ip_output.c revision 160027
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 * $FreeBSD: head/sys/netinet/ip_output.c 160027 2006-06-29 13:38:36Z glebius $
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipsec.h"
35#include "opt_mac.h"
36#include "opt_mbuf_stress_test.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/mac.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/protosw.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/sysctl.h>
48
49#include <net/if.h>
50#include <net/netisr.h>
51#include <net/pfil.h>
52#include <net/route.h>
53
54#include <netinet/in.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#include <netinet/in_pcb.h>
58#include <netinet/in_var.h>
59#include <netinet/ip_var.h>
60#include <netinet/ip_options.h>
61
62#if defined(IPSEC) || defined(FAST_IPSEC)
63#include <netinet/ip_ipsec.h>
64#ifdef IPSEC
65#include <netinet6/ipsec.h>
66#endif
67#ifdef FAST_IPSEC
68#include <netipsec/ipsec.h>
69#endif
70#endif /*IPSEC*/
71
72#include <machine/in_cksum.h>
73
74static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
75
76#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
77				x, (ntohl(a.s_addr)>>24)&0xFF,\
78				  (ntohl(a.s_addr)>>16)&0xFF,\
79				  (ntohl(a.s_addr)>>8)&0xFF,\
80				  (ntohl(a.s_addr))&0xFF, y);
81
82u_short ip_id;
83
84#ifdef MBUF_STRESS_TEST
85int mbuf_frag_size = 0;
86SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
87	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
88#endif
89
90static struct ifnet *ip_multicast_if(struct in_addr *, int *);
91static void	ip_mloopback
92	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
93static int	ip_getmoptions(struct inpcb *, struct sockopt *);
94static int	ip_setmoptions(struct inpcb *, struct sockopt *);
95
96
97extern	struct protosw inetsw[];
98
99/*
100 * IP output.  The packet in mbuf chain m contains a skeletal IP
101 * header (with len, off, ttl, proto, tos, src, dst).
102 * The mbuf chain containing the packet will be freed.
103 * The mbuf opt, if present, will not be freed.
104 * In the IP forwarding case, the packet will arrive with options already
105 * inserted, so must have a NULL opt pointer.
106 */
107int
108ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
109	int flags, struct ip_moptions *imo, struct inpcb *inp)
110{
111	struct ip *ip;
112	struct ifnet *ifp = NULL;	/* keep compiler happy */
113	struct mbuf *m0;
114	int hlen = sizeof (struct ip);
115	int len, error = 0;
116	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
117	struct in_ifaddr *ia = NULL;
118	int isbroadcast, sw_csum;
119	struct route iproute;
120	struct in_addr odst;
121#ifdef IPFIREWALL_FORWARD
122	struct m_tag *fwd_tag = NULL;
123#endif
124	M_ASSERTPKTHDR(m);
125
126	if (ro == NULL) {
127		ro = &iproute;
128		bzero(ro, sizeof (*ro));
129	}
130
131	if (inp != NULL)
132		INP_LOCK_ASSERT(inp);
133
134	if (opt) {
135		len = 0;
136		m = ip_insertoptions(m, opt, &len);
137		if (len != 0)
138			hlen = len;
139	}
140	ip = mtod(m, struct ip *);
141
142	/*
143	 * Fill in IP header.  If we are not allowing fragmentation,
144	 * then the ip_id field is meaningless, but we don't set it
145	 * to zero.  Doing so causes various problems when devices along
146	 * the path (routers, load balancers, firewalls, etc.) illegally
147	 * disable DF on our packet.  Note that a 16-bit counter
148	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
149	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
150	 * for Counting NATted Hosts", Proc. IMW'02, available at
151	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
152	 */
153	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
154		ip->ip_v = IPVERSION;
155		ip->ip_hl = hlen >> 2;
156		ip->ip_id = ip_newid();
157		ipstat.ips_localout++;
158	} else {
159		hlen = ip->ip_hl << 2;
160	}
161
162	dst = (struct sockaddr_in *)&ro->ro_dst;
163again:
164	/*
165	 * If there is a cached route,
166	 * check that it is to the same destination
167	 * and is still up.  If not, free it and try again.
168	 * The address family should also be checked in case of sharing the
169	 * cache with IPv6.
170	 */
171	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
172			  dst->sin_family != AF_INET ||
173			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
174		RTFREE(ro->ro_rt);
175		ro->ro_rt = (struct rtentry *)0;
176	}
177#ifdef IPFIREWALL_FORWARD
178	if (ro->ro_rt == NULL && fwd_tag == NULL) {
179#else
180	if (ro->ro_rt == NULL) {
181#endif
182		bzero(dst, sizeof(*dst));
183		dst->sin_family = AF_INET;
184		dst->sin_len = sizeof(*dst);
185		dst->sin_addr = ip->ip_dst;
186	}
187	/*
188	 * If routing to interface only,
189	 * short circuit routing lookup.
190	 */
191	if (flags & IP_ROUTETOIF) {
192		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
193		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
194			ipstat.ips_noroute++;
195			error = ENETUNREACH;
196			goto bad;
197		}
198		ifp = ia->ia_ifp;
199		ip->ip_ttl = 1;
200		isbroadcast = in_broadcast(dst->sin_addr, ifp);
201	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
202	    imo != NULL && imo->imo_multicast_ifp != NULL) {
203		/*
204		 * Bypass the normal routing lookup for multicast
205		 * packets if the interface is specified.
206		 */
207		ifp = imo->imo_multicast_ifp;
208		IFP_TO_IA(ifp, ia);
209		isbroadcast = 0;	/* fool gcc */
210	} else {
211		/*
212		 * We want to do any cloning requested by the link layer,
213		 * as this is probably required in all cases for correct
214		 * operation (as it is for ARP).
215		 */
216		if (ro->ro_rt == NULL)
217			rtalloc_ign(ro, 0);
218		if (ro->ro_rt == NULL) {
219			ipstat.ips_noroute++;
220			error = EHOSTUNREACH;
221			goto bad;
222		}
223		ia = ifatoia(ro->ro_rt->rt_ifa);
224		ifp = ro->ro_rt->rt_ifp;
225		ro->ro_rt->rt_rmx.rmx_pksent++;
226		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
227			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
228		if (ro->ro_rt->rt_flags & RTF_HOST)
229			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
230		else
231			isbroadcast = in_broadcast(dst->sin_addr, ifp);
232	}
233	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
234		struct in_multi *inm;
235
236		m->m_flags |= M_MCAST;
237		/*
238		 * IP destination address is multicast.  Make sure "dst"
239		 * still points to the address in "ro".  (It may have been
240		 * changed to point to a gateway address, above.)
241		 */
242		dst = (struct sockaddr_in *)&ro->ro_dst;
243		/*
244		 * See if the caller provided any multicast options
245		 */
246		if (imo != NULL) {
247			ip->ip_ttl = imo->imo_multicast_ttl;
248			if (imo->imo_multicast_vif != -1)
249				ip->ip_src.s_addr =
250				    ip_mcast_src ?
251				    ip_mcast_src(imo->imo_multicast_vif) :
252				    INADDR_ANY;
253		} else
254			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
255		/*
256		 * Confirm that the outgoing interface supports multicast.
257		 */
258		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
259			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
260				ipstat.ips_noroute++;
261				error = ENETUNREACH;
262				goto bad;
263			}
264		}
265		/*
266		 * If source address not specified yet, use address
267		 * of outgoing interface.
268		 */
269		if (ip->ip_src.s_addr == INADDR_ANY) {
270			/* Interface may have no addresses. */
271			if (ia != NULL)
272				ip->ip_src = IA_SIN(ia)->sin_addr;
273		}
274
275		IN_MULTI_LOCK();
276		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
277		if (inm != NULL &&
278		   (imo == NULL || imo->imo_multicast_loop)) {
279			IN_MULTI_UNLOCK();
280			/*
281			 * If we belong to the destination multicast group
282			 * on the outgoing interface, and the caller did not
283			 * forbid loopback, loop back a copy.
284			 */
285			ip_mloopback(ifp, m, dst, hlen);
286		}
287		else {
288			IN_MULTI_UNLOCK();
289			/*
290			 * If we are acting as a multicast router, perform
291			 * multicast forwarding as if the packet had just
292			 * arrived on the interface to which we are about
293			 * to send.  The multicast forwarding function
294			 * recursively calls this function, using the
295			 * IP_FORWARDING flag to prevent infinite recursion.
296			 *
297			 * Multicasts that are looped back by ip_mloopback(),
298			 * above, will be forwarded by the ip_input() routine,
299			 * if necessary.
300			 */
301			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
302				/*
303				 * If rsvp daemon is not running, do not
304				 * set ip_moptions. This ensures that the packet
305				 * is multicast and not just sent down one link
306				 * as prescribed by rsvpd.
307				 */
308				if (!rsvp_on)
309					imo = NULL;
310				if (ip_mforward &&
311				    ip_mforward(ip, ifp, m, imo) != 0) {
312					m_freem(m);
313					goto done;
314				}
315			}
316		}
317
318		/*
319		 * Multicasts with a time-to-live of zero may be looped-
320		 * back, above, but must not be transmitted on a network.
321		 * Also, multicasts addressed to the loopback interface
322		 * are not sent -- the above call to ip_mloopback() will
323		 * loop back a copy if this host actually belongs to the
324		 * destination group on the loopback interface.
325		 */
326		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
327			m_freem(m);
328			goto done;
329		}
330
331		goto sendit;
332	}
333#ifndef notdef
334	/*
335	 * If the source address is not specified yet, use the address
336	 * of the outoing interface.
337	 */
338	if (ip->ip_src.s_addr == INADDR_ANY) {
339		/* Interface may have no addresses. */
340		if (ia != NULL) {
341			ip->ip_src = IA_SIN(ia)->sin_addr;
342		}
343	}
344#endif /* notdef */
345	/*
346	 * Verify that we have any chance at all of being able to queue the
347	 * packet or packet fragments, unless ALTQ is enabled on the given
348	 * interface in which case packetdrop should be done by queueing.
349	 */
350#ifdef ALTQ
351	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
352	    ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
353	    ifp->if_snd.ifq_maxlen))
354#else
355	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
356	    ifp->if_snd.ifq_maxlen)
357#endif /* ALTQ */
358	{
359		error = ENOBUFS;
360		ipstat.ips_odropped++;
361		ifp->if_snd.ifq_drops += (ip->ip_len / ifp->if_mtu + 1);
362		goto bad;
363	}
364
365	/*
366	 * Look for broadcast address and
367	 * verify user is allowed to send
368	 * such a packet.
369	 */
370	if (isbroadcast) {
371		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
372			error = EADDRNOTAVAIL;
373			goto bad;
374		}
375		if ((flags & IP_ALLOWBROADCAST) == 0) {
376			error = EACCES;
377			goto bad;
378		}
379		/* don't allow broadcast messages to be fragmented */
380		if (ip->ip_len > ifp->if_mtu) {
381			error = EMSGSIZE;
382			goto bad;
383		}
384		if (flags & IP_SENDONES)
385			ip->ip_dst.s_addr = INADDR_BROADCAST;
386		m->m_flags |= M_BCAST;
387	} else {
388		m->m_flags &= ~M_BCAST;
389	}
390
391sendit:
392#if defined(IPSEC) || defined(FAST_IPSEC)
393	switch(ip_ipsec_output(&m, inp, &flags, &error, &ro, &iproute, &dst, &ia, &ifp)) {
394	case 1:
395		goto bad;
396	case -1:
397		goto done;
398	case 0:
399	default:
400		break;	/* Continue with packet processing. */
401	}
402	/* Update variables that are affected by ipsec4_output(). */
403	ip = mtod(m, struct ip *);
404	hlen = ip->ip_hl << 2;
405#endif /* IPSEC */
406
407	/* Jump over all PFIL processing if hooks are not active. */
408	if (!PFIL_HOOKED(&inet_pfil_hook))
409		goto passout;
410
411	/* Run through list of hooks for output packets. */
412	odst.s_addr = ip->ip_dst.s_addr;
413	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
414	if (error != 0 || m == NULL)
415		goto done;
416
417	ip = mtod(m, struct ip *);
418
419	/* See if destination IP address was changed by packet filter. */
420	if (odst.s_addr != ip->ip_dst.s_addr) {
421		m->m_flags |= M_SKIP_FIREWALL;
422		/* If destination is now ourself drop to ip_input(). */
423		if (in_localip(ip->ip_dst)) {
424			m->m_flags |= M_FASTFWD_OURS;
425			if (m->m_pkthdr.rcvif == NULL)
426				m->m_pkthdr.rcvif = loif;
427			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
428				m->m_pkthdr.csum_flags |=
429				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
430				m->m_pkthdr.csum_data = 0xffff;
431			}
432			m->m_pkthdr.csum_flags |=
433			    CSUM_IP_CHECKED | CSUM_IP_VALID;
434
435			error = netisr_queue(NETISR_IP, m);
436			goto done;
437		} else
438			goto again;	/* Redo the routing table lookup. */
439	}
440
441#ifdef IPFIREWALL_FORWARD
442	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
443	if (m->m_flags & M_FASTFWD_OURS) {
444		if (m->m_pkthdr.rcvif == NULL)
445			m->m_pkthdr.rcvif = loif;
446		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
447			m->m_pkthdr.csum_flags |=
448			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
449			m->m_pkthdr.csum_data = 0xffff;
450		}
451		m->m_pkthdr.csum_flags |=
452			    CSUM_IP_CHECKED | CSUM_IP_VALID;
453
454		error = netisr_queue(NETISR_IP, m);
455		goto done;
456	}
457	/* Or forward to some other address? */
458	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
459	if (fwd_tag) {
460#ifndef IPFIREWALL_FORWARD_EXTENDED
461		if (!in_localip(ip->ip_src) && !in_localaddr(ip->ip_dst)) {
462#endif
463			dst = (struct sockaddr_in *)&ro->ro_dst;
464			bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
465			m->m_flags |= M_SKIP_FIREWALL;
466			m_tag_delete(m, fwd_tag);
467			goto again;
468#ifndef IPFIREWALL_FORWARD_EXTENDED
469		} else {
470			m_tag_delete(m, fwd_tag);
471			/* Continue. */
472		}
473#endif
474	}
475#endif /* IPFIREWALL_FORWARD */
476
477passout:
478	/* 127/8 must not appear on wire - RFC1122. */
479	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
480	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
481		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
482			ipstat.ips_badaddr++;
483			error = EADDRNOTAVAIL;
484			goto bad;
485		}
486	}
487
488	m->m_pkthdr.csum_flags |= CSUM_IP;
489	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
490	if (sw_csum & CSUM_DELAY_DATA) {
491		in_delayed_cksum(m);
492		sw_csum &= ~CSUM_DELAY_DATA;
493	}
494	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
495
496	/*
497	 * If small enough for interface, or the interface will take
498	 * care of the fragmentation for us, can just send directly.
499	 */
500	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
501	    ((ip->ip_off & IP_DF) == 0))) {
502		ip->ip_len = htons(ip->ip_len);
503		ip->ip_off = htons(ip->ip_off);
504		ip->ip_sum = 0;
505		if (sw_csum & CSUM_DELAY_IP)
506			ip->ip_sum = in_cksum(m, hlen);
507
508		/* Record statistics for this interface address. */
509		if (!(flags & IP_FORWARDING) && ia) {
510			ia->ia_ifa.if_opackets++;
511			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
512		}
513#ifdef IPSEC
514		/* clean ipsec history once it goes out of the node */
515		ipsec_delaux(m);
516#endif
517#ifdef MBUF_STRESS_TEST
518		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
519			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
520#endif
521		/*
522		 * Reset layer specific mbuf flags
523		 * to avoid confusing lower layers.
524		 */
525		m->m_flags &= ~(M_PROTOFLAGS);
526
527		error = (*ifp->if_output)(ifp, m,
528				(struct sockaddr *)dst, ro->ro_rt);
529		goto done;
530	}
531
532	if (ip->ip_off & IP_DF) {
533		error = EMSGSIZE;
534		/*
535		 * This case can happen if the user changed the MTU
536		 * of an interface after enabling IP on it.  Because
537		 * most netifs don't keep track of routes pointing to
538		 * them, there is no way for one to update all its
539		 * routes when the MTU is changed.
540		 */
541		if (ro != NULL &&
542		    (ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
543		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
544			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
545		}
546		ipstat.ips_cantfrag++;
547		goto bad;
548	}
549
550	/*
551	 * Too large for interface; fragment if possible. If successful,
552	 * on return, m will point to a list of packets to be sent.
553	 */
554	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
555	if (error)
556		goto bad;
557	for (; m; m = m0) {
558		m0 = m->m_nextpkt;
559		m->m_nextpkt = 0;
560#ifdef IPSEC
561		/* clean ipsec history once it goes out of the node */
562		ipsec_delaux(m);
563#endif
564		if (error == 0) {
565			/* Record statistics for this interface address. */
566			if (ia != NULL) {
567				ia->ia_ifa.if_opackets++;
568				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
569			}
570			/*
571			 * Reset layer specific mbuf flags
572			 * to avoid confusing upper layers.
573			 */
574			m->m_flags &= ~(M_PROTOFLAGS);
575
576			error = (*ifp->if_output)(ifp, m,
577			    (struct sockaddr *)dst, ro->ro_rt);
578		} else
579			m_freem(m);
580	}
581
582	if (error == 0)
583		ipstat.ips_fragmented++;
584
585done:
586	if (ro == &iproute && ro->ro_rt) {
587		RTFREE(ro->ro_rt);
588	}
589	return (error);
590bad:
591	m_freem(m);
592	goto done;
593}
594
595/*
596 * Create a chain of fragments which fit the given mtu. m_frag points to the
597 * mbuf to be fragmented; on return it points to the chain with the fragments.
598 * Return 0 if no error. If error, m_frag may contain a partially built
599 * chain of fragments that should be freed by the caller.
600 *
601 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
602 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
603 */
604int
605ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
606	    u_long if_hwassist_flags, int sw_csum)
607{
608	int error = 0;
609	int hlen = ip->ip_hl << 2;
610	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
611	int off;
612	struct mbuf *m0 = *m_frag;	/* the original packet		*/
613	int firstlen;
614	struct mbuf **mnext;
615	int nfrags;
616
617	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
618		ipstat.ips_cantfrag++;
619		return EMSGSIZE;
620	}
621
622	/*
623	 * Must be able to put at least 8 bytes per fragment.
624	 */
625	if (len < 8)
626		return EMSGSIZE;
627
628	/*
629	 * If the interface will not calculate checksums on
630	 * fragmented packets, then do it here.
631	 */
632	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
633	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
634		in_delayed_cksum(m0);
635		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
636	}
637
638	if (len > PAGE_SIZE) {
639		/*
640		 * Fragment large datagrams such that each segment
641		 * contains a multiple of PAGE_SIZE amount of data,
642		 * plus headers. This enables a receiver to perform
643		 * page-flipping zero-copy optimizations.
644		 *
645		 * XXX When does this help given that sender and receiver
646		 * could have different page sizes, and also mtu could
647		 * be less than the receiver's page size ?
648		 */
649		int newlen;
650		struct mbuf *m;
651
652		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
653			off += m->m_len;
654
655		/*
656		 * firstlen (off - hlen) must be aligned on an
657		 * 8-byte boundary
658		 */
659		if (off < hlen)
660			goto smart_frag_failure;
661		off = ((off - hlen) & ~7) + hlen;
662		newlen = (~PAGE_MASK) & mtu;
663		if ((newlen + sizeof (struct ip)) > mtu) {
664			/* we failed, go back the default */
665smart_frag_failure:
666			newlen = len;
667			off = hlen + len;
668		}
669		len = newlen;
670
671	} else {
672		off = hlen + len;
673	}
674
675	firstlen = off - hlen;
676	mnext = &m0->m_nextpkt;		/* pointer to next packet */
677
678	/*
679	 * Loop through length of segment after first fragment,
680	 * make new header and copy data of each part and link onto chain.
681	 * Here, m0 is the original packet, m is the fragment being created.
682	 * The fragments are linked off the m_nextpkt of the original
683	 * packet, which after processing serves as the first fragment.
684	 */
685	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
686		struct ip *mhip;	/* ip header on the fragment */
687		struct mbuf *m;
688		int mhlen = sizeof (struct ip);
689
690		MGETHDR(m, M_DONTWAIT, MT_DATA);
691		if (m == NULL) {
692			error = ENOBUFS;
693			ipstat.ips_odropped++;
694			goto done;
695		}
696		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
697		/*
698		 * In the first mbuf, leave room for the link header, then
699		 * copy the original IP header including options. The payload
700		 * goes into an additional mbuf chain returned by m_copy().
701		 */
702		m->m_data += max_linkhdr;
703		mhip = mtod(m, struct ip *);
704		*mhip = *ip;
705		if (hlen > sizeof (struct ip)) {
706			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
707			mhip->ip_v = IPVERSION;
708			mhip->ip_hl = mhlen >> 2;
709		}
710		m->m_len = mhlen;
711		/* XXX do we need to add ip->ip_off below ? */
712		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
713		if (off + len >= ip->ip_len) {	/* last fragment */
714			len = ip->ip_len - off;
715			m->m_flags |= M_LASTFRAG;
716		} else
717			mhip->ip_off |= IP_MF;
718		mhip->ip_len = htons((u_short)(len + mhlen));
719		m->m_next = m_copy(m0, off, len);
720		if (m->m_next == NULL) {	/* copy failed */
721			m_free(m);
722			error = ENOBUFS;	/* ??? */
723			ipstat.ips_odropped++;
724			goto done;
725		}
726		m->m_pkthdr.len = mhlen + len;
727		m->m_pkthdr.rcvif = NULL;
728#ifdef MAC
729		mac_create_fragment(m0, m);
730#endif
731		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
732		mhip->ip_off = htons(mhip->ip_off);
733		mhip->ip_sum = 0;
734		if (sw_csum & CSUM_DELAY_IP)
735			mhip->ip_sum = in_cksum(m, mhlen);
736		*mnext = m;
737		mnext = &m->m_nextpkt;
738	}
739	ipstat.ips_ofragments += nfrags;
740
741	/* set first marker for fragment chain */
742	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
743	m0->m_pkthdr.csum_data = nfrags;
744
745	/*
746	 * Update first fragment by trimming what's been copied out
747	 * and updating header.
748	 */
749	m_adj(m0, hlen + firstlen - ip->ip_len);
750	m0->m_pkthdr.len = hlen + firstlen;
751	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
752	ip->ip_off |= IP_MF;
753	ip->ip_off = htons(ip->ip_off);
754	ip->ip_sum = 0;
755	if (sw_csum & CSUM_DELAY_IP)
756		ip->ip_sum = in_cksum(m0, hlen);
757
758done:
759	*m_frag = m0;
760	return error;
761}
762
763void
764in_delayed_cksum(struct mbuf *m)
765{
766	struct ip *ip;
767	u_short csum, offset;
768
769	ip = mtod(m, struct ip *);
770	offset = ip->ip_hl << 2 ;
771	csum = in_cksum_skip(m, ip->ip_len, offset);
772	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
773		csum = 0xffff;
774	offset += m->m_pkthdr.csum_data;	/* checksum offset */
775
776	if (offset + sizeof(u_short) > m->m_len) {
777		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
778		    m->m_len, offset, ip->ip_p);
779		/*
780		 * XXX
781		 * this shouldn't happen, but if it does, the
782		 * correct behavior may be to insert the checksum
783		 * in the appropriate next mbuf in the chain.
784		 */
785		return;
786	}
787	*(u_short *)(m->m_data + offset) = csum;
788}
789
790/*
791 * IP socket option processing.
792 */
793int
794ip_ctloutput(so, sopt)
795	struct socket *so;
796	struct sockopt *sopt;
797{
798	struct	inpcb *inp = sotoinpcb(so);
799	int	error, optval;
800
801	error = optval = 0;
802	if (sopt->sopt_level != IPPROTO_IP) {
803		return (EINVAL);
804	}
805
806	switch (sopt->sopt_dir) {
807	case SOPT_SET:
808		switch (sopt->sopt_name) {
809		case IP_OPTIONS:
810#ifdef notyet
811		case IP_RETOPTS:
812#endif
813		{
814			struct mbuf *m;
815			if (sopt->sopt_valsize > MLEN) {
816				error = EMSGSIZE;
817				break;
818			}
819			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
820			if (m == NULL) {
821				error = ENOBUFS;
822				break;
823			}
824			m->m_len = sopt->sopt_valsize;
825			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
826					    m->m_len);
827			if (error) {
828				m_free(m);
829				break;
830			}
831			INP_LOCK(inp);
832			error = ip_pcbopts(inp, sopt->sopt_name, m);
833			INP_UNLOCK(inp);
834			return (error);
835		}
836
837		case IP_TOS:
838		case IP_TTL:
839		case IP_MINTTL:
840		case IP_RECVOPTS:
841		case IP_RECVRETOPTS:
842		case IP_RECVDSTADDR:
843		case IP_RECVTTL:
844		case IP_RECVIF:
845		case IP_FAITH:
846		case IP_ONESBCAST:
847		case IP_DONTFRAG:
848			error = sooptcopyin(sopt, &optval, sizeof optval,
849					    sizeof optval);
850			if (error)
851				break;
852
853			switch (sopt->sopt_name) {
854			case IP_TOS:
855				inp->inp_ip_tos = optval;
856				break;
857
858			case IP_TTL:
859				inp->inp_ip_ttl = optval;
860				break;
861
862			case IP_MINTTL:
863				if (optval > 0 && optval <= MAXTTL)
864					inp->inp_ip_minttl = optval;
865				else
866					error = EINVAL;
867				break;
868
869#define	OPTSET(bit) do {						\
870	INP_LOCK(inp);							\
871	if (optval)							\
872		inp->inp_flags |= bit;					\
873	else								\
874		inp->inp_flags &= ~bit;					\
875	INP_UNLOCK(inp);						\
876} while (0)
877
878			case IP_RECVOPTS:
879				OPTSET(INP_RECVOPTS);
880				break;
881
882			case IP_RECVRETOPTS:
883				OPTSET(INP_RECVRETOPTS);
884				break;
885
886			case IP_RECVDSTADDR:
887				OPTSET(INP_RECVDSTADDR);
888				break;
889
890			case IP_RECVTTL:
891				OPTSET(INP_RECVTTL);
892				break;
893
894			case IP_RECVIF:
895				OPTSET(INP_RECVIF);
896				break;
897
898			case IP_FAITH:
899				OPTSET(INP_FAITH);
900				break;
901
902			case IP_ONESBCAST:
903				OPTSET(INP_ONESBCAST);
904				break;
905			case IP_DONTFRAG:
906				OPTSET(INP_DONTFRAG);
907				break;
908			}
909			break;
910#undef OPTSET
911
912		case IP_MULTICAST_IF:
913		case IP_MULTICAST_VIF:
914		case IP_MULTICAST_TTL:
915		case IP_MULTICAST_LOOP:
916		case IP_ADD_MEMBERSHIP:
917		case IP_DROP_MEMBERSHIP:
918			error = ip_setmoptions(inp, sopt);
919			break;
920
921		case IP_PORTRANGE:
922			error = sooptcopyin(sopt, &optval, sizeof optval,
923					    sizeof optval);
924			if (error)
925				break;
926
927			INP_LOCK(inp);
928			switch (optval) {
929			case IP_PORTRANGE_DEFAULT:
930				inp->inp_flags &= ~(INP_LOWPORT);
931				inp->inp_flags &= ~(INP_HIGHPORT);
932				break;
933
934			case IP_PORTRANGE_HIGH:
935				inp->inp_flags &= ~(INP_LOWPORT);
936				inp->inp_flags |= INP_HIGHPORT;
937				break;
938
939			case IP_PORTRANGE_LOW:
940				inp->inp_flags &= ~(INP_HIGHPORT);
941				inp->inp_flags |= INP_LOWPORT;
942				break;
943
944			default:
945				error = EINVAL;
946				break;
947			}
948			INP_UNLOCK(inp);
949			break;
950
951#if defined(IPSEC) || defined(FAST_IPSEC)
952		case IP_IPSEC_POLICY:
953		{
954			caddr_t req;
955			size_t len = 0;
956			int priv;
957			struct mbuf *m;
958			int optname;
959
960			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
961				break;
962			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
963				break;
964			priv = (sopt->sopt_td != NULL &&
965				suser(sopt->sopt_td) != 0) ? 0 : 1;
966			req = mtod(m, caddr_t);
967			len = m->m_len;
968			optname = sopt->sopt_name;
969			error = ipsec4_set_policy(inp, optname, req, len, priv);
970			m_freem(m);
971			break;
972		}
973#endif /*IPSEC*/
974
975		default:
976			error = ENOPROTOOPT;
977			break;
978		}
979		break;
980
981	case SOPT_GET:
982		switch (sopt->sopt_name) {
983		case IP_OPTIONS:
984		case IP_RETOPTS:
985			if (inp->inp_options)
986				error = sooptcopyout(sopt,
987						     mtod(inp->inp_options,
988							  char *),
989						     inp->inp_options->m_len);
990			else
991				sopt->sopt_valsize = 0;
992			break;
993
994		case IP_TOS:
995		case IP_TTL:
996		case IP_MINTTL:
997		case IP_RECVOPTS:
998		case IP_RECVRETOPTS:
999		case IP_RECVDSTADDR:
1000		case IP_RECVTTL:
1001		case IP_RECVIF:
1002		case IP_PORTRANGE:
1003		case IP_FAITH:
1004		case IP_ONESBCAST:
1005		case IP_DONTFRAG:
1006			switch (sopt->sopt_name) {
1007
1008			case IP_TOS:
1009				optval = inp->inp_ip_tos;
1010				break;
1011
1012			case IP_TTL:
1013				optval = inp->inp_ip_ttl;
1014				break;
1015
1016			case IP_MINTTL:
1017				optval = inp->inp_ip_minttl;
1018				break;
1019
1020#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1021
1022			case IP_RECVOPTS:
1023				optval = OPTBIT(INP_RECVOPTS);
1024				break;
1025
1026			case IP_RECVRETOPTS:
1027				optval = OPTBIT(INP_RECVRETOPTS);
1028				break;
1029
1030			case IP_RECVDSTADDR:
1031				optval = OPTBIT(INP_RECVDSTADDR);
1032				break;
1033
1034			case IP_RECVTTL:
1035				optval = OPTBIT(INP_RECVTTL);
1036				break;
1037
1038			case IP_RECVIF:
1039				optval = OPTBIT(INP_RECVIF);
1040				break;
1041
1042			case IP_PORTRANGE:
1043				if (inp->inp_flags & INP_HIGHPORT)
1044					optval = IP_PORTRANGE_HIGH;
1045				else if (inp->inp_flags & INP_LOWPORT)
1046					optval = IP_PORTRANGE_LOW;
1047				else
1048					optval = 0;
1049				break;
1050
1051			case IP_FAITH:
1052				optval = OPTBIT(INP_FAITH);
1053				break;
1054
1055			case IP_ONESBCAST:
1056				optval = OPTBIT(INP_ONESBCAST);
1057				break;
1058			case IP_DONTFRAG:
1059				optval = OPTBIT(INP_DONTFRAG);
1060				break;
1061			}
1062			error = sooptcopyout(sopt, &optval, sizeof optval);
1063			break;
1064
1065		case IP_MULTICAST_IF:
1066		case IP_MULTICAST_VIF:
1067		case IP_MULTICAST_TTL:
1068		case IP_MULTICAST_LOOP:
1069		case IP_ADD_MEMBERSHIP:
1070		case IP_DROP_MEMBERSHIP:
1071			error = ip_getmoptions(inp, sopt);
1072			break;
1073
1074#if defined(IPSEC) || defined(FAST_IPSEC)
1075		case IP_IPSEC_POLICY:
1076		{
1077			struct mbuf *m = NULL;
1078			caddr_t req = NULL;
1079			size_t len = 0;
1080
1081			if (m != 0) {
1082				req = mtod(m, caddr_t);
1083				len = m->m_len;
1084			}
1085			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1086			if (error == 0)
1087				error = soopt_mcopyout(sopt, m); /* XXX */
1088			if (error == 0)
1089				m_freem(m);
1090			break;
1091		}
1092#endif /*IPSEC*/
1093
1094		default:
1095			error = ENOPROTOOPT;
1096			break;
1097		}
1098		break;
1099	}
1100	return (error);
1101}
1102
1103/*
1104 * XXX
1105 * The whole multicast option thing needs to be re-thought.
1106 * Several of these options are equally applicable to non-multicast
1107 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1108 * standard option (IP_TTL).
1109 */
1110
1111/*
1112 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1113 */
1114static struct ifnet *
1115ip_multicast_if(a, ifindexp)
1116	struct in_addr *a;
1117	int *ifindexp;
1118{
1119	int ifindex;
1120	struct ifnet *ifp;
1121
1122	if (ifindexp)
1123		*ifindexp = 0;
1124	if (ntohl(a->s_addr) >> 24 == 0) {
1125		ifindex = ntohl(a->s_addr) & 0xffffff;
1126		if (ifindex < 0 || if_index < ifindex)
1127			return NULL;
1128		ifp = ifnet_byindex(ifindex);
1129		if (ifindexp)
1130			*ifindexp = ifindex;
1131	} else {
1132		INADDR_TO_IFP(*a, ifp);
1133	}
1134	return ifp;
1135}
1136
1137/*
1138 * Given an inpcb, return its multicast options structure pointer.  Accepts
1139 * an unlocked inpcb pointer, but will return it locked.  May sleep.
1140 */
1141static struct ip_moptions *
1142ip_findmoptions(struct inpcb *inp)
1143{
1144	struct ip_moptions *imo;
1145	struct in_multi **immp;
1146
1147	INP_LOCK(inp);
1148	if (inp->inp_moptions != NULL)
1149		return (inp->inp_moptions);
1150
1151	INP_UNLOCK(inp);
1152
1153	imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1154	immp = (struct in_multi **)malloc((sizeof(*immp) * IP_MIN_MEMBERSHIPS),
1155					  M_IPMOPTS, M_WAITOK);
1156
1157	imo->imo_multicast_ifp = NULL;
1158	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1159	imo->imo_multicast_vif = -1;
1160	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1161	imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1162	imo->imo_num_memberships = 0;
1163	imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1164	imo->imo_membership = immp;
1165
1166	INP_LOCK(inp);
1167	if (inp->inp_moptions != NULL) {
1168		free(immp, M_IPMOPTS);
1169		free(imo, M_IPMOPTS);
1170		return (inp->inp_moptions);
1171	}
1172	inp->inp_moptions = imo;
1173	return (imo);
1174}
1175
1176/*
1177 * Set the IP multicast options in response to user setsockopt().
1178 */
1179static int
1180ip_setmoptions(struct inpcb *inp, struct sockopt *sopt)
1181{
1182	int error = 0;
1183	int i;
1184	struct in_addr addr;
1185	struct ip_mreq mreq;
1186	struct ifnet *ifp;
1187	struct ip_moptions *imo;
1188	struct route ro;
1189	struct sockaddr_in *dst;
1190	int ifindex;
1191	int s;
1192
1193	switch (sopt->sopt_name) {
1194	/* store an index number for the vif you wanna use in the send */
1195	case IP_MULTICAST_VIF:
1196		if (legal_vif_num == 0) {
1197			error = EOPNOTSUPP;
1198			break;
1199		}
1200		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1201		if (error)
1202			break;
1203		if (!legal_vif_num(i) && (i != -1)) {
1204			error = EINVAL;
1205			break;
1206		}
1207		imo = ip_findmoptions(inp);
1208		imo->imo_multicast_vif = i;
1209		INP_UNLOCK(inp);
1210		break;
1211
1212	case IP_MULTICAST_IF:
1213		/*
1214		 * Select the interface for outgoing multicast packets.
1215		 */
1216		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1217		if (error)
1218			break;
1219		/*
1220		 * INADDR_ANY is used to remove a previous selection.
1221		 * When no interface is selected, a default one is
1222		 * chosen every time a multicast packet is sent.
1223		 */
1224		imo = ip_findmoptions(inp);
1225		if (addr.s_addr == INADDR_ANY) {
1226			imo->imo_multicast_ifp = NULL;
1227			INP_UNLOCK(inp);
1228			break;
1229		}
1230		/*
1231		 * The selected interface is identified by its local
1232		 * IP address.  Find the interface and confirm that
1233		 * it supports multicasting.
1234		 */
1235		s = splimp();
1236		ifp = ip_multicast_if(&addr, &ifindex);
1237		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1238			INP_UNLOCK(inp);
1239			splx(s);
1240			error = EADDRNOTAVAIL;
1241			break;
1242		}
1243		imo->imo_multicast_ifp = ifp;
1244		if (ifindex)
1245			imo->imo_multicast_addr = addr;
1246		else
1247			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1248		INP_UNLOCK(inp);
1249		splx(s);
1250		break;
1251
1252	case IP_MULTICAST_TTL:
1253		/*
1254		 * Set the IP time-to-live for outgoing multicast packets.
1255		 * The original multicast API required a char argument,
1256		 * which is inconsistent with the rest of the socket API.
1257		 * We allow either a char or an int.
1258		 */
1259		if (sopt->sopt_valsize == 1) {
1260			u_char ttl;
1261			error = sooptcopyin(sopt, &ttl, 1, 1);
1262			if (error)
1263				break;
1264			imo = ip_findmoptions(inp);
1265			imo->imo_multicast_ttl = ttl;
1266			INP_UNLOCK(inp);
1267		} else {
1268			u_int ttl;
1269			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1270					    sizeof ttl);
1271			if (error)
1272				break;
1273			if (ttl > 255)
1274				error = EINVAL;
1275			else {
1276				imo = ip_findmoptions(inp);
1277				imo->imo_multicast_ttl = ttl;
1278				INP_UNLOCK(inp);
1279			}
1280		}
1281		break;
1282
1283	case IP_MULTICAST_LOOP:
1284		/*
1285		 * Set the loopback flag for outgoing multicast packets.
1286		 * Must be zero or one.  The original multicast API required a
1287		 * char argument, which is inconsistent with the rest
1288		 * of the socket API.  We allow either a char or an int.
1289		 */
1290		if (sopt->sopt_valsize == 1) {
1291			u_char loop;
1292			error = sooptcopyin(sopt, &loop, 1, 1);
1293			if (error)
1294				break;
1295			imo = ip_findmoptions(inp);
1296			imo->imo_multicast_loop = !!loop;
1297			INP_UNLOCK(inp);
1298		} else {
1299			u_int loop;
1300			error = sooptcopyin(sopt, &loop, sizeof loop,
1301					    sizeof loop);
1302			if (error)
1303				break;
1304			imo = ip_findmoptions(inp);
1305			imo->imo_multicast_loop = !!loop;
1306			INP_UNLOCK(inp);
1307		}
1308		break;
1309
1310	case IP_ADD_MEMBERSHIP:
1311		/*
1312		 * Add a multicast group membership.
1313		 * Group must be a valid IP multicast address.
1314		 */
1315		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1316		if (error)
1317			break;
1318
1319		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1320			error = EINVAL;
1321			break;
1322		}
1323		s = splimp();
1324		/*
1325		 * If no interface address was provided, use the interface of
1326		 * the route to the given multicast address.
1327		 */
1328		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1329			bzero((caddr_t)&ro, sizeof(ro));
1330			dst = (struct sockaddr_in *)&ro.ro_dst;
1331			dst->sin_len = sizeof(*dst);
1332			dst->sin_family = AF_INET;
1333			dst->sin_addr = mreq.imr_multiaddr;
1334			rtalloc_ign(&ro, RTF_CLONING);
1335			if (ro.ro_rt == NULL) {
1336				error = EADDRNOTAVAIL;
1337				splx(s);
1338				break;
1339			}
1340			ifp = ro.ro_rt->rt_ifp;
1341			RTFREE(ro.ro_rt);
1342		}
1343		else {
1344			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1345		}
1346
1347		/*
1348		 * See if we found an interface, and confirm that it
1349		 * supports multicast.
1350		 */
1351		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1352			error = EADDRNOTAVAIL;
1353			splx(s);
1354			break;
1355		}
1356		/*
1357		 * See if the membership already exists or if all the
1358		 * membership slots are full.
1359		 */
1360		imo = ip_findmoptions(inp);
1361		for (i = 0; i < imo->imo_num_memberships; ++i) {
1362			if (imo->imo_membership[i]->inm_ifp == ifp &&
1363			    imo->imo_membership[i]->inm_addr.s_addr
1364						== mreq.imr_multiaddr.s_addr)
1365				break;
1366		}
1367		if (i < imo->imo_num_memberships) {
1368			INP_UNLOCK(inp);
1369			error = EADDRINUSE;
1370			splx(s);
1371			break;
1372		}
1373		if (imo->imo_num_memberships == imo->imo_max_memberships) {
1374		    struct in_multi **nmships, **omships;
1375		    size_t newmax;
1376		    /*
1377		     * Resize the vector to next power-of-two minus 1. If the
1378		     * size would exceed the maximum then we know we've really
1379		     * run out of entries. Otherwise, we realloc() the vector
1380		     * with the INP lock held to avoid introducing a race.
1381		     */
1382		    nmships = NULL;
1383		    omships = imo->imo_membership;
1384		    newmax = ((imo->imo_max_memberships + 1) * 2) - 1;
1385		    if (newmax <= IP_MAX_MEMBERSHIPS) {
1386			nmships = (struct in_multi **)realloc(omships,
1387sizeof(*nmships) * newmax, M_IPMOPTS, M_NOWAIT);
1388			if (nmships != NULL) {
1389			    imo->imo_membership = nmships;
1390			    imo->imo_max_memberships = newmax;
1391			}
1392		    }
1393		    if (nmships == NULL) {
1394			INP_UNLOCK(inp);
1395			error = ETOOMANYREFS;
1396			splx(s);
1397			break;
1398		    }
1399		}
1400		/*
1401		 * Everything looks good; add a new record to the multicast
1402		 * address list for the given interface.
1403		 */
1404		if ((imo->imo_membership[i] =
1405		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1406			INP_UNLOCK(inp);
1407			error = ENOBUFS;
1408			splx(s);
1409			break;
1410		}
1411		++imo->imo_num_memberships;
1412		INP_UNLOCK(inp);
1413		splx(s);
1414		break;
1415
1416	case IP_DROP_MEMBERSHIP:
1417		/*
1418		 * Drop a multicast group membership.
1419		 * Group must be a valid IP multicast address.
1420		 */
1421		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1422		if (error)
1423			break;
1424
1425		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1426			error = EINVAL;
1427			break;
1428		}
1429
1430		s = splimp();
1431		/*
1432		 * If an interface address was specified, get a pointer
1433		 * to its ifnet structure.
1434		 */
1435		if (mreq.imr_interface.s_addr == INADDR_ANY)
1436			ifp = NULL;
1437		else {
1438			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1439			if (ifp == NULL) {
1440				error = EADDRNOTAVAIL;
1441				splx(s);
1442				break;
1443			}
1444		}
1445		/*
1446		 * Find the membership in the membership array.
1447		 */
1448		imo = ip_findmoptions(inp);
1449		for (i = 0; i < imo->imo_num_memberships; ++i) {
1450			if ((ifp == NULL ||
1451			     imo->imo_membership[i]->inm_ifp == ifp) &&
1452			     imo->imo_membership[i]->inm_addr.s_addr ==
1453			     mreq.imr_multiaddr.s_addr)
1454				break;
1455		}
1456		if (i == imo->imo_num_memberships) {
1457			INP_UNLOCK(inp);
1458			error = EADDRNOTAVAIL;
1459			splx(s);
1460			break;
1461		}
1462		/*
1463		 * Give up the multicast address record to which the
1464		 * membership points.
1465		 */
1466		in_delmulti(imo->imo_membership[i]);
1467		/*
1468		 * Remove the gap in the membership array.
1469		 */
1470		for (++i; i < imo->imo_num_memberships; ++i)
1471			imo->imo_membership[i-1] = imo->imo_membership[i];
1472		--imo->imo_num_memberships;
1473		INP_UNLOCK(inp);
1474		splx(s);
1475		break;
1476
1477	default:
1478		error = EOPNOTSUPP;
1479		break;
1480	}
1481
1482	return (error);
1483}
1484
1485/*
1486 * Return the IP multicast options in response to user getsockopt().
1487 */
1488static int
1489ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1490{
1491	struct ip_moptions *imo;
1492	struct in_addr addr;
1493	struct in_ifaddr *ia;
1494	int error, optval;
1495	u_char coptval;
1496
1497	INP_LOCK(inp);
1498	imo = inp->inp_moptions;
1499
1500	error = 0;
1501	switch (sopt->sopt_name) {
1502	case IP_MULTICAST_VIF:
1503		if (imo != NULL)
1504			optval = imo->imo_multicast_vif;
1505		else
1506			optval = -1;
1507		INP_UNLOCK(inp);
1508		error = sooptcopyout(sopt, &optval, sizeof optval);
1509		break;
1510
1511	case IP_MULTICAST_IF:
1512		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1513			addr.s_addr = INADDR_ANY;
1514		else if (imo->imo_multicast_addr.s_addr) {
1515			/* return the value user has set */
1516			addr = imo->imo_multicast_addr;
1517		} else {
1518			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1519			addr.s_addr = (ia == NULL) ? INADDR_ANY
1520				: IA_SIN(ia)->sin_addr.s_addr;
1521		}
1522		INP_UNLOCK(inp);
1523		error = sooptcopyout(sopt, &addr, sizeof addr);
1524		break;
1525
1526	case IP_MULTICAST_TTL:
1527		if (imo == 0)
1528			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1529		else
1530			optval = coptval = imo->imo_multicast_ttl;
1531		INP_UNLOCK(inp);
1532		if (sopt->sopt_valsize == 1)
1533			error = sooptcopyout(sopt, &coptval, 1);
1534		else
1535			error = sooptcopyout(sopt, &optval, sizeof optval);
1536		break;
1537
1538	case IP_MULTICAST_LOOP:
1539		if (imo == 0)
1540			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1541		else
1542			optval = coptval = imo->imo_multicast_loop;
1543		INP_UNLOCK(inp);
1544		if (sopt->sopt_valsize == 1)
1545			error = sooptcopyout(sopt, &coptval, 1);
1546		else
1547			error = sooptcopyout(sopt, &optval, sizeof optval);
1548		break;
1549
1550	default:
1551		INP_UNLOCK(inp);
1552		error = ENOPROTOOPT;
1553		break;
1554	}
1555	INP_UNLOCK_ASSERT(inp);
1556
1557	return (error);
1558}
1559
1560/*
1561 * Discard the IP multicast options.
1562 */
1563void
1564ip_freemoptions(imo)
1565	register struct ip_moptions *imo;
1566{
1567	register int i;
1568
1569	if (imo != NULL) {
1570		for (i = 0; i < imo->imo_num_memberships; ++i)
1571			in_delmulti(imo->imo_membership[i]);
1572		free(imo->imo_membership, M_IPMOPTS);
1573		free(imo, M_IPMOPTS);
1574	}
1575}
1576
1577/*
1578 * Routine called from ip_output() to loop back a copy of an IP multicast
1579 * packet to the input queue of a specified interface.  Note that this
1580 * calls the output routine of the loopback "driver", but with an interface
1581 * pointer that might NOT be a loopback interface -- evil, but easier than
1582 * replicating that code here.
1583 */
1584static void
1585ip_mloopback(ifp, m, dst, hlen)
1586	struct ifnet *ifp;
1587	register struct mbuf *m;
1588	register struct sockaddr_in *dst;
1589	int hlen;
1590{
1591	register struct ip *ip;
1592	struct mbuf *copym;
1593
1594	copym = m_copy(m, 0, M_COPYALL);
1595	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1596		copym = m_pullup(copym, hlen);
1597	if (copym != NULL) {
1598		/* If needed, compute the checksum and mark it as valid. */
1599		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1600			in_delayed_cksum(copym);
1601			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1602			copym->m_pkthdr.csum_flags |=
1603			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1604			copym->m_pkthdr.csum_data = 0xffff;
1605		}
1606		/*
1607		 * We don't bother to fragment if the IP length is greater
1608		 * than the interface's MTU.  Can this possibly matter?
1609		 */
1610		ip = mtod(copym, struct ip *);
1611		ip->ip_len = htons(ip->ip_len);
1612		ip->ip_off = htons(ip->ip_off);
1613		ip->ip_sum = 0;
1614		ip->ip_sum = in_cksum(copym, hlen);
1615		/*
1616		 * NB:
1617		 * It's not clear whether there are any lingering
1618		 * reentrancy problems in other areas which might
1619		 * be exposed by using ip_input directly (in
1620		 * particular, everything which modifies the packet
1621		 * in-place).  Yet another option is using the
1622		 * protosw directly to deliver the looped back
1623		 * packet.  For the moment, we'll err on the side
1624		 * of safety by using if_simloop().
1625		 */
1626#if 1 /* XXX */
1627		if (dst->sin_family != AF_INET) {
1628			printf("ip_mloopback: bad address family %d\n",
1629						dst->sin_family);
1630			dst->sin_family = AF_INET;
1631		}
1632#endif
1633
1634#ifdef notdef
1635		copym->m_pkthdr.rcvif = ifp;
1636		ip_input(copym);
1637#else
1638		if_simloop(ifp, copym, dst->sin_family, 0);
1639#endif
1640	}
1641}
1642