ip_output.c revision 133920
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 * $FreeBSD: head/sys/netinet/ip_output.c 133920 2004-08-17 22:05:54Z andre $
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipsec.h"
35#include "opt_mac.h"
36#include "opt_pfil_hooks.h"
37#include "opt_mbuf_stress_test.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/kernel.h>
42#include <sys/mac.h>
43#include <sys/malloc.h>
44#include <sys/mbuf.h>
45#include <sys/protosw.h>
46#include <sys/socket.h>
47#include <sys/socketvar.h>
48#include <sys/sysctl.h>
49
50#include <net/if.h>
51#include <net/netisr.h>
52#include <net/route.h>
53
54#include <netinet/in.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#include <netinet/in_pcb.h>
58#include <netinet/in_var.h>
59#include <netinet/ip_var.h>
60
61#ifdef PFIL_HOOKS
62#include <net/pfil.h>
63#endif
64
65#include <machine/in_cksum.h>
66
67static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
68
69#ifdef IPSEC
70#include <netinet6/ipsec.h>
71#include <netkey/key.h>
72#ifdef IPSEC_DEBUG
73#include <netkey/key_debug.h>
74#else
75#define	KEYDEBUG(lev,arg)
76#endif
77#endif /*IPSEC*/
78
79#ifdef FAST_IPSEC
80#include <netipsec/ipsec.h>
81#include <netipsec/xform.h>
82#include <netipsec/key.h>
83#endif /*FAST_IPSEC*/
84
85#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
86				x, (ntohl(a.s_addr)>>24)&0xFF,\
87				  (ntohl(a.s_addr)>>16)&0xFF,\
88				  (ntohl(a.s_addr)>>8)&0xFF,\
89				  (ntohl(a.s_addr))&0xFF, y);
90
91u_short ip_id;
92
93#ifdef MBUF_STRESS_TEST
94int mbuf_frag_size = 0;
95SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
96	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
97#endif
98
99static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
100static struct ifnet *ip_multicast_if(struct in_addr *, int *);
101static void	ip_mloopback
102	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
103static int	ip_getmoptions
104	(struct sockopt *, struct ip_moptions *);
105static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
106static int	ip_setmoptions
107	(struct sockopt *, struct ip_moptions **);
108
109int	ip_optcopy(struct ip *, struct ip *);
110
111
112extern	struct protosw inetsw[];
113
114/*
115 * IP output.  The packet in mbuf chain m contains a skeletal IP
116 * header (with len, off, ttl, proto, tos, src, dst).
117 * The mbuf chain containing the packet will be freed.
118 * The mbuf opt, if present, will not be freed.
119 * In the IP forwarding case, the packet will arrive with options already
120 * inserted, so must have a NULL opt pointer.
121 */
122int
123ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
124	int flags, struct ip_moptions *imo, struct inpcb *inp)
125{
126	struct ip *ip;
127	struct ifnet *ifp = NULL;	/* keep compiler happy */
128	struct mbuf *m0;
129	int hlen = sizeof (struct ip);
130	int len, error = 0;
131	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
132	struct in_ifaddr *ia = NULL;
133	int isbroadcast, sw_csum;
134	struct route iproute;
135	struct in_addr odst;
136#ifdef IPFIREWALL_FORWARD
137	struct m_tag *fwd_tag = NULL;
138#endif
139#ifdef IPSEC
140	struct secpolicy *sp = NULL;
141#endif
142#ifdef FAST_IPSEC
143	struct secpolicy *sp = NULL;
144	struct tdb_ident *tdbi;
145	struct m_tag *mtag;
146	int s;
147#endif /* FAST_IPSEC */
148
149	M_ASSERTPKTHDR(m);
150
151	if (ro == NULL) {
152		ro = &iproute;
153		bzero(ro, sizeof (*ro));
154	}
155
156	if (inp != NULL)
157		INP_LOCK_ASSERT(inp);
158
159	if (opt) {
160		len = 0;
161		m = ip_insertoptions(m, opt, &len);
162		if (len != 0)
163			hlen = len;
164	}
165	ip = mtod(m, struct ip *);
166
167	/*
168	 * Fill in IP header.  If we are not allowing fragmentation,
169	 * then the ip_id field is meaningless, but we don't set it
170	 * to zero.  Doing so causes various problems when devices along
171	 * the path (routers, load balancers, firewalls, etc.) illegally
172	 * disable DF on our packet.  Note that a 16-bit counter
173	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
174	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
175	 * for Counting NATted Hosts", Proc. IMW'02, available at
176	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
177	 */
178	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
179		ip->ip_v = IPVERSION;
180		ip->ip_hl = hlen >> 2;
181		ip->ip_id = ip_newid();
182		ipstat.ips_localout++;
183	} else {
184		hlen = ip->ip_hl << 2;
185	}
186
187	dst = (struct sockaddr_in *)&ro->ro_dst;
188again:
189	/*
190	 * If there is a cached route,
191	 * check that it is to the same destination
192	 * and is still up.  If not, free it and try again.
193	 * The address family should also be checked in case of sharing the
194	 * cache with IPv6.
195	 */
196	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
197			  dst->sin_family != AF_INET ||
198			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
199		RTFREE(ro->ro_rt);
200		ro->ro_rt = (struct rtentry *)0;
201	}
202#ifdef IPFIREWALL_FORWARD
203	if (ro->ro_rt == NULL && fwd_tag == NULL) {
204#else
205	if (ro->ro_rt == NULL) {
206#endif
207		bzero(dst, sizeof(*dst));
208		dst->sin_family = AF_INET;
209		dst->sin_len = sizeof(*dst);
210		dst->sin_addr = ip->ip_dst;
211	}
212	/*
213	 * If routing to interface only,
214	 * short circuit routing lookup.
215	 */
216	if (flags & IP_ROUTETOIF) {
217		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
218		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
219			ipstat.ips_noroute++;
220			error = ENETUNREACH;
221			goto bad;
222		}
223		ifp = ia->ia_ifp;
224		ip->ip_ttl = 1;
225		isbroadcast = in_broadcast(dst->sin_addr, ifp);
226	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
227	    imo != NULL && imo->imo_multicast_ifp != NULL) {
228		/*
229		 * Bypass the normal routing lookup for multicast
230		 * packets if the interface is specified.
231		 */
232		ifp = imo->imo_multicast_ifp;
233		IFP_TO_IA(ifp, ia);
234		isbroadcast = 0;	/* fool gcc */
235	} else {
236		/*
237		 * We want to do any cloning requested by the link layer,
238		 * as this is probably required in all cases for correct
239		 * operation (as it is for ARP).
240		 */
241		if (ro->ro_rt == NULL)
242			rtalloc_ign(ro, 0);
243		if (ro->ro_rt == NULL) {
244			ipstat.ips_noroute++;
245			error = EHOSTUNREACH;
246			goto bad;
247		}
248		ia = ifatoia(ro->ro_rt->rt_ifa);
249		ifp = ro->ro_rt->rt_ifp;
250		ro->ro_rt->rt_rmx.rmx_pksent++;
251		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
252			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
253		if (ro->ro_rt->rt_flags & RTF_HOST)
254			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
255		else
256			isbroadcast = in_broadcast(dst->sin_addr, ifp);
257	}
258	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
259		struct in_multi *inm;
260
261		m->m_flags |= M_MCAST;
262		/*
263		 * IP destination address is multicast.  Make sure "dst"
264		 * still points to the address in "ro".  (It may have been
265		 * changed to point to a gateway address, above.)
266		 */
267		dst = (struct sockaddr_in *)&ro->ro_dst;
268		/*
269		 * See if the caller provided any multicast options
270		 */
271		if (imo != NULL) {
272			ip->ip_ttl = imo->imo_multicast_ttl;
273			if (imo->imo_multicast_vif != -1)
274				ip->ip_src.s_addr =
275				    ip_mcast_src ?
276				    ip_mcast_src(imo->imo_multicast_vif) :
277				    INADDR_ANY;
278		} else
279			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
280		/*
281		 * Confirm that the outgoing interface supports multicast.
282		 */
283		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
284			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
285				ipstat.ips_noroute++;
286				error = ENETUNREACH;
287				goto bad;
288			}
289		}
290		/*
291		 * If source address not specified yet, use address
292		 * of outgoing interface.
293		 */
294		if (ip->ip_src.s_addr == INADDR_ANY) {
295			/* Interface may have no addresses. */
296			if (ia != NULL)
297				ip->ip_src = IA_SIN(ia)->sin_addr;
298		}
299
300		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
301		if (inm != NULL &&
302		   (imo == NULL || imo->imo_multicast_loop)) {
303			/*
304			 * If we belong to the destination multicast group
305			 * on the outgoing interface, and the caller did not
306			 * forbid loopback, loop back a copy.
307			 */
308			ip_mloopback(ifp, m, dst, hlen);
309		}
310		else {
311			/*
312			 * If we are acting as a multicast router, perform
313			 * multicast forwarding as if the packet had just
314			 * arrived on the interface to which we are about
315			 * to send.  The multicast forwarding function
316			 * recursively calls this function, using the
317			 * IP_FORWARDING flag to prevent infinite recursion.
318			 *
319			 * Multicasts that are looped back by ip_mloopback(),
320			 * above, will be forwarded by the ip_input() routine,
321			 * if necessary.
322			 */
323			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
324				/*
325				 * If rsvp daemon is not running, do not
326				 * set ip_moptions. This ensures that the packet
327				 * is multicast and not just sent down one link
328				 * as prescribed by rsvpd.
329				 */
330				if (!rsvp_on)
331					imo = NULL;
332				if (ip_mforward &&
333				    ip_mforward(ip, ifp, m, imo) != 0) {
334					m_freem(m);
335					goto done;
336				}
337			}
338		}
339
340		/*
341		 * Multicasts with a time-to-live of zero may be looped-
342		 * back, above, but must not be transmitted on a network.
343		 * Also, multicasts addressed to the loopback interface
344		 * are not sent -- the above call to ip_mloopback() will
345		 * loop back a copy if this host actually belongs to the
346		 * destination group on the loopback interface.
347		 */
348		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
349			m_freem(m);
350			goto done;
351		}
352
353		goto sendit;
354	}
355#ifndef notdef
356	/*
357	 * If the source address is not specified yet, use the address
358	 * of the outoing interface. In case, keep note we did that, so
359	 * if the the firewall changes the next-hop causing the output
360	 * interface to change, we can fix that.
361	 */
362	if (ip->ip_src.s_addr == INADDR_ANY) {
363		/* Interface may have no addresses. */
364		if (ia != NULL) {
365			ip->ip_src = IA_SIN(ia)->sin_addr;
366		}
367	}
368#endif /* notdef */
369#ifdef ALTQ
370	/*
371	 * disable packet drop hack.
372	 * packetdrop should be done by queueing.
373	 */
374#else /* !ALTQ */
375	/*
376	 * Verify that we have any chance at all of being able to queue
377	 *      the packet or packet fragments
378	 */
379	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
380		ifp->if_snd.ifq_maxlen) {
381			error = ENOBUFS;
382			ipstat.ips_odropped++;
383			goto bad;
384	}
385#endif /* !ALTQ */
386
387	/*
388	 * Look for broadcast address and
389	 * verify user is allowed to send
390	 * such a packet.
391	 */
392	if (isbroadcast) {
393		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
394			error = EADDRNOTAVAIL;
395			goto bad;
396		}
397		if ((flags & IP_ALLOWBROADCAST) == 0) {
398			error = EACCES;
399			goto bad;
400		}
401		/* don't allow broadcast messages to be fragmented */
402		if (ip->ip_len > ifp->if_mtu) {
403			error = EMSGSIZE;
404			goto bad;
405		}
406		if (flags & IP_SENDONES)
407			ip->ip_dst.s_addr = INADDR_BROADCAST;
408		m->m_flags |= M_BCAST;
409	} else {
410		m->m_flags &= ~M_BCAST;
411	}
412
413sendit:
414#ifdef IPSEC
415	/* get SP for this packet */
416	if (inp == NULL)
417		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
418		    flags, &error);
419	else
420		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
421
422	if (sp == NULL) {
423		ipsecstat.out_inval++;
424		goto bad;
425	}
426
427	error = 0;
428
429	/* check policy */
430	switch (sp->policy) {
431	case IPSEC_POLICY_DISCARD:
432		/*
433		 * This packet is just discarded.
434		 */
435		ipsecstat.out_polvio++;
436		goto bad;
437
438	case IPSEC_POLICY_BYPASS:
439	case IPSEC_POLICY_NONE:
440	case IPSEC_POLICY_TCP:
441		/* no need to do IPsec. */
442		goto skip_ipsec;
443
444	case IPSEC_POLICY_IPSEC:
445		if (sp->req == NULL) {
446			/* acquire a policy */
447			error = key_spdacquire(sp);
448			goto bad;
449		}
450		break;
451
452	case IPSEC_POLICY_ENTRUST:
453	default:
454		printf("ip_output: Invalid policy found. %d\n", sp->policy);
455	}
456    {
457	struct ipsec_output_state state;
458	bzero(&state, sizeof(state));
459	state.m = m;
460	if (flags & IP_ROUTETOIF) {
461		state.ro = &iproute;
462		bzero(&iproute, sizeof(iproute));
463	} else
464		state.ro = ro;
465	state.dst = (struct sockaddr *)dst;
466
467	ip->ip_sum = 0;
468
469	/*
470	 * XXX
471	 * delayed checksums are not currently compatible with IPsec
472	 */
473	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
474		in_delayed_cksum(m);
475		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
476	}
477
478	ip->ip_len = htons(ip->ip_len);
479	ip->ip_off = htons(ip->ip_off);
480
481	error = ipsec4_output(&state, sp, flags);
482
483	m = state.m;
484	if (flags & IP_ROUTETOIF) {
485		/*
486		 * if we have tunnel mode SA, we may need to ignore
487		 * IP_ROUTETOIF.
488		 */
489		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
490			flags &= ~IP_ROUTETOIF;
491			ro = state.ro;
492		}
493	} else
494		ro = state.ro;
495	dst = (struct sockaddr_in *)state.dst;
496	if (error) {
497		/* mbuf is already reclaimed in ipsec4_output. */
498		m = NULL;
499		switch (error) {
500		case EHOSTUNREACH:
501		case ENETUNREACH:
502		case EMSGSIZE:
503		case ENOBUFS:
504		case ENOMEM:
505			break;
506		default:
507			printf("ip4_output (ipsec): error code %d\n", error);
508			/*fall through*/
509		case ENOENT:
510			/* don't show these error codes to the user */
511			error = 0;
512			break;
513		}
514		goto bad;
515	}
516
517	/* be sure to update variables that are affected by ipsec4_output() */
518	ip = mtod(m, struct ip *);
519	hlen = ip->ip_hl << 2;
520	if (ro->ro_rt == NULL) {
521		if ((flags & IP_ROUTETOIF) == 0) {
522			printf("ip_output: "
523				"can't update route after IPsec processing\n");
524			error = EHOSTUNREACH;	/*XXX*/
525			goto bad;
526		}
527	} else {
528		if (state.encap) {
529			ia = ifatoia(ro->ro_rt->rt_ifa);
530			ifp = ro->ro_rt->rt_ifp;
531		}
532	}
533    }
534
535	/* make it flipped, again. */
536	ip->ip_len = ntohs(ip->ip_len);
537	ip->ip_off = ntohs(ip->ip_off);
538skip_ipsec:
539#endif /*IPSEC*/
540#ifdef FAST_IPSEC
541	/*
542	 * Check the security policy (SP) for the packet and, if
543	 * required, do IPsec-related processing.  There are two
544	 * cases here; the first time a packet is sent through
545	 * it will be untagged and handled by ipsec4_checkpolicy.
546	 * If the packet is resubmitted to ip_output (e.g. after
547	 * AH, ESP, etc. processing), there will be a tag to bypass
548	 * the lookup and related policy checking.
549	 */
550	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
551	s = splnet();
552	if (mtag != NULL) {
553		tdbi = (struct tdb_ident *)(mtag + 1);
554		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
555		if (sp == NULL)
556			error = -EINVAL;	/* force silent drop */
557		m_tag_delete(m, mtag);
558	} else {
559		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
560					&error, inp);
561	}
562	/*
563	 * There are four return cases:
564	 *    sp != NULL	 	    apply IPsec policy
565	 *    sp == NULL, error == 0	    no IPsec handling needed
566	 *    sp == NULL, error == -EINVAL  discard packet w/o error
567	 *    sp == NULL, error != 0	    discard packet, report error
568	 */
569	if (sp != NULL) {
570		/* Loop detection, check if ipsec processing already done */
571		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
572		for (mtag = m_tag_first(m); mtag != NULL;
573		     mtag = m_tag_next(m, mtag)) {
574			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
575				continue;
576			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
577			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
578				continue;
579			/*
580			 * Check if policy has an SA associated with it.
581			 * This can happen when an SP has yet to acquire
582			 * an SA; e.g. on first reference.  If it occurs,
583			 * then we let ipsec4_process_packet do its thing.
584			 */
585			if (sp->req->sav == NULL)
586				break;
587			tdbi = (struct tdb_ident *)(mtag + 1);
588			if (tdbi->spi == sp->req->sav->spi &&
589			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
590			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
591				 sizeof (union sockaddr_union)) == 0) {
592				/*
593				 * No IPsec processing is needed, free
594				 * reference to SP.
595				 *
596				 * NB: null pointer to avoid free at
597				 *     done: below.
598				 */
599				KEY_FREESP(&sp), sp = NULL;
600				splx(s);
601				goto spd_done;
602			}
603		}
604
605		/*
606		 * Do delayed checksums now because we send before
607		 * this is done in the normal processing path.
608		 */
609		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
610			in_delayed_cksum(m);
611			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
612		}
613
614		ip->ip_len = htons(ip->ip_len);
615		ip->ip_off = htons(ip->ip_off);
616
617		/* NB: callee frees mbuf */
618		error = ipsec4_process_packet(m, sp->req, flags, 0);
619		/*
620		 * Preserve KAME behaviour: ENOENT can be returned
621		 * when an SA acquire is in progress.  Don't propagate
622		 * this to user-level; it confuses applications.
623		 *
624		 * XXX this will go away when the SADB is redone.
625		 */
626		if (error == ENOENT)
627			error = 0;
628		splx(s);
629		goto done;
630	} else {
631		splx(s);
632
633		if (error != 0) {
634			/*
635			 * Hack: -EINVAL is used to signal that a packet
636			 * should be silently discarded.  This is typically
637			 * because we asked key management for an SA and
638			 * it was delayed (e.g. kicked up to IKE).
639			 */
640			if (error == -EINVAL)
641				error = 0;
642			goto bad;
643		} else {
644			/* No IPsec processing for this packet. */
645		}
646#ifdef notyet
647		/*
648		 * If deferred crypto processing is needed, check that
649		 * the interface supports it.
650		 */
651		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
652		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
653			/* notify IPsec to do its own crypto */
654			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
655			error = EHOSTUNREACH;
656			goto bad;
657		}
658#endif
659	}
660spd_done:
661#endif /* FAST_IPSEC */
662
663#ifdef PFIL_HOOKS
664	/*
665	 * Run through list of hooks for output packets.
666	 */
667	odst.s_addr = ip->ip_dst.s_addr;
668	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
669	if (error != 0 || m == NULL)
670		goto done;
671
672	ip = mtod(m, struct ip *);
673
674	/* See if destination IP address was changed by packet filter. */
675	if (odst.s_addr != ip->ip_dst.s_addr) {
676		m->m_flags |= M_SKIP_FIREWALL;
677		if (in_localip(ip->ip_dst)) {
678			m->m_flags |= M_FASTFWD_OURS;
679			if (m->m_pkthdr.rcvif == NULL)
680				m->m_pkthdr.rcvif = ifunit("lo0");
681			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
682				m->m_pkthdr.csum_flags |=
683				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
684				m->m_pkthdr.csum_data = 0xffff;
685			}
686			m->m_pkthdr.csum_flags |=
687			    CSUM_IP_CHECKED | CSUM_IP_VALID;
688
689			error = netisr_queue(NETISR_IP, m);
690			goto done;
691		} else
692			goto again;
693	}
694
695#ifdef IPFIREWALL_FORWARD
696	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
697	if (m->m_flags & M_FASTFWD_OURS) {
698		if (m->m_pkthdr.rcvif == NULL)
699			m->m_pkthdr.rcvif = ifunit("lo0");
700		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
701			m->m_pkthdr.csum_flags |=
702			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
703			m->m_pkthdr.csum_data = 0xffff;
704		}
705		m->m_pkthdr.csum_flags |=
706			    CSUM_IP_CHECKED | CSUM_IP_VALID;
707
708		error = netisr_queue(NETISR_IP, m);
709		goto done;
710	}
711	/* Or forward to some other address? */
712	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
713	if (fwd_tag) {
714		if (!in_localip(ip->ip_src) && !in_localaddr(ip->ip_dst)) {
715			dst = (struct sockaddr_in *)&ro->ro_dst;
716			bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
717			m->m_flags |= M_SKIP_FIREWALL;
718			m_tag_delete(m, fwd_tag);
719			goto again;
720		} else {
721			m_tag_delete(m, fwd_tag);
722			/* Continue. */
723		}
724	}
725#endif
726
727#endif /* PFIL_HOOKS */
728
729#if 0
730pass:
731#endif
732	/* 127/8 must not appear on wire - RFC1122. */
733	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
734	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
735		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
736			ipstat.ips_badaddr++;
737			error = EADDRNOTAVAIL;
738			goto bad;
739		}
740	}
741
742	m->m_pkthdr.csum_flags |= CSUM_IP;
743	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
744	if (sw_csum & CSUM_DELAY_DATA) {
745		in_delayed_cksum(m);
746		sw_csum &= ~CSUM_DELAY_DATA;
747	}
748	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
749
750	/*
751	 * If small enough for interface, or the interface will take
752	 * care of the fragmentation for us, can just send directly.
753	 */
754	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
755	    ((ip->ip_off & IP_DF) == 0))) {
756		ip->ip_len = htons(ip->ip_len);
757		ip->ip_off = htons(ip->ip_off);
758		ip->ip_sum = 0;
759		if (sw_csum & CSUM_DELAY_IP)
760			ip->ip_sum = in_cksum(m, hlen);
761
762		/* Record statistics for this interface address. */
763		if (!(flags & IP_FORWARDING) && ia) {
764			ia->ia_ifa.if_opackets++;
765			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
766		}
767
768#ifdef IPSEC
769		/* clean ipsec history once it goes out of the node */
770		ipsec_delaux(m);
771#endif
772
773#ifdef MBUF_STRESS_TEST
774		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
775			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
776#endif
777		error = (*ifp->if_output)(ifp, m,
778				(struct sockaddr *)dst, ro->ro_rt);
779		goto done;
780	}
781
782	if (ip->ip_off & IP_DF) {
783		error = EMSGSIZE;
784		/*
785		 * This case can happen if the user changed the MTU
786		 * of an interface after enabling IP on it.  Because
787		 * most netifs don't keep track of routes pointing to
788		 * them, there is no way for one to update all its
789		 * routes when the MTU is changed.
790		 */
791		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
792		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
793			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
794		}
795		ipstat.ips_cantfrag++;
796		goto bad;
797	}
798
799	/*
800	 * Too large for interface; fragment if possible. If successful,
801	 * on return, m will point to a list of packets to be sent.
802	 */
803	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
804	if (error)
805		goto bad;
806	for (; m; m = m0) {
807		m0 = m->m_nextpkt;
808		m->m_nextpkt = 0;
809#ifdef IPSEC
810		/* clean ipsec history once it goes out of the node */
811		ipsec_delaux(m);
812#endif
813		if (error == 0) {
814			/* Record statistics for this interface address. */
815			if (ia != NULL) {
816				ia->ia_ifa.if_opackets++;
817				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
818			}
819
820			error = (*ifp->if_output)(ifp, m,
821			    (struct sockaddr *)dst, ro->ro_rt);
822		} else
823			m_freem(m);
824	}
825
826	if (error == 0)
827		ipstat.ips_fragmented++;
828
829done:
830	if (ro == &iproute && ro->ro_rt) {
831		RTFREE(ro->ro_rt);
832	}
833#ifdef IPSEC
834	if (sp != NULL) {
835		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
836			printf("DP ip_output call free SP:%p\n", sp));
837		key_freesp(sp);
838	}
839#endif
840#ifdef FAST_IPSEC
841	if (sp != NULL)
842		KEY_FREESP(&sp);
843#endif
844	return (error);
845bad:
846	m_freem(m);
847	goto done;
848}
849
850/*
851 * Create a chain of fragments which fit the given mtu. m_frag points to the
852 * mbuf to be fragmented; on return it points to the chain with the fragments.
853 * Return 0 if no error. If error, m_frag may contain a partially built
854 * chain of fragments that should be freed by the caller.
855 *
856 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
857 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
858 */
859int
860ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
861	    u_long if_hwassist_flags, int sw_csum)
862{
863	int error = 0;
864	int hlen = ip->ip_hl << 2;
865	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
866	int off;
867	struct mbuf *m0 = *m_frag;	/* the original packet		*/
868	int firstlen;
869	struct mbuf **mnext;
870	int nfrags;
871
872	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
873		ipstat.ips_cantfrag++;
874		return EMSGSIZE;
875	}
876
877	/*
878	 * Must be able to put at least 8 bytes per fragment.
879	 */
880	if (len < 8)
881		return EMSGSIZE;
882
883	/*
884	 * If the interface will not calculate checksums on
885	 * fragmented packets, then do it here.
886	 */
887	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
888	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
889		in_delayed_cksum(m0);
890		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
891	}
892
893	if (len > PAGE_SIZE) {
894		/*
895		 * Fragment large datagrams such that each segment
896		 * contains a multiple of PAGE_SIZE amount of data,
897		 * plus headers. This enables a receiver to perform
898		 * page-flipping zero-copy optimizations.
899		 *
900		 * XXX When does this help given that sender and receiver
901		 * could have different page sizes, and also mtu could
902		 * be less than the receiver's page size ?
903		 */
904		int newlen;
905		struct mbuf *m;
906
907		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
908			off += m->m_len;
909
910		/*
911		 * firstlen (off - hlen) must be aligned on an
912		 * 8-byte boundary
913		 */
914		if (off < hlen)
915			goto smart_frag_failure;
916		off = ((off - hlen) & ~7) + hlen;
917		newlen = (~PAGE_MASK) & mtu;
918		if ((newlen + sizeof (struct ip)) > mtu) {
919			/* we failed, go back the default */
920smart_frag_failure:
921			newlen = len;
922			off = hlen + len;
923		}
924		len = newlen;
925
926	} else {
927		off = hlen + len;
928	}
929
930	firstlen = off - hlen;
931	mnext = &m0->m_nextpkt;		/* pointer to next packet */
932
933	/*
934	 * Loop through length of segment after first fragment,
935	 * make new header and copy data of each part and link onto chain.
936	 * Here, m0 is the original packet, m is the fragment being created.
937	 * The fragments are linked off the m_nextpkt of the original
938	 * packet, which after processing serves as the first fragment.
939	 */
940	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
941		struct ip *mhip;	/* ip header on the fragment */
942		struct mbuf *m;
943		int mhlen = sizeof (struct ip);
944
945		MGETHDR(m, M_DONTWAIT, MT_HEADER);
946		if (m == NULL) {
947			error = ENOBUFS;
948			ipstat.ips_odropped++;
949			goto done;
950		}
951		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
952		/*
953		 * In the first mbuf, leave room for the link header, then
954		 * copy the original IP header including options. The payload
955		 * goes into an additional mbuf chain returned by m_copy().
956		 */
957		m->m_data += max_linkhdr;
958		mhip = mtod(m, struct ip *);
959		*mhip = *ip;
960		if (hlen > sizeof (struct ip)) {
961			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
962			mhip->ip_v = IPVERSION;
963			mhip->ip_hl = mhlen >> 2;
964		}
965		m->m_len = mhlen;
966		/* XXX do we need to add ip->ip_off below ? */
967		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
968		if (off + len >= ip->ip_len) {	/* last fragment */
969			len = ip->ip_len - off;
970			m->m_flags |= M_LASTFRAG;
971		} else
972			mhip->ip_off |= IP_MF;
973		mhip->ip_len = htons((u_short)(len + mhlen));
974		m->m_next = m_copy(m0, off, len);
975		if (m->m_next == NULL) {	/* copy failed */
976			m_free(m);
977			error = ENOBUFS;	/* ??? */
978			ipstat.ips_odropped++;
979			goto done;
980		}
981		m->m_pkthdr.len = mhlen + len;
982		m->m_pkthdr.rcvif = (struct ifnet *)0;
983#ifdef MAC
984		mac_create_fragment(m0, m);
985#endif
986		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
987		mhip->ip_off = htons(mhip->ip_off);
988		mhip->ip_sum = 0;
989		if (sw_csum & CSUM_DELAY_IP)
990			mhip->ip_sum = in_cksum(m, mhlen);
991		*mnext = m;
992		mnext = &m->m_nextpkt;
993	}
994	ipstat.ips_ofragments += nfrags;
995
996	/* set first marker for fragment chain */
997	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
998	m0->m_pkthdr.csum_data = nfrags;
999
1000	/*
1001	 * Update first fragment by trimming what's been copied out
1002	 * and updating header.
1003	 */
1004	m_adj(m0, hlen + firstlen - ip->ip_len);
1005	m0->m_pkthdr.len = hlen + firstlen;
1006	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1007	ip->ip_off |= IP_MF;
1008	ip->ip_off = htons(ip->ip_off);
1009	ip->ip_sum = 0;
1010	if (sw_csum & CSUM_DELAY_IP)
1011		ip->ip_sum = in_cksum(m0, hlen);
1012
1013done:
1014	*m_frag = m0;
1015	return error;
1016}
1017
1018void
1019in_delayed_cksum(struct mbuf *m)
1020{
1021	struct ip *ip;
1022	u_short csum, offset;
1023
1024	ip = mtod(m, struct ip *);
1025	offset = ip->ip_hl << 2 ;
1026	csum = in_cksum_skip(m, ip->ip_len, offset);
1027	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1028		csum = 0xffff;
1029	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1030
1031	if (offset + sizeof(u_short) > m->m_len) {
1032		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1033		    m->m_len, offset, ip->ip_p);
1034		/*
1035		 * XXX
1036		 * this shouldn't happen, but if it does, the
1037		 * correct behavior may be to insert the checksum
1038		 * in the existing chain instead of rearranging it.
1039		 */
1040		m = m_pullup(m, offset + sizeof(u_short));
1041	}
1042	*(u_short *)(m->m_data + offset) = csum;
1043}
1044
1045/*
1046 * Insert IP options into preformed packet.
1047 * Adjust IP destination as required for IP source routing,
1048 * as indicated by a non-zero in_addr at the start of the options.
1049 *
1050 * XXX This routine assumes that the packet has no options in place.
1051 */
1052static struct mbuf *
1053ip_insertoptions(m, opt, phlen)
1054	register struct mbuf *m;
1055	struct mbuf *opt;
1056	int *phlen;
1057{
1058	register struct ipoption *p = mtod(opt, struct ipoption *);
1059	struct mbuf *n;
1060	register struct ip *ip = mtod(m, struct ip *);
1061	unsigned optlen;
1062
1063	optlen = opt->m_len - sizeof(p->ipopt_dst);
1064	if (optlen + ip->ip_len > IP_MAXPACKET) {
1065		*phlen = 0;
1066		return (m);		/* XXX should fail */
1067	}
1068	if (p->ipopt_dst.s_addr)
1069		ip->ip_dst = p->ipopt_dst;
1070	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1071		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1072		if (n == NULL) {
1073			*phlen = 0;
1074			return (m);
1075		}
1076		n->m_pkthdr.rcvif = (struct ifnet *)0;
1077#ifdef MAC
1078		mac_create_mbuf_from_mbuf(m, n);
1079#endif
1080		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1081		m->m_len -= sizeof(struct ip);
1082		m->m_data += sizeof(struct ip);
1083		n->m_next = m;
1084		m = n;
1085		m->m_len = optlen + sizeof(struct ip);
1086		m->m_data += max_linkhdr;
1087		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1088	} else {
1089		m->m_data -= optlen;
1090		m->m_len += optlen;
1091		m->m_pkthdr.len += optlen;
1092		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1093	}
1094	ip = mtod(m, struct ip *);
1095	bcopy(p->ipopt_list, ip + 1, optlen);
1096	*phlen = sizeof(struct ip) + optlen;
1097	ip->ip_v = IPVERSION;
1098	ip->ip_hl = *phlen >> 2;
1099	ip->ip_len += optlen;
1100	return (m);
1101}
1102
1103/*
1104 * Copy options from ip to jp,
1105 * omitting those not copied during fragmentation.
1106 */
1107int
1108ip_optcopy(ip, jp)
1109	struct ip *ip, *jp;
1110{
1111	register u_char *cp, *dp;
1112	int opt, optlen, cnt;
1113
1114	cp = (u_char *)(ip + 1);
1115	dp = (u_char *)(jp + 1);
1116	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1117	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1118		opt = cp[0];
1119		if (opt == IPOPT_EOL)
1120			break;
1121		if (opt == IPOPT_NOP) {
1122			/* Preserve for IP mcast tunnel's LSRR alignment. */
1123			*dp++ = IPOPT_NOP;
1124			optlen = 1;
1125			continue;
1126		}
1127
1128		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1129		    ("ip_optcopy: malformed ipv4 option"));
1130		optlen = cp[IPOPT_OLEN];
1131		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1132		    ("ip_optcopy: malformed ipv4 option"));
1133
1134		/* bogus lengths should have been caught by ip_dooptions */
1135		if (optlen > cnt)
1136			optlen = cnt;
1137		if (IPOPT_COPIED(opt)) {
1138			bcopy(cp, dp, optlen);
1139			dp += optlen;
1140		}
1141	}
1142	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1143		*dp++ = IPOPT_EOL;
1144	return (optlen);
1145}
1146
1147/*
1148 * IP socket option processing.
1149 */
1150int
1151ip_ctloutput(so, sopt)
1152	struct socket *so;
1153	struct sockopt *sopt;
1154{
1155	struct	inpcb *inp = sotoinpcb(so);
1156	int	error, optval;
1157
1158	error = optval = 0;
1159	if (sopt->sopt_level != IPPROTO_IP) {
1160		return (EINVAL);
1161	}
1162
1163	switch (sopt->sopt_dir) {
1164	case SOPT_SET:
1165		switch (sopt->sopt_name) {
1166		case IP_OPTIONS:
1167#ifdef notyet
1168		case IP_RETOPTS:
1169#endif
1170		{
1171			struct mbuf *m;
1172			if (sopt->sopt_valsize > MLEN) {
1173				error = EMSGSIZE;
1174				break;
1175			}
1176			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1177			if (m == NULL) {
1178				error = ENOBUFS;
1179				break;
1180			}
1181			m->m_len = sopt->sopt_valsize;
1182			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1183					    m->m_len);
1184
1185			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1186					   m));
1187		}
1188
1189		case IP_TOS:
1190		case IP_TTL:
1191		case IP_RECVOPTS:
1192		case IP_RECVRETOPTS:
1193		case IP_RECVDSTADDR:
1194		case IP_RECVTTL:
1195		case IP_RECVIF:
1196		case IP_FAITH:
1197		case IP_ONESBCAST:
1198			error = sooptcopyin(sopt, &optval, sizeof optval,
1199					    sizeof optval);
1200			if (error)
1201				break;
1202
1203			switch (sopt->sopt_name) {
1204			case IP_TOS:
1205				inp->inp_ip_tos = optval;
1206				break;
1207
1208			case IP_TTL:
1209				inp->inp_ip_ttl = optval;
1210				break;
1211#define	OPTSET(bit) do {						\
1212	INP_LOCK(inp);							\
1213	if (optval)							\
1214		inp->inp_flags |= bit;					\
1215	else								\
1216		inp->inp_flags &= ~bit;					\
1217	INP_UNLOCK(inp);						\
1218} while (0)
1219
1220			case IP_RECVOPTS:
1221				OPTSET(INP_RECVOPTS);
1222				break;
1223
1224			case IP_RECVRETOPTS:
1225				OPTSET(INP_RECVRETOPTS);
1226				break;
1227
1228			case IP_RECVDSTADDR:
1229				OPTSET(INP_RECVDSTADDR);
1230				break;
1231
1232			case IP_RECVTTL:
1233				OPTSET(INP_RECVTTL);
1234				break;
1235
1236			case IP_RECVIF:
1237				OPTSET(INP_RECVIF);
1238				break;
1239
1240			case IP_FAITH:
1241				OPTSET(INP_FAITH);
1242				break;
1243
1244			case IP_ONESBCAST:
1245				OPTSET(INP_ONESBCAST);
1246				break;
1247			}
1248			break;
1249#undef OPTSET
1250
1251		case IP_MULTICAST_IF:
1252		case IP_MULTICAST_VIF:
1253		case IP_MULTICAST_TTL:
1254		case IP_MULTICAST_LOOP:
1255		case IP_ADD_MEMBERSHIP:
1256		case IP_DROP_MEMBERSHIP:
1257			error = ip_setmoptions(sopt, &inp->inp_moptions);
1258			break;
1259
1260		case IP_PORTRANGE:
1261			error = sooptcopyin(sopt, &optval, sizeof optval,
1262					    sizeof optval);
1263			if (error)
1264				break;
1265
1266			INP_LOCK(inp);
1267			switch (optval) {
1268			case IP_PORTRANGE_DEFAULT:
1269				inp->inp_flags &= ~(INP_LOWPORT);
1270				inp->inp_flags &= ~(INP_HIGHPORT);
1271				break;
1272
1273			case IP_PORTRANGE_HIGH:
1274				inp->inp_flags &= ~(INP_LOWPORT);
1275				inp->inp_flags |= INP_HIGHPORT;
1276				break;
1277
1278			case IP_PORTRANGE_LOW:
1279				inp->inp_flags &= ~(INP_HIGHPORT);
1280				inp->inp_flags |= INP_LOWPORT;
1281				break;
1282
1283			default:
1284				error = EINVAL;
1285				break;
1286			}
1287			INP_UNLOCK(inp);
1288			break;
1289
1290#if defined(IPSEC) || defined(FAST_IPSEC)
1291		case IP_IPSEC_POLICY:
1292		{
1293			caddr_t req;
1294			size_t len = 0;
1295			int priv;
1296			struct mbuf *m;
1297			int optname;
1298
1299			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1300				break;
1301			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1302				break;
1303			priv = (sopt->sopt_td != NULL &&
1304				suser(sopt->sopt_td) != 0) ? 0 : 1;
1305			req = mtod(m, caddr_t);
1306			len = m->m_len;
1307			optname = sopt->sopt_name;
1308			error = ipsec4_set_policy(inp, optname, req, len, priv);
1309			m_freem(m);
1310			break;
1311		}
1312#endif /*IPSEC*/
1313
1314		default:
1315			error = ENOPROTOOPT;
1316			break;
1317		}
1318		break;
1319
1320	case SOPT_GET:
1321		switch (sopt->sopt_name) {
1322		case IP_OPTIONS:
1323		case IP_RETOPTS:
1324			if (inp->inp_options)
1325				error = sooptcopyout(sopt,
1326						     mtod(inp->inp_options,
1327							  char *),
1328						     inp->inp_options->m_len);
1329			else
1330				sopt->sopt_valsize = 0;
1331			break;
1332
1333		case IP_TOS:
1334		case IP_TTL:
1335		case IP_RECVOPTS:
1336		case IP_RECVRETOPTS:
1337		case IP_RECVDSTADDR:
1338		case IP_RECVTTL:
1339		case IP_RECVIF:
1340		case IP_PORTRANGE:
1341		case IP_FAITH:
1342		case IP_ONESBCAST:
1343			switch (sopt->sopt_name) {
1344
1345			case IP_TOS:
1346				optval = inp->inp_ip_tos;
1347				break;
1348
1349			case IP_TTL:
1350				optval = inp->inp_ip_ttl;
1351				break;
1352
1353#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1354
1355			case IP_RECVOPTS:
1356				optval = OPTBIT(INP_RECVOPTS);
1357				break;
1358
1359			case IP_RECVRETOPTS:
1360				optval = OPTBIT(INP_RECVRETOPTS);
1361				break;
1362
1363			case IP_RECVDSTADDR:
1364				optval = OPTBIT(INP_RECVDSTADDR);
1365				break;
1366
1367			case IP_RECVTTL:
1368				optval = OPTBIT(INP_RECVTTL);
1369				break;
1370
1371			case IP_RECVIF:
1372				optval = OPTBIT(INP_RECVIF);
1373				break;
1374
1375			case IP_PORTRANGE:
1376				if (inp->inp_flags & INP_HIGHPORT)
1377					optval = IP_PORTRANGE_HIGH;
1378				else if (inp->inp_flags & INP_LOWPORT)
1379					optval = IP_PORTRANGE_LOW;
1380				else
1381					optval = 0;
1382				break;
1383
1384			case IP_FAITH:
1385				optval = OPTBIT(INP_FAITH);
1386				break;
1387
1388			case IP_ONESBCAST:
1389				optval = OPTBIT(INP_ONESBCAST);
1390				break;
1391			}
1392			error = sooptcopyout(sopt, &optval, sizeof optval);
1393			break;
1394
1395		case IP_MULTICAST_IF:
1396		case IP_MULTICAST_VIF:
1397		case IP_MULTICAST_TTL:
1398		case IP_MULTICAST_LOOP:
1399		case IP_ADD_MEMBERSHIP:
1400		case IP_DROP_MEMBERSHIP:
1401			error = ip_getmoptions(sopt, inp->inp_moptions);
1402			break;
1403
1404#if defined(IPSEC) || defined(FAST_IPSEC)
1405		case IP_IPSEC_POLICY:
1406		{
1407			struct mbuf *m = NULL;
1408			caddr_t req = NULL;
1409			size_t len = 0;
1410
1411			if (m != 0) {
1412				req = mtod(m, caddr_t);
1413				len = m->m_len;
1414			}
1415			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1416			if (error == 0)
1417				error = soopt_mcopyout(sopt, m); /* XXX */
1418			if (error == 0)
1419				m_freem(m);
1420			break;
1421		}
1422#endif /*IPSEC*/
1423
1424		default:
1425			error = ENOPROTOOPT;
1426			break;
1427		}
1428		break;
1429	}
1430	return (error);
1431}
1432
1433/*
1434 * Set up IP options in pcb for insertion in output packets.
1435 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1436 * with destination address if source routed.
1437 */
1438static int
1439ip_pcbopts(optname, pcbopt, m)
1440	int optname;
1441	struct mbuf **pcbopt;
1442	register struct mbuf *m;
1443{
1444	register int cnt, optlen;
1445	register u_char *cp;
1446	u_char opt;
1447
1448	/* turn off any old options */
1449	if (*pcbopt)
1450		(void)m_free(*pcbopt);
1451	*pcbopt = 0;
1452	if (m == (struct mbuf *)0 || m->m_len == 0) {
1453		/*
1454		 * Only turning off any previous options.
1455		 */
1456		if (m)
1457			(void)m_free(m);
1458		return (0);
1459	}
1460
1461	if (m->m_len % sizeof(int32_t))
1462		goto bad;
1463	/*
1464	 * IP first-hop destination address will be stored before
1465	 * actual options; move other options back
1466	 * and clear it when none present.
1467	 */
1468	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1469		goto bad;
1470	cnt = m->m_len;
1471	m->m_len += sizeof(struct in_addr);
1472	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1473	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1474	bzero(mtod(m, void *), sizeof(struct in_addr));
1475
1476	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1477		opt = cp[IPOPT_OPTVAL];
1478		if (opt == IPOPT_EOL)
1479			break;
1480		if (opt == IPOPT_NOP)
1481			optlen = 1;
1482		else {
1483			if (cnt < IPOPT_OLEN + sizeof(*cp))
1484				goto bad;
1485			optlen = cp[IPOPT_OLEN];
1486			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1487				goto bad;
1488		}
1489		switch (opt) {
1490
1491		default:
1492			break;
1493
1494		case IPOPT_LSRR:
1495		case IPOPT_SSRR:
1496			/*
1497			 * user process specifies route as:
1498			 *	->A->B->C->D
1499			 * D must be our final destination (but we can't
1500			 * check that since we may not have connected yet).
1501			 * A is first hop destination, which doesn't appear in
1502			 * actual IP option, but is stored before the options.
1503			 */
1504			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1505				goto bad;
1506			m->m_len -= sizeof(struct in_addr);
1507			cnt -= sizeof(struct in_addr);
1508			optlen -= sizeof(struct in_addr);
1509			cp[IPOPT_OLEN] = optlen;
1510			/*
1511			 * Move first hop before start of options.
1512			 */
1513			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1514			    sizeof(struct in_addr));
1515			/*
1516			 * Then copy rest of options back
1517			 * to close up the deleted entry.
1518			 */
1519			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1520			    &cp[IPOPT_OFFSET+1],
1521			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1522			break;
1523		}
1524	}
1525	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1526		goto bad;
1527	*pcbopt = m;
1528	return (0);
1529
1530bad:
1531	(void)m_free(m);
1532	return (EINVAL);
1533}
1534
1535/*
1536 * XXX
1537 * The whole multicast option thing needs to be re-thought.
1538 * Several of these options are equally applicable to non-multicast
1539 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1540 * standard option (IP_TTL).
1541 */
1542
1543/*
1544 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1545 */
1546static struct ifnet *
1547ip_multicast_if(a, ifindexp)
1548	struct in_addr *a;
1549	int *ifindexp;
1550{
1551	int ifindex;
1552	struct ifnet *ifp;
1553
1554	if (ifindexp)
1555		*ifindexp = 0;
1556	if (ntohl(a->s_addr) >> 24 == 0) {
1557		ifindex = ntohl(a->s_addr) & 0xffffff;
1558		if (ifindex < 0 || if_index < ifindex)
1559			return NULL;
1560		ifp = ifnet_byindex(ifindex);
1561		if (ifindexp)
1562			*ifindexp = ifindex;
1563	} else {
1564		INADDR_TO_IFP(*a, ifp);
1565	}
1566	return ifp;
1567}
1568
1569/*
1570 * Set the IP multicast options in response to user setsockopt().
1571 */
1572static int
1573ip_setmoptions(sopt, imop)
1574	struct sockopt *sopt;
1575	struct ip_moptions **imop;
1576{
1577	int error = 0;
1578	int i;
1579	struct in_addr addr;
1580	struct ip_mreq mreq;
1581	struct ifnet *ifp;
1582	struct ip_moptions *imo = *imop;
1583	struct route ro;
1584	struct sockaddr_in *dst;
1585	int ifindex;
1586	int s;
1587
1588	if (imo == NULL) {
1589		/*
1590		 * No multicast option buffer attached to the pcb;
1591		 * allocate one and initialize to default values.
1592		 */
1593		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1594		    M_WAITOK);
1595
1596		if (imo == NULL)
1597			return (ENOBUFS);
1598		*imop = imo;
1599		imo->imo_multicast_ifp = NULL;
1600		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1601		imo->imo_multicast_vif = -1;
1602		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1603		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1604		imo->imo_num_memberships = 0;
1605	}
1606
1607	switch (sopt->sopt_name) {
1608	/* store an index number for the vif you wanna use in the send */
1609	case IP_MULTICAST_VIF:
1610		if (legal_vif_num == 0) {
1611			error = EOPNOTSUPP;
1612			break;
1613		}
1614		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1615		if (error)
1616			break;
1617		if (!legal_vif_num(i) && (i != -1)) {
1618			error = EINVAL;
1619			break;
1620		}
1621		imo->imo_multicast_vif = i;
1622		break;
1623
1624	case IP_MULTICAST_IF:
1625		/*
1626		 * Select the interface for outgoing multicast packets.
1627		 */
1628		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1629		if (error)
1630			break;
1631		/*
1632		 * INADDR_ANY is used to remove a previous selection.
1633		 * When no interface is selected, a default one is
1634		 * chosen every time a multicast packet is sent.
1635		 */
1636		if (addr.s_addr == INADDR_ANY) {
1637			imo->imo_multicast_ifp = NULL;
1638			break;
1639		}
1640		/*
1641		 * The selected interface is identified by its local
1642		 * IP address.  Find the interface and confirm that
1643		 * it supports multicasting.
1644		 */
1645		s = splimp();
1646		ifp = ip_multicast_if(&addr, &ifindex);
1647		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1648			splx(s);
1649			error = EADDRNOTAVAIL;
1650			break;
1651		}
1652		imo->imo_multicast_ifp = ifp;
1653		if (ifindex)
1654			imo->imo_multicast_addr = addr;
1655		else
1656			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1657		splx(s);
1658		break;
1659
1660	case IP_MULTICAST_TTL:
1661		/*
1662		 * Set the IP time-to-live for outgoing multicast packets.
1663		 * The original multicast API required a char argument,
1664		 * which is inconsistent with the rest of the socket API.
1665		 * We allow either a char or an int.
1666		 */
1667		if (sopt->sopt_valsize == 1) {
1668			u_char ttl;
1669			error = sooptcopyin(sopt, &ttl, 1, 1);
1670			if (error)
1671				break;
1672			imo->imo_multicast_ttl = ttl;
1673		} else {
1674			u_int ttl;
1675			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1676					    sizeof ttl);
1677			if (error)
1678				break;
1679			if (ttl > 255)
1680				error = EINVAL;
1681			else
1682				imo->imo_multicast_ttl = ttl;
1683		}
1684		break;
1685
1686	case IP_MULTICAST_LOOP:
1687		/*
1688		 * Set the loopback flag for outgoing multicast packets.
1689		 * Must be zero or one.  The original multicast API required a
1690		 * char argument, which is inconsistent with the rest
1691		 * of the socket API.  We allow either a char or an int.
1692		 */
1693		if (sopt->sopt_valsize == 1) {
1694			u_char loop;
1695			error = sooptcopyin(sopt, &loop, 1, 1);
1696			if (error)
1697				break;
1698			imo->imo_multicast_loop = !!loop;
1699		} else {
1700			u_int loop;
1701			error = sooptcopyin(sopt, &loop, sizeof loop,
1702					    sizeof loop);
1703			if (error)
1704				break;
1705			imo->imo_multicast_loop = !!loop;
1706		}
1707		break;
1708
1709	case IP_ADD_MEMBERSHIP:
1710		/*
1711		 * Add a multicast group membership.
1712		 * Group must be a valid IP multicast address.
1713		 */
1714		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1715		if (error)
1716			break;
1717
1718		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1719			error = EINVAL;
1720			break;
1721		}
1722		s = splimp();
1723		/*
1724		 * If no interface address was provided, use the interface of
1725		 * the route to the given multicast address.
1726		 */
1727		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1728			bzero((caddr_t)&ro, sizeof(ro));
1729			dst = (struct sockaddr_in *)&ro.ro_dst;
1730			dst->sin_len = sizeof(*dst);
1731			dst->sin_family = AF_INET;
1732			dst->sin_addr = mreq.imr_multiaddr;
1733			rtalloc_ign(&ro, RTF_CLONING);
1734			if (ro.ro_rt == NULL) {
1735				error = EADDRNOTAVAIL;
1736				splx(s);
1737				break;
1738			}
1739			ifp = ro.ro_rt->rt_ifp;
1740			RTFREE(ro.ro_rt);
1741		}
1742		else {
1743			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1744		}
1745
1746		/*
1747		 * See if we found an interface, and confirm that it
1748		 * supports multicast.
1749		 */
1750		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1751			error = EADDRNOTAVAIL;
1752			splx(s);
1753			break;
1754		}
1755		/*
1756		 * See if the membership already exists or if all the
1757		 * membership slots are full.
1758		 */
1759		for (i = 0; i < imo->imo_num_memberships; ++i) {
1760			if (imo->imo_membership[i]->inm_ifp == ifp &&
1761			    imo->imo_membership[i]->inm_addr.s_addr
1762						== mreq.imr_multiaddr.s_addr)
1763				break;
1764		}
1765		if (i < imo->imo_num_memberships) {
1766			error = EADDRINUSE;
1767			splx(s);
1768			break;
1769		}
1770		if (i == IP_MAX_MEMBERSHIPS) {
1771			error = ETOOMANYREFS;
1772			splx(s);
1773			break;
1774		}
1775		/*
1776		 * Everything looks good; add a new record to the multicast
1777		 * address list for the given interface.
1778		 */
1779		if ((imo->imo_membership[i] =
1780		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
1781			error = ENOBUFS;
1782			splx(s);
1783			break;
1784		}
1785		++imo->imo_num_memberships;
1786		splx(s);
1787		break;
1788
1789	case IP_DROP_MEMBERSHIP:
1790		/*
1791		 * Drop a multicast group membership.
1792		 * Group must be a valid IP multicast address.
1793		 */
1794		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1795		if (error)
1796			break;
1797
1798		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1799			error = EINVAL;
1800			break;
1801		}
1802
1803		s = splimp();
1804		/*
1805		 * If an interface address was specified, get a pointer
1806		 * to its ifnet structure.
1807		 */
1808		if (mreq.imr_interface.s_addr == INADDR_ANY)
1809			ifp = NULL;
1810		else {
1811			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1812			if (ifp == NULL) {
1813				error = EADDRNOTAVAIL;
1814				splx(s);
1815				break;
1816			}
1817		}
1818		/*
1819		 * Find the membership in the membership array.
1820		 */
1821		for (i = 0; i < imo->imo_num_memberships; ++i) {
1822			if ((ifp == NULL ||
1823			     imo->imo_membership[i]->inm_ifp == ifp) &&
1824			     imo->imo_membership[i]->inm_addr.s_addr ==
1825			     mreq.imr_multiaddr.s_addr)
1826				break;
1827		}
1828		if (i == imo->imo_num_memberships) {
1829			error = EADDRNOTAVAIL;
1830			splx(s);
1831			break;
1832		}
1833		/*
1834		 * Give up the multicast address record to which the
1835		 * membership points.
1836		 */
1837		in_delmulti(imo->imo_membership[i]);
1838		/*
1839		 * Remove the gap in the membership array.
1840		 */
1841		for (++i; i < imo->imo_num_memberships; ++i)
1842			imo->imo_membership[i-1] = imo->imo_membership[i];
1843		--imo->imo_num_memberships;
1844		splx(s);
1845		break;
1846
1847	default:
1848		error = EOPNOTSUPP;
1849		break;
1850	}
1851
1852	/*
1853	 * If all options have default values, no need to keep the mbuf.
1854	 */
1855	if (imo->imo_multicast_ifp == NULL &&
1856	    imo->imo_multicast_vif == -1 &&
1857	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1858	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1859	    imo->imo_num_memberships == 0) {
1860		free(*imop, M_IPMOPTS);
1861		*imop = NULL;
1862	}
1863
1864	return (error);
1865}
1866
1867/*
1868 * Return the IP multicast options in response to user getsockopt().
1869 */
1870static int
1871ip_getmoptions(sopt, imo)
1872	struct sockopt *sopt;
1873	register struct ip_moptions *imo;
1874{
1875	struct in_addr addr;
1876	struct in_ifaddr *ia;
1877	int error, optval;
1878	u_char coptval;
1879
1880	error = 0;
1881	switch (sopt->sopt_name) {
1882	case IP_MULTICAST_VIF:
1883		if (imo != NULL)
1884			optval = imo->imo_multicast_vif;
1885		else
1886			optval = -1;
1887		error = sooptcopyout(sopt, &optval, sizeof optval);
1888		break;
1889
1890	case IP_MULTICAST_IF:
1891		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1892			addr.s_addr = INADDR_ANY;
1893		else if (imo->imo_multicast_addr.s_addr) {
1894			/* return the value user has set */
1895			addr = imo->imo_multicast_addr;
1896		} else {
1897			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1898			addr.s_addr = (ia == NULL) ? INADDR_ANY
1899				: IA_SIN(ia)->sin_addr.s_addr;
1900		}
1901		error = sooptcopyout(sopt, &addr, sizeof addr);
1902		break;
1903
1904	case IP_MULTICAST_TTL:
1905		if (imo == 0)
1906			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1907		else
1908			optval = coptval = imo->imo_multicast_ttl;
1909		if (sopt->sopt_valsize == 1)
1910			error = sooptcopyout(sopt, &coptval, 1);
1911		else
1912			error = sooptcopyout(sopt, &optval, sizeof optval);
1913		break;
1914
1915	case IP_MULTICAST_LOOP:
1916		if (imo == 0)
1917			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1918		else
1919			optval = coptval = imo->imo_multicast_loop;
1920		if (sopt->sopt_valsize == 1)
1921			error = sooptcopyout(sopt, &coptval, 1);
1922		else
1923			error = sooptcopyout(sopt, &optval, sizeof optval);
1924		break;
1925
1926	default:
1927		error = ENOPROTOOPT;
1928		break;
1929	}
1930	return (error);
1931}
1932
1933/*
1934 * Discard the IP multicast options.
1935 */
1936void
1937ip_freemoptions(imo)
1938	register struct ip_moptions *imo;
1939{
1940	register int i;
1941
1942	if (imo != NULL) {
1943		for (i = 0; i < imo->imo_num_memberships; ++i)
1944			in_delmulti(imo->imo_membership[i]);
1945		free(imo, M_IPMOPTS);
1946	}
1947}
1948
1949/*
1950 * Routine called from ip_output() to loop back a copy of an IP multicast
1951 * packet to the input queue of a specified interface.  Note that this
1952 * calls the output routine of the loopback "driver", but with an interface
1953 * pointer that might NOT be a loopback interface -- evil, but easier than
1954 * replicating that code here.
1955 */
1956static void
1957ip_mloopback(ifp, m, dst, hlen)
1958	struct ifnet *ifp;
1959	register struct mbuf *m;
1960	register struct sockaddr_in *dst;
1961	int hlen;
1962{
1963	register struct ip *ip;
1964	struct mbuf *copym;
1965
1966	copym = m_copy(m, 0, M_COPYALL);
1967	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1968		copym = m_pullup(copym, hlen);
1969	if (copym != NULL) {
1970		/* If needed, compute the checksum and mark it as valid. */
1971		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1972			in_delayed_cksum(copym);
1973			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1974			copym->m_pkthdr.csum_flags |=
1975			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1976			copym->m_pkthdr.csum_data = 0xffff;
1977		}
1978		/*
1979		 * We don't bother to fragment if the IP length is greater
1980		 * than the interface's MTU.  Can this possibly matter?
1981		 */
1982		ip = mtod(copym, struct ip *);
1983		ip->ip_len = htons(ip->ip_len);
1984		ip->ip_off = htons(ip->ip_off);
1985		ip->ip_sum = 0;
1986		ip->ip_sum = in_cksum(copym, hlen);
1987		/*
1988		 * NB:
1989		 * It's not clear whether there are any lingering
1990		 * reentrancy problems in other areas which might
1991		 * be exposed by using ip_input directly (in
1992		 * particular, everything which modifies the packet
1993		 * in-place).  Yet another option is using the
1994		 * protosw directly to deliver the looped back
1995		 * packet.  For the moment, we'll err on the side
1996		 * of safety by using if_simloop().
1997		 */
1998#if 1 /* XXX */
1999		if (dst->sin_family != AF_INET) {
2000			printf("ip_mloopback: bad address family %d\n",
2001						dst->sin_family);
2002			dst->sin_family = AF_INET;
2003		}
2004#endif
2005
2006#ifdef notdef
2007		copym->m_pkthdr.rcvif = ifp;
2008		ip_input(copym);
2009#else
2010		if_simloop(ifp, copym, dst->sin_family, 0);
2011#endif
2012	}
2013}
2014