ip_output.c revision 133481
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 * $FreeBSD: head/sys/netinet/ip_output.c 133481 2004-08-11 10:46:15Z andre $
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdn.h"
35#include "opt_ipdivert.h"
36#include "opt_ipfilter.h"
37#include "opt_ipsec.h"
38#include "opt_mac.h"
39#include "opt_pfil_hooks.h"
40#include "opt_random_ip_id.h"
41#include "opt_mbuf_stress_test.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53
54#include <net/if.h>
55#include <net/route.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/in_pcb.h>
61#include <netinet/in_var.h>
62#include <netinet/ip_var.h>
63
64#ifdef PFIL_HOOKS
65#include <net/pfil.h>
66#endif
67
68#include <machine/in_cksum.h>
69
70static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
71
72#ifdef IPSEC
73#include <netinet6/ipsec.h>
74#include <netkey/key.h>
75#ifdef IPSEC_DEBUG
76#include <netkey/key_debug.h>
77#else
78#define	KEYDEBUG(lev,arg)
79#endif
80#endif /*IPSEC*/
81
82#ifdef FAST_IPSEC
83#include <netipsec/ipsec.h>
84#include <netipsec/xform.h>
85#include <netipsec/key.h>
86#endif /*FAST_IPSEC*/
87
88#include <netinet/ip_fw.h>
89#include <netinet/ip_divert.h>
90#include <netinet/ip_dummynet.h>
91
92#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
93				x, (ntohl(a.s_addr)>>24)&0xFF,\
94				  (ntohl(a.s_addr)>>16)&0xFF,\
95				  (ntohl(a.s_addr)>>8)&0xFF,\
96				  (ntohl(a.s_addr))&0xFF, y);
97
98u_short ip_id;
99
100#ifdef MBUF_STRESS_TEST
101int mbuf_frag_size = 0;
102SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
103	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
104#endif
105
106static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
107static struct ifnet *ip_multicast_if(struct in_addr *, int *);
108static void	ip_mloopback
109	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
110static int	ip_getmoptions
111	(struct sockopt *, struct ip_moptions *);
112static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
113static int	ip_setmoptions
114	(struct sockopt *, struct ip_moptions **);
115
116int	ip_optcopy(struct ip *, struct ip *);
117
118
119extern	struct protosw inetsw[];
120
121/*
122 * IP output.  The packet in mbuf chain m contains a skeletal IP
123 * header (with len, off, ttl, proto, tos, src, dst).
124 * The mbuf chain containing the packet will be freed.
125 * The mbuf opt, if present, will not be freed.
126 * In the IP forwarding case, the packet will arrive with options already
127 * inserted, so must have a NULL opt pointer.
128 */
129int
130ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
131	int flags, struct ip_moptions *imo, struct inpcb *inp)
132{
133	struct ip *ip;
134	struct ifnet *ifp = NULL;	/* keep compiler happy */
135	struct mbuf *m0;
136	int hlen = sizeof (struct ip);
137	int len, off, error = 0;
138	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
139	struct in_ifaddr *ia = NULL;
140	int isbroadcast, sw_csum;
141	struct in_addr pkt_dst;
142	struct route iproute;
143	struct m_tag *mtag, *dummytag;
144#ifdef IPSEC
145	struct secpolicy *sp = NULL;
146#endif
147#ifdef FAST_IPSEC
148	struct secpolicy *sp = NULL;
149	struct tdb_ident *tdbi;
150	int s;
151#endif /* FAST_IPSEC */
152	struct ip_fw_args args;
153	int src_was_INADDR_ANY = 0;	/* as the name says... */
154
155	args.eh = NULL;
156	args.rule = NULL;
157
158	M_ASSERTPKTHDR(m);
159
160	args.next_hop = m_claim_next(m, PACKET_TAG_IPFORWARD);
161	dummytag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
162	if (dummytag != NULL) {
163		struct dn_pkt_tag *dt = (struct dn_pkt_tag *)(dummytag+1);
164		/*
165		 * Prevent lower layers from finding the tag
166		 * Cleanup and free is done below
167		 */
168		m_tag_unlink(m, dummytag);
169		/*
170		 * the packet was already tagged, so part of the
171		 * processing was already done, and we need to go down.
172		 * Get parameters from the header.
173		 */
174		args.rule = dt->rule;
175		ro = &(dt->ro);
176		dst = dt->dn_dst;
177		ifp = dt->ifp;
178	}
179
180	if (ro == NULL) {
181		ro = &iproute;
182		bzero(ro, sizeof (*ro));
183	}
184
185	if (inp != NULL)
186		INP_LOCK_ASSERT(inp);
187
188	if (args.rule != NULL) {	/* dummynet already saw us */
189		ip = mtod(m, struct ip *);
190		hlen = ip->ip_hl << 2 ;
191		if (ro->ro_rt)
192			ia = ifatoia(ro->ro_rt->rt_ifa);
193		goto sendit;
194	}
195
196	if (opt) {
197		len = 0;
198		m = ip_insertoptions(m, opt, &len);
199		if (len != 0)
200			hlen = len;
201	}
202	ip = mtod(m, struct ip *);
203	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
204
205	/*
206	 * Fill in IP header.  If we are not allowing fragmentation,
207	 * then the ip_id field is meaningless, but we don't set it
208	 * to zero.  Doing so causes various problems when devices along
209	 * the path (routers, load balancers, firewalls, etc.) illegally
210	 * disable DF on our packet.  Note that a 16-bit counter
211	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
212	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
213	 * for Counting NATted Hosts", Proc. IMW'02, available at
214	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
215	 */
216	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
217		ip->ip_v = IPVERSION;
218		ip->ip_hl = hlen >> 2;
219#ifdef RANDOM_IP_ID
220		ip->ip_id = ip_randomid();
221#else
222		ip->ip_id = htons(ip_id++);
223#endif
224		ipstat.ips_localout++;
225	} else {
226		hlen = ip->ip_hl << 2;
227	}
228
229	dst = (struct sockaddr_in *)&ro->ro_dst;
230	/*
231	 * If there is a cached route,
232	 * check that it is to the same destination
233	 * and is still up.  If not, free it and try again.
234	 * The address family should also be checked in case of sharing the
235	 * cache with IPv6.
236	 */
237	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
238			  dst->sin_family != AF_INET ||
239			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
240		RTFREE(ro->ro_rt);
241		ro->ro_rt = (struct rtentry *)0;
242	}
243	if (ro->ro_rt == NULL) {
244		bzero(dst, sizeof(*dst));
245		dst->sin_family = AF_INET;
246		dst->sin_len = sizeof(*dst);
247		dst->sin_addr = pkt_dst;
248	}
249	/*
250	 * If routing to interface only,
251	 * short circuit routing lookup.
252	 */
253	if (flags & IP_ROUTETOIF) {
254		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
255		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == NULL) {
256			ipstat.ips_noroute++;
257			error = ENETUNREACH;
258			goto bad;
259		}
260		ifp = ia->ia_ifp;
261		ip->ip_ttl = 1;
262		isbroadcast = in_broadcast(dst->sin_addr, ifp);
263	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
264	    imo != NULL && imo->imo_multicast_ifp != NULL) {
265		/*
266		 * Bypass the normal routing lookup for multicast
267		 * packets if the interface is specified.
268		 */
269		ifp = imo->imo_multicast_ifp;
270		IFP_TO_IA(ifp, ia);
271		isbroadcast = 0;	/* fool gcc */
272	} else {
273		/*
274		 * We want to do any cloning requested by the link layer,
275		 * as this is probably required in all cases for correct
276		 * operation (as it is for ARP).
277		 */
278		if (ro->ro_rt == NULL)
279			rtalloc_ign(ro, 0);
280		if (ro->ro_rt == NULL) {
281			ipstat.ips_noroute++;
282			error = EHOSTUNREACH;
283			goto bad;
284		}
285		ia = ifatoia(ro->ro_rt->rt_ifa);
286		ifp = ro->ro_rt->rt_ifp;
287		ro->ro_rt->rt_rmx.rmx_pksent++;
288		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
289			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
290		if (ro->ro_rt->rt_flags & RTF_HOST)
291			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
292		else
293			isbroadcast = in_broadcast(dst->sin_addr, ifp);
294	}
295	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
296		struct in_multi *inm;
297
298		m->m_flags |= M_MCAST;
299		/*
300		 * IP destination address is multicast.  Make sure "dst"
301		 * still points to the address in "ro".  (It may have been
302		 * changed to point to a gateway address, above.)
303		 */
304		dst = (struct sockaddr_in *)&ro->ro_dst;
305		/*
306		 * See if the caller provided any multicast options
307		 */
308		if (imo != NULL) {
309			ip->ip_ttl = imo->imo_multicast_ttl;
310			if (imo->imo_multicast_vif != -1)
311				ip->ip_src.s_addr =
312				    ip_mcast_src ?
313				    ip_mcast_src(imo->imo_multicast_vif) :
314				    INADDR_ANY;
315		} else
316			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
317		/*
318		 * Confirm that the outgoing interface supports multicast.
319		 */
320		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
321			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
322				ipstat.ips_noroute++;
323				error = ENETUNREACH;
324				goto bad;
325			}
326		}
327		/*
328		 * If source address not specified yet, use address
329		 * of outgoing interface.
330		 */
331		if (ip->ip_src.s_addr == INADDR_ANY) {
332			/* Interface may have no addresses. */
333			if (ia != NULL)
334				ip->ip_src = IA_SIN(ia)->sin_addr;
335		}
336
337		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
338		if (inm != NULL &&
339		   (imo == NULL || imo->imo_multicast_loop)) {
340			/*
341			 * If we belong to the destination multicast group
342			 * on the outgoing interface, and the caller did not
343			 * forbid loopback, loop back a copy.
344			 */
345			ip_mloopback(ifp, m, dst, hlen);
346		}
347		else {
348			/*
349			 * If we are acting as a multicast router, perform
350			 * multicast forwarding as if the packet had just
351			 * arrived on the interface to which we are about
352			 * to send.  The multicast forwarding function
353			 * recursively calls this function, using the
354			 * IP_FORWARDING flag to prevent infinite recursion.
355			 *
356			 * Multicasts that are looped back by ip_mloopback(),
357			 * above, will be forwarded by the ip_input() routine,
358			 * if necessary.
359			 */
360			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
361				/*
362				 * If rsvp daemon is not running, do not
363				 * set ip_moptions. This ensures that the packet
364				 * is multicast and not just sent down one link
365				 * as prescribed by rsvpd.
366				 */
367				if (!rsvp_on)
368					imo = NULL;
369				if (ip_mforward &&
370				    ip_mforward(ip, ifp, m, imo) != 0) {
371					m_freem(m);
372					goto done;
373				}
374			}
375		}
376
377		/*
378		 * Multicasts with a time-to-live of zero may be looped-
379		 * back, above, but must not be transmitted on a network.
380		 * Also, multicasts addressed to the loopback interface
381		 * are not sent -- the above call to ip_mloopback() will
382		 * loop back a copy if this host actually belongs to the
383		 * destination group on the loopback interface.
384		 */
385		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
386			m_freem(m);
387			goto done;
388		}
389
390		goto sendit;
391	}
392#ifndef notdef
393	/*
394	 * If the source address is not specified yet, use the address
395	 * of the outoing interface. In case, keep note we did that, so
396	 * if the the firewall changes the next-hop causing the output
397	 * interface to change, we can fix that.
398	 */
399	if (ip->ip_src.s_addr == INADDR_ANY) {
400		/* Interface may have no addresses. */
401		if (ia != NULL) {
402			ip->ip_src = IA_SIN(ia)->sin_addr;
403			src_was_INADDR_ANY = 1;
404		}
405	}
406#endif /* notdef */
407#ifdef ALTQ
408	/*
409	 * disable packet drop hack.
410	 * packetdrop should be done by queueing.
411	 */
412#else /* !ALTQ */
413	/*
414	 * Verify that we have any chance at all of being able to queue
415	 *      the packet or packet fragments
416	 */
417	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
418		ifp->if_snd.ifq_maxlen) {
419			error = ENOBUFS;
420			ipstat.ips_odropped++;
421			goto bad;
422	}
423#endif /* !ALTQ */
424
425	/*
426	 * Look for broadcast address and
427	 * verify user is allowed to send
428	 * such a packet.
429	 */
430	if (isbroadcast) {
431		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
432			error = EADDRNOTAVAIL;
433			goto bad;
434		}
435		if ((flags & IP_ALLOWBROADCAST) == 0) {
436			error = EACCES;
437			goto bad;
438		}
439		/* don't allow broadcast messages to be fragmented */
440		if (ip->ip_len > ifp->if_mtu) {
441			error = EMSGSIZE;
442			goto bad;
443		}
444		if (flags & IP_SENDONES)
445			ip->ip_dst.s_addr = INADDR_BROADCAST;
446		m->m_flags |= M_BCAST;
447	} else {
448		m->m_flags &= ~M_BCAST;
449	}
450
451sendit:
452#ifdef IPSEC
453	/* get SP for this packet */
454	if (inp == NULL)
455		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
456		    flags, &error);
457	else
458		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
459
460	if (sp == NULL) {
461		ipsecstat.out_inval++;
462		goto bad;
463	}
464
465	error = 0;
466
467	/* check policy */
468	switch (sp->policy) {
469	case IPSEC_POLICY_DISCARD:
470		/*
471		 * This packet is just discarded.
472		 */
473		ipsecstat.out_polvio++;
474		goto bad;
475
476	case IPSEC_POLICY_BYPASS:
477	case IPSEC_POLICY_NONE:
478	case IPSEC_POLICY_TCP:
479		/* no need to do IPsec. */
480		goto skip_ipsec;
481
482	case IPSEC_POLICY_IPSEC:
483		if (sp->req == NULL) {
484			/* acquire a policy */
485			error = key_spdacquire(sp);
486			goto bad;
487		}
488		break;
489
490	case IPSEC_POLICY_ENTRUST:
491	default:
492		printf("ip_output: Invalid policy found. %d\n", sp->policy);
493	}
494    {
495	struct ipsec_output_state state;
496	bzero(&state, sizeof(state));
497	state.m = m;
498	if (flags & IP_ROUTETOIF) {
499		state.ro = &iproute;
500		bzero(&iproute, sizeof(iproute));
501	} else
502		state.ro = ro;
503	state.dst = (struct sockaddr *)dst;
504
505	ip->ip_sum = 0;
506
507	/*
508	 * XXX
509	 * delayed checksums are not currently compatible with IPsec
510	 */
511	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
512		in_delayed_cksum(m);
513		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
514	}
515
516	ip->ip_len = htons(ip->ip_len);
517	ip->ip_off = htons(ip->ip_off);
518
519	error = ipsec4_output(&state, sp, flags);
520
521	m = state.m;
522	if (flags & IP_ROUTETOIF) {
523		/*
524		 * if we have tunnel mode SA, we may need to ignore
525		 * IP_ROUTETOIF.
526		 */
527		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
528			flags &= ~IP_ROUTETOIF;
529			ro = state.ro;
530		}
531	} else
532		ro = state.ro;
533	dst = (struct sockaddr_in *)state.dst;
534	if (error) {
535		/* mbuf is already reclaimed in ipsec4_output. */
536		m = NULL;
537		switch (error) {
538		case EHOSTUNREACH:
539		case ENETUNREACH:
540		case EMSGSIZE:
541		case ENOBUFS:
542		case ENOMEM:
543			break;
544		default:
545			printf("ip4_output (ipsec): error code %d\n", error);
546			/*fall through*/
547		case ENOENT:
548			/* don't show these error codes to the user */
549			error = 0;
550			break;
551		}
552		goto bad;
553	}
554
555	/* be sure to update variables that are affected by ipsec4_output() */
556	ip = mtod(m, struct ip *);
557	hlen = ip->ip_hl << 2;
558	if (ro->ro_rt == NULL) {
559		if ((flags & IP_ROUTETOIF) == 0) {
560			printf("ip_output: "
561				"can't update route after IPsec processing\n");
562			error = EHOSTUNREACH;	/*XXX*/
563			goto bad;
564		}
565	} else {
566		if (state.encap) {
567			ia = ifatoia(ro->ro_rt->rt_ifa);
568			ifp = ro->ro_rt->rt_ifp;
569		}
570	}
571    }
572
573	/* make it flipped, again. */
574	ip->ip_len = ntohs(ip->ip_len);
575	ip->ip_off = ntohs(ip->ip_off);
576skip_ipsec:
577#endif /*IPSEC*/
578#ifdef FAST_IPSEC
579	/*
580	 * Check the security policy (SP) for the packet and, if
581	 * required, do IPsec-related processing.  There are two
582	 * cases here; the first time a packet is sent through
583	 * it will be untagged and handled by ipsec4_checkpolicy.
584	 * If the packet is resubmitted to ip_output (e.g. after
585	 * AH, ESP, etc. processing), there will be a tag to bypass
586	 * the lookup and related policy checking.
587	 */
588	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
589	s = splnet();
590	if (mtag != NULL) {
591		tdbi = (struct tdb_ident *)(mtag + 1);
592		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
593		if (sp == NULL)
594			error = -EINVAL;	/* force silent drop */
595		m_tag_delete(m, mtag);
596	} else {
597		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
598					&error, inp);
599	}
600	/*
601	 * There are four return cases:
602	 *    sp != NULL	 	    apply IPsec policy
603	 *    sp == NULL, error == 0	    no IPsec handling needed
604	 *    sp == NULL, error == -EINVAL  discard packet w/o error
605	 *    sp == NULL, error != 0	    discard packet, report error
606	 */
607	if (sp != NULL) {
608		/* Loop detection, check if ipsec processing already done */
609		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
610		for (mtag = m_tag_first(m); mtag != NULL;
611		     mtag = m_tag_next(m, mtag)) {
612			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
613				continue;
614			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
615			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
616				continue;
617			/*
618			 * Check if policy has an SA associated with it.
619			 * This can happen when an SP has yet to acquire
620			 * an SA; e.g. on first reference.  If it occurs,
621			 * then we let ipsec4_process_packet do its thing.
622			 */
623			if (sp->req->sav == NULL)
624				break;
625			tdbi = (struct tdb_ident *)(mtag + 1);
626			if (tdbi->spi == sp->req->sav->spi &&
627			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
628			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
629				 sizeof (union sockaddr_union)) == 0) {
630				/*
631				 * No IPsec processing is needed, free
632				 * reference to SP.
633				 *
634				 * NB: null pointer to avoid free at
635				 *     done: below.
636				 */
637				KEY_FREESP(&sp), sp = NULL;
638				splx(s);
639				goto spd_done;
640			}
641		}
642
643		/*
644		 * Do delayed checksums now because we send before
645		 * this is done in the normal processing path.
646		 */
647		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
648			in_delayed_cksum(m);
649			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
650		}
651
652		ip->ip_len = htons(ip->ip_len);
653		ip->ip_off = htons(ip->ip_off);
654
655		/* NB: callee frees mbuf */
656		error = ipsec4_process_packet(m, sp->req, flags, 0);
657		/*
658		 * Preserve KAME behaviour: ENOENT can be returned
659		 * when an SA acquire is in progress.  Don't propagate
660		 * this to user-level; it confuses applications.
661		 *
662		 * XXX this will go away when the SADB is redone.
663		 */
664		if (error == ENOENT)
665			error = 0;
666		splx(s);
667		goto done;
668	} else {
669		splx(s);
670
671		if (error != 0) {
672			/*
673			 * Hack: -EINVAL is used to signal that a packet
674			 * should be silently discarded.  This is typically
675			 * because we asked key management for an SA and
676			 * it was delayed (e.g. kicked up to IKE).
677			 */
678			if (error == -EINVAL)
679				error = 0;
680			goto bad;
681		} else {
682			/* No IPsec processing for this packet. */
683		}
684#ifdef notyet
685		/*
686		 * If deferred crypto processing is needed, check that
687		 * the interface supports it.
688		 */
689		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
690		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
691			/* notify IPsec to do its own crypto */
692			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
693			error = EHOSTUNREACH;
694			goto bad;
695		}
696#endif
697	}
698spd_done:
699#endif /* FAST_IPSEC */
700
701	/*
702	 * IpHack's section.
703	 * - Xlate: translate packet's addr/port (NAT).
704	 * - Firewall: deny/allow/etc.
705	 * - Wrap: fake packet's addr/port <unimpl.>
706	 * - Encapsulate: put it in another IP and send out. <unimp.>
707	 */
708#ifdef PFIL_HOOKS
709	/*
710	 * Run through list of hooks for output packets.
711	 */
712	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
713	if (error != 0 || m == NULL)
714		goto done;
715	ip = mtod(m, struct ip *);
716#endif /* PFIL_HOOKS */
717
718	/*
719	 * Check with the firewall...
720	 * but not if we are already being fwd'd from a firewall.
721	 */
722	if (fw_enable && IPFW_LOADED && !args.next_hop) {
723		struct sockaddr_in *old = dst;
724
725		args.m = m;
726		args.next_hop = dst;
727		args.oif = ifp;
728		off = ip_fw_chk_ptr(&args);
729		m = args.m;
730		dst = args.next_hop;
731
732                /*
733		 * On return we must do the following:
734		 * m == NULL	-> drop the pkt (old interface, deprecated)
735		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
736		 * 1<=off<= 0xffff		-> DIVERT
737		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
738		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
739		 * dst != old			-> IPFIREWALL_FORWARD
740		 * off==0, dst==old		-> accept
741		 * If some of the above modules are not compiled in, then
742		 * we should't have to check the corresponding condition
743		 * (because the ipfw control socket should not accept
744		 * unsupported rules), but better play safe and drop
745		 * packets in case of doubt.
746		 */
747		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
748			if (m)
749				m_freem(m);
750			error = EACCES;
751			goto done;
752		}
753		ip = mtod(m, struct ip *);
754		if (off == 0 && dst == old)		/* common case */
755			goto pass;
756                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
757			/*
758			 * pass the pkt to dummynet. Need to include
759			 * pipe number, m, ifp, ro, dst because these are
760			 * not recomputed in the next pass.
761			 * All other parameters have been already used and
762			 * so they are not needed anymore.
763			 * XXX note: if the ifp or ro entry are deleted
764			 * while a pkt is in dummynet, we are in trouble!
765			 */
766			args.ro = ro;
767			args.dst = dst;
768			args.flags = flags;
769
770			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
771				&args);
772			goto done;
773		}
774#ifdef IPDIVERT
775		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
776			struct mbuf *clone;
777
778			/* Clone packet if we're doing a 'tee' */
779			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
780				clone = divert_clone(m);
781			else
782				clone = NULL;
783
784			/* Restore packet header fields to original values */
785			ip->ip_len = htons(ip->ip_len);
786			ip->ip_off = htons(ip->ip_off);
787
788			/* Deliver packet to divert input routine */
789			divert_packet(m, 0);
790
791			/* If 'tee', continue with original packet */
792			if (clone != NULL) {
793				m = clone;
794				ip = mtod(m, struct ip *);
795				goto pass;
796			}
797			goto done;
798		}
799#endif
800
801		/* IPFIREWALL_FORWARD */
802		/*
803		 * Check dst to make sure it is directly reachable on the
804		 * interface we previously thought it was.
805		 * If it isn't (which may be likely in some situations) we have
806		 * to re-route it (ie, find a route for the next-hop and the
807		 * associated interface) and set them here. This is nested
808		 * forwarding which in most cases is undesirable, except where
809		 * such control is nigh impossible. So we do it here.
810		 * And I'm babbling.
811		 */
812		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
813#if 0
814			/*
815			 * XXX To improve readability, this block should be
816			 * changed into a function call as below:
817			 */
818			error = ip_ipforward(&m, &dst, &ifp);
819			if (error)
820				goto bad;
821			if (m == NULL) /* ip_input consumed the mbuf */
822				goto done;
823#else
824			struct in_ifaddr *ia;
825
826			/*
827			 * XXX sro_fwd below is static, and a pointer
828			 * to it gets passed to routines downstream.
829			 * This could have surprisingly bad results in
830			 * practice, because its content is overwritten
831			 * by subsequent packets.
832			 * XXX: Breaks on SMP and possibly preemption!
833			 */
834			/* There must be a better way to do this next line... */
835			static struct route sro_fwd;
836			struct route *ro_fwd = &sro_fwd;
837
838#if 0
839			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
840			    dst->sin_addr, "\n");
841#endif
842
843			/*
844			 * We need to figure out if we have been forwarded
845			 * to a local socket. If so, then we should somehow
846			 * "loop back" to ip_input, and get directed to the
847			 * PCB as if we had received this packet. This is
848			 * because it may be dificult to identify the packets
849			 * you want to forward until they are being output
850			 * and have selected an interface. (e.g. locally
851			 * initiated packets) If we used the loopback inteface,
852			 * we would not be able to control what happens
853			 * as the packet runs through ip_input() as
854			 * it is done through an ISR.
855			 */
856			LIST_FOREACH(ia,
857			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
858				/*
859				 * If the addr to forward to is one
860				 * of ours, we pretend to
861				 * be the destination for this packet.
862				 */
863				if (IA_SIN(ia)->sin_addr.s_addr ==
864						 dst->sin_addr.s_addr)
865					break;
866			}
867			if (ia) {	/* tell ip_input "dont filter" */
868				mtag = m_tag_get(
869				    PACKET_TAG_IPFORWARD,
870				    sizeof(struct sockaddr_in *), M_NOWAIT);
871				if (mtag == NULL) {
872					error = ENOBUFS;
873					goto bad;
874				}
875				*(struct sockaddr_in **)(mtag+1) =
876				    args.next_hop;
877				m_tag_prepend(m, mtag);
878
879				if (m->m_pkthdr.rcvif == NULL)
880					m->m_pkthdr.rcvif = ifunit("lo0");
881				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
882					m->m_pkthdr.csum_flags |=
883					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
884					m->m_pkthdr.csum_data = 0xffff;
885				}
886				m->m_pkthdr.csum_flags |=
887				    CSUM_IP_CHECKED | CSUM_IP_VALID;
888				ip->ip_len = htons(ip->ip_len);
889				ip->ip_off = htons(ip->ip_off);
890				ip_input(m);
891				goto done;
892			}
893			/*
894			 * Some of the logic for this was
895			 * nicked from above.
896			 */
897			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
898
899			ro_fwd->ro_rt = 0;
900			rtalloc_ign(ro_fwd, RTF_CLONING);
901
902			if (ro_fwd->ro_rt == NULL) {
903				ipstat.ips_noroute++;
904				error = EHOSTUNREACH;
905				goto bad;
906			}
907
908			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
909			ifp = ro_fwd->ro_rt->rt_ifp;
910			ro_fwd->ro_rt->rt_rmx.rmx_pksent++;
911			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
912				dst = (struct sockaddr_in *)
913					ro_fwd->ro_rt->rt_gateway;
914			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
915				isbroadcast =
916				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
917			else
918				isbroadcast = in_broadcast(dst->sin_addr, ifp);
919			if (ro->ro_rt)
920				RTFREE(ro->ro_rt);
921			ro->ro_rt = ro_fwd->ro_rt;
922			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
923
924#endif	/* ... block to be put into a function */
925			/*
926			 * If we added a default src ip earlier,
927			 * which would have been gotten from the-then
928			 * interface, do it again, from the new one.
929			 */
930			if (src_was_INADDR_ANY)
931				ip->ip_src = IA_SIN(ia)->sin_addr;
932			goto pass ;
933		}
934
935                /*
936                 * if we get here, none of the above matches, and
937                 * we have to drop the pkt
938                 */
939		m_freem(m);
940                error = EACCES; /* not sure this is the right error msg */
941                goto done;
942	}
943
944pass:
945	/* 127/8 must not appear on wire - RFC1122. */
946	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
947	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
948		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
949			ipstat.ips_badaddr++;
950			error = EADDRNOTAVAIL;
951			goto bad;
952		}
953	}
954
955	m->m_pkthdr.csum_flags |= CSUM_IP;
956	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
957	if (sw_csum & CSUM_DELAY_DATA) {
958		in_delayed_cksum(m);
959		sw_csum &= ~CSUM_DELAY_DATA;
960	}
961	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
962
963	/*
964	 * If small enough for interface, or the interface will take
965	 * care of the fragmentation for us, can just send directly.
966	 */
967	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
968	    ((ip->ip_off & IP_DF) == 0))) {
969		ip->ip_len = htons(ip->ip_len);
970		ip->ip_off = htons(ip->ip_off);
971		ip->ip_sum = 0;
972		if (sw_csum & CSUM_DELAY_IP)
973			ip->ip_sum = in_cksum(m, hlen);
974
975		/* Record statistics for this interface address. */
976		if (!(flags & IP_FORWARDING) && ia) {
977			ia->ia_ifa.if_opackets++;
978			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
979		}
980
981#ifdef IPSEC
982		/* clean ipsec history once it goes out of the node */
983		ipsec_delaux(m);
984#endif
985
986#ifdef MBUF_STRESS_TEST
987		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
988			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
989#endif
990		error = (*ifp->if_output)(ifp, m,
991				(struct sockaddr *)dst, ro->ro_rt);
992		goto done;
993	}
994
995	if (ip->ip_off & IP_DF) {
996		error = EMSGSIZE;
997		/*
998		 * This case can happen if the user changed the MTU
999		 * of an interface after enabling IP on it.  Because
1000		 * most netifs don't keep track of routes pointing to
1001		 * them, there is no way for one to update all its
1002		 * routes when the MTU is changed.
1003		 */
1004		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1005		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1006			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1007		}
1008		ipstat.ips_cantfrag++;
1009		goto bad;
1010	}
1011
1012	/*
1013	 * Too large for interface; fragment if possible. If successful,
1014	 * on return, m will point to a list of packets to be sent.
1015	 */
1016	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1017	if (error)
1018		goto bad;
1019	for (; m; m = m0) {
1020		m0 = m->m_nextpkt;
1021		m->m_nextpkt = 0;
1022#ifdef IPSEC
1023		/* clean ipsec history once it goes out of the node */
1024		ipsec_delaux(m);
1025#endif
1026		if (error == 0) {
1027			/* Record statistics for this interface address. */
1028			if (ia != NULL) {
1029				ia->ia_ifa.if_opackets++;
1030				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1031			}
1032
1033			error = (*ifp->if_output)(ifp, m,
1034			    (struct sockaddr *)dst, ro->ro_rt);
1035		} else
1036			m_freem(m);
1037	}
1038
1039	if (error == 0)
1040		ipstat.ips_fragmented++;
1041
1042done:
1043	if (ro == &iproute && ro->ro_rt) {
1044		RTFREE(ro->ro_rt);
1045		ro->ro_rt = NULL;
1046	}
1047	if (dummytag) {
1048		struct dn_pkt_tag *dt = (struct dn_pkt_tag *)(dummytag+1);
1049		if (dt->ro.ro_rt)
1050			RTFREE(dt->ro.ro_rt);
1051		m_tag_free(dummytag);
1052	}
1053#ifdef IPSEC
1054	if (sp != NULL) {
1055		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1056			printf("DP ip_output call free SP:%p\n", sp));
1057		key_freesp(sp);
1058	}
1059#endif
1060#ifdef FAST_IPSEC
1061	if (sp != NULL)
1062		KEY_FREESP(&sp);
1063#endif
1064	return (error);
1065bad:
1066	m_freem(m);
1067	goto done;
1068}
1069
1070/*
1071 * Create a chain of fragments which fit the given mtu. m_frag points to the
1072 * mbuf to be fragmented; on return it points to the chain with the fragments.
1073 * Return 0 if no error. If error, m_frag may contain a partially built
1074 * chain of fragments that should be freed by the caller.
1075 *
1076 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1077 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1078 */
1079int
1080ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1081	    u_long if_hwassist_flags, int sw_csum)
1082{
1083	int error = 0;
1084	int hlen = ip->ip_hl << 2;
1085	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1086	int off;
1087	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1088	int firstlen;
1089	struct mbuf **mnext;
1090	int nfrags;
1091
1092	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1093		ipstat.ips_cantfrag++;
1094		return EMSGSIZE;
1095	}
1096
1097	/*
1098	 * Must be able to put at least 8 bytes per fragment.
1099	 */
1100	if (len < 8)
1101		return EMSGSIZE;
1102
1103	/*
1104	 * If the interface will not calculate checksums on
1105	 * fragmented packets, then do it here.
1106	 */
1107	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1108	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1109		in_delayed_cksum(m0);
1110		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1111	}
1112
1113	if (len > PAGE_SIZE) {
1114		/*
1115		 * Fragment large datagrams such that each segment
1116		 * contains a multiple of PAGE_SIZE amount of data,
1117		 * plus headers. This enables a receiver to perform
1118		 * page-flipping zero-copy optimizations.
1119		 *
1120		 * XXX When does this help given that sender and receiver
1121		 * could have different page sizes, and also mtu could
1122		 * be less than the receiver's page size ?
1123		 */
1124		int newlen;
1125		struct mbuf *m;
1126
1127		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1128			off += m->m_len;
1129
1130		/*
1131		 * firstlen (off - hlen) must be aligned on an
1132		 * 8-byte boundary
1133		 */
1134		if (off < hlen)
1135			goto smart_frag_failure;
1136		off = ((off - hlen) & ~7) + hlen;
1137		newlen = (~PAGE_MASK) & mtu;
1138		if ((newlen + sizeof (struct ip)) > mtu) {
1139			/* we failed, go back the default */
1140smart_frag_failure:
1141			newlen = len;
1142			off = hlen + len;
1143		}
1144		len = newlen;
1145
1146	} else {
1147		off = hlen + len;
1148	}
1149
1150	firstlen = off - hlen;
1151	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1152
1153	/*
1154	 * Loop through length of segment after first fragment,
1155	 * make new header and copy data of each part and link onto chain.
1156	 * Here, m0 is the original packet, m is the fragment being created.
1157	 * The fragments are linked off the m_nextpkt of the original
1158	 * packet, which after processing serves as the first fragment.
1159	 */
1160	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1161		struct ip *mhip;	/* ip header on the fragment */
1162		struct mbuf *m;
1163		int mhlen = sizeof (struct ip);
1164
1165		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1166		if (m == NULL) {
1167			error = ENOBUFS;
1168			ipstat.ips_odropped++;
1169			goto done;
1170		}
1171		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1172		/*
1173		 * In the first mbuf, leave room for the link header, then
1174		 * copy the original IP header including options. The payload
1175		 * goes into an additional mbuf chain returned by m_copy().
1176		 */
1177		m->m_data += max_linkhdr;
1178		mhip = mtod(m, struct ip *);
1179		*mhip = *ip;
1180		if (hlen > sizeof (struct ip)) {
1181			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1182			mhip->ip_v = IPVERSION;
1183			mhip->ip_hl = mhlen >> 2;
1184		}
1185		m->m_len = mhlen;
1186		/* XXX do we need to add ip->ip_off below ? */
1187		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1188		if (off + len >= ip->ip_len) {	/* last fragment */
1189			len = ip->ip_len - off;
1190			m->m_flags |= M_LASTFRAG;
1191		} else
1192			mhip->ip_off |= IP_MF;
1193		mhip->ip_len = htons((u_short)(len + mhlen));
1194		m->m_next = m_copy(m0, off, len);
1195		if (m->m_next == NULL) {	/* copy failed */
1196			m_free(m);
1197			error = ENOBUFS;	/* ??? */
1198			ipstat.ips_odropped++;
1199			goto done;
1200		}
1201		m->m_pkthdr.len = mhlen + len;
1202		m->m_pkthdr.rcvif = (struct ifnet *)0;
1203#ifdef MAC
1204		mac_create_fragment(m0, m);
1205#endif
1206		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1207		mhip->ip_off = htons(mhip->ip_off);
1208		mhip->ip_sum = 0;
1209		if (sw_csum & CSUM_DELAY_IP)
1210			mhip->ip_sum = in_cksum(m, mhlen);
1211		*mnext = m;
1212		mnext = &m->m_nextpkt;
1213	}
1214	ipstat.ips_ofragments += nfrags;
1215
1216	/* set first marker for fragment chain */
1217	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1218	m0->m_pkthdr.csum_data = nfrags;
1219
1220	/*
1221	 * Update first fragment by trimming what's been copied out
1222	 * and updating header.
1223	 */
1224	m_adj(m0, hlen + firstlen - ip->ip_len);
1225	m0->m_pkthdr.len = hlen + firstlen;
1226	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1227	ip->ip_off |= IP_MF;
1228	ip->ip_off = htons(ip->ip_off);
1229	ip->ip_sum = 0;
1230	if (sw_csum & CSUM_DELAY_IP)
1231		ip->ip_sum = in_cksum(m0, hlen);
1232
1233done:
1234	*m_frag = m0;
1235	return error;
1236}
1237
1238void
1239in_delayed_cksum(struct mbuf *m)
1240{
1241	struct ip *ip;
1242	u_short csum, offset;
1243
1244	ip = mtod(m, struct ip *);
1245	offset = ip->ip_hl << 2 ;
1246	csum = in_cksum_skip(m, ip->ip_len, offset);
1247	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1248		csum = 0xffff;
1249	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1250
1251	if (offset + sizeof(u_short) > m->m_len) {
1252		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1253		    m->m_len, offset, ip->ip_p);
1254		/*
1255		 * XXX
1256		 * this shouldn't happen, but if it does, the
1257		 * correct behavior may be to insert the checksum
1258		 * in the existing chain instead of rearranging it.
1259		 */
1260		m = m_pullup(m, offset + sizeof(u_short));
1261	}
1262	*(u_short *)(m->m_data + offset) = csum;
1263}
1264
1265/*
1266 * Insert IP options into preformed packet.
1267 * Adjust IP destination as required for IP source routing,
1268 * as indicated by a non-zero in_addr at the start of the options.
1269 *
1270 * XXX This routine assumes that the packet has no options in place.
1271 */
1272static struct mbuf *
1273ip_insertoptions(m, opt, phlen)
1274	register struct mbuf *m;
1275	struct mbuf *opt;
1276	int *phlen;
1277{
1278	register struct ipoption *p = mtod(opt, struct ipoption *);
1279	struct mbuf *n;
1280	register struct ip *ip = mtod(m, struct ip *);
1281	unsigned optlen;
1282
1283	optlen = opt->m_len - sizeof(p->ipopt_dst);
1284	if (optlen + ip->ip_len > IP_MAXPACKET) {
1285		*phlen = 0;
1286		return (m);		/* XXX should fail */
1287	}
1288	if (p->ipopt_dst.s_addr)
1289		ip->ip_dst = p->ipopt_dst;
1290	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1291		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1292		if (n == NULL) {
1293			*phlen = 0;
1294			return (m);
1295		}
1296		n->m_pkthdr.rcvif = (struct ifnet *)0;
1297#ifdef MAC
1298		mac_create_mbuf_from_mbuf(m, n);
1299#endif
1300		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1301		m->m_len -= sizeof(struct ip);
1302		m->m_data += sizeof(struct ip);
1303		n->m_next = m;
1304		m = n;
1305		m->m_len = optlen + sizeof(struct ip);
1306		m->m_data += max_linkhdr;
1307		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1308	} else {
1309		m->m_data -= optlen;
1310		m->m_len += optlen;
1311		m->m_pkthdr.len += optlen;
1312		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1313	}
1314	ip = mtod(m, struct ip *);
1315	bcopy(p->ipopt_list, ip + 1, optlen);
1316	*phlen = sizeof(struct ip) + optlen;
1317	ip->ip_v = IPVERSION;
1318	ip->ip_hl = *phlen >> 2;
1319	ip->ip_len += optlen;
1320	return (m);
1321}
1322
1323/*
1324 * Copy options from ip to jp,
1325 * omitting those not copied during fragmentation.
1326 */
1327int
1328ip_optcopy(ip, jp)
1329	struct ip *ip, *jp;
1330{
1331	register u_char *cp, *dp;
1332	int opt, optlen, cnt;
1333
1334	cp = (u_char *)(ip + 1);
1335	dp = (u_char *)(jp + 1);
1336	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1337	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1338		opt = cp[0];
1339		if (opt == IPOPT_EOL)
1340			break;
1341		if (opt == IPOPT_NOP) {
1342			/* Preserve for IP mcast tunnel's LSRR alignment. */
1343			*dp++ = IPOPT_NOP;
1344			optlen = 1;
1345			continue;
1346		}
1347
1348		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1349		    ("ip_optcopy: malformed ipv4 option"));
1350		optlen = cp[IPOPT_OLEN];
1351		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1352		    ("ip_optcopy: malformed ipv4 option"));
1353
1354		/* bogus lengths should have been caught by ip_dooptions */
1355		if (optlen > cnt)
1356			optlen = cnt;
1357		if (IPOPT_COPIED(opt)) {
1358			bcopy(cp, dp, optlen);
1359			dp += optlen;
1360		}
1361	}
1362	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1363		*dp++ = IPOPT_EOL;
1364	return (optlen);
1365}
1366
1367/*
1368 * IP socket option processing.
1369 */
1370int
1371ip_ctloutput(so, sopt)
1372	struct socket *so;
1373	struct sockopt *sopt;
1374{
1375	struct	inpcb *inp = sotoinpcb(so);
1376	int	error, optval;
1377
1378	error = optval = 0;
1379	if (sopt->sopt_level != IPPROTO_IP) {
1380		return (EINVAL);
1381	}
1382
1383	switch (sopt->sopt_dir) {
1384	case SOPT_SET:
1385		switch (sopt->sopt_name) {
1386		case IP_OPTIONS:
1387#ifdef notyet
1388		case IP_RETOPTS:
1389#endif
1390		{
1391			struct mbuf *m;
1392			if (sopt->sopt_valsize > MLEN) {
1393				error = EMSGSIZE;
1394				break;
1395			}
1396			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1397			if (m == NULL) {
1398				error = ENOBUFS;
1399				break;
1400			}
1401			m->m_len = sopt->sopt_valsize;
1402			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1403					    m->m_len);
1404
1405			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1406					   m));
1407		}
1408
1409		case IP_TOS:
1410		case IP_TTL:
1411		case IP_RECVOPTS:
1412		case IP_RECVRETOPTS:
1413		case IP_RECVDSTADDR:
1414		case IP_RECVTTL:
1415		case IP_RECVIF:
1416		case IP_FAITH:
1417		case IP_ONESBCAST:
1418			error = sooptcopyin(sopt, &optval, sizeof optval,
1419					    sizeof optval);
1420			if (error)
1421				break;
1422
1423			switch (sopt->sopt_name) {
1424			case IP_TOS:
1425				inp->inp_ip_tos = optval;
1426				break;
1427
1428			case IP_TTL:
1429				inp->inp_ip_ttl = optval;
1430				break;
1431#define	OPTSET(bit) do {						\
1432	INP_LOCK(inp);							\
1433	if (optval)							\
1434		inp->inp_flags |= bit;					\
1435	else								\
1436		inp->inp_flags &= ~bit;					\
1437	INP_UNLOCK(inp);						\
1438} while (0)
1439
1440			case IP_RECVOPTS:
1441				OPTSET(INP_RECVOPTS);
1442				break;
1443
1444			case IP_RECVRETOPTS:
1445				OPTSET(INP_RECVRETOPTS);
1446				break;
1447
1448			case IP_RECVDSTADDR:
1449				OPTSET(INP_RECVDSTADDR);
1450				break;
1451
1452			case IP_RECVTTL:
1453				OPTSET(INP_RECVTTL);
1454				break;
1455
1456			case IP_RECVIF:
1457				OPTSET(INP_RECVIF);
1458				break;
1459
1460			case IP_FAITH:
1461				OPTSET(INP_FAITH);
1462				break;
1463
1464			case IP_ONESBCAST:
1465				OPTSET(INP_ONESBCAST);
1466				break;
1467			}
1468			break;
1469#undef OPTSET
1470
1471		case IP_MULTICAST_IF:
1472		case IP_MULTICAST_VIF:
1473		case IP_MULTICAST_TTL:
1474		case IP_MULTICAST_LOOP:
1475		case IP_ADD_MEMBERSHIP:
1476		case IP_DROP_MEMBERSHIP:
1477			error = ip_setmoptions(sopt, &inp->inp_moptions);
1478			break;
1479
1480		case IP_PORTRANGE:
1481			error = sooptcopyin(sopt, &optval, sizeof optval,
1482					    sizeof optval);
1483			if (error)
1484				break;
1485
1486			INP_LOCK(inp);
1487			switch (optval) {
1488			case IP_PORTRANGE_DEFAULT:
1489				inp->inp_flags &= ~(INP_LOWPORT);
1490				inp->inp_flags &= ~(INP_HIGHPORT);
1491				break;
1492
1493			case IP_PORTRANGE_HIGH:
1494				inp->inp_flags &= ~(INP_LOWPORT);
1495				inp->inp_flags |= INP_HIGHPORT;
1496				break;
1497
1498			case IP_PORTRANGE_LOW:
1499				inp->inp_flags &= ~(INP_HIGHPORT);
1500				inp->inp_flags |= INP_LOWPORT;
1501				break;
1502
1503			default:
1504				error = EINVAL;
1505				break;
1506			}
1507			INP_UNLOCK(inp);
1508			break;
1509
1510#if defined(IPSEC) || defined(FAST_IPSEC)
1511		case IP_IPSEC_POLICY:
1512		{
1513			caddr_t req;
1514			size_t len = 0;
1515			int priv;
1516			struct mbuf *m;
1517			int optname;
1518
1519			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1520				break;
1521			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1522				break;
1523			priv = (sopt->sopt_td != NULL &&
1524				suser(sopt->sopt_td) != 0) ? 0 : 1;
1525			req = mtod(m, caddr_t);
1526			len = m->m_len;
1527			optname = sopt->sopt_name;
1528			error = ipsec4_set_policy(inp, optname, req, len, priv);
1529			m_freem(m);
1530			break;
1531		}
1532#endif /*IPSEC*/
1533
1534		default:
1535			error = ENOPROTOOPT;
1536			break;
1537		}
1538		break;
1539
1540	case SOPT_GET:
1541		switch (sopt->sopt_name) {
1542		case IP_OPTIONS:
1543		case IP_RETOPTS:
1544			if (inp->inp_options)
1545				error = sooptcopyout(sopt,
1546						     mtod(inp->inp_options,
1547							  char *),
1548						     inp->inp_options->m_len);
1549			else
1550				sopt->sopt_valsize = 0;
1551			break;
1552
1553		case IP_TOS:
1554		case IP_TTL:
1555		case IP_RECVOPTS:
1556		case IP_RECVRETOPTS:
1557		case IP_RECVDSTADDR:
1558		case IP_RECVTTL:
1559		case IP_RECVIF:
1560		case IP_PORTRANGE:
1561		case IP_FAITH:
1562		case IP_ONESBCAST:
1563			switch (sopt->sopt_name) {
1564
1565			case IP_TOS:
1566				optval = inp->inp_ip_tos;
1567				break;
1568
1569			case IP_TTL:
1570				optval = inp->inp_ip_ttl;
1571				break;
1572
1573#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1574
1575			case IP_RECVOPTS:
1576				optval = OPTBIT(INP_RECVOPTS);
1577				break;
1578
1579			case IP_RECVRETOPTS:
1580				optval = OPTBIT(INP_RECVRETOPTS);
1581				break;
1582
1583			case IP_RECVDSTADDR:
1584				optval = OPTBIT(INP_RECVDSTADDR);
1585				break;
1586
1587			case IP_RECVTTL:
1588				optval = OPTBIT(INP_RECVTTL);
1589				break;
1590
1591			case IP_RECVIF:
1592				optval = OPTBIT(INP_RECVIF);
1593				break;
1594
1595			case IP_PORTRANGE:
1596				if (inp->inp_flags & INP_HIGHPORT)
1597					optval = IP_PORTRANGE_HIGH;
1598				else if (inp->inp_flags & INP_LOWPORT)
1599					optval = IP_PORTRANGE_LOW;
1600				else
1601					optval = 0;
1602				break;
1603
1604			case IP_FAITH:
1605				optval = OPTBIT(INP_FAITH);
1606				break;
1607
1608			case IP_ONESBCAST:
1609				optval = OPTBIT(INP_ONESBCAST);
1610				break;
1611			}
1612			error = sooptcopyout(sopt, &optval, sizeof optval);
1613			break;
1614
1615		case IP_MULTICAST_IF:
1616		case IP_MULTICAST_VIF:
1617		case IP_MULTICAST_TTL:
1618		case IP_MULTICAST_LOOP:
1619		case IP_ADD_MEMBERSHIP:
1620		case IP_DROP_MEMBERSHIP:
1621			error = ip_getmoptions(sopt, inp->inp_moptions);
1622			break;
1623
1624#if defined(IPSEC) || defined(FAST_IPSEC)
1625		case IP_IPSEC_POLICY:
1626		{
1627			struct mbuf *m = NULL;
1628			caddr_t req = NULL;
1629			size_t len = 0;
1630
1631			if (m != 0) {
1632				req = mtod(m, caddr_t);
1633				len = m->m_len;
1634			}
1635			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1636			if (error == 0)
1637				error = soopt_mcopyout(sopt, m); /* XXX */
1638			if (error == 0)
1639				m_freem(m);
1640			break;
1641		}
1642#endif /*IPSEC*/
1643
1644		default:
1645			error = ENOPROTOOPT;
1646			break;
1647		}
1648		break;
1649	}
1650	return (error);
1651}
1652
1653/*
1654 * Set up IP options in pcb for insertion in output packets.
1655 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1656 * with destination address if source routed.
1657 */
1658static int
1659ip_pcbopts(optname, pcbopt, m)
1660	int optname;
1661	struct mbuf **pcbopt;
1662	register struct mbuf *m;
1663{
1664	register int cnt, optlen;
1665	register u_char *cp;
1666	u_char opt;
1667
1668	/* turn off any old options */
1669	if (*pcbopt)
1670		(void)m_free(*pcbopt);
1671	*pcbopt = 0;
1672	if (m == (struct mbuf *)0 || m->m_len == 0) {
1673		/*
1674		 * Only turning off any previous options.
1675		 */
1676		if (m)
1677			(void)m_free(m);
1678		return (0);
1679	}
1680
1681	if (m->m_len % sizeof(int32_t))
1682		goto bad;
1683	/*
1684	 * IP first-hop destination address will be stored before
1685	 * actual options; move other options back
1686	 * and clear it when none present.
1687	 */
1688	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1689		goto bad;
1690	cnt = m->m_len;
1691	m->m_len += sizeof(struct in_addr);
1692	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1693	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1694	bzero(mtod(m, void *), sizeof(struct in_addr));
1695
1696	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1697		opt = cp[IPOPT_OPTVAL];
1698		if (opt == IPOPT_EOL)
1699			break;
1700		if (opt == IPOPT_NOP)
1701			optlen = 1;
1702		else {
1703			if (cnt < IPOPT_OLEN + sizeof(*cp))
1704				goto bad;
1705			optlen = cp[IPOPT_OLEN];
1706			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1707				goto bad;
1708		}
1709		switch (opt) {
1710
1711		default:
1712			break;
1713
1714		case IPOPT_LSRR:
1715		case IPOPT_SSRR:
1716			/*
1717			 * user process specifies route as:
1718			 *	->A->B->C->D
1719			 * D must be our final destination (but we can't
1720			 * check that since we may not have connected yet).
1721			 * A is first hop destination, which doesn't appear in
1722			 * actual IP option, but is stored before the options.
1723			 */
1724			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1725				goto bad;
1726			m->m_len -= sizeof(struct in_addr);
1727			cnt -= sizeof(struct in_addr);
1728			optlen -= sizeof(struct in_addr);
1729			cp[IPOPT_OLEN] = optlen;
1730			/*
1731			 * Move first hop before start of options.
1732			 */
1733			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1734			    sizeof(struct in_addr));
1735			/*
1736			 * Then copy rest of options back
1737			 * to close up the deleted entry.
1738			 */
1739			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1740			    &cp[IPOPT_OFFSET+1],
1741			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1742			break;
1743		}
1744	}
1745	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1746		goto bad;
1747	*pcbopt = m;
1748	return (0);
1749
1750bad:
1751	(void)m_free(m);
1752	return (EINVAL);
1753}
1754
1755/*
1756 * XXX
1757 * The whole multicast option thing needs to be re-thought.
1758 * Several of these options are equally applicable to non-multicast
1759 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1760 * standard option (IP_TTL).
1761 */
1762
1763/*
1764 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1765 */
1766static struct ifnet *
1767ip_multicast_if(a, ifindexp)
1768	struct in_addr *a;
1769	int *ifindexp;
1770{
1771	int ifindex;
1772	struct ifnet *ifp;
1773
1774	if (ifindexp)
1775		*ifindexp = 0;
1776	if (ntohl(a->s_addr) >> 24 == 0) {
1777		ifindex = ntohl(a->s_addr) & 0xffffff;
1778		if (ifindex < 0 || if_index < ifindex)
1779			return NULL;
1780		ifp = ifnet_byindex(ifindex);
1781		if (ifindexp)
1782			*ifindexp = ifindex;
1783	} else {
1784		INADDR_TO_IFP(*a, ifp);
1785	}
1786	return ifp;
1787}
1788
1789/*
1790 * Set the IP multicast options in response to user setsockopt().
1791 */
1792static int
1793ip_setmoptions(sopt, imop)
1794	struct sockopt *sopt;
1795	struct ip_moptions **imop;
1796{
1797	int error = 0;
1798	int i;
1799	struct in_addr addr;
1800	struct ip_mreq mreq;
1801	struct ifnet *ifp;
1802	struct ip_moptions *imo = *imop;
1803	struct route ro;
1804	struct sockaddr_in *dst;
1805	int ifindex;
1806	int s;
1807
1808	if (imo == NULL) {
1809		/*
1810		 * No multicast option buffer attached to the pcb;
1811		 * allocate one and initialize to default values.
1812		 */
1813		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1814		    M_WAITOK);
1815
1816		if (imo == NULL)
1817			return (ENOBUFS);
1818		*imop = imo;
1819		imo->imo_multicast_ifp = NULL;
1820		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1821		imo->imo_multicast_vif = -1;
1822		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1823		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1824		imo->imo_num_memberships = 0;
1825	}
1826
1827	switch (sopt->sopt_name) {
1828	/* store an index number for the vif you wanna use in the send */
1829	case IP_MULTICAST_VIF:
1830		if (legal_vif_num == 0) {
1831			error = EOPNOTSUPP;
1832			break;
1833		}
1834		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1835		if (error)
1836			break;
1837		if (!legal_vif_num(i) && (i != -1)) {
1838			error = EINVAL;
1839			break;
1840		}
1841		imo->imo_multicast_vif = i;
1842		break;
1843
1844	case IP_MULTICAST_IF:
1845		/*
1846		 * Select the interface for outgoing multicast packets.
1847		 */
1848		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1849		if (error)
1850			break;
1851		/*
1852		 * INADDR_ANY is used to remove a previous selection.
1853		 * When no interface is selected, a default one is
1854		 * chosen every time a multicast packet is sent.
1855		 */
1856		if (addr.s_addr == INADDR_ANY) {
1857			imo->imo_multicast_ifp = NULL;
1858			break;
1859		}
1860		/*
1861		 * The selected interface is identified by its local
1862		 * IP address.  Find the interface and confirm that
1863		 * it supports multicasting.
1864		 */
1865		s = splimp();
1866		ifp = ip_multicast_if(&addr, &ifindex);
1867		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1868			splx(s);
1869			error = EADDRNOTAVAIL;
1870			break;
1871		}
1872		imo->imo_multicast_ifp = ifp;
1873		if (ifindex)
1874			imo->imo_multicast_addr = addr;
1875		else
1876			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1877		splx(s);
1878		break;
1879
1880	case IP_MULTICAST_TTL:
1881		/*
1882		 * Set the IP time-to-live for outgoing multicast packets.
1883		 * The original multicast API required a char argument,
1884		 * which is inconsistent with the rest of the socket API.
1885		 * We allow either a char or an int.
1886		 */
1887		if (sopt->sopt_valsize == 1) {
1888			u_char ttl;
1889			error = sooptcopyin(sopt, &ttl, 1, 1);
1890			if (error)
1891				break;
1892			imo->imo_multicast_ttl = ttl;
1893		} else {
1894			u_int ttl;
1895			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1896					    sizeof ttl);
1897			if (error)
1898				break;
1899			if (ttl > 255)
1900				error = EINVAL;
1901			else
1902				imo->imo_multicast_ttl = ttl;
1903		}
1904		break;
1905
1906	case IP_MULTICAST_LOOP:
1907		/*
1908		 * Set the loopback flag for outgoing multicast packets.
1909		 * Must be zero or one.  The original multicast API required a
1910		 * char argument, which is inconsistent with the rest
1911		 * of the socket API.  We allow either a char or an int.
1912		 */
1913		if (sopt->sopt_valsize == 1) {
1914			u_char loop;
1915			error = sooptcopyin(sopt, &loop, 1, 1);
1916			if (error)
1917				break;
1918			imo->imo_multicast_loop = !!loop;
1919		} else {
1920			u_int loop;
1921			error = sooptcopyin(sopt, &loop, sizeof loop,
1922					    sizeof loop);
1923			if (error)
1924				break;
1925			imo->imo_multicast_loop = !!loop;
1926		}
1927		break;
1928
1929	case IP_ADD_MEMBERSHIP:
1930		/*
1931		 * Add a multicast group membership.
1932		 * Group must be a valid IP multicast address.
1933		 */
1934		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1935		if (error)
1936			break;
1937
1938		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1939			error = EINVAL;
1940			break;
1941		}
1942		s = splimp();
1943		/*
1944		 * If no interface address was provided, use the interface of
1945		 * the route to the given multicast address.
1946		 */
1947		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1948			bzero((caddr_t)&ro, sizeof(ro));
1949			dst = (struct sockaddr_in *)&ro.ro_dst;
1950			dst->sin_len = sizeof(*dst);
1951			dst->sin_family = AF_INET;
1952			dst->sin_addr = mreq.imr_multiaddr;
1953			rtalloc_ign(&ro, RTF_CLONING);
1954			if (ro.ro_rt == NULL) {
1955				error = EADDRNOTAVAIL;
1956				splx(s);
1957				break;
1958			}
1959			ifp = ro.ro_rt->rt_ifp;
1960			RTFREE(ro.ro_rt);
1961		}
1962		else {
1963			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1964		}
1965
1966		/*
1967		 * See if we found an interface, and confirm that it
1968		 * supports multicast.
1969		 */
1970		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1971			error = EADDRNOTAVAIL;
1972			splx(s);
1973			break;
1974		}
1975		/*
1976		 * See if the membership already exists or if all the
1977		 * membership slots are full.
1978		 */
1979		for (i = 0; i < imo->imo_num_memberships; ++i) {
1980			if (imo->imo_membership[i]->inm_ifp == ifp &&
1981			    imo->imo_membership[i]->inm_addr.s_addr
1982						== mreq.imr_multiaddr.s_addr)
1983				break;
1984		}
1985		if (i < imo->imo_num_memberships) {
1986			error = EADDRINUSE;
1987			splx(s);
1988			break;
1989		}
1990		if (i == IP_MAX_MEMBERSHIPS) {
1991			error = ETOOMANYREFS;
1992			splx(s);
1993			break;
1994		}
1995		/*
1996		 * Everything looks good; add a new record to the multicast
1997		 * address list for the given interface.
1998		 */
1999		if ((imo->imo_membership[i] =
2000		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2001			error = ENOBUFS;
2002			splx(s);
2003			break;
2004		}
2005		++imo->imo_num_memberships;
2006		splx(s);
2007		break;
2008
2009	case IP_DROP_MEMBERSHIP:
2010		/*
2011		 * Drop a multicast group membership.
2012		 * Group must be a valid IP multicast address.
2013		 */
2014		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2015		if (error)
2016			break;
2017
2018		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2019			error = EINVAL;
2020			break;
2021		}
2022
2023		s = splimp();
2024		/*
2025		 * If an interface address was specified, get a pointer
2026		 * to its ifnet structure.
2027		 */
2028		if (mreq.imr_interface.s_addr == INADDR_ANY)
2029			ifp = NULL;
2030		else {
2031			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2032			if (ifp == NULL) {
2033				error = EADDRNOTAVAIL;
2034				splx(s);
2035				break;
2036			}
2037		}
2038		/*
2039		 * Find the membership in the membership array.
2040		 */
2041		for (i = 0; i < imo->imo_num_memberships; ++i) {
2042			if ((ifp == NULL ||
2043			     imo->imo_membership[i]->inm_ifp == ifp) &&
2044			     imo->imo_membership[i]->inm_addr.s_addr ==
2045			     mreq.imr_multiaddr.s_addr)
2046				break;
2047		}
2048		if (i == imo->imo_num_memberships) {
2049			error = EADDRNOTAVAIL;
2050			splx(s);
2051			break;
2052		}
2053		/*
2054		 * Give up the multicast address record to which the
2055		 * membership points.
2056		 */
2057		in_delmulti(imo->imo_membership[i]);
2058		/*
2059		 * Remove the gap in the membership array.
2060		 */
2061		for (++i; i < imo->imo_num_memberships; ++i)
2062			imo->imo_membership[i-1] = imo->imo_membership[i];
2063		--imo->imo_num_memberships;
2064		splx(s);
2065		break;
2066
2067	default:
2068		error = EOPNOTSUPP;
2069		break;
2070	}
2071
2072	/*
2073	 * If all options have default values, no need to keep the mbuf.
2074	 */
2075	if (imo->imo_multicast_ifp == NULL &&
2076	    imo->imo_multicast_vif == -1 &&
2077	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2078	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2079	    imo->imo_num_memberships == 0) {
2080		free(*imop, M_IPMOPTS);
2081		*imop = NULL;
2082	}
2083
2084	return (error);
2085}
2086
2087/*
2088 * Return the IP multicast options in response to user getsockopt().
2089 */
2090static int
2091ip_getmoptions(sopt, imo)
2092	struct sockopt *sopt;
2093	register struct ip_moptions *imo;
2094{
2095	struct in_addr addr;
2096	struct in_ifaddr *ia;
2097	int error, optval;
2098	u_char coptval;
2099
2100	error = 0;
2101	switch (sopt->sopt_name) {
2102	case IP_MULTICAST_VIF:
2103		if (imo != NULL)
2104			optval = imo->imo_multicast_vif;
2105		else
2106			optval = -1;
2107		error = sooptcopyout(sopt, &optval, sizeof optval);
2108		break;
2109
2110	case IP_MULTICAST_IF:
2111		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2112			addr.s_addr = INADDR_ANY;
2113		else if (imo->imo_multicast_addr.s_addr) {
2114			/* return the value user has set */
2115			addr = imo->imo_multicast_addr;
2116		} else {
2117			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2118			addr.s_addr = (ia == NULL) ? INADDR_ANY
2119				: IA_SIN(ia)->sin_addr.s_addr;
2120		}
2121		error = sooptcopyout(sopt, &addr, sizeof addr);
2122		break;
2123
2124	case IP_MULTICAST_TTL:
2125		if (imo == 0)
2126			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2127		else
2128			optval = coptval = imo->imo_multicast_ttl;
2129		if (sopt->sopt_valsize == 1)
2130			error = sooptcopyout(sopt, &coptval, 1);
2131		else
2132			error = sooptcopyout(sopt, &optval, sizeof optval);
2133		break;
2134
2135	case IP_MULTICAST_LOOP:
2136		if (imo == 0)
2137			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2138		else
2139			optval = coptval = imo->imo_multicast_loop;
2140		if (sopt->sopt_valsize == 1)
2141			error = sooptcopyout(sopt, &coptval, 1);
2142		else
2143			error = sooptcopyout(sopt, &optval, sizeof optval);
2144		break;
2145
2146	default:
2147		error = ENOPROTOOPT;
2148		break;
2149	}
2150	return (error);
2151}
2152
2153/*
2154 * Discard the IP multicast options.
2155 */
2156void
2157ip_freemoptions(imo)
2158	register struct ip_moptions *imo;
2159{
2160	register int i;
2161
2162	if (imo != NULL) {
2163		for (i = 0; i < imo->imo_num_memberships; ++i)
2164			in_delmulti(imo->imo_membership[i]);
2165		free(imo, M_IPMOPTS);
2166	}
2167}
2168
2169/*
2170 * Routine called from ip_output() to loop back a copy of an IP multicast
2171 * packet to the input queue of a specified interface.  Note that this
2172 * calls the output routine of the loopback "driver", but with an interface
2173 * pointer that might NOT be a loopback interface -- evil, but easier than
2174 * replicating that code here.
2175 */
2176static void
2177ip_mloopback(ifp, m, dst, hlen)
2178	struct ifnet *ifp;
2179	register struct mbuf *m;
2180	register struct sockaddr_in *dst;
2181	int hlen;
2182{
2183	register struct ip *ip;
2184	struct mbuf *copym;
2185
2186	copym = m_copy(m, 0, M_COPYALL);
2187	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2188		copym = m_pullup(copym, hlen);
2189	if (copym != NULL) {
2190		/* If needed, compute the checksum and mark it as valid. */
2191		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2192			in_delayed_cksum(copym);
2193			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2194			copym->m_pkthdr.csum_flags |=
2195			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2196			copym->m_pkthdr.csum_data = 0xffff;
2197		}
2198		/*
2199		 * We don't bother to fragment if the IP length is greater
2200		 * than the interface's MTU.  Can this possibly matter?
2201		 */
2202		ip = mtod(copym, struct ip *);
2203		ip->ip_len = htons(ip->ip_len);
2204		ip->ip_off = htons(ip->ip_off);
2205		ip->ip_sum = 0;
2206		ip->ip_sum = in_cksum(copym, hlen);
2207		/*
2208		 * NB:
2209		 * It's not clear whether there are any lingering
2210		 * reentrancy problems in other areas which might
2211		 * be exposed by using ip_input directly (in
2212		 * particular, everything which modifies the packet
2213		 * in-place).  Yet another option is using the
2214		 * protosw directly to deliver the looped back
2215		 * packet.  For the moment, we'll err on the side
2216		 * of safety by using if_simloop().
2217		 */
2218#if 1 /* XXX */
2219		if (dst->sin_family != AF_INET) {
2220			printf("ip_mloopback: bad address family %d\n",
2221						dst->sin_family);
2222			dst->sin_family = AF_INET;
2223		}
2224#endif
2225
2226#ifdef notdef
2227		copym->m_pkthdr.rcvif = ifp;
2228		ip_input(copym);
2229#else
2230		if_simloop(ifp, copym, dst->sin_family, 0);
2231#endif
2232	}
2233}
2234