ip_output.c revision 151967
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 * $FreeBSD: head/sys/netinet/ip_output.c 151967 2005-11-02 13:46:32Z andre $
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipsec.h"
35#include "opt_mac.h"
36#include "opt_mbuf_stress_test.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/mac.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/protosw.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/sysctl.h>
48
49#include <net/if.h>
50#include <net/netisr.h>
51#include <net/pfil.h>
52#include <net/route.h>
53
54#include <netinet/in.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#include <netinet/in_pcb.h>
58#include <netinet/in_var.h>
59#include <netinet/ip_var.h>
60
61#include <machine/in_cksum.h>
62
63static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
64
65#ifdef IPSEC
66#include <netinet6/ipsec.h>
67#include <netkey/key.h>
68#ifdef IPSEC_DEBUG
69#include <netkey/key_debug.h>
70#else
71#define	KEYDEBUG(lev,arg)
72#endif
73#endif /*IPSEC*/
74
75#ifdef FAST_IPSEC
76#include <netipsec/ipsec.h>
77#include <netipsec/xform.h>
78#include <netipsec/key.h>
79#endif /*FAST_IPSEC*/
80
81#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
82				x, (ntohl(a.s_addr)>>24)&0xFF,\
83				  (ntohl(a.s_addr)>>16)&0xFF,\
84				  (ntohl(a.s_addr)>>8)&0xFF,\
85				  (ntohl(a.s_addr))&0xFF, y);
86
87u_short ip_id;
88
89#ifdef MBUF_STRESS_TEST
90int mbuf_frag_size = 0;
91SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93#endif
94
95static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
96static struct ifnet *ip_multicast_if(struct in_addr *, int *);
97static void	ip_mloopback
98	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
99static int	ip_getmoptions(struct inpcb *, struct sockopt *);
100static int	ip_pcbopts(struct inpcb *, int, struct mbuf *);
101static int	ip_setmoptions(struct inpcb *, struct sockopt *);
102static struct ip_moptions	*ip_findmoptions(struct inpcb *inp);
103
104int	ip_optcopy(struct ip *, struct ip *);
105
106
107extern	struct protosw inetsw[];
108
109/*
110 * IP output.  The packet in mbuf chain m contains a skeletal IP
111 * header (with len, off, ttl, proto, tos, src, dst).
112 * The mbuf chain containing the packet will be freed.
113 * The mbuf opt, if present, will not be freed.
114 * In the IP forwarding case, the packet will arrive with options already
115 * inserted, so must have a NULL opt pointer.
116 */
117int
118ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
119	int flags, struct ip_moptions *imo, struct inpcb *inp)
120{
121	struct ip *ip;
122	struct ifnet *ifp = NULL;	/* keep compiler happy */
123	struct mbuf *m0;
124	int hlen = sizeof (struct ip);
125	int len, error = 0;
126	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
127	struct in_ifaddr *ia = NULL;
128	int isbroadcast, sw_csum;
129	struct route iproute;
130	struct in_addr odst;
131#ifdef IPFIREWALL_FORWARD
132	struct m_tag *fwd_tag = NULL;
133#endif
134#ifdef IPSEC
135	struct secpolicy *sp = NULL;
136#endif
137#ifdef FAST_IPSEC
138	struct secpolicy *sp = NULL;
139	struct tdb_ident *tdbi;
140	struct m_tag *mtag;
141	int s;
142#endif /* FAST_IPSEC */
143
144	M_ASSERTPKTHDR(m);
145
146	if (ro == NULL) {
147		ro = &iproute;
148		bzero(ro, sizeof (*ro));
149	}
150
151	if (inp != NULL)
152		INP_LOCK_ASSERT(inp);
153
154	if (opt) {
155		len = 0;
156		m = ip_insertoptions(m, opt, &len);
157		if (len != 0)
158			hlen = len;
159	}
160	ip = mtod(m, struct ip *);
161
162	/*
163	 * Fill in IP header.  If we are not allowing fragmentation,
164	 * then the ip_id field is meaningless, but we don't set it
165	 * to zero.  Doing so causes various problems when devices along
166	 * the path (routers, load balancers, firewalls, etc.) illegally
167	 * disable DF on our packet.  Note that a 16-bit counter
168	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
169	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
170	 * for Counting NATted Hosts", Proc. IMW'02, available at
171	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
172	 */
173	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
174		ip->ip_v = IPVERSION;
175		ip->ip_hl = hlen >> 2;
176		ip->ip_id = ip_newid();
177		ipstat.ips_localout++;
178	} else {
179		hlen = ip->ip_hl << 2;
180	}
181
182	dst = (struct sockaddr_in *)&ro->ro_dst;
183again:
184	/*
185	 * If there is a cached route,
186	 * check that it is to the same destination
187	 * and is still up.  If not, free it and try again.
188	 * The address family should also be checked in case of sharing the
189	 * cache with IPv6.
190	 */
191	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
192			  dst->sin_family != AF_INET ||
193			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
194		RTFREE(ro->ro_rt);
195		ro->ro_rt = (struct rtentry *)0;
196	}
197#ifdef IPFIREWALL_FORWARD
198	if (ro->ro_rt == NULL && fwd_tag == NULL) {
199#else
200	if (ro->ro_rt == NULL) {
201#endif
202		bzero(dst, sizeof(*dst));
203		dst->sin_family = AF_INET;
204		dst->sin_len = sizeof(*dst);
205		dst->sin_addr = ip->ip_dst;
206	}
207	/*
208	 * If routing to interface only,
209	 * short circuit routing lookup.
210	 */
211	if (flags & IP_ROUTETOIF) {
212		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
213		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
214			ipstat.ips_noroute++;
215			error = ENETUNREACH;
216			goto bad;
217		}
218		ifp = ia->ia_ifp;
219		ip->ip_ttl = 1;
220		isbroadcast = in_broadcast(dst->sin_addr, ifp);
221	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
222	    imo != NULL && imo->imo_multicast_ifp != NULL) {
223		/*
224		 * Bypass the normal routing lookup for multicast
225		 * packets if the interface is specified.
226		 */
227		ifp = imo->imo_multicast_ifp;
228		IFP_TO_IA(ifp, ia);
229		isbroadcast = 0;	/* fool gcc */
230	} else {
231		/*
232		 * We want to do any cloning requested by the link layer,
233		 * as this is probably required in all cases for correct
234		 * operation (as it is for ARP).
235		 */
236		if (ro->ro_rt == NULL)
237			rtalloc_ign(ro, 0);
238		if (ro->ro_rt == NULL) {
239			ipstat.ips_noroute++;
240			error = EHOSTUNREACH;
241			goto bad;
242		}
243		ia = ifatoia(ro->ro_rt->rt_ifa);
244		ifp = ro->ro_rt->rt_ifp;
245		ro->ro_rt->rt_rmx.rmx_pksent++;
246		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
247			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
248		if (ro->ro_rt->rt_flags & RTF_HOST)
249			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
250		else
251			isbroadcast = in_broadcast(dst->sin_addr, ifp);
252	}
253	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
254		struct in_multi *inm;
255
256		m->m_flags |= M_MCAST;
257		/*
258		 * IP destination address is multicast.  Make sure "dst"
259		 * still points to the address in "ro".  (It may have been
260		 * changed to point to a gateway address, above.)
261		 */
262		dst = (struct sockaddr_in *)&ro->ro_dst;
263		/*
264		 * See if the caller provided any multicast options
265		 */
266		if (imo != NULL) {
267			ip->ip_ttl = imo->imo_multicast_ttl;
268			if (imo->imo_multicast_vif != -1)
269				ip->ip_src.s_addr =
270				    ip_mcast_src ?
271				    ip_mcast_src(imo->imo_multicast_vif) :
272				    INADDR_ANY;
273		} else
274			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
275		/*
276		 * Confirm that the outgoing interface supports multicast.
277		 */
278		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
279			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
280				ipstat.ips_noroute++;
281				error = ENETUNREACH;
282				goto bad;
283			}
284		}
285		/*
286		 * If source address not specified yet, use address
287		 * of outgoing interface.
288		 */
289		if (ip->ip_src.s_addr == INADDR_ANY) {
290			/* Interface may have no addresses. */
291			if (ia != NULL)
292				ip->ip_src = IA_SIN(ia)->sin_addr;
293		}
294
295		IN_MULTI_LOCK();
296		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
297		if (inm != NULL &&
298		   (imo == NULL || imo->imo_multicast_loop)) {
299			IN_MULTI_UNLOCK();
300			/*
301			 * If we belong to the destination multicast group
302			 * on the outgoing interface, and the caller did not
303			 * forbid loopback, loop back a copy.
304			 */
305			ip_mloopback(ifp, m, dst, hlen);
306		}
307		else {
308			IN_MULTI_UNLOCK();
309			/*
310			 * If we are acting as a multicast router, perform
311			 * multicast forwarding as if the packet had just
312			 * arrived on the interface to which we are about
313			 * to send.  The multicast forwarding function
314			 * recursively calls this function, using the
315			 * IP_FORWARDING flag to prevent infinite recursion.
316			 *
317			 * Multicasts that are looped back by ip_mloopback(),
318			 * above, will be forwarded by the ip_input() routine,
319			 * if necessary.
320			 */
321			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
322				/*
323				 * If rsvp daemon is not running, do not
324				 * set ip_moptions. This ensures that the packet
325				 * is multicast and not just sent down one link
326				 * as prescribed by rsvpd.
327				 */
328				if (!rsvp_on)
329					imo = NULL;
330				if (ip_mforward &&
331				    ip_mforward(ip, ifp, m, imo) != 0) {
332					m_freem(m);
333					goto done;
334				}
335			}
336		}
337
338		/*
339		 * Multicasts with a time-to-live of zero may be looped-
340		 * back, above, but must not be transmitted on a network.
341		 * Also, multicasts addressed to the loopback interface
342		 * are not sent -- the above call to ip_mloopback() will
343		 * loop back a copy if this host actually belongs to the
344		 * destination group on the loopback interface.
345		 */
346		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
347			m_freem(m);
348			goto done;
349		}
350
351		goto sendit;
352	}
353#ifndef notdef
354	/*
355	 * If the source address is not specified yet, use the address
356	 * of the outoing interface.
357	 */
358	if (ip->ip_src.s_addr == INADDR_ANY) {
359		/* Interface may have no addresses. */
360		if (ia != NULL) {
361			ip->ip_src = IA_SIN(ia)->sin_addr;
362		}
363	}
364#endif /* notdef */
365	/*
366	 * Verify that we have any chance at all of being able to queue the
367	 * packet or packet fragments, unless ALTQ is enabled on the given
368	 * interface in which case packetdrop should be done by queueing.
369	 */
370#ifdef ALTQ
371	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
372	    ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
373	    ifp->if_snd.ifq_maxlen))
374#else
375	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
376	    ifp->if_snd.ifq_maxlen)
377#endif /* ALTQ */
378	{
379		error = ENOBUFS;
380		ipstat.ips_odropped++;
381		goto bad;
382	}
383
384	/*
385	 * Look for broadcast address and
386	 * verify user is allowed to send
387	 * such a packet.
388	 */
389	if (isbroadcast) {
390		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
391			error = EADDRNOTAVAIL;
392			goto bad;
393		}
394		if ((flags & IP_ALLOWBROADCAST) == 0) {
395			error = EACCES;
396			goto bad;
397		}
398		/* don't allow broadcast messages to be fragmented */
399		if (ip->ip_len > ifp->if_mtu) {
400			error = EMSGSIZE;
401			goto bad;
402		}
403		if (flags & IP_SENDONES)
404			ip->ip_dst.s_addr = INADDR_BROADCAST;
405		m->m_flags |= M_BCAST;
406	} else {
407		m->m_flags &= ~M_BCAST;
408	}
409
410sendit:
411#ifdef IPSEC
412	/* get SP for this packet */
413	if (inp == NULL)
414		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
415		    flags, &error);
416	else
417		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
418
419	if (sp == NULL) {
420		ipsecstat.out_inval++;
421		goto bad;
422	}
423
424	error = 0;
425
426	/* check policy */
427	switch (sp->policy) {
428	case IPSEC_POLICY_DISCARD:
429		/*
430		 * This packet is just discarded.
431		 */
432		ipsecstat.out_polvio++;
433		goto bad;
434
435	case IPSEC_POLICY_BYPASS:
436	case IPSEC_POLICY_NONE:
437	case IPSEC_POLICY_TCP:
438		/* no need to do IPsec. */
439		goto skip_ipsec;
440
441	case IPSEC_POLICY_IPSEC:
442		if (sp->req == NULL) {
443			/* acquire a policy */
444			error = key_spdacquire(sp);
445			goto bad;
446		}
447		break;
448
449	case IPSEC_POLICY_ENTRUST:
450	default:
451		printf("ip_output: Invalid policy found. %d\n", sp->policy);
452	}
453    {
454	struct ipsec_output_state state;
455	bzero(&state, sizeof(state));
456	state.m = m;
457	if (flags & IP_ROUTETOIF) {
458		state.ro = &iproute;
459		bzero(&iproute, sizeof(iproute));
460	} else
461		state.ro = ro;
462	state.dst = (struct sockaddr *)dst;
463
464	ip->ip_sum = 0;
465
466	/*
467	 * XXX
468	 * delayed checksums are not currently compatible with IPsec
469	 */
470	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
471		in_delayed_cksum(m);
472		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
473	}
474
475	ip->ip_len = htons(ip->ip_len);
476	ip->ip_off = htons(ip->ip_off);
477
478	error = ipsec4_output(&state, sp, flags);
479
480	m = state.m;
481	if (flags & IP_ROUTETOIF) {
482		/*
483		 * if we have tunnel mode SA, we may need to ignore
484		 * IP_ROUTETOIF.
485		 */
486		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
487			flags &= ~IP_ROUTETOIF;
488			ro = state.ro;
489		}
490	} else
491		ro = state.ro;
492	dst = (struct sockaddr_in *)state.dst;
493	if (error) {
494		/* mbuf is already reclaimed in ipsec4_output. */
495		m = NULL;
496		switch (error) {
497		case EHOSTUNREACH:
498		case ENETUNREACH:
499		case EMSGSIZE:
500		case ENOBUFS:
501		case ENOMEM:
502			break;
503		default:
504			printf("ip4_output (ipsec): error code %d\n", error);
505			/*fall through*/
506		case ENOENT:
507			/* don't show these error codes to the user */
508			error = 0;
509			break;
510		}
511		goto bad;
512	}
513
514	/* be sure to update variables that are affected by ipsec4_output() */
515	ip = mtod(m, struct ip *);
516	hlen = ip->ip_hl << 2;
517	if (ro->ro_rt == NULL) {
518		if ((flags & IP_ROUTETOIF) == 0) {
519			printf("ip_output: "
520				"can't update route after IPsec processing\n");
521			error = EHOSTUNREACH;	/*XXX*/
522			goto bad;
523		}
524	} else {
525		if (state.encap) {
526			ia = ifatoia(ro->ro_rt->rt_ifa);
527			ifp = ro->ro_rt->rt_ifp;
528		}
529	}
530    }
531
532	/* make it flipped, again. */
533	ip->ip_len = ntohs(ip->ip_len);
534	ip->ip_off = ntohs(ip->ip_off);
535skip_ipsec:
536#endif /*IPSEC*/
537#ifdef FAST_IPSEC
538	/*
539	 * Check the security policy (SP) for the packet and, if
540	 * required, do IPsec-related processing.  There are two
541	 * cases here; the first time a packet is sent through
542	 * it will be untagged and handled by ipsec4_checkpolicy.
543	 * If the packet is resubmitted to ip_output (e.g. after
544	 * AH, ESP, etc. processing), there will be a tag to bypass
545	 * the lookup and related policy checking.
546	 */
547	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
548	s = splnet();
549	if (mtag != NULL) {
550		tdbi = (struct tdb_ident *)(mtag + 1);
551		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
552		if (sp == NULL)
553			error = -EINVAL;	/* force silent drop */
554		m_tag_delete(m, mtag);
555	} else {
556		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
557					&error, inp);
558	}
559	/*
560	 * There are four return cases:
561	 *    sp != NULL	 	    apply IPsec policy
562	 *    sp == NULL, error == 0	    no IPsec handling needed
563	 *    sp == NULL, error == -EINVAL  discard packet w/o error
564	 *    sp == NULL, error != 0	    discard packet, report error
565	 */
566	if (sp != NULL) {
567		/* Loop detection, check if ipsec processing already done */
568		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
569		for (mtag = m_tag_first(m); mtag != NULL;
570		     mtag = m_tag_next(m, mtag)) {
571			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
572				continue;
573			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
574			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
575				continue;
576			/*
577			 * Check if policy has an SA associated with it.
578			 * This can happen when an SP has yet to acquire
579			 * an SA; e.g. on first reference.  If it occurs,
580			 * then we let ipsec4_process_packet do its thing.
581			 */
582			if (sp->req->sav == NULL)
583				break;
584			tdbi = (struct tdb_ident *)(mtag + 1);
585			if (tdbi->spi == sp->req->sav->spi &&
586			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
587			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
588				 sizeof (union sockaddr_union)) == 0) {
589				/*
590				 * No IPsec processing is needed, free
591				 * reference to SP.
592				 *
593				 * NB: null pointer to avoid free at
594				 *     done: below.
595				 */
596				KEY_FREESP(&sp), sp = NULL;
597				splx(s);
598				goto spd_done;
599			}
600		}
601
602		/*
603		 * Do delayed checksums now because we send before
604		 * this is done in the normal processing path.
605		 */
606		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
607			in_delayed_cksum(m);
608			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
609		}
610
611		ip->ip_len = htons(ip->ip_len);
612		ip->ip_off = htons(ip->ip_off);
613
614		/* NB: callee frees mbuf */
615		error = ipsec4_process_packet(m, sp->req, flags, 0);
616		/*
617		 * Preserve KAME behaviour: ENOENT can be returned
618		 * when an SA acquire is in progress.  Don't propagate
619		 * this to user-level; it confuses applications.
620		 *
621		 * XXX this will go away when the SADB is redone.
622		 */
623		if (error == ENOENT)
624			error = 0;
625		splx(s);
626		goto done;
627	} else {
628		splx(s);
629
630		if (error != 0) {
631			/*
632			 * Hack: -EINVAL is used to signal that a packet
633			 * should be silently discarded.  This is typically
634			 * because we asked key management for an SA and
635			 * it was delayed (e.g. kicked up to IKE).
636			 */
637			if (error == -EINVAL)
638				error = 0;
639			goto bad;
640		} else {
641			/* No IPsec processing for this packet. */
642		}
643#ifdef notyet
644		/*
645		 * If deferred crypto processing is needed, check that
646		 * the interface supports it.
647		 */
648		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
649		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
650			/* notify IPsec to do its own crypto */
651			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
652			error = EHOSTUNREACH;
653			goto bad;
654		}
655#endif
656	}
657spd_done:
658#endif /* FAST_IPSEC */
659
660	/* Jump over all PFIL processing if hooks are not active. */
661	if (inet_pfil_hook.ph_busy_count == -1)
662		goto passout;
663
664	/* Run through list of hooks for output packets. */
665	odst.s_addr = ip->ip_dst.s_addr;
666	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
667	if (error != 0 || m == NULL)
668		goto done;
669
670	ip = mtod(m, struct ip *);
671
672	/* See if destination IP address was changed by packet filter. */
673	if (odst.s_addr != ip->ip_dst.s_addr) {
674		m->m_flags |= M_SKIP_FIREWALL;
675		/* If destination is now ourself drop to ip_input(). */
676		if (in_localip(ip->ip_dst)) {
677			m->m_flags |= M_FASTFWD_OURS;
678			if (m->m_pkthdr.rcvif == NULL)
679				m->m_pkthdr.rcvif = loif;
680			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
681				m->m_pkthdr.csum_flags |=
682				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
683				m->m_pkthdr.csum_data = 0xffff;
684			}
685			m->m_pkthdr.csum_flags |=
686			    CSUM_IP_CHECKED | CSUM_IP_VALID;
687
688			error = netisr_queue(NETISR_IP, m);
689			goto done;
690		} else
691			goto again;	/* Redo the routing table lookup. */
692	}
693
694#ifdef IPFIREWALL_FORWARD
695	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
696	if (m->m_flags & M_FASTFWD_OURS) {
697		if (m->m_pkthdr.rcvif == NULL)
698			m->m_pkthdr.rcvif = loif;
699		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
700			m->m_pkthdr.csum_flags |=
701			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
702			m->m_pkthdr.csum_data = 0xffff;
703		}
704		m->m_pkthdr.csum_flags |=
705			    CSUM_IP_CHECKED | CSUM_IP_VALID;
706
707		error = netisr_queue(NETISR_IP, m);
708		goto done;
709	}
710	/* Or forward to some other address? */
711	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
712	if (fwd_tag) {
713#ifndef IPFIREWALL_FORWARD_EXTENDED
714		if (!in_localip(ip->ip_src) && !in_localaddr(ip->ip_dst)) {
715#endif
716			dst = (struct sockaddr_in *)&ro->ro_dst;
717			bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
718			m->m_flags |= M_SKIP_FIREWALL;
719			m_tag_delete(m, fwd_tag);
720			goto again;
721#ifndef IPFIREWALL_FORWARD_EXTENDED
722		} else {
723			m_tag_delete(m, fwd_tag);
724			/* Continue. */
725		}
726#endif
727	}
728#endif /* IPFIREWALL_FORWARD */
729
730passout:
731	/* 127/8 must not appear on wire - RFC1122. */
732	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
733	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
734		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
735			ipstat.ips_badaddr++;
736			error = EADDRNOTAVAIL;
737			goto bad;
738		}
739	}
740
741	m->m_pkthdr.csum_flags |= CSUM_IP;
742	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
743	if (sw_csum & CSUM_DELAY_DATA) {
744		in_delayed_cksum(m);
745		sw_csum &= ~CSUM_DELAY_DATA;
746	}
747	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
748
749	/*
750	 * If small enough for interface, or the interface will take
751	 * care of the fragmentation for us, can just send directly.
752	 */
753	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
754	    ((ip->ip_off & IP_DF) == 0))) {
755		ip->ip_len = htons(ip->ip_len);
756		ip->ip_off = htons(ip->ip_off);
757		ip->ip_sum = 0;
758		if (sw_csum & CSUM_DELAY_IP)
759			ip->ip_sum = in_cksum(m, hlen);
760
761		/* Record statistics for this interface address. */
762		if (!(flags & IP_FORWARDING) && ia) {
763			ia->ia_ifa.if_opackets++;
764			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
765		}
766
767#ifdef IPSEC
768		/* clean ipsec history once it goes out of the node */
769		ipsec_delaux(m);
770#endif
771
772#ifdef MBUF_STRESS_TEST
773		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
774			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
775#endif
776		error = (*ifp->if_output)(ifp, m,
777				(struct sockaddr *)dst, ro->ro_rt);
778		goto done;
779	}
780
781	if (ip->ip_off & IP_DF) {
782		error = EMSGSIZE;
783		/*
784		 * This case can happen if the user changed the MTU
785		 * of an interface after enabling IP on it.  Because
786		 * most netifs don't keep track of routes pointing to
787		 * them, there is no way for one to update all its
788		 * routes when the MTU is changed.
789		 */
790		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
791		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
792			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
793		}
794		ipstat.ips_cantfrag++;
795		goto bad;
796	}
797
798	/*
799	 * Too large for interface; fragment if possible. If successful,
800	 * on return, m will point to a list of packets to be sent.
801	 */
802	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
803	if (error)
804		goto bad;
805	for (; m; m = m0) {
806		m0 = m->m_nextpkt;
807		m->m_nextpkt = 0;
808#ifdef IPSEC
809		/* clean ipsec history once it goes out of the node */
810		ipsec_delaux(m);
811#endif
812		if (error == 0) {
813			/* Record statistics for this interface address. */
814			if (ia != NULL) {
815				ia->ia_ifa.if_opackets++;
816				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
817			}
818
819			error = (*ifp->if_output)(ifp, m,
820			    (struct sockaddr *)dst, ro->ro_rt);
821		} else
822			m_freem(m);
823	}
824
825	if (error == 0)
826		ipstat.ips_fragmented++;
827
828done:
829	if (ro == &iproute && ro->ro_rt) {
830		RTFREE(ro->ro_rt);
831	}
832#ifdef IPSEC
833	if (sp != NULL) {
834		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
835			printf("DP ip_output call free SP:%p\n", sp));
836		key_freesp(sp);
837	}
838#endif
839#ifdef FAST_IPSEC
840	if (sp != NULL)
841		KEY_FREESP(&sp);
842#endif
843	return (error);
844bad:
845	m_freem(m);
846	goto done;
847}
848
849/*
850 * Create a chain of fragments which fit the given mtu. m_frag points to the
851 * mbuf to be fragmented; on return it points to the chain with the fragments.
852 * Return 0 if no error. If error, m_frag may contain a partially built
853 * chain of fragments that should be freed by the caller.
854 *
855 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
856 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
857 */
858int
859ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
860	    u_long if_hwassist_flags, int sw_csum)
861{
862	int error = 0;
863	int hlen = ip->ip_hl << 2;
864	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
865	int off;
866	struct mbuf *m0 = *m_frag;	/* the original packet		*/
867	int firstlen;
868	struct mbuf **mnext;
869	int nfrags;
870
871	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
872		ipstat.ips_cantfrag++;
873		return EMSGSIZE;
874	}
875
876	/*
877	 * Must be able to put at least 8 bytes per fragment.
878	 */
879	if (len < 8)
880		return EMSGSIZE;
881
882	/*
883	 * If the interface will not calculate checksums on
884	 * fragmented packets, then do it here.
885	 */
886	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
887	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
888		in_delayed_cksum(m0);
889		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
890	}
891
892	if (len > PAGE_SIZE) {
893		/*
894		 * Fragment large datagrams such that each segment
895		 * contains a multiple of PAGE_SIZE amount of data,
896		 * plus headers. This enables a receiver to perform
897		 * page-flipping zero-copy optimizations.
898		 *
899		 * XXX When does this help given that sender and receiver
900		 * could have different page sizes, and also mtu could
901		 * be less than the receiver's page size ?
902		 */
903		int newlen;
904		struct mbuf *m;
905
906		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
907			off += m->m_len;
908
909		/*
910		 * firstlen (off - hlen) must be aligned on an
911		 * 8-byte boundary
912		 */
913		if (off < hlen)
914			goto smart_frag_failure;
915		off = ((off - hlen) & ~7) + hlen;
916		newlen = (~PAGE_MASK) & mtu;
917		if ((newlen + sizeof (struct ip)) > mtu) {
918			/* we failed, go back the default */
919smart_frag_failure:
920			newlen = len;
921			off = hlen + len;
922		}
923		len = newlen;
924
925	} else {
926		off = hlen + len;
927	}
928
929	firstlen = off - hlen;
930	mnext = &m0->m_nextpkt;		/* pointer to next packet */
931
932	/*
933	 * Loop through length of segment after first fragment,
934	 * make new header and copy data of each part and link onto chain.
935	 * Here, m0 is the original packet, m is the fragment being created.
936	 * The fragments are linked off the m_nextpkt of the original
937	 * packet, which after processing serves as the first fragment.
938	 */
939	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
940		struct ip *mhip;	/* ip header on the fragment */
941		struct mbuf *m;
942		int mhlen = sizeof (struct ip);
943
944		MGETHDR(m, M_DONTWAIT, MT_DATA);
945		if (m == NULL) {
946			error = ENOBUFS;
947			ipstat.ips_odropped++;
948			goto done;
949		}
950		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
951		/*
952		 * In the first mbuf, leave room for the link header, then
953		 * copy the original IP header including options. The payload
954		 * goes into an additional mbuf chain returned by m_copy().
955		 */
956		m->m_data += max_linkhdr;
957		mhip = mtod(m, struct ip *);
958		*mhip = *ip;
959		if (hlen > sizeof (struct ip)) {
960			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
961			mhip->ip_v = IPVERSION;
962			mhip->ip_hl = mhlen >> 2;
963		}
964		m->m_len = mhlen;
965		/* XXX do we need to add ip->ip_off below ? */
966		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
967		if (off + len >= ip->ip_len) {	/* last fragment */
968			len = ip->ip_len - off;
969			m->m_flags |= M_LASTFRAG;
970		} else
971			mhip->ip_off |= IP_MF;
972		mhip->ip_len = htons((u_short)(len + mhlen));
973		m->m_next = m_copy(m0, off, len);
974		if (m->m_next == NULL) {	/* copy failed */
975			m_free(m);
976			error = ENOBUFS;	/* ??? */
977			ipstat.ips_odropped++;
978			goto done;
979		}
980		m->m_pkthdr.len = mhlen + len;
981		m->m_pkthdr.rcvif = NULL;
982#ifdef MAC
983		mac_create_fragment(m0, m);
984#endif
985		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
986		mhip->ip_off = htons(mhip->ip_off);
987		mhip->ip_sum = 0;
988		if (sw_csum & CSUM_DELAY_IP)
989			mhip->ip_sum = in_cksum(m, mhlen);
990		*mnext = m;
991		mnext = &m->m_nextpkt;
992	}
993	ipstat.ips_ofragments += nfrags;
994
995	/* set first marker for fragment chain */
996	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
997	m0->m_pkthdr.csum_data = nfrags;
998
999	/*
1000	 * Update first fragment by trimming what's been copied out
1001	 * and updating header.
1002	 */
1003	m_adj(m0, hlen + firstlen - ip->ip_len);
1004	m0->m_pkthdr.len = hlen + firstlen;
1005	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1006	ip->ip_off |= IP_MF;
1007	ip->ip_off = htons(ip->ip_off);
1008	ip->ip_sum = 0;
1009	if (sw_csum & CSUM_DELAY_IP)
1010		ip->ip_sum = in_cksum(m0, hlen);
1011
1012done:
1013	*m_frag = m0;
1014	return error;
1015}
1016
1017void
1018in_delayed_cksum(struct mbuf *m)
1019{
1020	struct ip *ip;
1021	u_short csum, offset;
1022
1023	ip = mtod(m, struct ip *);
1024	offset = ip->ip_hl << 2 ;
1025	csum = in_cksum_skip(m, ip->ip_len, offset);
1026	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1027		csum = 0xffff;
1028	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1029
1030	if (offset + sizeof(u_short) > m->m_len) {
1031		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1032		    m->m_len, offset, ip->ip_p);
1033		/*
1034		 * XXX
1035		 * this shouldn't happen, but if it does, the
1036		 * correct behavior may be to insert the checksum
1037		 * in the existing chain instead of rearranging it.
1038		 */
1039		m = m_pullup(m, offset + sizeof(u_short));
1040	}
1041	*(u_short *)(m->m_data + offset) = csum;
1042}
1043
1044/*
1045 * Insert IP options into preformed packet.
1046 * Adjust IP destination as required for IP source routing,
1047 * as indicated by a non-zero in_addr at the start of the options.
1048 *
1049 * XXX This routine assumes that the packet has no options in place.
1050 */
1051static struct mbuf *
1052ip_insertoptions(m, opt, phlen)
1053	register struct mbuf *m;
1054	struct mbuf *opt;
1055	int *phlen;
1056{
1057	register struct ipoption *p = mtod(opt, struct ipoption *);
1058	struct mbuf *n;
1059	register struct ip *ip = mtod(m, struct ip *);
1060	unsigned optlen;
1061
1062	optlen = opt->m_len - sizeof(p->ipopt_dst);
1063	if (optlen + ip->ip_len > IP_MAXPACKET) {
1064		*phlen = 0;
1065		return (m);		/* XXX should fail */
1066	}
1067	if (p->ipopt_dst.s_addr)
1068		ip->ip_dst = p->ipopt_dst;
1069	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1070		MGETHDR(n, M_DONTWAIT, MT_DATA);
1071		if (n == NULL) {
1072			*phlen = 0;
1073			return (m);
1074		}
1075		M_MOVE_PKTHDR(n, m);
1076		n->m_pkthdr.rcvif = NULL;
1077#ifdef MAC
1078		mac_copy_mbuf(m, n);
1079#endif
1080		n->m_pkthdr.len += optlen;
1081		m->m_len -= sizeof(struct ip);
1082		m->m_data += sizeof(struct ip);
1083		n->m_next = m;
1084		m = n;
1085		m->m_len = optlen + sizeof(struct ip);
1086		m->m_data += max_linkhdr;
1087		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1088	} else {
1089		m->m_data -= optlen;
1090		m->m_len += optlen;
1091		m->m_pkthdr.len += optlen;
1092		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1093	}
1094	ip = mtod(m, struct ip *);
1095	bcopy(p->ipopt_list, ip + 1, optlen);
1096	*phlen = sizeof(struct ip) + optlen;
1097	ip->ip_v = IPVERSION;
1098	ip->ip_hl = *phlen >> 2;
1099	ip->ip_len += optlen;
1100	return (m);
1101}
1102
1103/*
1104 * Copy options from ip to jp,
1105 * omitting those not copied during fragmentation.
1106 */
1107int
1108ip_optcopy(ip, jp)
1109	struct ip *ip, *jp;
1110{
1111	register u_char *cp, *dp;
1112	int opt, optlen, cnt;
1113
1114	cp = (u_char *)(ip + 1);
1115	dp = (u_char *)(jp + 1);
1116	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1117	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1118		opt = cp[0];
1119		if (opt == IPOPT_EOL)
1120			break;
1121		if (opt == IPOPT_NOP) {
1122			/* Preserve for IP mcast tunnel's LSRR alignment. */
1123			*dp++ = IPOPT_NOP;
1124			optlen = 1;
1125			continue;
1126		}
1127
1128		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1129		    ("ip_optcopy: malformed ipv4 option"));
1130		optlen = cp[IPOPT_OLEN];
1131		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1132		    ("ip_optcopy: malformed ipv4 option"));
1133
1134		/* bogus lengths should have been caught by ip_dooptions */
1135		if (optlen > cnt)
1136			optlen = cnt;
1137		if (IPOPT_COPIED(opt)) {
1138			bcopy(cp, dp, optlen);
1139			dp += optlen;
1140		}
1141	}
1142	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1143		*dp++ = IPOPT_EOL;
1144	return (optlen);
1145}
1146
1147/*
1148 * IP socket option processing.
1149 */
1150int
1151ip_ctloutput(so, sopt)
1152	struct socket *so;
1153	struct sockopt *sopt;
1154{
1155	struct	inpcb *inp = sotoinpcb(so);
1156	int	error, optval;
1157
1158	error = optval = 0;
1159	if (sopt->sopt_level != IPPROTO_IP) {
1160		return (EINVAL);
1161	}
1162
1163	switch (sopt->sopt_dir) {
1164	case SOPT_SET:
1165		switch (sopt->sopt_name) {
1166		case IP_OPTIONS:
1167#ifdef notyet
1168		case IP_RETOPTS:
1169#endif
1170		{
1171			struct mbuf *m;
1172			if (sopt->sopt_valsize > MLEN) {
1173				error = EMSGSIZE;
1174				break;
1175			}
1176			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1177			if (m == NULL) {
1178				error = ENOBUFS;
1179				break;
1180			}
1181			m->m_len = sopt->sopt_valsize;
1182			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1183					    m->m_len);
1184			INP_LOCK(inp);
1185			error = ip_pcbopts(inp, sopt->sopt_name, m);
1186			INP_UNLOCK(inp);
1187			return (error);
1188		}
1189
1190		case IP_TOS:
1191		case IP_TTL:
1192		case IP_MINTTL:
1193		case IP_RECVOPTS:
1194		case IP_RECVRETOPTS:
1195		case IP_RECVDSTADDR:
1196		case IP_RECVTTL:
1197		case IP_RECVIF:
1198		case IP_FAITH:
1199		case IP_ONESBCAST:
1200		case IP_DONTFRAG:
1201			error = sooptcopyin(sopt, &optval, sizeof optval,
1202					    sizeof optval);
1203			if (error)
1204				break;
1205
1206			switch (sopt->sopt_name) {
1207			case IP_TOS:
1208				inp->inp_ip_tos = optval;
1209				break;
1210
1211			case IP_TTL:
1212				inp->inp_ip_ttl = optval;
1213				break;
1214
1215			case IP_MINTTL:
1216				if (optval > 0 && optval <= MAXTTL)
1217					inp->inp_ip_minttl = optval;
1218				else
1219					error = EINVAL;
1220				break;
1221
1222#define	OPTSET(bit) do {						\
1223	INP_LOCK(inp);							\
1224	if (optval)							\
1225		inp->inp_flags |= bit;					\
1226	else								\
1227		inp->inp_flags &= ~bit;					\
1228	INP_UNLOCK(inp);						\
1229} while (0)
1230
1231			case IP_RECVOPTS:
1232				OPTSET(INP_RECVOPTS);
1233				break;
1234
1235			case IP_RECVRETOPTS:
1236				OPTSET(INP_RECVRETOPTS);
1237				break;
1238
1239			case IP_RECVDSTADDR:
1240				OPTSET(INP_RECVDSTADDR);
1241				break;
1242
1243			case IP_RECVTTL:
1244				OPTSET(INP_RECVTTL);
1245				break;
1246
1247			case IP_RECVIF:
1248				OPTSET(INP_RECVIF);
1249				break;
1250
1251			case IP_FAITH:
1252				OPTSET(INP_FAITH);
1253				break;
1254
1255			case IP_ONESBCAST:
1256				OPTSET(INP_ONESBCAST);
1257				break;
1258			case IP_DONTFRAG:
1259				OPTSET(INP_DONTFRAG);
1260				break;
1261			}
1262			break;
1263#undef OPTSET
1264
1265		case IP_MULTICAST_IF:
1266		case IP_MULTICAST_VIF:
1267		case IP_MULTICAST_TTL:
1268		case IP_MULTICAST_LOOP:
1269		case IP_ADD_MEMBERSHIP:
1270		case IP_DROP_MEMBERSHIP:
1271			error = ip_setmoptions(inp, sopt);
1272			break;
1273
1274		case IP_PORTRANGE:
1275			error = sooptcopyin(sopt, &optval, sizeof optval,
1276					    sizeof optval);
1277			if (error)
1278				break;
1279
1280			INP_LOCK(inp);
1281			switch (optval) {
1282			case IP_PORTRANGE_DEFAULT:
1283				inp->inp_flags &= ~(INP_LOWPORT);
1284				inp->inp_flags &= ~(INP_HIGHPORT);
1285				break;
1286
1287			case IP_PORTRANGE_HIGH:
1288				inp->inp_flags &= ~(INP_LOWPORT);
1289				inp->inp_flags |= INP_HIGHPORT;
1290				break;
1291
1292			case IP_PORTRANGE_LOW:
1293				inp->inp_flags &= ~(INP_HIGHPORT);
1294				inp->inp_flags |= INP_LOWPORT;
1295				break;
1296
1297			default:
1298				error = EINVAL;
1299				break;
1300			}
1301			INP_UNLOCK(inp);
1302			break;
1303
1304#if defined(IPSEC) || defined(FAST_IPSEC)
1305		case IP_IPSEC_POLICY:
1306		{
1307			caddr_t req;
1308			size_t len = 0;
1309			int priv;
1310			struct mbuf *m;
1311			int optname;
1312
1313			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1314				break;
1315			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1316				break;
1317			priv = (sopt->sopt_td != NULL &&
1318				suser(sopt->sopt_td) != 0) ? 0 : 1;
1319			req = mtod(m, caddr_t);
1320			len = m->m_len;
1321			optname = sopt->sopt_name;
1322			error = ipsec4_set_policy(inp, optname, req, len, priv);
1323			m_freem(m);
1324			break;
1325		}
1326#endif /*IPSEC*/
1327
1328		default:
1329			error = ENOPROTOOPT;
1330			break;
1331		}
1332		break;
1333
1334	case SOPT_GET:
1335		switch (sopt->sopt_name) {
1336		case IP_OPTIONS:
1337		case IP_RETOPTS:
1338			if (inp->inp_options)
1339				error = sooptcopyout(sopt,
1340						     mtod(inp->inp_options,
1341							  char *),
1342						     inp->inp_options->m_len);
1343			else
1344				sopt->sopt_valsize = 0;
1345			break;
1346
1347		case IP_TOS:
1348		case IP_TTL:
1349		case IP_MINTTL:
1350		case IP_RECVOPTS:
1351		case IP_RECVRETOPTS:
1352		case IP_RECVDSTADDR:
1353		case IP_RECVTTL:
1354		case IP_RECVIF:
1355		case IP_PORTRANGE:
1356		case IP_FAITH:
1357		case IP_ONESBCAST:
1358		case IP_DONTFRAG:
1359			switch (sopt->sopt_name) {
1360
1361			case IP_TOS:
1362				optval = inp->inp_ip_tos;
1363				break;
1364
1365			case IP_TTL:
1366				optval = inp->inp_ip_ttl;
1367				break;
1368
1369			case IP_MINTTL:
1370				optval = inp->inp_ip_minttl;
1371				break;
1372
1373#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1374
1375			case IP_RECVOPTS:
1376				optval = OPTBIT(INP_RECVOPTS);
1377				break;
1378
1379			case IP_RECVRETOPTS:
1380				optval = OPTBIT(INP_RECVRETOPTS);
1381				break;
1382
1383			case IP_RECVDSTADDR:
1384				optval = OPTBIT(INP_RECVDSTADDR);
1385				break;
1386
1387			case IP_RECVTTL:
1388				optval = OPTBIT(INP_RECVTTL);
1389				break;
1390
1391			case IP_RECVIF:
1392				optval = OPTBIT(INP_RECVIF);
1393				break;
1394
1395			case IP_PORTRANGE:
1396				if (inp->inp_flags & INP_HIGHPORT)
1397					optval = IP_PORTRANGE_HIGH;
1398				else if (inp->inp_flags & INP_LOWPORT)
1399					optval = IP_PORTRANGE_LOW;
1400				else
1401					optval = 0;
1402				break;
1403
1404			case IP_FAITH:
1405				optval = OPTBIT(INP_FAITH);
1406				break;
1407
1408			case IP_ONESBCAST:
1409				optval = OPTBIT(INP_ONESBCAST);
1410				break;
1411			case IP_DONTFRAG:
1412				optval = OPTBIT(INP_DONTFRAG);
1413				break;
1414			}
1415			error = sooptcopyout(sopt, &optval, sizeof optval);
1416			break;
1417
1418		case IP_MULTICAST_IF:
1419		case IP_MULTICAST_VIF:
1420		case IP_MULTICAST_TTL:
1421		case IP_MULTICAST_LOOP:
1422		case IP_ADD_MEMBERSHIP:
1423		case IP_DROP_MEMBERSHIP:
1424			error = ip_getmoptions(inp, sopt);
1425			break;
1426
1427#if defined(IPSEC) || defined(FAST_IPSEC)
1428		case IP_IPSEC_POLICY:
1429		{
1430			struct mbuf *m = NULL;
1431			caddr_t req = NULL;
1432			size_t len = 0;
1433
1434			if (m != 0) {
1435				req = mtod(m, caddr_t);
1436				len = m->m_len;
1437			}
1438			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1439			if (error == 0)
1440				error = soopt_mcopyout(sopt, m); /* XXX */
1441			if (error == 0)
1442				m_freem(m);
1443			break;
1444		}
1445#endif /*IPSEC*/
1446
1447		default:
1448			error = ENOPROTOOPT;
1449			break;
1450		}
1451		break;
1452	}
1453	return (error);
1454}
1455
1456/*
1457 * Set up IP options in pcb for insertion in output packets.
1458 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1459 * with destination address if source routed.
1460 */
1461static int
1462ip_pcbopts(struct inpcb *inp, int optname, struct mbuf *m)
1463{
1464	register int cnt, optlen;
1465	register u_char *cp;
1466	struct mbuf **pcbopt;
1467	u_char opt;
1468
1469	INP_LOCK_ASSERT(inp);
1470
1471	pcbopt = &inp->inp_options;
1472
1473	/* turn off any old options */
1474	if (*pcbopt)
1475		(void)m_free(*pcbopt);
1476	*pcbopt = 0;
1477	if (m == NULL || m->m_len == 0) {
1478		/*
1479		 * Only turning off any previous options.
1480		 */
1481		if (m != NULL)
1482			(void)m_free(m);
1483		return (0);
1484	}
1485
1486	if (m->m_len % sizeof(int32_t))
1487		goto bad;
1488	/*
1489	 * IP first-hop destination address will be stored before
1490	 * actual options; move other options back
1491	 * and clear it when none present.
1492	 */
1493	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1494		goto bad;
1495	cnt = m->m_len;
1496	m->m_len += sizeof(struct in_addr);
1497	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1498	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1499	bzero(mtod(m, void *), sizeof(struct in_addr));
1500
1501	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1502		opt = cp[IPOPT_OPTVAL];
1503		if (opt == IPOPT_EOL)
1504			break;
1505		if (opt == IPOPT_NOP)
1506			optlen = 1;
1507		else {
1508			if (cnt < IPOPT_OLEN + sizeof(*cp))
1509				goto bad;
1510			optlen = cp[IPOPT_OLEN];
1511			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1512				goto bad;
1513		}
1514		switch (opt) {
1515
1516		default:
1517			break;
1518
1519		case IPOPT_LSRR:
1520		case IPOPT_SSRR:
1521			/*
1522			 * user process specifies route as:
1523			 *	->A->B->C->D
1524			 * D must be our final destination (but we can't
1525			 * check that since we may not have connected yet).
1526			 * A is first hop destination, which doesn't appear in
1527			 * actual IP option, but is stored before the options.
1528			 */
1529			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1530				goto bad;
1531			m->m_len -= sizeof(struct in_addr);
1532			cnt -= sizeof(struct in_addr);
1533			optlen -= sizeof(struct in_addr);
1534			cp[IPOPT_OLEN] = optlen;
1535			/*
1536			 * Move first hop before start of options.
1537			 */
1538			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1539			    sizeof(struct in_addr));
1540			/*
1541			 * Then copy rest of options back
1542			 * to close up the deleted entry.
1543			 */
1544			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1545			    &cp[IPOPT_OFFSET+1],
1546			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1547			break;
1548		}
1549	}
1550	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1551		goto bad;
1552	*pcbopt = m;
1553	return (0);
1554
1555bad:
1556	(void)m_free(m);
1557	return (EINVAL);
1558}
1559
1560/*
1561 * XXX
1562 * The whole multicast option thing needs to be re-thought.
1563 * Several of these options are equally applicable to non-multicast
1564 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1565 * standard option (IP_TTL).
1566 */
1567
1568/*
1569 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1570 */
1571static struct ifnet *
1572ip_multicast_if(a, ifindexp)
1573	struct in_addr *a;
1574	int *ifindexp;
1575{
1576	int ifindex;
1577	struct ifnet *ifp;
1578
1579	if (ifindexp)
1580		*ifindexp = 0;
1581	if (ntohl(a->s_addr) >> 24 == 0) {
1582		ifindex = ntohl(a->s_addr) & 0xffffff;
1583		if (ifindex < 0 || if_index < ifindex)
1584			return NULL;
1585		ifp = ifnet_byindex(ifindex);
1586		if (ifindexp)
1587			*ifindexp = ifindex;
1588	} else {
1589		INADDR_TO_IFP(*a, ifp);
1590	}
1591	return ifp;
1592}
1593
1594/*
1595 * Given an inpcb, return its multicast options structure pointer.  Accepts
1596 * an unlocked inpcb pointer, but will return it locked.  May sleep.
1597 */
1598static struct ip_moptions *
1599ip_findmoptions(struct inpcb *inp)
1600{
1601	struct ip_moptions *imo;
1602
1603	INP_LOCK(inp);
1604	if (inp->inp_moptions != NULL)
1605		return (inp->inp_moptions);
1606
1607	INP_UNLOCK(inp);
1608
1609	imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK);
1610
1611	imo->imo_multicast_ifp = NULL;
1612	imo->imo_multicast_addr.s_addr = INADDR_ANY;
1613	imo->imo_multicast_vif = -1;
1614	imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1615	imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1616	imo->imo_num_memberships = 0;
1617
1618	INP_LOCK(inp);
1619	if (inp->inp_moptions != NULL) {
1620		free(imo, M_IPMOPTS);
1621		return (inp->inp_moptions);
1622	}
1623	inp->inp_moptions = imo;
1624	return (imo);
1625}
1626
1627/*
1628 * Set the IP multicast options in response to user setsockopt().
1629 */
1630static int
1631ip_setmoptions(struct inpcb *inp, struct sockopt *sopt)
1632{
1633	int error = 0;
1634	int i;
1635	struct in_addr addr;
1636	struct ip_mreq mreq;
1637	struct ifnet *ifp;
1638	struct ip_moptions *imo;
1639	struct route ro;
1640	struct sockaddr_in *dst;
1641	int ifindex;
1642	int s;
1643
1644	switch (sopt->sopt_name) {
1645	/* store an index number for the vif you wanna use in the send */
1646	case IP_MULTICAST_VIF:
1647		if (legal_vif_num == 0) {
1648			error = EOPNOTSUPP;
1649			break;
1650		}
1651		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1652		if (error)
1653			break;
1654		if (!legal_vif_num(i) && (i != -1)) {
1655			error = EINVAL;
1656			break;
1657		}
1658		imo = ip_findmoptions(inp);
1659		imo->imo_multicast_vif = i;
1660		INP_UNLOCK(inp);
1661		break;
1662
1663	case IP_MULTICAST_IF:
1664		/*
1665		 * Select the interface for outgoing multicast packets.
1666		 */
1667		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1668		if (error)
1669			break;
1670		/*
1671		 * INADDR_ANY is used to remove a previous selection.
1672		 * When no interface is selected, a default one is
1673		 * chosen every time a multicast packet is sent.
1674		 */
1675		imo = ip_findmoptions(inp);
1676		if (addr.s_addr == INADDR_ANY) {
1677			imo->imo_multicast_ifp = NULL;
1678			INP_UNLOCK(inp);
1679			break;
1680		}
1681		/*
1682		 * The selected interface is identified by its local
1683		 * IP address.  Find the interface and confirm that
1684		 * it supports multicasting.
1685		 */
1686		s = splimp();
1687		ifp = ip_multicast_if(&addr, &ifindex);
1688		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1689			INP_UNLOCK(inp);
1690			splx(s);
1691			error = EADDRNOTAVAIL;
1692			break;
1693		}
1694		imo->imo_multicast_ifp = ifp;
1695		if (ifindex)
1696			imo->imo_multicast_addr = addr;
1697		else
1698			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1699		INP_UNLOCK(inp);
1700		splx(s);
1701		break;
1702
1703	case IP_MULTICAST_TTL:
1704		/*
1705		 * Set the IP time-to-live for outgoing multicast packets.
1706		 * The original multicast API required a char argument,
1707		 * which is inconsistent with the rest of the socket API.
1708		 * We allow either a char or an int.
1709		 */
1710		if (sopt->sopt_valsize == 1) {
1711			u_char ttl;
1712			error = sooptcopyin(sopt, &ttl, 1, 1);
1713			if (error)
1714				break;
1715			imo = ip_findmoptions(inp);
1716			imo->imo_multicast_ttl = ttl;
1717			INP_UNLOCK(inp);
1718		} else {
1719			u_int ttl;
1720			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1721					    sizeof ttl);
1722			if (error)
1723				break;
1724			if (ttl > 255)
1725				error = EINVAL;
1726			else {
1727				imo = ip_findmoptions(inp);
1728				imo->imo_multicast_ttl = ttl;
1729				INP_UNLOCK(inp);
1730			}
1731		}
1732		break;
1733
1734	case IP_MULTICAST_LOOP:
1735		/*
1736		 * Set the loopback flag for outgoing multicast packets.
1737		 * Must be zero or one.  The original multicast API required a
1738		 * char argument, which is inconsistent with the rest
1739		 * of the socket API.  We allow either a char or an int.
1740		 */
1741		if (sopt->sopt_valsize == 1) {
1742			u_char loop;
1743			error = sooptcopyin(sopt, &loop, 1, 1);
1744			if (error)
1745				break;
1746			imo = ip_findmoptions(inp);
1747			imo->imo_multicast_loop = !!loop;
1748			INP_UNLOCK(inp);
1749		} else {
1750			u_int loop;
1751			error = sooptcopyin(sopt, &loop, sizeof loop,
1752					    sizeof loop);
1753			if (error)
1754				break;
1755			imo = ip_findmoptions(inp);
1756			imo->imo_multicast_loop = !!loop;
1757			INP_UNLOCK(inp);
1758		}
1759		break;
1760
1761	case IP_ADD_MEMBERSHIP:
1762		/*
1763		 * Add a multicast group membership.
1764		 * Group must be a valid IP multicast address.
1765		 */
1766		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1767		if (error)
1768			break;
1769
1770		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1771			error = EINVAL;
1772			break;
1773		}
1774		s = splimp();
1775		/*
1776		 * If no interface address was provided, use the interface of
1777		 * the route to the given multicast address.
1778		 */
1779		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1780			bzero((caddr_t)&ro, sizeof(ro));
1781			dst = (struct sockaddr_in *)&ro.ro_dst;
1782			dst->sin_len = sizeof(*dst);
1783			dst->sin_family = AF_INET;
1784			dst->sin_addr = mreq.imr_multiaddr;
1785			rtalloc_ign(&ro, RTF_CLONING);
1786			if (ro.ro_rt == NULL) {
1787				error = EADDRNOTAVAIL;
1788				splx(s);
1789				break;
1790			}
1791			ifp = ro.ro_rt->rt_ifp;
1792			RTFREE(ro.ro_rt);
1793		}
1794		else {
1795			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1796		}
1797
1798		/*
1799		 * See if we found an interface, and confirm that it
1800		 * supports multicast.
1801		 */
1802		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1803			error = EADDRNOTAVAIL;
1804			splx(s);
1805			break;
1806		}
1807		/*
1808		 * See if the membership already exists or if all the
1809		 * membership slots are full.
1810		 */
1811		imo = ip_findmoptions(inp);
1812		for (i = 0; i < imo->imo_num_memberships; ++i) {
1813			if (imo->imo_membership[i]->inm_ifp == ifp &&
1814			    imo->imo_membership[i]->inm_addr.s_addr
1815						== mreq.imr_multiaddr.s_addr)
1816				break;
1817		}
1818		if (i < imo->imo_num_memberships) {
1819			INP_UNLOCK(inp);
1820			error = EADDRINUSE;
1821			splx(s);
1822			break;
1823		}
1824		if (i == IP_MAX_MEMBERSHIPS) {
1825			INP_UNLOCK(inp);
1826			error = ETOOMANYREFS;
1827			splx(s);
1828			break;
1829		}
1830		/*
1831		 * Everything looks good; add a new record to the multicast
1832		 * address list for the given interface.
1833		 */
1834		if ((imo->imo_membership[i] =
1835		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1836			INP_UNLOCK(inp);
1837			error = ENOBUFS;
1838			splx(s);
1839			break;
1840		}
1841		++imo->imo_num_memberships;
1842		INP_UNLOCK(inp);
1843		splx(s);
1844		break;
1845
1846	case IP_DROP_MEMBERSHIP:
1847		/*
1848		 * Drop a multicast group membership.
1849		 * Group must be a valid IP multicast address.
1850		 */
1851		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1852		if (error)
1853			break;
1854
1855		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1856			error = EINVAL;
1857			break;
1858		}
1859
1860		s = splimp();
1861		/*
1862		 * If an interface address was specified, get a pointer
1863		 * to its ifnet structure.
1864		 */
1865		if (mreq.imr_interface.s_addr == INADDR_ANY)
1866			ifp = NULL;
1867		else {
1868			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1869			if (ifp == NULL) {
1870				error = EADDRNOTAVAIL;
1871				splx(s);
1872				break;
1873			}
1874		}
1875		/*
1876		 * Find the membership in the membership array.
1877		 */
1878		imo = ip_findmoptions(inp);
1879		for (i = 0; i < imo->imo_num_memberships; ++i) {
1880			if ((ifp == NULL ||
1881			     imo->imo_membership[i]->inm_ifp == ifp) &&
1882			     imo->imo_membership[i]->inm_addr.s_addr ==
1883			     mreq.imr_multiaddr.s_addr)
1884				break;
1885		}
1886		if (i == imo->imo_num_memberships) {
1887			INP_UNLOCK(inp);
1888			error = EADDRNOTAVAIL;
1889			splx(s);
1890			break;
1891		}
1892		/*
1893		 * Give up the multicast address record to which the
1894		 * membership points.
1895		 */
1896		in_delmulti(imo->imo_membership[i]);
1897		/*
1898		 * Remove the gap in the membership array.
1899		 */
1900		for (++i; i < imo->imo_num_memberships; ++i)
1901			imo->imo_membership[i-1] = imo->imo_membership[i];
1902		--imo->imo_num_memberships;
1903		INP_UNLOCK(inp);
1904		splx(s);
1905		break;
1906
1907	default:
1908		error = EOPNOTSUPP;
1909		break;
1910	}
1911
1912	return (error);
1913}
1914
1915/*
1916 * Return the IP multicast options in response to user getsockopt().
1917 */
1918static int
1919ip_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1920{
1921	struct ip_moptions *imo;
1922	struct in_addr addr;
1923	struct in_ifaddr *ia;
1924	int error, optval;
1925	u_char coptval;
1926
1927	INP_LOCK(inp);
1928	imo = inp->inp_moptions;
1929
1930	error = 0;
1931	switch (sopt->sopt_name) {
1932	case IP_MULTICAST_VIF:
1933		if (imo != NULL)
1934			optval = imo->imo_multicast_vif;
1935		else
1936			optval = -1;
1937		INP_UNLOCK(inp);
1938		error = sooptcopyout(sopt, &optval, sizeof optval);
1939		break;
1940
1941	case IP_MULTICAST_IF:
1942		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1943			addr.s_addr = INADDR_ANY;
1944		else if (imo->imo_multicast_addr.s_addr) {
1945			/* return the value user has set */
1946			addr = imo->imo_multicast_addr;
1947		} else {
1948			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1949			addr.s_addr = (ia == NULL) ? INADDR_ANY
1950				: IA_SIN(ia)->sin_addr.s_addr;
1951		}
1952		INP_UNLOCK(inp);
1953		error = sooptcopyout(sopt, &addr, sizeof addr);
1954		break;
1955
1956	case IP_MULTICAST_TTL:
1957		if (imo == 0)
1958			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1959		else
1960			optval = coptval = imo->imo_multicast_ttl;
1961		INP_UNLOCK(inp);
1962		if (sopt->sopt_valsize == 1)
1963			error = sooptcopyout(sopt, &coptval, 1);
1964		else
1965			error = sooptcopyout(sopt, &optval, sizeof optval);
1966		break;
1967
1968	case IP_MULTICAST_LOOP:
1969		if (imo == 0)
1970			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1971		else
1972			optval = coptval = imo->imo_multicast_loop;
1973		INP_UNLOCK(inp);
1974		if (sopt->sopt_valsize == 1)
1975			error = sooptcopyout(sopt, &coptval, 1);
1976		else
1977			error = sooptcopyout(sopt, &optval, sizeof optval);
1978		break;
1979
1980	default:
1981		INP_UNLOCK(inp);
1982		error = ENOPROTOOPT;
1983		break;
1984	}
1985	INP_UNLOCK_ASSERT(inp);
1986
1987	return (error);
1988}
1989
1990/*
1991 * Discard the IP multicast options.
1992 */
1993void
1994ip_freemoptions(imo)
1995	register struct ip_moptions *imo;
1996{
1997	register int i;
1998
1999	if (imo != NULL) {
2000		for (i = 0; i < imo->imo_num_memberships; ++i)
2001			in_delmulti(imo->imo_membership[i]);
2002		free(imo, M_IPMOPTS);
2003	}
2004}
2005
2006/*
2007 * Routine called from ip_output() to loop back a copy of an IP multicast
2008 * packet to the input queue of a specified interface.  Note that this
2009 * calls the output routine of the loopback "driver", but with an interface
2010 * pointer that might NOT be a loopback interface -- evil, but easier than
2011 * replicating that code here.
2012 */
2013static void
2014ip_mloopback(ifp, m, dst, hlen)
2015	struct ifnet *ifp;
2016	register struct mbuf *m;
2017	register struct sockaddr_in *dst;
2018	int hlen;
2019{
2020	register struct ip *ip;
2021	struct mbuf *copym;
2022
2023	copym = m_copy(m, 0, M_COPYALL);
2024	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2025		copym = m_pullup(copym, hlen);
2026	if (copym != NULL) {
2027		/* If needed, compute the checksum and mark it as valid. */
2028		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2029			in_delayed_cksum(copym);
2030			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2031			copym->m_pkthdr.csum_flags |=
2032			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2033			copym->m_pkthdr.csum_data = 0xffff;
2034		}
2035		/*
2036		 * We don't bother to fragment if the IP length is greater
2037		 * than the interface's MTU.  Can this possibly matter?
2038		 */
2039		ip = mtod(copym, struct ip *);
2040		ip->ip_len = htons(ip->ip_len);
2041		ip->ip_off = htons(ip->ip_off);
2042		ip->ip_sum = 0;
2043		ip->ip_sum = in_cksum(copym, hlen);
2044		/*
2045		 * NB:
2046		 * It's not clear whether there are any lingering
2047		 * reentrancy problems in other areas which might
2048		 * be exposed by using ip_input directly (in
2049		 * particular, everything which modifies the packet
2050		 * in-place).  Yet another option is using the
2051		 * protosw directly to deliver the looped back
2052		 * packet.  For the moment, we'll err on the side
2053		 * of safety by using if_simloop().
2054		 */
2055#if 1 /* XXX */
2056		if (dst->sin_family != AF_INET) {
2057			printf("ip_mloopback: bad address family %d\n",
2058						dst->sin_family);
2059			dst->sin_family = AF_INET;
2060		}
2061#endif
2062
2063#ifdef notdef
2064		copym->m_pkthdr.rcvif = ifp;
2065		ip_input(copym);
2066#else
2067		if_simloop(ifp, copym, dst->sin_family, 0);
2068#endif
2069	}
2070}
2071