output.c 164033 2006-11-06 13:42:10Z rwatson $
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipsec.h"
35#include "opt_mac.h"
36#include "opt_mbuf_stress_test.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/priv.h>
44#include <sys/protosw.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/sysctl.h>
48
49#include <net/if.h>
50#include <net/netisr.h>
51#include <net/pfil.h>
52#include <net/route.h>
53
54#include <netinet/in.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#include <netinet/in_pcb.h>
58#include <netinet/in_var.h>
59#include <netinet/ip_var.h>
60#include <netinet/ip_options.h>
61
62#if defined(IPSEC) || defined(FAST_IPSEC)
63#include <netinet/ip_ipsec.h>
64#ifdef IPSEC
65#include <netinet6/ipsec.h>
66#endif
67#ifdef FAST_IPSEC
68#include <netipsec/ipsec.h>
69#endif
70#endif /*IPSEC*/
71
72#include <machine/in_cksum.h>
73
74#include <security/mac/mac_framework.h>
75
76static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
77
78#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
79				x, (ntohl(a.s_addr)>>24)&0xFF,\
80				  (ntohl(a.s_addr)>>16)&0xFF,\
81				  (ntohl(a.s_addr)>>8)&0xFF,\
82				  (ntohl(a.s_addr))&0xFF, y);
83
84u_short ip_id;
85
86#ifdef MBUF_STRESS_TEST
87int mbuf_frag_size = 0;
88SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
89	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
90#endif
91
92static struct ifnet *ip_multicast_if(struct in_addr *, int *);
93static void	ip_mloopback
94	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
95static int	ip_getmoptions(struct inpcb *, struct sockopt *);
96static int	ip_setmoptions(struct inpcb *, struct sockopt *);
97
98
99extern	struct protosw inetsw[];
100
101/*
102 * IP output.  The packet in mbuf chain m contains a skeletal IP
103 * header (with len, off, ttl, proto, tos, src, dst).
104 * The mbuf chain containing the packet will be freed.
105 * The mbuf opt, if present, will not be freed.
106 * In the IP forwarding case, the packet will arrive with options already
107 * inserted, so must have a NULL opt pointer.
108 */
109int
110ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
111	int flags, struct ip_moptions *imo, struct inpcb *inp)
112{
113	struct ip *ip;
114	struct ifnet *ifp = NULL;	/* keep compiler happy */
115	struct mbuf *m0;
116	int hlen = sizeof (struct ip);
117	int mtu;
118	int len, error = 0;
119	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
120	struct in_ifaddr *ia = NULL;
121	struct in_ifaddr *sia = NULL;
122	int isbroadcast, sw_csum;
123	struct route iproute;
124	struct in_addr odst;
125#ifdef IPFIREWALL_FORWARD
126	struct m_tag *fwd_tag = NULL;
127#endif
128	M_ASSERTPKTHDR(m);
129
130	if (ro == NULL) {
131		ro = &iproute;
132		bzero(ro, sizeof (*ro));
133	}
134
135	if (inp != NULL)
136		INP_LOCK_ASSERT(inp);
137
138	if (opt) {
139		len = 0;
140		m = ip_insertoptions(m, opt, &len);
141		if (len != 0)
142			hlen = len;
143	}
144	ip = mtod(m, struct ip *);
145
146	/*
147	 * Fill in IP header.  If we are not allowing fragmentation,
148	 * then the ip_id field is meaningless, but we don't set it
149	 * to zero.  Doing so causes various problems when devices along
150	 * the path (routers, load balancers, firewalls, etc.) illegally
151	 * disable DF on our packet.  Note that a 16-bit counter
152	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
153	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
154	 * for Counting NATted Hosts", Proc. IMW'02, available at
155	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
156	 */
157	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
158		ip->ip_v = IPVERSION;
159		ip->ip_hl = hlen >> 2;
160		ip->ip_id = ip_newid();
161		ipstat.ips_localout++;
162	} else {
163		hlen = ip->ip_hl << 2;
164	}
165
166	dst = (struct sockaddr_in *)&ro->ro_dst;
167again:
168	/*
169	 * If there is a cached route,
170	 * check that it is to the same destination
171	 * and is still up.  If not, free it and try again.
172	 * The address family should also be checked in case of sharing the
173	 * cache with IPv6.
174	 */
175	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
176			  dst->sin_family != AF_INET ||
177			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
178		RTFREE(ro->ro_rt);
179		ro->ro_rt = (struct rtentry *)NULL;
180	}
181#ifdef IPFIREWALL_FORWARD
182	if (ro->ro_rt == NULL && fwd_tag == NULL) {
183#else
184	if (ro->ro_rt == NULL) {
185#endif
186		bzero(dst, sizeof(*dst));
187		dst->sin_family = AF_INET;
188		dst->sin_len = sizeof(*dst);
189		dst->sin_addr = ip->ip_dst;
190	}
191	/*
192	 * If routing to interface only,
193	 * short circuit routing lookup.
194	 */
195	if (flags & IP_ROUTETOIF) {
196		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
197		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
198			ipstat.ips_noroute++;
199			error = ENETUNREACH;
200			goto bad;
201		}
202		ifp = ia->ia_ifp;
203		ip->ip_ttl = 1;
204		isbroadcast = in_broadcast(dst->sin_addr, ifp);
205	} else if (flags & IP_SENDONES) {
206		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL) {
207			ipstat.ips_noroute++;
208			error = ENETUNREACH;
209			goto bad;
210		}
211		ifp = ia->ia_ifp;
212		ip->ip_dst.s_addr = INADDR_BROADCAST;
213		dst->sin_addr = ip->ip_dst;
214		ip->ip_ttl = 1;
215		isbroadcast = 1;
216	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
217	    imo != NULL && imo->imo_multicast_ifp != NULL) {
218		/*
219		 * Bypass the normal routing lookup for multicast
220		 * packets if the interface is specified.
221		 */
222		ifp = imo->imo_multicast_ifp;
223		IFP_TO_IA(ifp, ia);
224		isbroadcast = 0;	/* fool gcc */
225	} else {
226		/*
227		 * We want to do any cloning requested by the link layer,
228		 * as this is probably required in all cases for correct
229		 * operation (as it is for ARP).
230		 */
231		if (ro->ro_rt == NULL)
232			rtalloc_ign(ro, 0);
233		if (ro->ro_rt == NULL) {
234			ipstat.ips_noroute++;
235			error = EHOSTUNREACH;
236			goto bad;
237		}
238		ia = ifatoia(ro->ro_rt->rt_ifa);
239		ifp = ro->ro_rt->rt_ifp;
240		ro->ro_rt->rt_rmx.rmx_pksent++;
241		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
242			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
243		if (ro->ro_rt->rt_flags & RTF_HOST)
244			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
245		else
246			isbroadcast = in_broadcast(dst->sin_addr, ifp);
247	}
248	/*
249	 * Calculate MTU.  If we have a route that is up, use that,
250	 * otherwise use the interface's MTU.
251	 */
252	if (ro->ro_rt != NULL && (ro->ro_rt->rt_flags & (RTF_UP|RTF_HOST))) {
253		/*
254		 * This case can happen if the user changed the MTU
255		 * of an interface after enabling IP on it.  Because
256		 * most netifs don't keep track of routes pointing to
257		 * them, there is no way for one to update all its
258		 * routes when the MTU is changed.
259		 */
260		if (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)
261			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
262		mtu = ro->ro_rt->rt_rmx.rmx_mtu;
263	} else {
264		mtu = ifp->if_mtu;
265	}
266	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
267		struct in_multi *inm;
268
269		m->m_flags |= M_MCAST;
270		/*
271		 * IP destination address is multicast.  Make sure "dst"
272		 * still points to the address in "ro".  (It may have been
273		 * changed to point to a gateway address, above.)
274		 */
275		dst = (struct sockaddr_in *)&ro->ro_dst;
276		/*
277		 * See if the caller provided any multicast options
278		 */
279		if (imo != NULL) {
280			ip->ip_ttl = imo->imo_multicast_ttl;
281			if (imo->imo_multicast_vif != -1)
282				ip->ip_src.s_addr =
283				    ip_mcast_src ?
284				    ip_mcast_src(imo->imo_multicast_vif) :
285				    INADDR_ANY;
286		} else
287			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
288		/*
289		 * Confirm that the outgoing interface supports multicast.
290		 */
291		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
292			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
293				ipstat.ips_noroute++;
294				error = ENETUNREACH;
295				goto bad;
296			}
297		}
298		/*
299		 * If source address not specified yet, use address
300		 * of outgoing interface.
301		 */
302		if (ip->ip_src.s_addr == INADDR_ANY) {
303			/* Interface may have no addresses. */
304			if (ia != NULL)
305				ip->ip_src = IA_SIN(ia)->sin_addr;
306		}
307
308		IN_MULTI_LOCK();
309		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
310		if (inm != NULL &&
311		   (imo == NULL || imo->imo_multicast_loop)) {
312			IN_MULTI_UNLOCK();
313			/*
314			 * If we belong to the destination multicast group
315			 * on the outgoing interface, and the caller did not
316			 * forbid loopback, loop back a copy.
317			 */
318			ip_mloopback(ifp, m, dst, hlen);
319		}
320		else {
321			IN_MULTI_UNLOCK();
322			/*
323			 * If we are acting as a multicast router, perform
324			 * multicast forwarding as if the packet had just
325			 * arrived on the interface to which we are about
326			 * to send.  The multicast forwarding function
327			 * recursively calls this function, using the
328			 * IP_FORWARDING flag to prevent infinite recursion.
329			 *
330			 * Multicasts that are looped back by ip_mloopback(),
331			 * above, will be forwarded by the ip_input() routine,
332			 * if necessary.
333			 */
334			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
335				/*
336				 * If rsvp daemon is not running, do not
337				 * set ip_moptions. This ensures that the packet
338				 * is multicast and not just sent down one link
339				 * as prescribed by rsvpd.
340				 */
341				if (!rsvp_on)
342					imo = NULL;
343				if (ip_mforward &&
344				    ip_mforward(ip, ifp, m, imo) != 0) {
345					m_freem(m);
346					goto done;
347				}
348			}
349		}
350
351		/*
352		 * Multicasts with a time-to-live of zero may be looped-
353		 * back, above, but must not be transmitted on a network.
354		 * Also, multicasts addressed to the loopback interface
355		 * are not sent -- the above call to ip_mloopback() will
356		 * loop back a copy if this host actually belongs to the
357		 * destination group on the loopback interface.
358		 */
359		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
360			m_freem(m);
361			goto done;
362		}
363
364		goto sendit;
365	}
366
367	/*
368	 * If the source address is not specified yet, use the address
369	 * of the outoing interface.
370	 */
371	if (ip->ip_src.s_addr == INADDR_ANY) {
372		/* Interface may have no addresses. */
373		if (ia != NULL) {
374			ip->ip_src = IA_SIN(ia)->sin_addr;
375		}
376	}
377
378	/*
379	 * Verify that we have any chance at all of being able to queue the
380	 * packet or packet fragments, unless ALTQ is enabled on the given
381	 * interface in which case packetdrop should be done by queueing.
382	 */
383#ifdef ALTQ
384	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
385	    ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
386	    ifp->if_snd.ifq_maxlen))
387#else
388	if ((ifp->if_snd.ifq_len + ip->ip_len / mtu + 1) >=
389	    ifp->if_snd.ifq_maxlen)
390#endif /* ALTQ */
391	{
392		error = ENOBUFS;
393		ipstat.ips_odropped++;
394		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
395		goto bad;
396	}
397
398	/*
399	 * Look for broadcast address and
400	 * verify user is allowed to send
401	 * such a packet.
402	 */
403	if (isbroadcast) {
404		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
405			error = EADDRNOTAVAIL;
406			goto bad;
407		}
408		if ((flags & IP_ALLOWBROADCAST) == 0) {
409			error = EACCES;
410			goto bad;
411		}
412		/* don't allow broadcast messages to be fragmented */
413		if (ip->ip_len > mtu) {
414			error = EMSGSIZE;
415			goto bad;
416		}
417		m->m_flags |= M_BCAST;
418	} else {
419		m->m_flags &= ~M_BCAST;
420	}
421
422sendit:
423#if defined(IPSEC) || defined(FAST_IPSEC)
424	switch(ip_ipsec_output(&m, inp, &flags, &error, &ro, &iproute, &dst, &ia, &ifp)) {
425	case 1:
426		goto bad;
427	case -1:
428		goto done;
429	case 0:
430	default:
431		break;	/* Continue with packet processing. */
432	}
433	/* Update variables that are affected by ipsec4_output(). */
434	ip = mtod(m, struct ip *);
435	hlen = ip->ip_hl << 2;
436#endif /* IPSEC */
437
438	/* Jump over all PFIL processing if hooks are not active. */
439	if (!PFIL_HOOKED(&inet_pfil_hook))
440		goto passout;
441
442	/* Run through list of hooks for output packets. */
443	odst.s_addr = ip->ip_dst.s_addr;
444	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
445	if (error != 0 || m == NULL)
446		goto done;
447
448	ip = mtod(m, struct ip *);
449
450	/* See if destination IP address was changed by packet filter. */
451	if (odst.s_addr != ip->ip_dst.s_addr) {
452		m->m_flags |= M_SKIP_FIREWALL;
453		/* If destination is now ourself drop to ip_input(). */
454		if (in_localip(ip->ip_dst)) {
455			m->m_flags |= M_FASTFWD_OURS;
456			if (m->m_pkthdr.rcvif == NULL)
457				m->m_pkthdr.rcvif = loif;
458			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
459				m->m_pkthdr.csum_flags |=
460				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
461				m->m_pkthdr.csum_data = 0xffff;
462			}
463			m->m_pkthdr.csum_flags |=
464			    CSUM_IP_CHECKED | CSUM_IP_VALID;
465
466			error = netisr_queue(NETISR_IP, m);
467			goto done;
468		} else
469			goto again;	/* Redo the routing table lookup. */
470	}
471
472#ifdef IPFIREWALL_FORWARD
473	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
474	if (m->m_flags & M_FASTFWD_OURS) {
475		if (m->m_pkthdr.rcvif == NULL)
476			m->m_pkthdr.rcvif = loif;
477		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
478			m->m_pkthdr.csum_flags |=
479			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
480			m->m_pkthdr.csum_data = 0xffff;
481		}
482		m->m_pkthdr.csum_flags |=
483			    CSUM_IP_CHECKED | CSUM_IP_VALID;
484
485		error = netisr_queue(NETISR_IP, m);
486		goto done;
487	}
488	/* Or forward to some other address? */
489	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
490	if (fwd_tag) {
491		dst = (struct sockaddr_in *)&ro->ro_dst;
492		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
493		m->m_flags |= M_SKIP_FIREWALL;
494		m_tag_delete(m, fwd_tag);
495		goto again;
496	}
497#endif /* IPFIREWALL_FORWARD */
498
499passout:
500	/* 127/8 must not appear on wire - RFC1122. */
501	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
502	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
503		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
504			ipstat.ips_badaddr++;
505			error = EADDRNOTAVAIL;
506			goto bad;
507		}
508	}
509
510	m->m_pkthdr.csum_flags |= CSUM_IP;
511	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
512	if (sw_csum & CSUM_DELAY_DATA) {
513		in_delayed_cksum(m);
514		sw_csum &= ~CSUM_DELAY_DATA;
515	}
516	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
517
518	/*
519	 * If small enough for interface, or the interface will take
520	 * care of the fragmentation for us, we can just send directly.
521	 */
522	if (ip->ip_len <= mtu ||
523	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
524	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
525		ip->ip_len = htons(ip->ip_len);
526		ip->ip_off = htons(ip->ip_off);
527		ip->ip_sum = 0;
528		if (sw_csum & CSUM_DELAY_IP)
529			ip->ip_sum = in_cksum(m, hlen);
530
531		/*
532		 * Record statistics for this interface address.
533		 * With CSUM_TSO the byte/packet count will be slightly
534		 * incorrect because we count the IP+TCP headers only
535		 * once instead of for every generated packet.
536		 */
537		if (!(flags & IP_FORWARDING) && ia) {
538			INADDR_TO_IFADDR(ip->ip_src, sia);
539			if (sia == NULL)
540				sia = ia;
541			if (m->m_pkthdr.csum_flags & CSUM_TSO)
542				sia->ia_ifa.if_opackets +=
543				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
544			else
545				sia->ia_ifa.if_opackets++;
546			sia->ia_ifa.if_obytes += m->m_pkthdr.len;
547		}
548#ifdef IPSEC
549		/* clean ipsec history once it goes out of the node */
550		ipsec_delaux(m);
551#endif
552#ifdef MBUF_STRESS_TEST
553		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
554			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
555#endif
556		/*
557		 * Reset layer specific mbuf flags
558		 * to avoid confusing lower layers.
559		 */
560		m->m_flags &= ~(M_PROTOFLAGS);
561
562		error = (*ifp->if_output)(ifp, m,
563				(struct sockaddr *)dst, ro->ro_rt);
564		goto done;
565	}
566
567	/* Balk when DF bit is set or the interface didn't support TSO. */
568	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
569		error = EMSGSIZE;
570		ipstat.ips_cantfrag++;
571		goto bad;
572	}
573
574	/*
575	 * Too large for interface; fragment if possible. If successful,
576	 * on return, m will point to a list of packets to be sent.
577	 */
578	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
579	if (error)
580		goto bad;
581	for (; m; m = m0) {
582		m0 = m->m_nextpkt;
583		m->m_nextpkt = 0;
584#ifdef IPSEC
585		/* clean ipsec history once it goes out of the node */
586		ipsec_delaux(m);
587#endif
588		if (error == 0) {
589			/* Record statistics for this interface address. */
590			if (ia != NULL) {
591				INADDR_TO_IFADDR(ip->ip_src, sia);
592				if (sia == NULL)
593					sia = ia;
594				sia->ia_ifa.if_opackets++;
595				sia->ia_ifa.if_obytes += m->m_pkthdr.len;
596			}
597			/*
598			 * Reset layer specific mbuf flags
599			 * to avoid confusing upper layers.
600			 */
601			m->m_flags &= ~(M_PROTOFLAGS);
602
603			error = (*ifp->if_output)(ifp, m,
604			    (struct sockaddr *)dst, ro->ro_rt);
605		} else
606			m_freem(m);
607	}
608
609	if (error == 0)
610		ipstat.ips_fragmented++;
611
612done:
613	if (ro == &iproute && ro->ro_rt) {
614		RTFREE(ro->ro_rt);
615	}
616	return (error);
617bad:
618	m_freem(m);
619	goto done;
620}
621
622/*
623 * Create a chain of fragments which fit the given mtu. m_frag points to the
624 * mbuf to be fragmented; on return it points to the chain with the fragments.
625 * Return 0 if no error. If error, m_frag may contain a partially built
626 * chain of fragments that should be freed by the caller.
627 *
628 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
629 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
630 */
631int
632ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
633	    u_long if_hwassist_flags, int sw_csum)
634{
635	int error = 0;
636	int hlen = ip->ip_hl << 2;
637	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
638	int off;
639	struct mbuf *m0 = *m_frag;	/* the original packet		*/
640	int firstlen;
641	struct mbuf **mnext;
642	int nfrags;
643
644	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
645		ipstat.ips_cantfrag++;
646		return EMSGSIZE;
647	}
648
649	/*
650	 * Must be able to put at least 8 bytes per fragment.
651	 */
652	if (len < 8)
653		return EMSGSIZE;
654
655	/*
656	 * If the interface will not calculate checksums on
657	 * fragmented packets, then do it here.
658	 */
659	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
660	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
661		in_delayed_cksum(m0);
662		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
663	}
664
665	if (len > PAGE_SIZE) {
666		/*
667		 * Fragment large datagrams such that each segment
668		 * contains a multiple of PAGE_SIZE amount of data,
669		 * plus headers. This enables a receiver to perform
670		 * page-flipping zero-copy optimizations.
671		 *
672		 * XXX When does this help given that sender and receiver
673		 * could have different page sizes, and also mtu could
674		 * be less than the receiver's page size ?
675		 */
676		int newlen;
677		struct mbuf *m;
678
679		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
680			off += m->m_len;
681
682		/*
683		 * firstlen (off - hlen) must be aligned on an
684		 * 8-byte boundary
685		 */
686		if (off < hlen)
687			goto smart_frag_failure;
688		off = ((off - hlen) & ~7) + hlen;
689		newlen = (~PAGE_MASK) & mtu;
690		if ((newlen + sizeof (struct ip)) > mtu) {
691			/* we failed, go back the default */
692smart_frag_failure:
693			newlen = len;
694			off = hlen + len;
695		}
696		len = newlen;
697
698	} else {
699		off = hlen + len;
700	}
701
702	firstlen = off - hlen;
703	mnext = &m0->m_nextpkt;		/* pointer to next packet */
704
705	/*
706	 * Loop through length of segment after first fragment,
707	 * make new header and copy data of each part and link onto chain.
708	 * Here, m0 is the original packet, m is the fragment being created.
709	 * The fragments are linked off the m_nextpkt of the original
710	 * packet, which after processing serves as the first fragment.
711	 */
712	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
713		struct ip *mhip;	/* ip header on the fragment */
714		struct mbuf *m;
715		int mhlen = sizeof (struct ip);
716
717		MGETHDR(m, M_DONTWAIT, MT_DATA);
718		if (m == NULL) {
719			error = ENOBUFS;
720			ipstat.ips_odropped++;
721			goto done;
722		}
723		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
724		/*
725		 * In the first mbuf, leave room for the link header, then
726		 * copy the original IP header including options. The payload
727		 * goes into an additional mbuf chain returned by m_copy().
728		 */
729		m->m_data += max_linkhdr;
730		mhip = mtod(m, struct ip *);
731		*mhip = *ip;
732		if (hlen > sizeof (struct ip)) {
733			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
734			mhip->ip_v = IPVERSION;
735			mhip->ip_hl = mhlen >> 2;
736		}
737		m->m_len = mhlen;
738		/* XXX do we need to add ip->ip_off below ? */
739		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
740		if (off + len >= ip->ip_len) {	/* last fragment */
741			len = ip->ip_len - off;
742			m->m_flags |= M_LASTFRAG;
743		} else
744			mhip->ip_off |= IP_MF;
745		mhip->ip_len = htons((u_short)(len + mhlen));
746		m->m_next = m_copy(m0, off, len);
747		if (m->m_next == NULL) {	/* copy failed */
748			m_free(m);
749			error = ENOBUFS;	/* ??? */
750			ipstat.ips_odropped++;
751			goto done;
752		}
753		m->m_pkthdr.len = mhlen + len;
754		m->m_pkthdr.rcvif = NULL;
755#ifdef MAC
756		mac_create_fragment(m0, m);
757#endif
758		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
759		mhip->ip_off = htons(mhip->ip_off);
760		mhip->ip_sum = 0;
761		if (sw_csum & CSUM_DELAY_IP)
762			mhip->ip_sum = in_cksum(m, mhlen);
763		*mnext = m;
764		mnext = &m->m_nextpkt;
765	}
766	ipstat.ips_ofragments += nfrags;
767
768	/* set first marker for fragment chain */
769	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
770	m0->m_pkthdr.csum_data = nfrags;
771
772	/*
773	 * Update first fragment by trimming what's been copied out
774	 * and updating header.
775	 */
776	m_adj(m0, hlen + firstlen - ip->ip_len);
777	m0->m_pkthdr.len = hlen + firstlen;
778	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
779	ip->ip_off |= IP_MF;
780	ip->ip_off = htons(ip->ip_off);
781	ip->ip_sum = 0;
782	if (sw_csum & CSUM_DELAY_IP)
783		ip->ip_sum = in_cksum(m0, hlen);
784
785done:
786	*m_frag = m0;
787	return error;
788}
789
790void
791in_delayed_cksum(struct mbuf *m)
792{
793	struct ip *ip;
794	u_short csum, offset;
795
796	ip = mtod(m, struct ip *);
797	offset = ip->ip_hl << 2 ;
798	csum = in_cksum_skip(m, ip->ip_len, offset);
799	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
800		csum = 0xffff;
801	offset += m->m_pkthdr.csum_data;	/* checksum offset */
802
803	if (offset + sizeof(u_short) > m->m_len) {
804		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
805		    m->m_len, offset, ip->ip_p);
806		/*
807		 * XXX
808		 * this shouldn't happen, but if it does, the
809		 * correct behavior may be to insert the checksum
810		 * in the appropriate next mbuf in the chain.
811		 */
812		return;
813	}
814	*(u_short *)(m->m_data + offset) = csum;
815}
816
817/*
818 * IP socket option processing.
819 */
820int
821ip_ctloutput(so, sopt)
822	struct socket *so;
823	struct sockopt *sopt;
824{
825	struct	inpcb *inp = sotoinpcb(so);
826	int	error, optval;
827
828	error = optval = 0;
829	if (sopt->sopt_level != IPPROTO_IP) {
830		return (EINVAL);
831	}
832
833	switch (sopt->sopt_dir) {
834	case SOPT_SET:
835		switch (sopt->sopt_name) {
836		case IP_OPTIONS:
837#ifdef notyet
838		case IP_RETOPTS:
839#endif
840		{
841			struct mbuf *m;
842			if (sopt->sopt_valsize > MLEN) {
843				error = EMSGSIZE;
844				break;
845			}
846			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
847			if (m == NULL) {
848				error = ENOBUFS;
849				break;
850			}
851			m->m_len = sopt->sopt_valsize;
852			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
853					    m->m_len);
854			if (error) {
855				m_free(m);
856				break;
857			}
858			INP_LOCK(inp);
859			error = ip_pcbopts(inp, sopt->sopt_name, m);
860			INP_UNLOCK(inp);
861			return (error);
862		}
863
864		case IP_TOS:
865		case IP_TTL:
866		case IP_MINTTL:
867		case IP_RECVOPTS:
868		case IP_RECVRETOPTS:
869		case IP_RECVDSTADDR:
870		case IP_RECVTTL:
871		case IP_RECVIF:
872		case IP_FAITH:
873		case IP_ONESBCAST:
874		case IP_DONTFRAG:
875			error = sooptcopyin(sopt, &optval, sizeof optval,
876					    sizeof optval);
877			if (error)
878				break;
879
880			switch (sopt->sopt_name) {
881			case IP_TOS:
882				inp->inp_ip_tos = optval;
883				break;
884
885			case IP_TTL:
886				inp->inp_ip_ttl = optval;
887				break;
888
889			case IP_MINTTL:
890				if (optval > 0 && optval <= MAXTTL)
891					inp->inp_ip_minttl = optval;
892				else
893					error = EINVAL;
894				break;
895
896#define	OPTSET(bit) do {						\
897	INP_LOCK(inp);							\
898	if (optval)							\
899		inp->inp_flags |= bit;					\
900	else								\
901		inp->inp_flags &= ~bit;					\
902	INP_UNLOCK(inp);						\
903} while (0)
904
905			case IP_RECVOPTS:
906				OPTSET(INP_RECVOPTS);
907				break;
908
909			case IP_RECVRETOPTS:
910				OPTSET(INP_RECVRETOPTS);
911				break;
912
913			case IP_RECVDSTADDR:
914				OPTSET(INP_RECVDSTADDR);
915				break;
916
917			case IP_RECVTTL:
918				OPTSET(INP_RECVTTL);
919				break;
920
921			case IP_RECVIF:
922				OPTSET(INP_RECVIF);
923				break;
924
925			case IP_FAITH:
926				OPTSET(INP_FAITH);
927				break;
928
929			case IP_ONESBCAST:
930				OPTSET(INP_ONESBCAST);
931				break;
932			case IP_DONTFRAG:
933				OPTSET(INP_DONTFRAG);
934				break;
935			}
936			break;
937#undef OPTSET
938
939		case IP_MULTICAST_IF:
940		case IP_MULTICAST_VIF:
941		case IP_MULTICAST_TTL:
942		case IP_MULTICAST_LOOP:
943		case IP_ADD_MEMBERSHIP:
944		case IP_DROP_MEMBERSHIP:
945			error = ip_setmoptions(inp, sopt);
946			break;
947
948		case IP_PORTRANGE:
949			error = sooptcopyin(sopt, &optval, sizeof optval,
950					    sizeof optval);
951			if (error)
952				break;
953
954			INP_LOCK(inp);
955			switch (optval) {
956			case IP_PORTRANGE_DEFAULT:
957				inp->inp_flags &= ~(INP_LOWPORT);
958				inp->inp_flags &= ~(INP_HIGHPORT);
959				break;
960
961			case IP_PORTRANGE_HIGH:
962				inp->inp_flags &= ~(INP_LOWPORT);
963				inp->inp_flags |= INP_HIGHPORT;
964				break;
965
966			case IP_PORTRANGE_LOW:
967				inp->inp_flags &= ~(INP_HIGHPORT);
968				inp->inp_flags |= INP_LOWPORT;
969				break;
970
971			default:
972				error = EINVAL;
973				break;
974			}
975			INP_UNLOCK(inp);
976			break;
977
978#if defined(IPSEC) || defined(FAST_IPSEC)
979		case IP_IPSEC_POLICY:
980		{
981			caddr_t req;
982			size_t len = 0;
983			int priv;
984			struct mbuf *m;
985			int optname;
986
987			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
988				break;
989			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
990				break;
991			if (sopt->sopt_td != NULL) {
992				/*
993				 * XXXRW: Would be more desirable to do this
994				 * one layer down so that we only exercise
995				 * privilege if it is needed.
996				 */
997				error = priv_check(sopt->sopt_td,
998				    PRIV_NETINET_IPSEC);
999				if (error)
1000					priv = 0;
1001				else
1002					priv = 1;
1003			} else
1004				priv = 1;
1005			req = mtod(m, caddr_t);
1006			len = m->m_len;
1007			optname = sopt->sopt_name;
1008			error = ipsec4_set_policy(inp, optname, req, len, priv);
1009			m_freem(m);
1010			break;
1011		}
1012#endif /*IPSEC*/
1013
1014		default:
1015			error = ENOPROTOOPT;
1016			break;
1017		}
1018		break;
1019
1020	case SOPT_GET:
1021		switch (sopt->sopt_name) {
1022		case IP_OPTIONS:
1023		case IP_RETOPTS:
1024			if (inp->inp_options)
1025				error = sooptcopyout(sopt,
1026						     mtod(inp->inp_options,
1027							  char *),
1028						     inp->inp_options->m_len);
1029			else
1030				sopt->sopt_valsize = 0;
1031			break;
1032
1033		case IP_TOS:
1034		case IP_TTL:
1035		case IP_MINTTL:
1036		case IP_RECVOPTS:
1037		case IP_RECVRETOPTS:
1038		case IP_RECVDSTADDR:
1039		case IP_RECVTTL:
1040		case IP_RECVIF:
1041		case IP_PORTRANGE:
1042		case IP_FAITH:
1043		case IP_ONESBCAST:
1044		case IP_DONTFRAG:
1045			switch (sopt->sopt_name) {
1046
1047			case IP_TOS:
1048				optval = inp->inp_ip_tos;
1049				break;
1050
1051			case IP_TTL:
1052				optval = inp->inp_ip_ttl;
1053				break;
1054
1055			case IP_MINTTL:
1056				optval = inp->inp_ip_minttl;
1057				break;
1058
1059#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1060
1061			case IP_RECVOPTS:
1062				optval = OPTBIT(INP_RECVOPTS);
1063				break;
1064
1065			case IP_RECVRETOPTS:
1066				optval = OPTBIT(INP_RECVRETOPTS);
1067				break;
1068
1069			case IP_RECVDSTADDR:
1070				optval = OPTBIT(INP_RECVDSTADDR);
1071				break;
1072
1073			case IP_RECVTTL:
1074				optval = OPTBIT(INP_RECVTTL);
1075				break;
1076
1077			case IP_RECVIF:
1078				optval = OPTBIT(INP_RECVIF);
1079				break;
1080
1081			case IP_PORTRANGE:
1082				if (inp->inp_flags & INP_HIGHPORT)
1083					optval = IP_PORTRANGE_HIGH;
1084				else if (inp->inp_flags & INP_LOWPORT)
1085					optval = IP_PORTRANGE_LOW;
1086				else
1087					optval = 0;
1088				break;
1089
1090			case IP_FAITH:
1091				optval = OPTBIT(INP_FAITH);
1092				break;
1093
1094			case IP_ONESBCAST:
1095				optval = OPTBIT(INP_ONESBCAST);
1096				break;
1097			case IP_DONTFRAG:
1098				optval = OPTBIT(INP_DONTFRAG);
1099				break;
1100			}
1101			error = sooptcopyout(sopt, &optval, sizeof optval);
1102			break;
1103
1104		case IP_MULTICAST_IF:
1105		case IP_MULTICAST_VIF:
1106		case IP_MULTICAST_TTL:
1107		case IP_MULTICAST_LOOP:
1108		case IP_ADD_MEMBERSHIP:
1109		case IP_DROP_MEMBERSHIP:
1110			error = ip_getmoptions(inp, sopt);
1111			break;
1112
1113#if defined(IPSEC) || defined(FAST_IPSEC)
1114		case IP_IPSEC_POLICY:
1115		{
1116			struct mbuf *m = NULL;
1117			caddr_t req = NULL;
1118			size_t len = 0;
1119
1120			if (m != 0) {
1121				req = mtod(m, caddr_t);
1122				len = m->m_len;
1123			}
1124			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1125			if (error == 0)
1126				error = soopt_mcopyout(sopt, m); /* XXX */
1127			if (error == 0)
1128				m_freem(m);
1129			break;
1130		}
1131#endif /*IPSEC*/
1132
1133		default:
1134			error = ENOPROTOOPT;
1135			break;
1136		}
1137		break;
1138	}
1139	return (error);
1140}
1141
1142/*
1143 * XXX
1144 * The whole multicast option thing needs to be re-thought.
1145 * Several of these options are equally applicable to non-multicast
1146 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1147 * standard option (IP_TTL).
1148 */
1149
1150/*
1151 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1152 */
1153static struct ifnet *
1154ip_multicast_if(a, ifindexp)
1155	struct in_addr *a;
1156	int *ifindexp;
1157{
1158	int ifindex;
1159	struct ifnet *ifp;
1160
1161	if (ifindexp)
1162		*ifindexp = 0;
1163	if (ntohl(a->s_addr) >> 24 == 0) {
1164		ifindex = ntohl(a->s_addr) & 0xffffff;
1165		if (ifindex < 0 || if_index < ifindex)
1166			return NULL;
1167		ifp = ifnet_byindex(ifindex);
1168		if (ifindexp)
1169			*ifindexp = ifindex;
1170	} else {
1171		INADDR_TO_IFP(*a, ifp);
1172	}
1173	return ifp;
1174}
1175
1176/*
1177 * Given an inpcb, return its multicast options structure pointer.  Accepts
1178 * an unlocked inpcb pointer, but will return it locked.  May sleep.
1179 */
1180static struct ip_moptions *
1181ip_findmoptions(struct inpcb *inp)
1182{
1183	struct ip_moptions *imo;
1184	struct in_multi **immp;
1185
1186	INP_LOCK(inp);
1187	if (inp->inp_moptions != NULL)
1188		return (inp->inp_moptions);
1189
1190	INP_UNLOCK(inp);
1191
1192	imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1193	immp = (struct in_multi **)malloc((sizeof(*immp) * IP_MIN_MEMBERSHIPS),
1194					  M_IPMOPTS, M_WAITOK);
1195
1196	imo->imo_multicast_ifp = NULL;
1197	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1198	imo->imo_multicast_vif = -1;
1199	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1200	imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1201	imo->imo_num_memberships = 0;
1202	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1203	imo->imo_membership = immp;
1204
1205	INP_LOCK(inp);
1206	if (inp->inp_moptions != NULL) {
1207		free(immp, M_IPMOPTS);
1208		free(imo, M_IPMOPTS);
1209		return (inp->inp_moptions);
1210	}
1211	inp->inp_moptions = imo;
1212	return (imo);
1213}
1214
1215/*
1216 * Set the IP multicast options in response to user setsockopt().
1217 */
1218static int
1219ip_setmoptions(struct inpcb *inp, struct sockopt *sopt)
1220{
1221	int error = 0;
1222	int i;
1223	struct in_addr addr;
1224	struct ip_mreq mreq;
1225	struct ifnet *ifp;
1226	struct ip_moptions *imo;
1227	struct route ro;
1228	struct sockaddr_in *dst;
1229	int ifindex;
1230	int s;
1231
1232	switch (sopt->sopt_name) {
1233	/* store an index number for the vif you wanna use in the send */
1234	case IP_MULTICAST_VIF:
1235		if (legal_vif_num == 0) {
1236			error = EOPNOTSUPP;
1237			break;
1238		}
1239		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1240		if (error)
1241			break;
1242		if (!legal_vif_num(i) && (i != -1)) {
1243			error = EINVAL;
1244			break;
1245		}
1246		imo = ip_findmoptions(inp);
1247		imo->imo_multicast_vif = i;
1248		INP_UNLOCK(inp);
1249		break;
1250
1251	case IP_MULTICAST_IF:
1252		/*
1253		 * Select the interface for outgoing multicast packets.
1254		 */
1255		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1256		if (error)
1257			break;
1258		/*
1259		 * INADDR_ANY is used to remove a previous selection.
1260		 * When no interface is selected, a default one is
1261		 * chosen every time a multicast packet is sent.
1262		 */
1263		imo = ip_findmoptions(inp);
1264		if (addr.s_addr == INADDR_ANY) {
1265			imo->imo_multicast_ifp = NULL;
1266			INP_UNLOCK(inp);
1267			break;
1268		}
1269		/*
1270		 * The selected interface is identified by its local
1271		 * IP address.  Find the interface and confirm that
1272		 * it supports multicasting.
1273		 */
1274		s = splimp();
1275		ifp = ip_multicast_if(&addr, &ifindex);
1276		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1277			INP_UNLOCK(inp);
1278			splx(s);
1279			error = EADDRNOTAVAIL;
1280			break;
1281		}
1282		imo->imo_multicast_ifp = ifp;
1283		if (ifindex)
1284			imo->imo_multicast_addr = addr;
1285		else
1286			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1287		INP_UNLOCK(inp);
1288		splx(s);
1289		break;
1290
1291	case IP_MULTICAST_TTL:
1292		/*
1293		 * Set the IP time-to-live for outgoing multicast packets.
1294		 * The original multicast API required a char argument,
1295		 * which is inconsistent with the rest of the socket API.
1296		 * We allow either a char or an int.
1297		 */
1298		if (sopt->sopt_valsize == 1) {
1299			u_char ttl;
1300			error = sooptcopyin(sopt, &ttl, 1, 1);
1301			if (error)
1302				break;
1303			imo = ip_findmoptions(inp);
1304			imo->imo_multicast_ttl = ttl;
1305			INP_UNLOCK(inp);
1306		} else {
1307			u_int ttl;
1308			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1309					    sizeof ttl);
1310			if (error)
1311				break;
1312			if (ttl > 255)
1313				error = EINVAL;
1314			else {
1315				imo = ip_findmoptions(inp);
1316				imo->imo_multicast_ttl = ttl;
1317				INP_UNLOCK(inp);
1318			}
1319		}
1320		break;
1321
1322	case IP_MULTICAST_LOOP:
1323		/*
1324		 * Set the loopback flag for outgoing multicast packets.
1325		 * Must be zero or one.  The original multicast API required a
1326		 * char argument, which is inconsistent with the rest
1327		 * of the socket API.  We allow either a char or an int.
1328		 */
1329		if (sopt->sopt_valsize == 1) {
1330			u_char loop;
1331			error = sooptcopyin(sopt, &loop, 1, 1);
1332			if (error)
1333				break;
1334			imo = ip_findmoptions(inp);
1335			imo->imo_multicast_loop = !!loop;
1336			INP_UNLOCK(inp);
1337		} else {
1338			u_int loop;
1339			error = sooptcopyin(sopt, &loop, sizeof loop,
1340					    sizeof loop);
1341			if (error)
1342				break;
1343			imo = ip_findmoptions(inp);
1344			imo->imo_multicast_loop = !!loop;
1345			INP_UNLOCK(inp);
1346		}
1347		break;
1348
1349	case IP_ADD_MEMBERSHIP:
1350		/*
1351		 * Add a multicast group membership.
1352		 * Group must be a valid IP multicast address.
1353		 */
1354		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1355		if (error)
1356			break;
1357
1358		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1359			error = EINVAL;
1360			break;
1361		}
1362		s = splimp();
1363		/*
1364		 * If no interface address was provided, use the interface of
1365		 * the route to the given multicast address.
1366		 */
1367		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1368			bzero((caddr_t)&ro, sizeof(ro));
1369			dst = (struct sockaddr_in *)&ro.ro_dst;
1370			dst->sin_len = sizeof(*dst);
1371			dst->sin_family = AF_INET;
1372			dst->sin_addr = mreq.imr_multiaddr;
1373			rtalloc_ign(&ro, RTF_CLONING);
1374			if (ro.ro_rt == NULL) {
1375				error = EADDRNOTAVAIL;
1376				splx(s);
1377				break;
1378			}
1379			ifp = ro.ro_rt->rt_ifp;
1380			RTFREE(ro.ro_rt);
1381		}
1382		else {
1383			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1384		}
1385
1386		/*
1387		 * See if we found an interface, and confirm that it
1388		 * supports multicast.
1389		 */
1390		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1391			error = EADDRNOTAVAIL;
1392			splx(s);
1393			break;
1394		}
1395		/*
1396		 * See if the membership already exists or if all the
1397		 * membership slots are full.
1398		 */
1399		imo = ip_findmoptions(inp);
1400		for (i = 0; i < imo->imo_num_memberships; ++i) {
1401			if (imo->imo_membership[i]->inm_ifp == ifp &&
1402			    imo->imo_membership[i]->inm_addr.s_addr
1403						== mreq.imr_multiaddr.s_addr)
1404				break;
1405		}
1406		if (i < imo->imo_num_memberships) {
1407			INP_UNLOCK(inp);
1408			error = EADDRINUSE;
1409			splx(s);
1410			break;
1411		}
1412		if (imo->imo_num_memberships == imo->imo_max_memberships) {
1413		    struct in_multi **nmships, **omships;
1414		    size_t newmax;
1415		    /*
1416		     * Resize the vector to next power-of-two minus 1. If the
1417		     * size would exceed the maximum then we know we've really
1418		     * run out of entries. Otherwise, we realloc() the vector
1419		     * with the INP lock held to avoid introducing a race.
1420		     */
1421		    nmships = NULL;
1422		    omships = imo->imo_membership;
1423		    newmax = ((imo->imo_max_memberships + 1) * 2) - 1;
1424		    if (newmax <= IP_MAX_MEMBERSHIPS) {
1425			nmships = (struct in_multi **)realloc(omships,
1426sizeof(*nmships) * newmax, M_IPMOPTS, M_NOWAIT);
1427			if (nmships != NULL) {
1428			    imo->imo_membership = nmships;
1429			    imo->imo_max_memberships = newmax;
1430			}
1431		    }
1432		    if (nmships == NULL) {
1433			INP_UNLOCK(inp);
1434			error = ETOOMANYREFS;
1435			splx(s);
1436			break;
1437		    }
1438		}
1439		/*
1440		 * Everything looks good; add a new record to the multicast
1441		 * address list for the given interface.
1442		 */
1443		if ((imo->imo_membership[i] =
1444		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1445			INP_UNLOCK(inp);
1446			error = ENOBUFS;
1447			splx(s);
1448			break;
1449		}
1450		++imo->imo_num_memberships;
1451		INP_UNLOCK(inp);
1452		splx(s);
1453		break;
1454
1455	case IP_DROP_MEMBERSHIP:
1456		/*
1457		 * Drop a multicast group membership.
1458		 * Group must be a valid IP multicast address.
1459		 */
1460		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1461		if (error)
1462			break;
1463
1464		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1465			error = EINVAL;
1466			break;
1467		}
1468
1469		s = splimp();
1470		/*
1471		 * If an interface address was specified, get a pointer
1472		 * to its ifnet structure.
1473		 */
1474		if (mreq.imr_interface.s_addr == INADDR_ANY)
1475			ifp = NULL;
1476		else {
1477			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1478			if (ifp == NULL) {
1479				error = EADDRNOTAVAIL;
1480				splx(s);
1481				break;
1482			}
1483		}
1484		/*
1485		 * Find the membership in the membership array.
1486		 */
1487		imo = ip_findmoptions(inp);
1488		for (i = 0; i < imo->imo_num_memberships; ++i) {
1489			if ((ifp == NULL ||
1490			     imo->imo_membership[i]->inm_ifp == ifp) &&
1491			     imo->imo_membership[i]->inm_addr.s_addr ==
1492			     mreq.imr_multiaddr.s_addr)
1493				break;
1494		}
1495		if (i == imo->imo_num_memberships) {
1496			INP_UNLOCK(inp);
1497			error = EADDRNOTAVAIL;
1498			splx(s);
1499			break;
1500		}
1501		/*
1502		 * Give up the multicast address record to which the
1503		 * membership points.
1504		 */
1505		in_delmulti(imo->imo_membership[i]);
1506		/*
1507		 * Remove the gap in the membership array.
1508		 */
1509		for (++i; i < imo->imo_num_memberships; ++i)
1510			imo->imo_membership[i-1] = imo->imo_membership[i];
1511		--imo->imo_num_memberships;
1512		INP_UNLOCK(inp);
1513		splx(s);
1514		break;
1515
1516	default:
1517		error = EOPNOTSUPP;
1518		break;
1519	}
1520
1521	return (error);
1522}
1523
1524/*
1525 * Return the IP multicast options in response to user getsockopt().
1526 */
1527static int
1528ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1529{
1530	struct ip_moptions *imo;
1531	struct in_addr addr;
1532	struct in_ifaddr *ia;
1533	int error, optval;
1534	u_char coptval;
1535
1536	INP_LOCK(inp);
1537	imo = inp->inp_moptions;
1538
1539	error = 0;
1540	switch (sopt->sopt_name) {
1541	case IP_MULTICAST_VIF:
1542		if (imo != NULL)
1543			optval = imo->imo_multicast_vif;
1544		else
1545			optval = -1;
1546		INP_UNLOCK(inp);
1547		error = sooptcopyout(sopt, &optval, sizeof optval);
1548		break;
1549
1550	case IP_MULTICAST_IF:
1551		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1552			addr.s_addr = INADDR_ANY;
1553		else if (imo->imo_multicast_addr.s_addr) {
1554			/* return the value user has set */
1555			addr = imo->imo_multicast_addr;
1556		} else {
1557			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1558			addr.s_addr = (ia == NULL) ? INADDR_ANY
1559				: IA_SIN(ia)->sin_addr.s_addr;
1560		}
1561		INP_UNLOCK(inp);
1562		error = sooptcopyout(sopt, &addr, sizeof addr);
1563		break;
1564
1565	case IP_MULTICAST_TTL:
1566		if (imo == 0)
1567			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1568		else
1569			optval = coptval = imo->imo_multicast_ttl;
1570		INP_UNLOCK(inp);
1571		if (sopt->sopt_valsize == 1)
1572			error = sooptcopyout(sopt, &coptval, 1);
1573		else
1574			error = sooptcopyout(sopt, &optval, sizeof optval);
1575		break;
1576
1577	case IP_MULTICAST_LOOP:
1578		if (imo == 0)
1579			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1580		else
1581			optval = coptval = imo->imo_multicast_loop;
1582		INP_UNLOCK(inp);
1583		if (sopt->sopt_valsize == 1)
1584			error = sooptcopyout(sopt, &coptval, 1);
1585		else
1586			error = sooptcopyout(sopt, &optval, sizeof optval);
1587		break;
1588
1589	default:
1590		INP_UNLOCK(inp);
1591		error = ENOPROTOOPT;
1592		break;
1593	}
1594	INP_UNLOCK_ASSERT(inp);
1595
1596	return (error);
1597}
1598
1599/*
1600 * Discard the IP multicast options.
1601 */
1602void
1603ip_freemoptions(imo)
1604	register struct ip_moptions *imo;
1605{
1606	register int i;
1607
1608	if (imo != NULL) {
1609		for (i = 0; i < imo->imo_num_memberships; ++i)
1610			in_delmulti(imo->imo_membership[i]);
1611		free(imo->imo_membership, M_IPMOPTS);
1612		free(imo, M_IPMOPTS);
1613	}
1614}
1615
1616/*
1617 * Routine called from ip_output() to loop back a copy of an IP multicast
1618 * packet to the input queue of a specified interface.  Note that this
1619 * calls the output routine of the loopback "driver", but with an interface
1620 * pointer that might NOT be a loopback interface -- evil, but easier than
1621 * replicating that code here.
1622 */
1623static void
1624ip_mloopback(ifp, m, dst, hlen)
1625	struct ifnet *ifp;
1626	register struct mbuf *m;
1627	register struct sockaddr_in *dst;
1628	int hlen;
1629{
1630	register struct ip *ip;
1631	struct mbuf *copym;
1632
1633	copym = m_copy(m, 0, M_COPYALL);
1634	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1635		copym = m_pullup(copym, hlen);
1636	if (copym != NULL) {
1637		/* If needed, compute the checksum and mark it as valid. */
1638		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1639			in_delayed_cksum(copym);
1640			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1641			copym->m_pkthdr.csum_flags |=
1642			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1643			copym->m_pkthdr.csum_data = 0xffff;
1644		}
1645		/*
1646		 * We don't bother to fragment if the IP length is greater
1647		 * than the interface's MTU.  Can this possibly matter?
1648		 */
1649		ip = mtod(copym, struct ip *);
1650		ip->ip_len = htons(ip->ip_len);
1651		ip->ip_off = htons(ip->ip_off);
1652		ip->ip_sum = 0;
1653		ip->ip_sum = in_cksum(copym, hlen);
1654		/*
1655		 * NB:
1656		 * It's not clear whether there are any lingering
1657		 * reentrancy problems in other areas which might
1658		 * be exposed by using ip_input directly (in
1659		 * particular, everything which modifies the packet
1660		 * in-place).  Yet another option is using the
1661		 * protosw directly to deliver the looped back
1662		 * packet.  For the moment, we'll err on the side
1663		 * of safety by using if_simloop().
1664		 */
1665#if 1 /* XXX */
1666		if (dst->sin_family != AF_INET) {
1667			printf("ip_mloopback: bad address family %d\n",
1668						dst->sin_family);
1669			dst->sin_family = AF_INET;
1670		}
1671#endif
1672
1673#ifdef notdef
1674		copym->m_pkthdr.rcvif = ifp;
1675		ip_input(copym);
1676#else
1677		if_simloop(ifp, copym, dst->sin_family, 0);
1678#endif
1679	}
1680}
1681