ip_output.c revision 134385
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 * $FreeBSD: head/sys/netinet/ip_output.c 134385 2004-08-27 15:39:34Z andre $
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipsec.h"
35#include "opt_mac.h"
36#include "opt_mbuf_stress_test.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/kernel.h>
41#include <sys/mac.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/protosw.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/sysctl.h>
48
49#include <net/if.h>
50#include <net/netisr.h>
51#include <net/pfil.h>
52#include <net/route.h>
53
54#include <netinet/in.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#include <netinet/in_pcb.h>
58#include <netinet/in_var.h>
59#include <netinet/ip_var.h>
60
61
62#include <machine/in_cksum.h>
63
64static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
65
66#ifdef IPSEC
67#include <netinet6/ipsec.h>
68#include <netkey/key.h>
69#ifdef IPSEC_DEBUG
70#include <netkey/key_debug.h>
71#else
72#define	KEYDEBUG(lev,arg)
73#endif
74#endif /*IPSEC*/
75
76#ifdef FAST_IPSEC
77#include <netipsec/ipsec.h>
78#include <netipsec/xform.h>
79#include <netipsec/key.h>
80#endif /*FAST_IPSEC*/
81
82#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
83				x, (ntohl(a.s_addr)>>24)&0xFF,\
84				  (ntohl(a.s_addr)>>16)&0xFF,\
85				  (ntohl(a.s_addr)>>8)&0xFF,\
86				  (ntohl(a.s_addr))&0xFF, y);
87
88u_short ip_id;
89
90#ifdef MBUF_STRESS_TEST
91int mbuf_frag_size = 0;
92SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
93	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
94#endif
95
96static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
97static struct ifnet *ip_multicast_if(struct in_addr *, int *);
98static void	ip_mloopback
99	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
100static int	ip_getmoptions
101	(struct sockopt *, struct ip_moptions *);
102static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
103static int	ip_setmoptions
104	(struct sockopt *, struct ip_moptions **);
105
106int	ip_optcopy(struct ip *, struct ip *);
107
108
109extern	struct protosw inetsw[];
110
111/*
112 * IP output.  The packet in mbuf chain m contains a skeletal IP
113 * header (with len, off, ttl, proto, tos, src, dst).
114 * The mbuf chain containing the packet will be freed.
115 * The mbuf opt, if present, will not be freed.
116 * In the IP forwarding case, the packet will arrive with options already
117 * inserted, so must have a NULL opt pointer.
118 */
119int
120ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
121	int flags, struct ip_moptions *imo, struct inpcb *inp)
122{
123	struct ip *ip;
124	struct ifnet *ifp = NULL;	/* keep compiler happy */
125	struct mbuf *m0;
126	int hlen = sizeof (struct ip);
127	int len, error = 0;
128	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
129	struct in_ifaddr *ia = NULL;
130	int isbroadcast, sw_csum;
131	struct route iproute;
132	struct in_addr odst;
133#ifdef IPFIREWALL_FORWARD
134	struct m_tag *fwd_tag = NULL;
135#endif
136#ifdef IPSEC
137	struct secpolicy *sp = NULL;
138#endif
139#ifdef FAST_IPSEC
140	struct secpolicy *sp = NULL;
141	struct tdb_ident *tdbi;
142	struct m_tag *mtag;
143	int s;
144#endif /* FAST_IPSEC */
145
146	M_ASSERTPKTHDR(m);
147
148	if (ro == NULL) {
149		ro = &iproute;
150		bzero(ro, sizeof (*ro));
151	}
152
153	if (inp != NULL)
154		INP_LOCK_ASSERT(inp);
155
156	if (opt) {
157		len = 0;
158		m = ip_insertoptions(m, opt, &len);
159		if (len != 0)
160			hlen = len;
161	}
162	ip = mtod(m, struct ip *);
163
164	/*
165	 * Fill in IP header.  If we are not allowing fragmentation,
166	 * then the ip_id field is meaningless, but we don't set it
167	 * to zero.  Doing so causes various problems when devices along
168	 * the path (routers, load balancers, firewalls, etc.) illegally
169	 * disable DF on our packet.  Note that a 16-bit counter
170	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
171	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
172	 * for Counting NATted Hosts", Proc. IMW'02, available at
173	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
174	 */
175	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
176		ip->ip_v = IPVERSION;
177		ip->ip_hl = hlen >> 2;
178		ip->ip_id = ip_newid();
179		ipstat.ips_localout++;
180	} else {
181		hlen = ip->ip_hl << 2;
182	}
183
184	dst = (struct sockaddr_in *)&ro->ro_dst;
185again:
186	/*
187	 * If there is a cached route,
188	 * check that it is to the same destination
189	 * and is still up.  If not, free it and try again.
190	 * The address family should also be checked in case of sharing the
191	 * cache with IPv6.
192	 */
193	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
194			  dst->sin_family != AF_INET ||
195			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
196		RTFREE(ro->ro_rt);
197		ro->ro_rt = (struct rtentry *)0;
198	}
199#ifdef IPFIREWALL_FORWARD
200	if (ro->ro_rt == NULL && fwd_tag == NULL) {
201#else
202	if (ro->ro_rt == NULL) {
203#endif
204		bzero(dst, sizeof(*dst));
205		dst->sin_family = AF_INET;
206		dst->sin_len = sizeof(*dst);
207		dst->sin_addr = ip->ip_dst;
208	}
209	/*
210	 * If routing to interface only,
211	 * short circuit routing lookup.
212	 */
213	if (flags & IP_ROUTETOIF) {
214		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
215		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
216			ipstat.ips_noroute++;
217			error = ENETUNREACH;
218			goto bad;
219		}
220		ifp = ia->ia_ifp;
221		ip->ip_ttl = 1;
222		isbroadcast = in_broadcast(dst->sin_addr, ifp);
223	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
224	    imo != NULL && imo->imo_multicast_ifp != NULL) {
225		/*
226		 * Bypass the normal routing lookup for multicast
227		 * packets if the interface is specified.
228		 */
229		ifp = imo->imo_multicast_ifp;
230		IFP_TO_IA(ifp, ia);
231		isbroadcast = 0;	/* fool gcc */
232	} else {
233		/*
234		 * We want to do any cloning requested by the link layer,
235		 * as this is probably required in all cases for correct
236		 * operation (as it is for ARP).
237		 */
238		if (ro->ro_rt == NULL)
239			rtalloc_ign(ro, 0);
240		if (ro->ro_rt == NULL) {
241			ipstat.ips_noroute++;
242			error = EHOSTUNREACH;
243			goto bad;
244		}
245		ia = ifatoia(ro->ro_rt->rt_ifa);
246		ifp = ro->ro_rt->rt_ifp;
247		ro->ro_rt->rt_rmx.rmx_pksent++;
248		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
249			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
250		if (ro->ro_rt->rt_flags & RTF_HOST)
251			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
252		else
253			isbroadcast = in_broadcast(dst->sin_addr, ifp);
254	}
255	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
256		struct in_multi *inm;
257
258		m->m_flags |= M_MCAST;
259		/*
260		 * IP destination address is multicast.  Make sure "dst"
261		 * still points to the address in "ro".  (It may have been
262		 * changed to point to a gateway address, above.)
263		 */
264		dst = (struct sockaddr_in *)&ro->ro_dst;
265		/*
266		 * See if the caller provided any multicast options
267		 */
268		if (imo != NULL) {
269			ip->ip_ttl = imo->imo_multicast_ttl;
270			if (imo->imo_multicast_vif != -1)
271				ip->ip_src.s_addr =
272				    ip_mcast_src ?
273				    ip_mcast_src(imo->imo_multicast_vif) :
274				    INADDR_ANY;
275		} else
276			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
277		/*
278		 * Confirm that the outgoing interface supports multicast.
279		 */
280		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
281			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
282				ipstat.ips_noroute++;
283				error = ENETUNREACH;
284				goto bad;
285			}
286		}
287		/*
288		 * If source address not specified yet, use address
289		 * of outgoing interface.
290		 */
291		if (ip->ip_src.s_addr == INADDR_ANY) {
292			/* Interface may have no addresses. */
293			if (ia != NULL)
294				ip->ip_src = IA_SIN(ia)->sin_addr;
295		}
296
297		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
298		if (inm != NULL &&
299		   (imo == NULL || imo->imo_multicast_loop)) {
300			/*
301			 * If we belong to the destination multicast group
302			 * on the outgoing interface, and the caller did not
303			 * forbid loopback, loop back a copy.
304			 */
305			ip_mloopback(ifp, m, dst, hlen);
306		}
307		else {
308			/*
309			 * If we are acting as a multicast router, perform
310			 * multicast forwarding as if the packet had just
311			 * arrived on the interface to which we are about
312			 * to send.  The multicast forwarding function
313			 * recursively calls this function, using the
314			 * IP_FORWARDING flag to prevent infinite recursion.
315			 *
316			 * Multicasts that are looped back by ip_mloopback(),
317			 * above, will be forwarded by the ip_input() routine,
318			 * if necessary.
319			 */
320			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
321				/*
322				 * If rsvp daemon is not running, do not
323				 * set ip_moptions. This ensures that the packet
324				 * is multicast and not just sent down one link
325				 * as prescribed by rsvpd.
326				 */
327				if (!rsvp_on)
328					imo = NULL;
329				if (ip_mforward &&
330				    ip_mforward(ip, ifp, m, imo) != 0) {
331					m_freem(m);
332					goto done;
333				}
334			}
335		}
336
337		/*
338		 * Multicasts with a time-to-live of zero may be looped-
339		 * back, above, but must not be transmitted on a network.
340		 * Also, multicasts addressed to the loopback interface
341		 * are not sent -- the above call to ip_mloopback() will
342		 * loop back a copy if this host actually belongs to the
343		 * destination group on the loopback interface.
344		 */
345		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
346			m_freem(m);
347			goto done;
348		}
349
350		goto sendit;
351	}
352#ifndef notdef
353	/*
354	 * If the source address is not specified yet, use the address
355	 * of the outoing interface. In case, keep note we did that, so
356	 * if the the firewall changes the next-hop causing the output
357	 * interface to change, we can fix that.
358	 */
359	if (ip->ip_src.s_addr == INADDR_ANY) {
360		/* Interface may have no addresses. */
361		if (ia != NULL) {
362			ip->ip_src = IA_SIN(ia)->sin_addr;
363		}
364	}
365#endif /* notdef */
366	/*
367	 * Verify that we have any chance at all of being able to queue the
368	 * packet or packet fragments, unless ALTQ is enabled on the given
369	 * interface in which case packetdrop should be done by queueing.
370	 */
371#ifdef ALTQ
372	if ((!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
373	    ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
374	    ifp->if_snd.ifq_maxlen))
375#else
376	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
377	    ifp->if_snd.ifq_maxlen)
378#endif /* ALTQ */
379	{
380		error = ENOBUFS;
381		ipstat.ips_odropped++;
382		goto bad;
383	}
384
385	/*
386	 * Look for broadcast address and
387	 * verify user is allowed to send
388	 * such a packet.
389	 */
390	if (isbroadcast) {
391		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
392			error = EADDRNOTAVAIL;
393			goto bad;
394		}
395		if ((flags & IP_ALLOWBROADCAST) == 0) {
396			error = EACCES;
397			goto bad;
398		}
399		/* don't allow broadcast messages to be fragmented */
400		if (ip->ip_len > ifp->if_mtu) {
401			error = EMSGSIZE;
402			goto bad;
403		}
404		if (flags & IP_SENDONES)
405			ip->ip_dst.s_addr = INADDR_BROADCAST;
406		m->m_flags |= M_BCAST;
407	} else {
408		m->m_flags &= ~M_BCAST;
409	}
410
411sendit:
412#ifdef IPSEC
413	/* get SP for this packet */
414	if (inp == NULL)
415		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
416		    flags, &error);
417	else
418		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
419
420	if (sp == NULL) {
421		ipsecstat.out_inval++;
422		goto bad;
423	}
424
425	error = 0;
426
427	/* check policy */
428	switch (sp->policy) {
429	case IPSEC_POLICY_DISCARD:
430		/*
431		 * This packet is just discarded.
432		 */
433		ipsecstat.out_polvio++;
434		goto bad;
435
436	case IPSEC_POLICY_BYPASS:
437	case IPSEC_POLICY_NONE:
438	case IPSEC_POLICY_TCP:
439		/* no need to do IPsec. */
440		goto skip_ipsec;
441
442	case IPSEC_POLICY_IPSEC:
443		if (sp->req == NULL) {
444			/* acquire a policy */
445			error = key_spdacquire(sp);
446			goto bad;
447		}
448		break;
449
450	case IPSEC_POLICY_ENTRUST:
451	default:
452		printf("ip_output: Invalid policy found. %d\n", sp->policy);
453	}
454    {
455	struct ipsec_output_state state;
456	bzero(&state, sizeof(state));
457	state.m = m;
458	if (flags & IP_ROUTETOIF) {
459		state.ro = &iproute;
460		bzero(&iproute, sizeof(iproute));
461	} else
462		state.ro = ro;
463	state.dst = (struct sockaddr *)dst;
464
465	ip->ip_sum = 0;
466
467	/*
468	 * XXX
469	 * delayed checksums are not currently compatible with IPsec
470	 */
471	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
472		in_delayed_cksum(m);
473		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
474	}
475
476	ip->ip_len = htons(ip->ip_len);
477	ip->ip_off = htons(ip->ip_off);
478
479	error = ipsec4_output(&state, sp, flags);
480
481	m = state.m;
482	if (flags & IP_ROUTETOIF) {
483		/*
484		 * if we have tunnel mode SA, we may need to ignore
485		 * IP_ROUTETOIF.
486		 */
487		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
488			flags &= ~IP_ROUTETOIF;
489			ro = state.ro;
490		}
491	} else
492		ro = state.ro;
493	dst = (struct sockaddr_in *)state.dst;
494	if (error) {
495		/* mbuf is already reclaimed in ipsec4_output. */
496		m = NULL;
497		switch (error) {
498		case EHOSTUNREACH:
499		case ENETUNREACH:
500		case EMSGSIZE:
501		case ENOBUFS:
502		case ENOMEM:
503			break;
504		default:
505			printf("ip4_output (ipsec): error code %d\n", error);
506			/*fall through*/
507		case ENOENT:
508			/* don't show these error codes to the user */
509			error = 0;
510			break;
511		}
512		goto bad;
513	}
514
515	/* be sure to update variables that are affected by ipsec4_output() */
516	ip = mtod(m, struct ip *);
517	hlen = ip->ip_hl << 2;
518	if (ro->ro_rt == NULL) {
519		if ((flags & IP_ROUTETOIF) == 0) {
520			printf("ip_output: "
521				"can't update route after IPsec processing\n");
522			error = EHOSTUNREACH;	/*XXX*/
523			goto bad;
524		}
525	} else {
526		if (state.encap) {
527			ia = ifatoia(ro->ro_rt->rt_ifa);
528			ifp = ro->ro_rt->rt_ifp;
529		}
530	}
531    }
532
533	/* make it flipped, again. */
534	ip->ip_len = ntohs(ip->ip_len);
535	ip->ip_off = ntohs(ip->ip_off);
536skip_ipsec:
537#endif /*IPSEC*/
538#ifdef FAST_IPSEC
539	/*
540	 * Check the security policy (SP) for the packet and, if
541	 * required, do IPsec-related processing.  There are two
542	 * cases here; the first time a packet is sent through
543	 * it will be untagged and handled by ipsec4_checkpolicy.
544	 * If the packet is resubmitted to ip_output (e.g. after
545	 * AH, ESP, etc. processing), there will be a tag to bypass
546	 * the lookup and related policy checking.
547	 */
548	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
549	s = splnet();
550	if (mtag != NULL) {
551		tdbi = (struct tdb_ident *)(mtag + 1);
552		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
553		if (sp == NULL)
554			error = -EINVAL;	/* force silent drop */
555		m_tag_delete(m, mtag);
556	} else {
557		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
558					&error, inp);
559	}
560	/*
561	 * There are four return cases:
562	 *    sp != NULL	 	    apply IPsec policy
563	 *    sp == NULL, error == 0	    no IPsec handling needed
564	 *    sp == NULL, error == -EINVAL  discard packet w/o error
565	 *    sp == NULL, error != 0	    discard packet, report error
566	 */
567	if (sp != NULL) {
568		/* Loop detection, check if ipsec processing already done */
569		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
570		for (mtag = m_tag_first(m); mtag != NULL;
571		     mtag = m_tag_next(m, mtag)) {
572			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
573				continue;
574			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
575			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
576				continue;
577			/*
578			 * Check if policy has an SA associated with it.
579			 * This can happen when an SP has yet to acquire
580			 * an SA; e.g. on first reference.  If it occurs,
581			 * then we let ipsec4_process_packet do its thing.
582			 */
583			if (sp->req->sav == NULL)
584				break;
585			tdbi = (struct tdb_ident *)(mtag + 1);
586			if (tdbi->spi == sp->req->sav->spi &&
587			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
588			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
589				 sizeof (union sockaddr_union)) == 0) {
590				/*
591				 * No IPsec processing is needed, free
592				 * reference to SP.
593				 *
594				 * NB: null pointer to avoid free at
595				 *     done: below.
596				 */
597				KEY_FREESP(&sp), sp = NULL;
598				splx(s);
599				goto spd_done;
600			}
601		}
602
603		/*
604		 * Do delayed checksums now because we send before
605		 * this is done in the normal processing path.
606		 */
607		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
608			in_delayed_cksum(m);
609			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
610		}
611
612		ip->ip_len = htons(ip->ip_len);
613		ip->ip_off = htons(ip->ip_off);
614
615		/* NB: callee frees mbuf */
616		error = ipsec4_process_packet(m, sp->req, flags, 0);
617		/*
618		 * Preserve KAME behaviour: ENOENT can be returned
619		 * when an SA acquire is in progress.  Don't propagate
620		 * this to user-level; it confuses applications.
621		 *
622		 * XXX this will go away when the SADB is redone.
623		 */
624		if (error == ENOENT)
625			error = 0;
626		splx(s);
627		goto done;
628	} else {
629		splx(s);
630
631		if (error != 0) {
632			/*
633			 * Hack: -EINVAL is used to signal that a packet
634			 * should be silently discarded.  This is typically
635			 * because we asked key management for an SA and
636			 * it was delayed (e.g. kicked up to IKE).
637			 */
638			if (error == -EINVAL)
639				error = 0;
640			goto bad;
641		} else {
642			/* No IPsec processing for this packet. */
643		}
644#ifdef notyet
645		/*
646		 * If deferred crypto processing is needed, check that
647		 * the interface supports it.
648		 */
649		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
650		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
651			/* notify IPsec to do its own crypto */
652			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
653			error = EHOSTUNREACH;
654			goto bad;
655		}
656#endif
657	}
658spd_done:
659#endif /* FAST_IPSEC */
660
661	/* Jump over all PFIL processing if hooks are not active. */
662	if (inet_pfil_hook.ph_busy_count == -1)
663		goto passout;
664
665	/* Run through list of hooks for output packets. */
666	odst.s_addr = ip->ip_dst.s_addr;
667	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
668	if (error != 0 || m == NULL)
669		goto done;
670
671	ip = mtod(m, struct ip *);
672
673	/* See if destination IP address was changed by packet filter. */
674	if (odst.s_addr != ip->ip_dst.s_addr) {
675		m->m_flags |= M_SKIP_FIREWALL;
676		if (in_localip(ip->ip_dst)) {
677			m->m_flags |= M_FASTFWD_OURS;
678			if (m->m_pkthdr.rcvif == NULL)
679				m->m_pkthdr.rcvif = loif;
680			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
681				m->m_pkthdr.csum_flags |=
682				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
683				m->m_pkthdr.csum_data = 0xffff;
684			}
685			m->m_pkthdr.csum_flags |=
686			    CSUM_IP_CHECKED | CSUM_IP_VALID;
687
688			error = netisr_queue(NETISR_IP, m);
689			goto done;
690		} else
691			goto again;
692	}
693
694#ifdef IPFIREWALL_FORWARD
695	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
696	if (m->m_flags & M_FASTFWD_OURS) {
697		if (m->m_pkthdr.rcvif == NULL)
698			m->m_pkthdr.rcvif = loif;
699		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
700			m->m_pkthdr.csum_flags |=
701			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
702			m->m_pkthdr.csum_data = 0xffff;
703		}
704		m->m_pkthdr.csum_flags |=
705			    CSUM_IP_CHECKED | CSUM_IP_VALID;
706
707		error = netisr_queue(NETISR_IP, m);
708		goto done;
709	}
710	/* Or forward to some other address? */
711	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
712	if (fwd_tag) {
713		if (!in_localip(ip->ip_src) && !in_localaddr(ip->ip_dst)) {
714			dst = (struct sockaddr_in *)&ro->ro_dst;
715			bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
716			m->m_flags |= M_SKIP_FIREWALL;
717			m_tag_delete(m, fwd_tag);
718			goto again;
719		} else {
720			m_tag_delete(m, fwd_tag);
721			/* Continue. */
722		}
723	}
724#endif
725
726passout:
727	/* 127/8 must not appear on wire - RFC1122. */
728	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
729	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
730		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
731			ipstat.ips_badaddr++;
732			error = EADDRNOTAVAIL;
733			goto bad;
734		}
735	}
736
737	m->m_pkthdr.csum_flags |= CSUM_IP;
738	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
739	if (sw_csum & CSUM_DELAY_DATA) {
740		in_delayed_cksum(m);
741		sw_csum &= ~CSUM_DELAY_DATA;
742	}
743	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
744
745	/*
746	 * If small enough for interface, or the interface will take
747	 * care of the fragmentation for us, can just send directly.
748	 */
749	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
750	    ((ip->ip_off & IP_DF) == 0))) {
751		ip->ip_len = htons(ip->ip_len);
752		ip->ip_off = htons(ip->ip_off);
753		ip->ip_sum = 0;
754		if (sw_csum & CSUM_DELAY_IP)
755			ip->ip_sum = in_cksum(m, hlen);
756
757		/* Record statistics for this interface address. */
758		if (!(flags & IP_FORWARDING) && ia) {
759			ia->ia_ifa.if_opackets++;
760			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
761		}
762
763#ifdef IPSEC
764		/* clean ipsec history once it goes out of the node */
765		ipsec_delaux(m);
766#endif
767
768#ifdef MBUF_STRESS_TEST
769		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
770			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
771#endif
772		error = (*ifp->if_output)(ifp, m,
773				(struct sockaddr *)dst, ro->ro_rt);
774		goto done;
775	}
776
777	if (ip->ip_off & IP_DF) {
778		error = EMSGSIZE;
779		/*
780		 * This case can happen if the user changed the MTU
781		 * of an interface after enabling IP on it.  Because
782		 * most netifs don't keep track of routes pointing to
783		 * them, there is no way for one to update all its
784		 * routes when the MTU is changed.
785		 */
786		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
787		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
788			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
789		}
790		ipstat.ips_cantfrag++;
791		goto bad;
792	}
793
794	/*
795	 * Too large for interface; fragment if possible. If successful,
796	 * on return, m will point to a list of packets to be sent.
797	 */
798	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
799	if (error)
800		goto bad;
801	for (; m; m = m0) {
802		m0 = m->m_nextpkt;
803		m->m_nextpkt = 0;
804#ifdef IPSEC
805		/* clean ipsec history once it goes out of the node */
806		ipsec_delaux(m);
807#endif
808		if (error == 0) {
809			/* Record statistics for this interface address. */
810			if (ia != NULL) {
811				ia->ia_ifa.if_opackets++;
812				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
813			}
814
815			error = (*ifp->if_output)(ifp, m,
816			    (struct sockaddr *)dst, ro->ro_rt);
817		} else
818			m_freem(m);
819	}
820
821	if (error == 0)
822		ipstat.ips_fragmented++;
823
824done:
825	if (ro == &iproute && ro->ro_rt) {
826		RTFREE(ro->ro_rt);
827	}
828#ifdef IPSEC
829	if (sp != NULL) {
830		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
831			printf("DP ip_output call free SP:%p\n", sp));
832		key_freesp(sp);
833	}
834#endif
835#ifdef FAST_IPSEC
836	if (sp != NULL)
837		KEY_FREESP(&sp);
838#endif
839	return (error);
840bad:
841	m_freem(m);
842	goto done;
843}
844
845/*
846 * Create a chain of fragments which fit the given mtu. m_frag points to the
847 * mbuf to be fragmented; on return it points to the chain with the fragments.
848 * Return 0 if no error. If error, m_frag may contain a partially built
849 * chain of fragments that should be freed by the caller.
850 *
851 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
852 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
853 */
854int
855ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
856	    u_long if_hwassist_flags, int sw_csum)
857{
858	int error = 0;
859	int hlen = ip->ip_hl << 2;
860	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
861	int off;
862	struct mbuf *m0 = *m_frag;	/* the original packet		*/
863	int firstlen;
864	struct mbuf **mnext;
865	int nfrags;
866
867	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
868		ipstat.ips_cantfrag++;
869		return EMSGSIZE;
870	}
871
872	/*
873	 * Must be able to put at least 8 bytes per fragment.
874	 */
875	if (len < 8)
876		return EMSGSIZE;
877
878	/*
879	 * If the interface will not calculate checksums on
880	 * fragmented packets, then do it here.
881	 */
882	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
883	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
884		in_delayed_cksum(m0);
885		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
886	}
887
888	if (len > PAGE_SIZE) {
889		/*
890		 * Fragment large datagrams such that each segment
891		 * contains a multiple of PAGE_SIZE amount of data,
892		 * plus headers. This enables a receiver to perform
893		 * page-flipping zero-copy optimizations.
894		 *
895		 * XXX When does this help given that sender and receiver
896		 * could have different page sizes, and also mtu could
897		 * be less than the receiver's page size ?
898		 */
899		int newlen;
900		struct mbuf *m;
901
902		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
903			off += m->m_len;
904
905		/*
906		 * firstlen (off - hlen) must be aligned on an
907		 * 8-byte boundary
908		 */
909		if (off < hlen)
910			goto smart_frag_failure;
911		off = ((off - hlen) & ~7) + hlen;
912		newlen = (~PAGE_MASK) & mtu;
913		if ((newlen + sizeof (struct ip)) > mtu) {
914			/* we failed, go back the default */
915smart_frag_failure:
916			newlen = len;
917			off = hlen + len;
918		}
919		len = newlen;
920
921	} else {
922		off = hlen + len;
923	}
924
925	firstlen = off - hlen;
926	mnext = &m0->m_nextpkt;		/* pointer to next packet */
927
928	/*
929	 * Loop through length of segment after first fragment,
930	 * make new header and copy data of each part and link onto chain.
931	 * Here, m0 is the original packet, m is the fragment being created.
932	 * The fragments are linked off the m_nextpkt of the original
933	 * packet, which after processing serves as the first fragment.
934	 */
935	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
936		struct ip *mhip;	/* ip header on the fragment */
937		struct mbuf *m;
938		int mhlen = sizeof (struct ip);
939
940		MGETHDR(m, M_DONTWAIT, MT_HEADER);
941		if (m == NULL) {
942			error = ENOBUFS;
943			ipstat.ips_odropped++;
944			goto done;
945		}
946		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
947		/*
948		 * In the first mbuf, leave room for the link header, then
949		 * copy the original IP header including options. The payload
950		 * goes into an additional mbuf chain returned by m_copy().
951		 */
952		m->m_data += max_linkhdr;
953		mhip = mtod(m, struct ip *);
954		*mhip = *ip;
955		if (hlen > sizeof (struct ip)) {
956			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
957			mhip->ip_v = IPVERSION;
958			mhip->ip_hl = mhlen >> 2;
959		}
960		m->m_len = mhlen;
961		/* XXX do we need to add ip->ip_off below ? */
962		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
963		if (off + len >= ip->ip_len) {	/* last fragment */
964			len = ip->ip_len - off;
965			m->m_flags |= M_LASTFRAG;
966		} else
967			mhip->ip_off |= IP_MF;
968		mhip->ip_len = htons((u_short)(len + mhlen));
969		m->m_next = m_copy(m0, off, len);
970		if (m->m_next == NULL) {	/* copy failed */
971			m_free(m);
972			error = ENOBUFS;	/* ??? */
973			ipstat.ips_odropped++;
974			goto done;
975		}
976		m->m_pkthdr.len = mhlen + len;
977		m->m_pkthdr.rcvif = (struct ifnet *)0;
978#ifdef MAC
979		mac_create_fragment(m0, m);
980#endif
981		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
982		mhip->ip_off = htons(mhip->ip_off);
983		mhip->ip_sum = 0;
984		if (sw_csum & CSUM_DELAY_IP)
985			mhip->ip_sum = in_cksum(m, mhlen);
986		*mnext = m;
987		mnext = &m->m_nextpkt;
988	}
989	ipstat.ips_ofragments += nfrags;
990
991	/* set first marker for fragment chain */
992	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
993	m0->m_pkthdr.csum_data = nfrags;
994
995	/*
996	 * Update first fragment by trimming what's been copied out
997	 * and updating header.
998	 */
999	m_adj(m0, hlen + firstlen - ip->ip_len);
1000	m0->m_pkthdr.len = hlen + firstlen;
1001	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1002	ip->ip_off |= IP_MF;
1003	ip->ip_off = htons(ip->ip_off);
1004	ip->ip_sum = 0;
1005	if (sw_csum & CSUM_DELAY_IP)
1006		ip->ip_sum = in_cksum(m0, hlen);
1007
1008done:
1009	*m_frag = m0;
1010	return error;
1011}
1012
1013void
1014in_delayed_cksum(struct mbuf *m)
1015{
1016	struct ip *ip;
1017	u_short csum, offset;
1018
1019	ip = mtod(m, struct ip *);
1020	offset = ip->ip_hl << 2 ;
1021	csum = in_cksum_skip(m, ip->ip_len, offset);
1022	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1023		csum = 0xffff;
1024	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1025
1026	if (offset + sizeof(u_short) > m->m_len) {
1027		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1028		    m->m_len, offset, ip->ip_p);
1029		/*
1030		 * XXX
1031		 * this shouldn't happen, but if it does, the
1032		 * correct behavior may be to insert the checksum
1033		 * in the existing chain instead of rearranging it.
1034		 */
1035		m = m_pullup(m, offset + sizeof(u_short));
1036	}
1037	*(u_short *)(m->m_data + offset) = csum;
1038}
1039
1040/*
1041 * Insert IP options into preformed packet.
1042 * Adjust IP destination as required for IP source routing,
1043 * as indicated by a non-zero in_addr at the start of the options.
1044 *
1045 * XXX This routine assumes that the packet has no options in place.
1046 */
1047static struct mbuf *
1048ip_insertoptions(m, opt, phlen)
1049	register struct mbuf *m;
1050	struct mbuf *opt;
1051	int *phlen;
1052{
1053	register struct ipoption *p = mtod(opt, struct ipoption *);
1054	struct mbuf *n;
1055	register struct ip *ip = mtod(m, struct ip *);
1056	unsigned optlen;
1057
1058	optlen = opt->m_len - sizeof(p->ipopt_dst);
1059	if (optlen + ip->ip_len > IP_MAXPACKET) {
1060		*phlen = 0;
1061		return (m);		/* XXX should fail */
1062	}
1063	if (p->ipopt_dst.s_addr)
1064		ip->ip_dst = p->ipopt_dst;
1065	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1066		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1067		if (n == NULL) {
1068			*phlen = 0;
1069			return (m);
1070		}
1071		n->m_pkthdr.rcvif = (struct ifnet *)0;
1072#ifdef MAC
1073		mac_create_mbuf_from_mbuf(m, n);
1074#endif
1075		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1076		m->m_len -= sizeof(struct ip);
1077		m->m_data += sizeof(struct ip);
1078		n->m_next = m;
1079		m = n;
1080		m->m_len = optlen + sizeof(struct ip);
1081		m->m_data += max_linkhdr;
1082		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1083	} else {
1084		m->m_data -= optlen;
1085		m->m_len += optlen;
1086		m->m_pkthdr.len += optlen;
1087		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1088	}
1089	ip = mtod(m, struct ip *);
1090	bcopy(p->ipopt_list, ip + 1, optlen);
1091	*phlen = sizeof(struct ip) + optlen;
1092	ip->ip_v = IPVERSION;
1093	ip->ip_hl = *phlen >> 2;
1094	ip->ip_len += optlen;
1095	return (m);
1096}
1097
1098/*
1099 * Copy options from ip to jp,
1100 * omitting those not copied during fragmentation.
1101 */
1102int
1103ip_optcopy(ip, jp)
1104	struct ip *ip, *jp;
1105{
1106	register u_char *cp, *dp;
1107	int opt, optlen, cnt;
1108
1109	cp = (u_char *)(ip + 1);
1110	dp = (u_char *)(jp + 1);
1111	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1112	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1113		opt = cp[0];
1114		if (opt == IPOPT_EOL)
1115			break;
1116		if (opt == IPOPT_NOP) {
1117			/* Preserve for IP mcast tunnel's LSRR alignment. */
1118			*dp++ = IPOPT_NOP;
1119			optlen = 1;
1120			continue;
1121		}
1122
1123		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1124		    ("ip_optcopy: malformed ipv4 option"));
1125		optlen = cp[IPOPT_OLEN];
1126		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1127		    ("ip_optcopy: malformed ipv4 option"));
1128
1129		/* bogus lengths should have been caught by ip_dooptions */
1130		if (optlen > cnt)
1131			optlen = cnt;
1132		if (IPOPT_COPIED(opt)) {
1133			bcopy(cp, dp, optlen);
1134			dp += optlen;
1135		}
1136	}
1137	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1138		*dp++ = IPOPT_EOL;
1139	return (optlen);
1140}
1141
1142/*
1143 * IP socket option processing.
1144 */
1145int
1146ip_ctloutput(so, sopt)
1147	struct socket *so;
1148	struct sockopt *sopt;
1149{
1150	struct	inpcb *inp = sotoinpcb(so);
1151	int	error, optval;
1152
1153	error = optval = 0;
1154	if (sopt->sopt_level != IPPROTO_IP) {
1155		return (EINVAL);
1156	}
1157
1158	switch (sopt->sopt_dir) {
1159	case SOPT_SET:
1160		switch (sopt->sopt_name) {
1161		case IP_OPTIONS:
1162#ifdef notyet
1163		case IP_RETOPTS:
1164#endif
1165		{
1166			struct mbuf *m;
1167			if (sopt->sopt_valsize > MLEN) {
1168				error = EMSGSIZE;
1169				break;
1170			}
1171			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1172			if (m == NULL) {
1173				error = ENOBUFS;
1174				break;
1175			}
1176			m->m_len = sopt->sopt_valsize;
1177			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1178					    m->m_len);
1179
1180			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1181					   m));
1182		}
1183
1184		case IP_TOS:
1185		case IP_TTL:
1186		case IP_RECVOPTS:
1187		case IP_RECVRETOPTS:
1188		case IP_RECVDSTADDR:
1189		case IP_RECVTTL:
1190		case IP_RECVIF:
1191		case IP_FAITH:
1192		case IP_ONESBCAST:
1193			error = sooptcopyin(sopt, &optval, sizeof optval,
1194					    sizeof optval);
1195			if (error)
1196				break;
1197
1198			switch (sopt->sopt_name) {
1199			case IP_TOS:
1200				inp->inp_ip_tos = optval;
1201				break;
1202
1203			case IP_TTL:
1204				inp->inp_ip_ttl = optval;
1205				break;
1206#define	OPTSET(bit) do {						\
1207	INP_LOCK(inp);							\
1208	if (optval)							\
1209		inp->inp_flags |= bit;					\
1210	else								\
1211		inp->inp_flags &= ~bit;					\
1212	INP_UNLOCK(inp);						\
1213} while (0)
1214
1215			case IP_RECVOPTS:
1216				OPTSET(INP_RECVOPTS);
1217				break;
1218
1219			case IP_RECVRETOPTS:
1220				OPTSET(INP_RECVRETOPTS);
1221				break;
1222
1223			case IP_RECVDSTADDR:
1224				OPTSET(INP_RECVDSTADDR);
1225				break;
1226
1227			case IP_RECVTTL:
1228				OPTSET(INP_RECVTTL);
1229				break;
1230
1231			case IP_RECVIF:
1232				OPTSET(INP_RECVIF);
1233				break;
1234
1235			case IP_FAITH:
1236				OPTSET(INP_FAITH);
1237				break;
1238
1239			case IP_ONESBCAST:
1240				OPTSET(INP_ONESBCAST);
1241				break;
1242			}
1243			break;
1244#undef OPTSET
1245
1246		case IP_MULTICAST_IF:
1247		case IP_MULTICAST_VIF:
1248		case IP_MULTICAST_TTL:
1249		case IP_MULTICAST_LOOP:
1250		case IP_ADD_MEMBERSHIP:
1251		case IP_DROP_MEMBERSHIP:
1252			error = ip_setmoptions(sopt, &inp->inp_moptions);
1253			break;
1254
1255		case IP_PORTRANGE:
1256			error = sooptcopyin(sopt, &optval, sizeof optval,
1257					    sizeof optval);
1258			if (error)
1259				break;
1260
1261			INP_LOCK(inp);
1262			switch (optval) {
1263			case IP_PORTRANGE_DEFAULT:
1264				inp->inp_flags &= ~(INP_LOWPORT);
1265				inp->inp_flags &= ~(INP_HIGHPORT);
1266				break;
1267
1268			case IP_PORTRANGE_HIGH:
1269				inp->inp_flags &= ~(INP_LOWPORT);
1270				inp->inp_flags |= INP_HIGHPORT;
1271				break;
1272
1273			case IP_PORTRANGE_LOW:
1274				inp->inp_flags &= ~(INP_HIGHPORT);
1275				inp->inp_flags |= INP_LOWPORT;
1276				break;
1277
1278			default:
1279				error = EINVAL;
1280				break;
1281			}
1282			INP_UNLOCK(inp);
1283			break;
1284
1285#if defined(IPSEC) || defined(FAST_IPSEC)
1286		case IP_IPSEC_POLICY:
1287		{
1288			caddr_t req;
1289			size_t len = 0;
1290			int priv;
1291			struct mbuf *m;
1292			int optname;
1293
1294			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1295				break;
1296			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1297				break;
1298			priv = (sopt->sopt_td != NULL &&
1299				suser(sopt->sopt_td) != 0) ? 0 : 1;
1300			req = mtod(m, caddr_t);
1301			len = m->m_len;
1302			optname = sopt->sopt_name;
1303			error = ipsec4_set_policy(inp, optname, req, len, priv);
1304			m_freem(m);
1305			break;
1306		}
1307#endif /*IPSEC*/
1308
1309		default:
1310			error = ENOPROTOOPT;
1311			break;
1312		}
1313		break;
1314
1315	case SOPT_GET:
1316		switch (sopt->sopt_name) {
1317		case IP_OPTIONS:
1318		case IP_RETOPTS:
1319			if (inp->inp_options)
1320				error = sooptcopyout(sopt,
1321						     mtod(inp->inp_options,
1322							  char *),
1323						     inp->inp_options->m_len);
1324			else
1325				sopt->sopt_valsize = 0;
1326			break;
1327
1328		case IP_TOS:
1329		case IP_TTL:
1330		case IP_RECVOPTS:
1331		case IP_RECVRETOPTS:
1332		case IP_RECVDSTADDR:
1333		case IP_RECVTTL:
1334		case IP_RECVIF:
1335		case IP_PORTRANGE:
1336		case IP_FAITH:
1337		case IP_ONESBCAST:
1338			switch (sopt->sopt_name) {
1339
1340			case IP_TOS:
1341				optval = inp->inp_ip_tos;
1342				break;
1343
1344			case IP_TTL:
1345				optval = inp->inp_ip_ttl;
1346				break;
1347
1348#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1349
1350			case IP_RECVOPTS:
1351				optval = OPTBIT(INP_RECVOPTS);
1352				break;
1353
1354			case IP_RECVRETOPTS:
1355				optval = OPTBIT(INP_RECVRETOPTS);
1356				break;
1357
1358			case IP_RECVDSTADDR:
1359				optval = OPTBIT(INP_RECVDSTADDR);
1360				break;
1361
1362			case IP_RECVTTL:
1363				optval = OPTBIT(INP_RECVTTL);
1364				break;
1365
1366			case IP_RECVIF:
1367				optval = OPTBIT(INP_RECVIF);
1368				break;
1369
1370			case IP_PORTRANGE:
1371				if (inp->inp_flags & INP_HIGHPORT)
1372					optval = IP_PORTRANGE_HIGH;
1373				else if (inp->inp_flags & INP_LOWPORT)
1374					optval = IP_PORTRANGE_LOW;
1375				else
1376					optval = 0;
1377				break;
1378
1379			case IP_FAITH:
1380				optval = OPTBIT(INP_FAITH);
1381				break;
1382
1383			case IP_ONESBCAST:
1384				optval = OPTBIT(INP_ONESBCAST);
1385				break;
1386			}
1387			error = sooptcopyout(sopt, &optval, sizeof optval);
1388			break;
1389
1390		case IP_MULTICAST_IF:
1391		case IP_MULTICAST_VIF:
1392		case IP_MULTICAST_TTL:
1393		case IP_MULTICAST_LOOP:
1394		case IP_ADD_MEMBERSHIP:
1395		case IP_DROP_MEMBERSHIP:
1396			error = ip_getmoptions(sopt, inp->inp_moptions);
1397			break;
1398
1399#if defined(IPSEC) || defined(FAST_IPSEC)
1400		case IP_IPSEC_POLICY:
1401		{
1402			struct mbuf *m = NULL;
1403			caddr_t req = NULL;
1404			size_t len = 0;
1405
1406			if (m != 0) {
1407				req = mtod(m, caddr_t);
1408				len = m->m_len;
1409			}
1410			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1411			if (error == 0)
1412				error = soopt_mcopyout(sopt, m); /* XXX */
1413			if (error == 0)
1414				m_freem(m);
1415			break;
1416		}
1417#endif /*IPSEC*/
1418
1419		default:
1420			error = ENOPROTOOPT;
1421			break;
1422		}
1423		break;
1424	}
1425	return (error);
1426}
1427
1428/*
1429 * Set up IP options in pcb for insertion in output packets.
1430 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1431 * with destination address if source routed.
1432 */
1433static int
1434ip_pcbopts(optname, pcbopt, m)
1435	int optname;
1436	struct mbuf **pcbopt;
1437	register struct mbuf *m;
1438{
1439	register int cnt, optlen;
1440	register u_char *cp;
1441	u_char opt;
1442
1443	/* turn off any old options */
1444	if (*pcbopt)
1445		(void)m_free(*pcbopt);
1446	*pcbopt = 0;
1447	if (m == (struct mbuf *)0 || m->m_len == 0) {
1448		/*
1449		 * Only turning off any previous options.
1450		 */
1451		if (m)
1452			(void)m_free(m);
1453		return (0);
1454	}
1455
1456	if (m->m_len % sizeof(int32_t))
1457		goto bad;
1458	/*
1459	 * IP first-hop destination address will be stored before
1460	 * actual options; move other options back
1461	 * and clear it when none present.
1462	 */
1463	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1464		goto bad;
1465	cnt = m->m_len;
1466	m->m_len += sizeof(struct in_addr);
1467	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1468	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1469	bzero(mtod(m, void *), sizeof(struct in_addr));
1470
1471	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1472		opt = cp[IPOPT_OPTVAL];
1473		if (opt == IPOPT_EOL)
1474			break;
1475		if (opt == IPOPT_NOP)
1476			optlen = 1;
1477		else {
1478			if (cnt < IPOPT_OLEN + sizeof(*cp))
1479				goto bad;
1480			optlen = cp[IPOPT_OLEN];
1481			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1482				goto bad;
1483		}
1484		switch (opt) {
1485
1486		default:
1487			break;
1488
1489		case IPOPT_LSRR:
1490		case IPOPT_SSRR:
1491			/*
1492			 * user process specifies route as:
1493			 *	->A->B->C->D
1494			 * D must be our final destination (but we can't
1495			 * check that since we may not have connected yet).
1496			 * A is first hop destination, which doesn't appear in
1497			 * actual IP option, but is stored before the options.
1498			 */
1499			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1500				goto bad;
1501			m->m_len -= sizeof(struct in_addr);
1502			cnt -= sizeof(struct in_addr);
1503			optlen -= sizeof(struct in_addr);
1504			cp[IPOPT_OLEN] = optlen;
1505			/*
1506			 * Move first hop before start of options.
1507			 */
1508			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1509			    sizeof(struct in_addr));
1510			/*
1511			 * Then copy rest of options back
1512			 * to close up the deleted entry.
1513			 */
1514			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1515			    &cp[IPOPT_OFFSET+1],
1516			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1517			break;
1518		}
1519	}
1520	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1521		goto bad;
1522	*pcbopt = m;
1523	return (0);
1524
1525bad:
1526	(void)m_free(m);
1527	return (EINVAL);
1528}
1529
1530/*
1531 * XXX
1532 * The whole multicast option thing needs to be re-thought.
1533 * Several of these options are equally applicable to non-multicast
1534 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1535 * standard option (IP_TTL).
1536 */
1537
1538/*
1539 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1540 */
1541static struct ifnet *
1542ip_multicast_if(a, ifindexp)
1543	struct in_addr *a;
1544	int *ifindexp;
1545{
1546	int ifindex;
1547	struct ifnet *ifp;
1548
1549	if (ifindexp)
1550		*ifindexp = 0;
1551	if (ntohl(a->s_addr) >> 24 == 0) {
1552		ifindex = ntohl(a->s_addr) & 0xffffff;
1553		if (ifindex < 0 || if_index < ifindex)
1554			return NULL;
1555		ifp = ifnet_byindex(ifindex);
1556		if (ifindexp)
1557			*ifindexp = ifindex;
1558	} else {
1559		INADDR_TO_IFP(*a, ifp);
1560	}
1561	return ifp;
1562}
1563
1564/*
1565 * Set the IP multicast options in response to user setsockopt().
1566 */
1567static int
1568ip_setmoptions(sopt, imop)
1569	struct sockopt *sopt;
1570	struct ip_moptions **imop;
1571{
1572	int error = 0;
1573	int i;
1574	struct in_addr addr;
1575	struct ip_mreq mreq;
1576	struct ifnet *ifp;
1577	struct ip_moptions *imo = *imop;
1578	struct route ro;
1579	struct sockaddr_in *dst;
1580	int ifindex;
1581	int s;
1582
1583	if (imo == NULL) {
1584		/*
1585		 * No multicast option buffer attached to the pcb;
1586		 * allocate one and initialize to default values.
1587		 */
1588		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1589		    M_WAITOK);
1590
1591		if (imo == NULL)
1592			return (ENOBUFS);
1593		*imop = imo;
1594		imo->imo_multicast_ifp = NULL;
1595		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1596		imo->imo_multicast_vif = -1;
1597		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1598		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1599		imo->imo_num_memberships = 0;
1600	}
1601
1602	switch (sopt->sopt_name) {
1603	/* store an index number for the vif you wanna use in the send */
1604	case IP_MULTICAST_VIF:
1605		if (legal_vif_num == 0) {
1606			error = EOPNOTSUPP;
1607			break;
1608		}
1609		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1610		if (error)
1611			break;
1612		if (!legal_vif_num(i) && (i != -1)) {
1613			error = EINVAL;
1614			break;
1615		}
1616		imo->imo_multicast_vif = i;
1617		break;
1618
1619	case IP_MULTICAST_IF:
1620		/*
1621		 * Select the interface for outgoing multicast packets.
1622		 */
1623		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1624		if (error)
1625			break;
1626		/*
1627		 * INADDR_ANY is used to remove a previous selection.
1628		 * When no interface is selected, a default one is
1629		 * chosen every time a multicast packet is sent.
1630		 */
1631		if (addr.s_addr == INADDR_ANY) {
1632			imo->imo_multicast_ifp = NULL;
1633			break;
1634		}
1635		/*
1636		 * The selected interface is identified by its local
1637		 * IP address.  Find the interface and confirm that
1638		 * it supports multicasting.
1639		 */
1640		s = splimp();
1641		ifp = ip_multicast_if(&addr, &ifindex);
1642		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1643			splx(s);
1644			error = EADDRNOTAVAIL;
1645			break;
1646		}
1647		imo->imo_multicast_ifp = ifp;
1648		if (ifindex)
1649			imo->imo_multicast_addr = addr;
1650		else
1651			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1652		splx(s);
1653		break;
1654
1655	case IP_MULTICAST_TTL:
1656		/*
1657		 * Set the IP time-to-live for outgoing multicast packets.
1658		 * The original multicast API required a char argument,
1659		 * which is inconsistent with the rest of the socket API.
1660		 * We allow either a char or an int.
1661		 */
1662		if (sopt->sopt_valsize == 1) {
1663			u_char ttl;
1664			error = sooptcopyin(sopt, &ttl, 1, 1);
1665			if (error)
1666				break;
1667			imo->imo_multicast_ttl = ttl;
1668		} else {
1669			u_int ttl;
1670			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1671					    sizeof ttl);
1672			if (error)
1673				break;
1674			if (ttl > 255)
1675				error = EINVAL;
1676			else
1677				imo->imo_multicast_ttl = ttl;
1678		}
1679		break;
1680
1681	case IP_MULTICAST_LOOP:
1682		/*
1683		 * Set the loopback flag for outgoing multicast packets.
1684		 * Must be zero or one.  The original multicast API required a
1685		 * char argument, which is inconsistent with the rest
1686		 * of the socket API.  We allow either a char or an int.
1687		 */
1688		if (sopt->sopt_valsize == 1) {
1689			u_char loop;
1690			error = sooptcopyin(sopt, &loop, 1, 1);
1691			if (error)
1692				break;
1693			imo->imo_multicast_loop = !!loop;
1694		} else {
1695			u_int loop;
1696			error = sooptcopyin(sopt, &loop, sizeof loop,
1697					    sizeof loop);
1698			if (error)
1699				break;
1700			imo->imo_multicast_loop = !!loop;
1701		}
1702		break;
1703
1704	case IP_ADD_MEMBERSHIP:
1705		/*
1706		 * Add a multicast group membership.
1707		 * Group must be a valid IP multicast address.
1708		 */
1709		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1710		if (error)
1711			break;
1712
1713		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1714			error = EINVAL;
1715			break;
1716		}
1717		s = splimp();
1718		/*
1719		 * If no interface address was provided, use the interface of
1720		 * the route to the given multicast address.
1721		 */
1722		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1723			bzero((caddr_t)&ro, sizeof(ro));
1724			dst = (struct sockaddr_in *)&ro.ro_dst;
1725			dst->sin_len = sizeof(*dst);
1726			dst->sin_family = AF_INET;
1727			dst->sin_addr = mreq.imr_multiaddr;
1728			rtalloc_ign(&ro, RTF_CLONING);
1729			if (ro.ro_rt == NULL) {
1730				error = EADDRNOTAVAIL;
1731				splx(s);
1732				break;
1733			}
1734			ifp = ro.ro_rt->rt_ifp;
1735			RTFREE(ro.ro_rt);
1736		}
1737		else {
1738			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1739		}
1740
1741		/*
1742		 * See if we found an interface, and confirm that it
1743		 * supports multicast.
1744		 */
1745		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1746			error = EADDRNOTAVAIL;
1747			splx(s);
1748			break;
1749		}
1750		/*
1751		 * See if the membership already exists or if all the
1752		 * membership slots are full.
1753		 */
1754		for (i = 0; i < imo->imo_num_memberships; ++i) {
1755			if (imo->imo_membership[i]->inm_ifp == ifp &&
1756			    imo->imo_membership[i]->inm_addr.s_addr
1757						== mreq.imr_multiaddr.s_addr)
1758				break;
1759		}
1760		if (i < imo->imo_num_memberships) {
1761			error = EADDRINUSE;
1762			splx(s);
1763			break;
1764		}
1765		if (i == IP_MAX_MEMBERSHIPS) {
1766			error = ETOOMANYREFS;
1767			splx(s);
1768			break;
1769		}
1770		/*
1771		 * Everything looks good; add a new record to the multicast
1772		 * address list for the given interface.
1773		 */
1774		if ((imo->imo_membership[i] =
1775		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1776			error = ENOBUFS;
1777			splx(s);
1778			break;
1779		}
1780		++imo->imo_num_memberships;
1781		splx(s);
1782		break;
1783
1784	case IP_DROP_MEMBERSHIP:
1785		/*
1786		 * Drop a multicast group membership.
1787		 * Group must be a valid IP multicast address.
1788		 */
1789		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1790		if (error)
1791			break;
1792
1793		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1794			error = EINVAL;
1795			break;
1796		}
1797
1798		s = splimp();
1799		/*
1800		 * If an interface address was specified, get a pointer
1801		 * to its ifnet structure.
1802		 */
1803		if (mreq.imr_interface.s_addr == INADDR_ANY)
1804			ifp = NULL;
1805		else {
1806			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1807			if (ifp == NULL) {
1808				error = EADDRNOTAVAIL;
1809				splx(s);
1810				break;
1811			}
1812		}
1813		/*
1814		 * Find the membership in the membership array.
1815		 */
1816		for (i = 0; i < imo->imo_num_memberships; ++i) {
1817			if ((ifp == NULL ||
1818			     imo->imo_membership[i]->inm_ifp == ifp) &&
1819			     imo->imo_membership[i]->inm_addr.s_addr ==
1820			     mreq.imr_multiaddr.s_addr)
1821				break;
1822		}
1823		if (i == imo->imo_num_memberships) {
1824			error = EADDRNOTAVAIL;
1825			splx(s);
1826			break;
1827		}
1828		/*
1829		 * Give up the multicast address record to which the
1830		 * membership points.
1831		 */
1832		in_delmulti(imo->imo_membership[i]);
1833		/*
1834		 * Remove the gap in the membership array.
1835		 */
1836		for (++i; i < imo->imo_num_memberships; ++i)
1837			imo->imo_membership[i-1] = imo->imo_membership[i];
1838		--imo->imo_num_memberships;
1839		splx(s);
1840		break;
1841
1842	default:
1843		error = EOPNOTSUPP;
1844		break;
1845	}
1846
1847	/*
1848	 * If all options have default values, no need to keep the mbuf.
1849	 */
1850	if (imo->imo_multicast_ifp == NULL &&
1851	    imo->imo_multicast_vif == -1 &&
1852	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1853	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1854	    imo->imo_num_memberships == 0) {
1855		free(*imop, M_IPMOPTS);
1856		*imop = NULL;
1857	}
1858
1859	return (error);
1860}
1861
1862/*
1863 * Return the IP multicast options in response to user getsockopt().
1864 */
1865static int
1866ip_getmoptions(sopt, imo)
1867	struct sockopt *sopt;
1868	register struct ip_moptions *imo;
1869{
1870	struct in_addr addr;
1871	struct in_ifaddr *ia;
1872	int error, optval;
1873	u_char coptval;
1874
1875	error = 0;
1876	switch (sopt->sopt_name) {
1877	case IP_MULTICAST_VIF:
1878		if (imo != NULL)
1879			optval = imo->imo_multicast_vif;
1880		else
1881			optval = -1;
1882		error = sooptcopyout(sopt, &optval, sizeof optval);
1883		break;
1884
1885	case IP_MULTICAST_IF:
1886		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1887			addr.s_addr = INADDR_ANY;
1888		else if (imo->imo_multicast_addr.s_addr) {
1889			/* return the value user has set */
1890			addr = imo->imo_multicast_addr;
1891		} else {
1892			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1893			addr.s_addr = (ia == NULL) ? INADDR_ANY
1894				: IA_SIN(ia)->sin_addr.s_addr;
1895		}
1896		error = sooptcopyout(sopt, &addr, sizeof addr);
1897		break;
1898
1899	case IP_MULTICAST_TTL:
1900		if (imo == 0)
1901			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1902		else
1903			optval = coptval = imo->imo_multicast_ttl;
1904		if (sopt->sopt_valsize == 1)
1905			error = sooptcopyout(sopt, &coptval, 1);
1906		else
1907			error = sooptcopyout(sopt, &optval, sizeof optval);
1908		break;
1909
1910	case IP_MULTICAST_LOOP:
1911		if (imo == 0)
1912			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1913		else
1914			optval = coptval = imo->imo_multicast_loop;
1915		if (sopt->sopt_valsize == 1)
1916			error = sooptcopyout(sopt, &coptval, 1);
1917		else
1918			error = sooptcopyout(sopt, &optval, sizeof optval);
1919		break;
1920
1921	default:
1922		error = ENOPROTOOPT;
1923		break;
1924	}
1925	return (error);
1926}
1927
1928/*
1929 * Discard the IP multicast options.
1930 */
1931void
1932ip_freemoptions(imo)
1933	register struct ip_moptions *imo;
1934{
1935	register int i;
1936
1937	if (imo != NULL) {
1938		for (i = 0; i < imo->imo_num_memberships; ++i)
1939			in_delmulti(imo->imo_membership[i]);
1940		free(imo, M_IPMOPTS);
1941	}
1942}
1943
1944/*
1945 * Routine called from ip_output() to loop back a copy of an IP multicast
1946 * packet to the input queue of a specified interface.  Note that this
1947 * calls the output routine of the loopback "driver", but with an interface
1948 * pointer that might NOT be a loopback interface -- evil, but easier than
1949 * replicating that code here.
1950 */
1951static void
1952ip_mloopback(ifp, m, dst, hlen)
1953	struct ifnet *ifp;
1954	register struct mbuf *m;
1955	register struct sockaddr_in *dst;
1956	int hlen;
1957{
1958	register struct ip *ip;
1959	struct mbuf *copym;
1960
1961	copym = m_copy(m, 0, M_COPYALL);
1962	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1963		copym = m_pullup(copym, hlen);
1964	if (copym != NULL) {
1965		/* If needed, compute the checksum and mark it as valid. */
1966		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1967			in_delayed_cksum(copym);
1968			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1969			copym->m_pkthdr.csum_flags |=
1970			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1971			copym->m_pkthdr.csum_data = 0xffff;
1972		}
1973		/*
1974		 * We don't bother to fragment if the IP length is greater
1975		 * than the interface's MTU.  Can this possibly matter?
1976		 */
1977		ip = mtod(copym, struct ip *);
1978		ip->ip_len = htons(ip->ip_len);
1979		ip->ip_off = htons(ip->ip_off);
1980		ip->ip_sum = 0;
1981		ip->ip_sum = in_cksum(copym, hlen);
1982		/*
1983		 * NB:
1984		 * It's not clear whether there are any lingering
1985		 * reentrancy problems in other areas which might
1986		 * be exposed by using ip_input directly (in
1987		 * particular, everything which modifies the packet
1988		 * in-place).  Yet another option is using the
1989		 * protosw directly to deliver the looped back
1990		 * packet.  For the moment, we'll err on the side
1991		 * of safety by using if_simloop().
1992		 */
1993#if 1 /* XXX */
1994		if (dst->sin_family != AF_INET) {
1995			printf("ip_mloopback: bad address family %d\n",
1996						dst->sin_family);
1997			dst->sin_family = AF_INET;
1998		}
1999#endif
2000
2001#ifdef notdef
2002		copym->m_pkthdr.rcvif = ifp;
2003		ip_input(copym);
2004#else
2005		if_simloop(ifp, copym, dst->sin_family, 0);
2006#endif
2007	}
2008}
2009