ip_output.c revision 131012
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 * $FreeBSD: head/sys/netinet/ip_output.c 131012 2004-06-24 02:05:47Z rwatson $
31 */
32
33#include "opt_ipfw.h"
34#include "opt_ipdn.h"
35#include "opt_ipdivert.h"
36#include "opt_ipfilter.h"
37#include "opt_ipsec.h"
38#include "opt_mac.h"
39#include "opt_pfil_hooks.h"
40#include "opt_random_ip_id.h"
41#include "opt_mbuf_stress_test.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53
54#include <net/if.h>
55#include <net/route.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/in_pcb.h>
61#include <netinet/in_var.h>
62#include <netinet/ip_var.h>
63
64#ifdef PFIL_HOOKS
65#include <net/pfil.h>
66#endif
67
68#include <machine/in_cksum.h>
69
70static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
71
72#ifdef IPSEC
73#include <netinet6/ipsec.h>
74#include <netkey/key.h>
75#ifdef IPSEC_DEBUG
76#include <netkey/key_debug.h>
77#else
78#define	KEYDEBUG(lev,arg)
79#endif
80#endif /*IPSEC*/
81
82#ifdef FAST_IPSEC
83#include <netipsec/ipsec.h>
84#include <netipsec/xform.h>
85#include <netipsec/key.h>
86#endif /*FAST_IPSEC*/
87
88#include <netinet/ip_fw.h>
89#include <netinet/ip_divert.h>
90#include <netinet/ip_dummynet.h>
91
92#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
93				x, (ntohl(a.s_addr)>>24)&0xFF,\
94				  (ntohl(a.s_addr)>>16)&0xFF,\
95				  (ntohl(a.s_addr)>>8)&0xFF,\
96				  (ntohl(a.s_addr))&0xFF, y);
97
98u_short ip_id;
99
100#ifdef MBUF_STRESS_TEST
101int mbuf_frag_size = 0;
102SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
103	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
104#endif
105
106static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
107static struct ifnet *ip_multicast_if(struct in_addr *, int *);
108static void	ip_mloopback
109	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
110static int	ip_getmoptions
111	(struct sockopt *, struct ip_moptions *);
112static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
113static int	ip_setmoptions
114	(struct sockopt *, struct ip_moptions **);
115
116int	ip_optcopy(struct ip *, struct ip *);
117
118
119extern	struct protosw inetsw[];
120
121/*
122 * IP output.  The packet in mbuf chain m contains a skeletal IP
123 * header (with len, off, ttl, proto, tos, src, dst).
124 * The mbuf chain containing the packet will be freed.
125 * The mbuf opt, if present, will not be freed.
126 * In the IP forwarding case, the packet will arrive with options already
127 * inserted, so must have a NULL opt pointer.
128 */
129int
130ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
131	int flags, struct ip_moptions *imo, struct inpcb *inp)
132{
133	struct ip *ip;
134	struct ifnet *ifp = NULL;	/* keep compiler happy */
135	struct mbuf *m0;
136	int hlen = sizeof (struct ip);
137	int len, off, error = 0;
138	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
139	struct in_ifaddr *ia = NULL;
140	int isbroadcast, sw_csum;
141	struct in_addr pkt_dst;
142	struct route iproute;
143	struct m_tag *mtag, *dummytag;
144#ifdef IPSEC
145	struct secpolicy *sp = NULL;
146#endif
147#ifdef FAST_IPSEC
148	struct secpolicy *sp = NULL;
149	struct tdb_ident *tdbi;
150	int s;
151#endif /* FAST_IPSEC */
152	struct ip_fw_args args;
153	int src_was_INADDR_ANY = 0;	/* as the name says... */
154
155	args.eh = NULL;
156	args.rule = NULL;
157
158	M_ASSERTPKTHDR(m);
159
160	args.next_hop = m_claim_next(m, PACKET_TAG_IPFORWARD);
161	dummytag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
162	if (dummytag != NULL) {
163		struct dn_pkt_tag *dt = (struct dn_pkt_tag *)(dummytag+1);
164		/*
165		 * Prevent lower layers from finding the tag
166		 * Cleanup and free is done below
167		 */
168		m_tag_unlink(m, dummytag);
169		/*
170		 * the packet was already tagged, so part of the
171		 * processing was already done, and we need to go down.
172		 * Get parameters from the header.
173		 */
174		args.rule = dt->rule;
175		ro = &(dt->ro);
176		dst = dt->dn_dst;
177		ifp = dt->ifp;
178	}
179
180	if (ro == NULL) {
181		ro = &iproute;
182		bzero(ro, sizeof (*ro));
183	}
184
185	if (inp != NULL)
186		INP_LOCK_ASSERT(inp);
187
188	if (args.rule != NULL) {	/* dummynet already saw us */
189		ip = mtod(m, struct ip *);
190		hlen = ip->ip_hl << 2 ;
191		if (ro->ro_rt)
192			ia = ifatoia(ro->ro_rt->rt_ifa);
193		goto sendit;
194	}
195
196	if (opt) {
197		len = 0;
198		m = ip_insertoptions(m, opt, &len);
199		if (len != 0)
200			hlen = len;
201	}
202	ip = mtod(m, struct ip *);
203	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
204
205	/*
206	 * Fill in IP header.  If we are not allowing fragmentation,
207	 * then the ip_id field is meaningless, but we don't set it
208	 * to zero.  Doing so causes various problems when devices along
209	 * the path (routers, load balancers, firewalls, etc.) illegally
210	 * disable DF on our packet.  Note that a 16-bit counter
211	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
212	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
213	 * for Counting NATted Hosts", Proc. IMW'02, available at
214	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
215	 */
216	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
217		ip->ip_v = IPVERSION;
218		ip->ip_hl = hlen >> 2;
219#ifdef RANDOM_IP_ID
220		ip->ip_id = ip_randomid();
221#else
222		ip->ip_id = htons(ip_id++);
223#endif
224		ipstat.ips_localout++;
225	} else {
226		hlen = ip->ip_hl << 2;
227	}
228
229	dst = (struct sockaddr_in *)&ro->ro_dst;
230	/*
231	 * If there is a cached route,
232	 * check that it is to the same destination
233	 * and is still up.  If not, free it and try again.
234	 * The address family should also be checked in case of sharing the
235	 * cache with IPv6.
236	 */
237	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
238			  dst->sin_family != AF_INET ||
239			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
240		RTFREE(ro->ro_rt);
241		ro->ro_rt = (struct rtentry *)0;
242	}
243	if (ro->ro_rt == 0) {
244		bzero(dst, sizeof(*dst));
245		dst->sin_family = AF_INET;
246		dst->sin_len = sizeof(*dst);
247		dst->sin_addr = pkt_dst;
248	}
249	/*
250	 * If routing to interface only,
251	 * short circuit routing lookup.
252	 */
253	if (flags & IP_ROUTETOIF) {
254		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
255		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
256			ipstat.ips_noroute++;
257			error = ENETUNREACH;
258			goto bad;
259		}
260		ifp = ia->ia_ifp;
261		ip->ip_ttl = 1;
262		isbroadcast = in_broadcast(dst->sin_addr, ifp);
263	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
264	    imo != NULL && imo->imo_multicast_ifp != NULL) {
265		/*
266		 * Bypass the normal routing lookup for multicast
267		 * packets if the interface is specified.
268		 */
269		ifp = imo->imo_multicast_ifp;
270		IFP_TO_IA(ifp, ia);
271		isbroadcast = 0;	/* fool gcc */
272	} else {
273		/*
274		 * We want to do any cloning requested by the link layer,
275		 * as this is probably required in all cases for correct
276		 * operation (as it is for ARP).
277		 */
278		if (ro->ro_rt == 0)
279			rtalloc_ign(ro, 0);
280		if (ro->ro_rt == 0) {
281			ipstat.ips_noroute++;
282			error = EHOSTUNREACH;
283			goto bad;
284		}
285		ia = ifatoia(ro->ro_rt->rt_ifa);
286		ifp = ro->ro_rt->rt_ifp;
287		ro->ro_rt->rt_rmx.rmx_pksent++;
288		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
289			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
290		if (ro->ro_rt->rt_flags & RTF_HOST)
291			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
292		else
293			isbroadcast = in_broadcast(dst->sin_addr, ifp);
294	}
295	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
296		struct in_multi *inm;
297
298		m->m_flags |= M_MCAST;
299		/*
300		 * IP destination address is multicast.  Make sure "dst"
301		 * still points to the address in "ro".  (It may have been
302		 * changed to point to a gateway address, above.)
303		 */
304		dst = (struct sockaddr_in *)&ro->ro_dst;
305		/*
306		 * See if the caller provided any multicast options
307		 */
308		if (imo != NULL) {
309			ip->ip_ttl = imo->imo_multicast_ttl;
310			if (imo->imo_multicast_vif != -1)
311				ip->ip_src.s_addr =
312				    ip_mcast_src ?
313				    ip_mcast_src(imo->imo_multicast_vif) :
314				    INADDR_ANY;
315		} else
316			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
317		/*
318		 * Confirm that the outgoing interface supports multicast.
319		 */
320		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
321			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
322				ipstat.ips_noroute++;
323				error = ENETUNREACH;
324				goto bad;
325			}
326		}
327		/*
328		 * If source address not specified yet, use address
329		 * of outgoing interface.
330		 */
331		if (ip->ip_src.s_addr == INADDR_ANY) {
332			/* Interface may have no addresses. */
333			if (ia != NULL)
334				ip->ip_src = IA_SIN(ia)->sin_addr;
335		}
336
337		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
338		if (inm != NULL &&
339		   (imo == NULL || imo->imo_multicast_loop)) {
340			/*
341			 * If we belong to the destination multicast group
342			 * on the outgoing interface, and the caller did not
343			 * forbid loopback, loop back a copy.
344			 */
345			ip_mloopback(ifp, m, dst, hlen);
346		}
347		else {
348			/*
349			 * If we are acting as a multicast router, perform
350			 * multicast forwarding as if the packet had just
351			 * arrived on the interface to which we are about
352			 * to send.  The multicast forwarding function
353			 * recursively calls this function, using the
354			 * IP_FORWARDING flag to prevent infinite recursion.
355			 *
356			 * Multicasts that are looped back by ip_mloopback(),
357			 * above, will be forwarded by the ip_input() routine,
358			 * if necessary.
359			 */
360			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
361				/*
362				 * If rsvp daemon is not running, do not
363				 * set ip_moptions. This ensures that the packet
364				 * is multicast and not just sent down one link
365				 * as prescribed by rsvpd.
366				 */
367				if (!rsvp_on)
368					imo = NULL;
369				if (ip_mforward &&
370				    ip_mforward(ip, ifp, m, imo) != 0) {
371					m_freem(m);
372					goto done;
373				}
374			}
375		}
376
377		/*
378		 * Multicasts with a time-to-live of zero may be looped-
379		 * back, above, but must not be transmitted on a network.
380		 * Also, multicasts addressed to the loopback interface
381		 * are not sent -- the above call to ip_mloopback() will
382		 * loop back a copy if this host actually belongs to the
383		 * destination group on the loopback interface.
384		 */
385		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
386			m_freem(m);
387			goto done;
388		}
389
390		goto sendit;
391	}
392#ifndef notdef
393	/*
394	 * If the source address is not specified yet, use the address
395	 * of the outoing interface. In case, keep note we did that, so
396	 * if the the firewall changes the next-hop causing the output
397	 * interface to change, we can fix that.
398	 */
399	if (ip->ip_src.s_addr == INADDR_ANY) {
400		/* Interface may have no addresses. */
401		if (ia != NULL) {
402			ip->ip_src = IA_SIN(ia)->sin_addr;
403			src_was_INADDR_ANY = 1;
404		}
405	}
406#endif /* notdef */
407#ifdef ALTQ
408	/*
409	 * disable packet drop hack.
410	 * packetdrop should be done by queueing.
411	 */
412#else /* !ALTQ */
413	/*
414	 * Verify that we have any chance at all of being able to queue
415	 *      the packet or packet fragments
416	 */
417	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
418		ifp->if_snd.ifq_maxlen) {
419			error = ENOBUFS;
420			ipstat.ips_odropped++;
421			goto bad;
422	}
423#endif /* !ALTQ */
424
425	/*
426	 * Look for broadcast address and
427	 * verify user is allowed to send
428	 * such a packet.
429	 */
430	if (isbroadcast) {
431		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
432			error = EADDRNOTAVAIL;
433			goto bad;
434		}
435		if ((flags & IP_ALLOWBROADCAST) == 0) {
436			error = EACCES;
437			goto bad;
438		}
439		/* don't allow broadcast messages to be fragmented */
440		if (ip->ip_len > ifp->if_mtu) {
441			error = EMSGSIZE;
442			goto bad;
443		}
444		if (flags & IP_SENDONES)
445			ip->ip_dst.s_addr = INADDR_BROADCAST;
446		m->m_flags |= M_BCAST;
447	} else {
448		m->m_flags &= ~M_BCAST;
449	}
450
451sendit:
452#ifdef IPSEC
453	/* get SP for this packet */
454	if (inp == NULL)
455		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
456		    flags, &error);
457	else
458		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
459
460	if (sp == NULL) {
461		ipsecstat.out_inval++;
462		goto bad;
463	}
464
465	error = 0;
466
467	/* check policy */
468	switch (sp->policy) {
469	case IPSEC_POLICY_DISCARD:
470		/*
471		 * This packet is just discarded.
472		 */
473		ipsecstat.out_polvio++;
474		goto bad;
475
476	case IPSEC_POLICY_BYPASS:
477	case IPSEC_POLICY_NONE:
478	case IPSEC_POLICY_TCP:
479		/* no need to do IPsec. */
480		goto skip_ipsec;
481
482	case IPSEC_POLICY_IPSEC:
483		if (sp->req == NULL) {
484			/* acquire a policy */
485			error = key_spdacquire(sp);
486			goto bad;
487		}
488		break;
489
490	case IPSEC_POLICY_ENTRUST:
491	default:
492		printf("ip_output: Invalid policy found. %d\n", sp->policy);
493	}
494    {
495	struct ipsec_output_state state;
496	bzero(&state, sizeof(state));
497	state.m = m;
498	if (flags & IP_ROUTETOIF) {
499		state.ro = &iproute;
500		bzero(&iproute, sizeof(iproute));
501	} else
502		state.ro = ro;
503	state.dst = (struct sockaddr *)dst;
504
505	ip->ip_sum = 0;
506
507	/*
508	 * XXX
509	 * delayed checksums are not currently compatible with IPsec
510	 */
511	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
512		in_delayed_cksum(m);
513		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
514	}
515
516	ip->ip_len = htons(ip->ip_len);
517	ip->ip_off = htons(ip->ip_off);
518
519	error = ipsec4_output(&state, sp, flags);
520
521	m = state.m;
522	if (flags & IP_ROUTETOIF) {
523		/*
524		 * if we have tunnel mode SA, we may need to ignore
525		 * IP_ROUTETOIF.
526		 */
527		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
528			flags &= ~IP_ROUTETOIF;
529			ro = state.ro;
530		}
531	} else
532		ro = state.ro;
533	dst = (struct sockaddr_in *)state.dst;
534	if (error) {
535		/* mbuf is already reclaimed in ipsec4_output. */
536		m = NULL;
537		switch (error) {
538		case EHOSTUNREACH:
539		case ENETUNREACH:
540		case EMSGSIZE:
541		case ENOBUFS:
542		case ENOMEM:
543			break;
544		default:
545			printf("ip4_output (ipsec): error code %d\n", error);
546			/*fall through*/
547		case ENOENT:
548			/* don't show these error codes to the user */
549			error = 0;
550			break;
551		}
552		goto bad;
553	}
554
555	/* be sure to update variables that are affected by ipsec4_output() */
556	ip = mtod(m, struct ip *);
557	hlen = ip->ip_hl << 2;
558	if (ro->ro_rt == NULL) {
559		if ((flags & IP_ROUTETOIF) == 0) {
560			printf("ip_output: "
561				"can't update route after IPsec processing\n");
562			error = EHOSTUNREACH;	/*XXX*/
563			goto bad;
564		}
565	} else {
566		if (state.encap) {
567			ia = ifatoia(ro->ro_rt->rt_ifa);
568			ifp = ro->ro_rt->rt_ifp;
569		}
570	}
571    }
572
573	/* make it flipped, again. */
574	ip->ip_len = ntohs(ip->ip_len);
575	ip->ip_off = ntohs(ip->ip_off);
576skip_ipsec:
577#endif /*IPSEC*/
578#ifdef FAST_IPSEC
579	/*
580	 * Check the security policy (SP) for the packet and, if
581	 * required, do IPsec-related processing.  There are two
582	 * cases here; the first time a packet is sent through
583	 * it will be untagged and handled by ipsec4_checkpolicy.
584	 * If the packet is resubmitted to ip_output (e.g. after
585	 * AH, ESP, etc. processing), there will be a tag to bypass
586	 * the lookup and related policy checking.
587	 */
588	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
589	s = splnet();
590	if (mtag != NULL) {
591		tdbi = (struct tdb_ident *)(mtag + 1);
592		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
593		if (sp == NULL)
594			error = -EINVAL;	/* force silent drop */
595		m_tag_delete(m, mtag);
596	} else {
597		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
598					&error, inp);
599	}
600	/*
601	 * There are four return cases:
602	 *    sp != NULL	 	    apply IPsec policy
603	 *    sp == NULL, error == 0	    no IPsec handling needed
604	 *    sp == NULL, error == -EINVAL  discard packet w/o error
605	 *    sp == NULL, error != 0	    discard packet, report error
606	 */
607	if (sp != NULL) {
608		/* Loop detection, check if ipsec processing already done */
609		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
610		for (mtag = m_tag_first(m); mtag != NULL;
611		     mtag = m_tag_next(m, mtag)) {
612			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
613				continue;
614			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
615			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
616				continue;
617			/*
618			 * Check if policy has an SA associated with it.
619			 * This can happen when an SP has yet to acquire
620			 * an SA; e.g. on first reference.  If it occurs,
621			 * then we let ipsec4_process_packet do its thing.
622			 */
623			if (sp->req->sav == NULL)
624				break;
625			tdbi = (struct tdb_ident *)(mtag + 1);
626			if (tdbi->spi == sp->req->sav->spi &&
627			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
628			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
629				 sizeof (union sockaddr_union)) == 0) {
630				/*
631				 * No IPsec processing is needed, free
632				 * reference to SP.
633				 *
634				 * NB: null pointer to avoid free at
635				 *     done: below.
636				 */
637				KEY_FREESP(&sp), sp = NULL;
638				splx(s);
639				goto spd_done;
640			}
641		}
642
643		/*
644		 * Do delayed checksums now because we send before
645		 * this is done in the normal processing path.
646		 */
647		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
648			in_delayed_cksum(m);
649			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
650		}
651
652		ip->ip_len = htons(ip->ip_len);
653		ip->ip_off = htons(ip->ip_off);
654
655		/* NB: callee frees mbuf */
656		error = ipsec4_process_packet(m, sp->req, flags, 0);
657		/*
658		 * Preserve KAME behaviour: ENOENT can be returned
659		 * when an SA acquire is in progress.  Don't propagate
660		 * this to user-level; it confuses applications.
661		 *
662		 * XXX this will go away when the SADB is redone.
663		 */
664		if (error == ENOENT)
665			error = 0;
666		splx(s);
667		goto done;
668	} else {
669		splx(s);
670
671		if (error != 0) {
672			/*
673			 * Hack: -EINVAL is used to signal that a packet
674			 * should be silently discarded.  This is typically
675			 * because we asked key management for an SA and
676			 * it was delayed (e.g. kicked up to IKE).
677			 */
678			if (error == -EINVAL)
679				error = 0;
680			goto bad;
681		} else {
682			/* No IPsec processing for this packet. */
683		}
684#ifdef notyet
685		/*
686		 * If deferred crypto processing is needed, check that
687		 * the interface supports it.
688		 */
689		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
690		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
691			/* notify IPsec to do its own crypto */
692			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
693			error = EHOSTUNREACH;
694			goto bad;
695		}
696#endif
697	}
698spd_done:
699#endif /* FAST_IPSEC */
700
701	/*
702	 * IpHack's section.
703	 * - Xlate: translate packet's addr/port (NAT).
704	 * - Firewall: deny/allow/etc.
705	 * - Wrap: fake packet's addr/port <unimpl.>
706	 * - Encapsulate: put it in another IP and send out. <unimp.>
707	 */
708#ifdef PFIL_HOOKS
709	/*
710	 * Run through list of hooks for output packets.
711	 */
712	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
713	if (error != 0 || m == NULL)
714		goto done;
715	ip = mtod(m, struct ip *);
716#endif /* PFIL_HOOKS */
717
718	/*
719	 * Check with the firewall...
720	 * but not if we are already being fwd'd from a firewall.
721	 */
722	if (fw_enable && IPFW_LOADED && !args.next_hop) {
723		struct sockaddr_in *old = dst;
724
725		args.m = m;
726		args.next_hop = dst;
727		args.oif = ifp;
728		off = ip_fw_chk_ptr(&args);
729		m = args.m;
730		dst = args.next_hop;
731
732                /*
733		 * On return we must do the following:
734		 * m == NULL	-> drop the pkt (old interface, deprecated)
735		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
736		 * 1<=off<= 0xffff		-> DIVERT
737		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
738		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
739		 * dst != old			-> IPFIREWALL_FORWARD
740		 * off==0, dst==old		-> accept
741		 * If some of the above modules are not compiled in, then
742		 * we should't have to check the corresponding condition
743		 * (because the ipfw control socket should not accept
744		 * unsupported rules), but better play safe and drop
745		 * packets in case of doubt.
746		 */
747		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
748			if (m)
749				m_freem(m);
750			error = EACCES;
751			goto done;
752		}
753		ip = mtod(m, struct ip *);
754		if (off == 0 && dst == old)		/* common case */
755			goto pass;
756                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
757			/*
758			 * pass the pkt to dummynet. Need to include
759			 * pipe number, m, ifp, ro, dst because these are
760			 * not recomputed in the next pass.
761			 * All other parameters have been already used and
762			 * so they are not needed anymore.
763			 * XXX note: if the ifp or ro entry are deleted
764			 * while a pkt is in dummynet, we are in trouble!
765			 */
766			args.ro = ro;
767			args.dst = dst;
768			args.flags = flags;
769
770			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
771				&args);
772			goto done;
773		}
774#ifdef IPDIVERT
775		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
776			struct mbuf *clone;
777
778			/* Clone packet if we're doing a 'tee' */
779			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
780				clone = divert_clone(m);
781			else
782				clone = NULL;
783
784			/*
785			 * XXX
786			 * delayed checksums are not currently compatible
787			 * with divert sockets.
788			 */
789			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
790				in_delayed_cksum(m);
791				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
792			}
793
794			/* Restore packet header fields to original values */
795			ip->ip_len = htons(ip->ip_len);
796			ip->ip_off = htons(ip->ip_off);
797
798			/* Deliver packet to divert input routine */
799			divert_packet(m, 0);
800
801			/* If 'tee', continue with original packet */
802			if (clone != NULL) {
803				m = clone;
804				ip = mtod(m, struct ip *);
805				goto pass;
806			}
807			goto done;
808		}
809#endif
810
811		/* IPFIREWALL_FORWARD */
812		/*
813		 * Check dst to make sure it is directly reachable on the
814		 * interface we previously thought it was.
815		 * If it isn't (which may be likely in some situations) we have
816		 * to re-route it (ie, find a route for the next-hop and the
817		 * associated interface) and set them here. This is nested
818		 * forwarding which in most cases is undesirable, except where
819		 * such control is nigh impossible. So we do it here.
820		 * And I'm babbling.
821		 */
822		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
823#if 0
824			/*
825			 * XXX To improve readability, this block should be
826			 * changed into a function call as below:
827			 */
828			error = ip_ipforward(&m, &dst, &ifp);
829			if (error)
830				goto bad;
831			if (m == NULL) /* ip_input consumed the mbuf */
832				goto done;
833#else
834			struct in_ifaddr *ia;
835
836			/*
837			 * XXX sro_fwd below is static, and a pointer
838			 * to it gets passed to routines downstream.
839			 * This could have surprisingly bad results in
840			 * practice, because its content is overwritten
841			 * by subsequent packets.
842			 */
843			/* There must be a better way to do this next line... */
844			static struct route sro_fwd;
845			struct route *ro_fwd = &sro_fwd;
846
847#if 0
848			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
849			    dst->sin_addr, "\n");
850#endif
851
852			/*
853			 * We need to figure out if we have been forwarded
854			 * to a local socket. If so, then we should somehow
855			 * "loop back" to ip_input, and get directed to the
856			 * PCB as if we had received this packet. This is
857			 * because it may be dificult to identify the packets
858			 * you want to forward until they are being output
859			 * and have selected an interface. (e.g. locally
860			 * initiated packets) If we used the loopback inteface,
861			 * we would not be able to control what happens
862			 * as the packet runs through ip_input() as
863			 * it is done through an ISR.
864			 */
865			LIST_FOREACH(ia,
866			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
867				/*
868				 * If the addr to forward to is one
869				 * of ours, we pretend to
870				 * be the destination for this packet.
871				 */
872				if (IA_SIN(ia)->sin_addr.s_addr ==
873						 dst->sin_addr.s_addr)
874					break;
875			}
876			if (ia) {	/* tell ip_input "dont filter" */
877				mtag = m_tag_get(
878				    PACKET_TAG_IPFORWARD,
879				    sizeof(struct sockaddr_in *), M_NOWAIT);
880				if (mtag == NULL) {
881					error = ENOBUFS;
882					goto bad;
883				}
884				*(struct sockaddr_in **)(mtag+1) =
885				    args.next_hop;
886				m_tag_prepend(m, mtag);
887
888				if (m->m_pkthdr.rcvif == NULL)
889					m->m_pkthdr.rcvif = ifunit("lo0");
890				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
891					m->m_pkthdr.csum_flags |=
892					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
893					m->m_pkthdr.csum_data = 0xffff;
894				}
895				m->m_pkthdr.csum_flags |=
896				    CSUM_IP_CHECKED | CSUM_IP_VALID;
897				ip->ip_len = htons(ip->ip_len);
898				ip->ip_off = htons(ip->ip_off);
899				ip_input(m);
900				goto done;
901			}
902			/*
903			 * Some of the logic for this was
904			 * nicked from above.
905			 */
906			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
907
908			ro_fwd->ro_rt = 0;
909			rtalloc_ign(ro_fwd, RTF_CLONING);
910
911			if (ro_fwd->ro_rt == 0) {
912				ipstat.ips_noroute++;
913				error = EHOSTUNREACH;
914				goto bad;
915			}
916
917			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
918			ifp = ro_fwd->ro_rt->rt_ifp;
919			ro_fwd->ro_rt->rt_rmx.rmx_pksent++;
920			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
921				dst = (struct sockaddr_in *)
922					ro_fwd->ro_rt->rt_gateway;
923			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
924				isbroadcast =
925				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
926			else
927				isbroadcast = in_broadcast(dst->sin_addr, ifp);
928			if (ro->ro_rt)
929				RTFREE(ro->ro_rt);
930			ro->ro_rt = ro_fwd->ro_rt;
931			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
932
933#endif	/* ... block to be put into a function */
934			/*
935			 * If we added a default src ip earlier,
936			 * which would have been gotten from the-then
937			 * interface, do it again, from the new one.
938			 */
939			if (src_was_INADDR_ANY)
940				ip->ip_src = IA_SIN(ia)->sin_addr;
941			goto pass ;
942		}
943
944                /*
945                 * if we get here, none of the above matches, and
946                 * we have to drop the pkt
947                 */
948		m_freem(m);
949                error = EACCES; /* not sure this is the right error msg */
950                goto done;
951	}
952
953pass:
954	/* 127/8 must not appear on wire - RFC1122. */
955	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
956	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
957		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
958			ipstat.ips_badaddr++;
959			error = EADDRNOTAVAIL;
960			goto bad;
961		}
962	}
963
964	m->m_pkthdr.csum_flags |= CSUM_IP;
965	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
966	if (sw_csum & CSUM_DELAY_DATA) {
967		in_delayed_cksum(m);
968		sw_csum &= ~CSUM_DELAY_DATA;
969	}
970	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
971
972	/*
973	 * If small enough for interface, or the interface will take
974	 * care of the fragmentation for us, can just send directly.
975	 */
976	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
977	    ((ip->ip_off & IP_DF) == 0))) {
978		ip->ip_len = htons(ip->ip_len);
979		ip->ip_off = htons(ip->ip_off);
980		ip->ip_sum = 0;
981		if (sw_csum & CSUM_DELAY_IP)
982			ip->ip_sum = in_cksum(m, hlen);
983
984		/* Record statistics for this interface address. */
985		if (!(flags & IP_FORWARDING) && ia) {
986			ia->ia_ifa.if_opackets++;
987			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
988		}
989
990#ifdef IPSEC
991		/* clean ipsec history once it goes out of the node */
992		ipsec_delaux(m);
993#endif
994
995#ifdef MBUF_STRESS_TEST
996		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
997			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
998#endif
999		error = (*ifp->if_output)(ifp, m,
1000				(struct sockaddr *)dst, ro->ro_rt);
1001		goto done;
1002	}
1003
1004	if (ip->ip_off & IP_DF) {
1005		error = EMSGSIZE;
1006		/*
1007		 * This case can happen if the user changed the MTU
1008		 * of an interface after enabling IP on it.  Because
1009		 * most netifs don't keep track of routes pointing to
1010		 * them, there is no way for one to update all its
1011		 * routes when the MTU is changed.
1012		 */
1013		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1014		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1015			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1016		}
1017		ipstat.ips_cantfrag++;
1018		goto bad;
1019	}
1020
1021	/*
1022	 * Too large for interface; fragment if possible. If successful,
1023	 * on return, m will point to a list of packets to be sent.
1024	 */
1025	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1026	if (error)
1027		goto bad;
1028	for (; m; m = m0) {
1029		m0 = m->m_nextpkt;
1030		m->m_nextpkt = 0;
1031#ifdef IPSEC
1032		/* clean ipsec history once it goes out of the node */
1033		ipsec_delaux(m);
1034#endif
1035		if (error == 0) {
1036			/* Record statistics for this interface address. */
1037			if (ia != NULL) {
1038				ia->ia_ifa.if_opackets++;
1039				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1040			}
1041
1042			error = (*ifp->if_output)(ifp, m,
1043			    (struct sockaddr *)dst, ro->ro_rt);
1044		} else
1045			m_freem(m);
1046	}
1047
1048	if (error == 0)
1049		ipstat.ips_fragmented++;
1050
1051done:
1052	if (ro == &iproute && ro->ro_rt) {
1053		RTFREE(ro->ro_rt);
1054		ro->ro_rt = NULL;
1055	}
1056	if (dummytag) {
1057		struct dn_pkt_tag *dt = (struct dn_pkt_tag *)(dummytag+1);
1058		if (dt->ro.ro_rt)
1059			RTFREE(dt->ro.ro_rt);
1060		m_tag_free(dummytag);
1061	}
1062#ifdef IPSEC
1063	if (sp != NULL) {
1064		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1065			printf("DP ip_output call free SP:%p\n", sp));
1066		key_freesp(sp);
1067	}
1068#endif
1069#ifdef FAST_IPSEC
1070	if (sp != NULL)
1071		KEY_FREESP(&sp);
1072#endif
1073	return (error);
1074bad:
1075	m_freem(m);
1076	goto done;
1077}
1078
1079/*
1080 * Create a chain of fragments which fit the given mtu. m_frag points to the
1081 * mbuf to be fragmented; on return it points to the chain with the fragments.
1082 * Return 0 if no error. If error, m_frag may contain a partially built
1083 * chain of fragments that should be freed by the caller.
1084 *
1085 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1086 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1087 */
1088int
1089ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1090	    u_long if_hwassist_flags, int sw_csum)
1091{
1092	int error = 0;
1093	int hlen = ip->ip_hl << 2;
1094	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1095	int off;
1096	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1097	int firstlen;
1098	struct mbuf **mnext;
1099	int nfrags;
1100
1101	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1102		ipstat.ips_cantfrag++;
1103		return EMSGSIZE;
1104	}
1105
1106	/*
1107	 * Must be able to put at least 8 bytes per fragment.
1108	 */
1109	if (len < 8)
1110		return EMSGSIZE;
1111
1112	/*
1113	 * If the interface will not calculate checksums on
1114	 * fragmented packets, then do it here.
1115	 */
1116	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1117	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1118		in_delayed_cksum(m0);
1119		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1120	}
1121
1122	if (len > PAGE_SIZE) {
1123		/*
1124		 * Fragment large datagrams such that each segment
1125		 * contains a multiple of PAGE_SIZE amount of data,
1126		 * plus headers. This enables a receiver to perform
1127		 * page-flipping zero-copy optimizations.
1128		 *
1129		 * XXX When does this help given that sender and receiver
1130		 * could have different page sizes, and also mtu could
1131		 * be less than the receiver's page size ?
1132		 */
1133		int newlen;
1134		struct mbuf *m;
1135
1136		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1137			off += m->m_len;
1138
1139		/*
1140		 * firstlen (off - hlen) must be aligned on an
1141		 * 8-byte boundary
1142		 */
1143		if (off < hlen)
1144			goto smart_frag_failure;
1145		off = ((off - hlen) & ~7) + hlen;
1146		newlen = (~PAGE_MASK) & mtu;
1147		if ((newlen + sizeof (struct ip)) > mtu) {
1148			/* we failed, go back the default */
1149smart_frag_failure:
1150			newlen = len;
1151			off = hlen + len;
1152		}
1153		len = newlen;
1154
1155	} else {
1156		off = hlen + len;
1157	}
1158
1159	firstlen = off - hlen;
1160	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1161
1162	/*
1163	 * Loop through length of segment after first fragment,
1164	 * make new header and copy data of each part and link onto chain.
1165	 * Here, m0 is the original packet, m is the fragment being created.
1166	 * The fragments are linked off the m_nextpkt of the original
1167	 * packet, which after processing serves as the first fragment.
1168	 */
1169	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1170		struct ip *mhip;	/* ip header on the fragment */
1171		struct mbuf *m;
1172		int mhlen = sizeof (struct ip);
1173
1174		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1175		if (m == 0) {
1176			error = ENOBUFS;
1177			ipstat.ips_odropped++;
1178			goto done;
1179		}
1180		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1181		/*
1182		 * In the first mbuf, leave room for the link header, then
1183		 * copy the original IP header including options. The payload
1184		 * goes into an additional mbuf chain returned by m_copy().
1185		 */
1186		m->m_data += max_linkhdr;
1187		mhip = mtod(m, struct ip *);
1188		*mhip = *ip;
1189		if (hlen > sizeof (struct ip)) {
1190			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1191			mhip->ip_v = IPVERSION;
1192			mhip->ip_hl = mhlen >> 2;
1193		}
1194		m->m_len = mhlen;
1195		/* XXX do we need to add ip->ip_off below ? */
1196		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1197		if (off + len >= ip->ip_len) {	/* last fragment */
1198			len = ip->ip_len - off;
1199			m->m_flags |= M_LASTFRAG;
1200		} else
1201			mhip->ip_off |= IP_MF;
1202		mhip->ip_len = htons((u_short)(len + mhlen));
1203		m->m_next = m_copy(m0, off, len);
1204		if (m->m_next == 0) {		/* copy failed */
1205			m_free(m);
1206			error = ENOBUFS;	/* ??? */
1207			ipstat.ips_odropped++;
1208			goto done;
1209		}
1210		m->m_pkthdr.len = mhlen + len;
1211		m->m_pkthdr.rcvif = (struct ifnet *)0;
1212#ifdef MAC
1213		mac_create_fragment(m0, m);
1214#endif
1215		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1216		mhip->ip_off = htons(mhip->ip_off);
1217		mhip->ip_sum = 0;
1218		if (sw_csum & CSUM_DELAY_IP)
1219			mhip->ip_sum = in_cksum(m, mhlen);
1220		*mnext = m;
1221		mnext = &m->m_nextpkt;
1222	}
1223	ipstat.ips_ofragments += nfrags;
1224
1225	/* set first marker for fragment chain */
1226	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1227	m0->m_pkthdr.csum_data = nfrags;
1228
1229	/*
1230	 * Update first fragment by trimming what's been copied out
1231	 * and updating header.
1232	 */
1233	m_adj(m0, hlen + firstlen - ip->ip_len);
1234	m0->m_pkthdr.len = hlen + firstlen;
1235	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1236	ip->ip_off |= IP_MF;
1237	ip->ip_off = htons(ip->ip_off);
1238	ip->ip_sum = 0;
1239	if (sw_csum & CSUM_DELAY_IP)
1240		ip->ip_sum = in_cksum(m0, hlen);
1241
1242done:
1243	*m_frag = m0;
1244	return error;
1245}
1246
1247void
1248in_delayed_cksum(struct mbuf *m)
1249{
1250	struct ip *ip;
1251	u_short csum, offset;
1252
1253	ip = mtod(m, struct ip *);
1254	offset = ip->ip_hl << 2 ;
1255	csum = in_cksum_skip(m, ip->ip_len, offset);
1256	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1257		csum = 0xffff;
1258	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1259
1260	if (offset + sizeof(u_short) > m->m_len) {
1261		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1262		    m->m_len, offset, ip->ip_p);
1263		/*
1264		 * XXX
1265		 * this shouldn't happen, but if it does, the
1266		 * correct behavior may be to insert the checksum
1267		 * in the existing chain instead of rearranging it.
1268		 */
1269		m = m_pullup(m, offset + sizeof(u_short));
1270	}
1271	*(u_short *)(m->m_data + offset) = csum;
1272}
1273
1274/*
1275 * Insert IP options into preformed packet.
1276 * Adjust IP destination as required for IP source routing,
1277 * as indicated by a non-zero in_addr at the start of the options.
1278 *
1279 * XXX This routine assumes that the packet has no options in place.
1280 */
1281static struct mbuf *
1282ip_insertoptions(m, opt, phlen)
1283	register struct mbuf *m;
1284	struct mbuf *opt;
1285	int *phlen;
1286{
1287	register struct ipoption *p = mtod(opt, struct ipoption *);
1288	struct mbuf *n;
1289	register struct ip *ip = mtod(m, struct ip *);
1290	unsigned optlen;
1291
1292	optlen = opt->m_len - sizeof(p->ipopt_dst);
1293	if (optlen + ip->ip_len > IP_MAXPACKET) {
1294		*phlen = 0;
1295		return (m);		/* XXX should fail */
1296	}
1297	if (p->ipopt_dst.s_addr)
1298		ip->ip_dst = p->ipopt_dst;
1299	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1300		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1301		if (n == 0) {
1302			*phlen = 0;
1303			return (m);
1304		}
1305		n->m_pkthdr.rcvif = (struct ifnet *)0;
1306#ifdef MAC
1307		mac_create_mbuf_from_mbuf(m, n);
1308#endif
1309		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1310		m->m_len -= sizeof(struct ip);
1311		m->m_data += sizeof(struct ip);
1312		n->m_next = m;
1313		m = n;
1314		m->m_len = optlen + sizeof(struct ip);
1315		m->m_data += max_linkhdr;
1316		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1317	} else {
1318		m->m_data -= optlen;
1319		m->m_len += optlen;
1320		m->m_pkthdr.len += optlen;
1321		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1322	}
1323	ip = mtod(m, struct ip *);
1324	bcopy(p->ipopt_list, ip + 1, optlen);
1325	*phlen = sizeof(struct ip) + optlen;
1326	ip->ip_v = IPVERSION;
1327	ip->ip_hl = *phlen >> 2;
1328	ip->ip_len += optlen;
1329	return (m);
1330}
1331
1332/*
1333 * Copy options from ip to jp,
1334 * omitting those not copied during fragmentation.
1335 */
1336int
1337ip_optcopy(ip, jp)
1338	struct ip *ip, *jp;
1339{
1340	register u_char *cp, *dp;
1341	int opt, optlen, cnt;
1342
1343	cp = (u_char *)(ip + 1);
1344	dp = (u_char *)(jp + 1);
1345	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1346	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1347		opt = cp[0];
1348		if (opt == IPOPT_EOL)
1349			break;
1350		if (opt == IPOPT_NOP) {
1351			/* Preserve for IP mcast tunnel's LSRR alignment. */
1352			*dp++ = IPOPT_NOP;
1353			optlen = 1;
1354			continue;
1355		}
1356
1357		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1358		    ("ip_optcopy: malformed ipv4 option"));
1359		optlen = cp[IPOPT_OLEN];
1360		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1361		    ("ip_optcopy: malformed ipv4 option"));
1362
1363		/* bogus lengths should have been caught by ip_dooptions */
1364		if (optlen > cnt)
1365			optlen = cnt;
1366		if (IPOPT_COPIED(opt)) {
1367			bcopy(cp, dp, optlen);
1368			dp += optlen;
1369		}
1370	}
1371	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1372		*dp++ = IPOPT_EOL;
1373	return (optlen);
1374}
1375
1376/*
1377 * IP socket option processing.
1378 */
1379int
1380ip_ctloutput(so, sopt)
1381	struct socket *so;
1382	struct sockopt *sopt;
1383{
1384	struct	inpcb *inp = sotoinpcb(so);
1385	int	error, optval;
1386
1387	error = optval = 0;
1388	if (sopt->sopt_level != IPPROTO_IP) {
1389		return (EINVAL);
1390	}
1391
1392	switch (sopt->sopt_dir) {
1393	case SOPT_SET:
1394		switch (sopt->sopt_name) {
1395		case IP_OPTIONS:
1396#ifdef notyet
1397		case IP_RETOPTS:
1398#endif
1399		{
1400			struct mbuf *m;
1401			if (sopt->sopt_valsize > MLEN) {
1402				error = EMSGSIZE;
1403				break;
1404			}
1405			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1406			if (m == 0) {
1407				error = ENOBUFS;
1408				break;
1409			}
1410			m->m_len = sopt->sopt_valsize;
1411			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1412					    m->m_len);
1413
1414			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1415					   m));
1416		}
1417
1418		case IP_TOS:
1419		case IP_TTL:
1420		case IP_RECVOPTS:
1421		case IP_RECVRETOPTS:
1422		case IP_RECVDSTADDR:
1423		case IP_RECVTTL:
1424		case IP_RECVIF:
1425		case IP_FAITH:
1426		case IP_ONESBCAST:
1427			error = sooptcopyin(sopt, &optval, sizeof optval,
1428					    sizeof optval);
1429			if (error)
1430				break;
1431
1432			switch (sopt->sopt_name) {
1433			case IP_TOS:
1434				inp->inp_ip_tos = optval;
1435				break;
1436
1437			case IP_TTL:
1438				inp->inp_ip_ttl = optval;
1439				break;
1440#define	OPTSET(bit) do {						\
1441	INP_LOCK(inp);							\
1442	if (optval)							\
1443		inp->inp_flags |= bit;					\
1444	else								\
1445		inp->inp_flags &= ~bit;					\
1446	INP_UNLOCK(inp);						\
1447} while (0)
1448
1449			case IP_RECVOPTS:
1450				OPTSET(INP_RECVOPTS);
1451				break;
1452
1453			case IP_RECVRETOPTS:
1454				OPTSET(INP_RECVRETOPTS);
1455				break;
1456
1457			case IP_RECVDSTADDR:
1458				OPTSET(INP_RECVDSTADDR);
1459				break;
1460
1461			case IP_RECVTTL:
1462				OPTSET(INP_RECVTTL);
1463				break;
1464
1465			case IP_RECVIF:
1466				OPTSET(INP_RECVIF);
1467				break;
1468
1469			case IP_FAITH:
1470				OPTSET(INP_FAITH);
1471				break;
1472
1473			case IP_ONESBCAST:
1474				OPTSET(INP_ONESBCAST);
1475				break;
1476			}
1477			break;
1478#undef OPTSET
1479
1480		case IP_MULTICAST_IF:
1481		case IP_MULTICAST_VIF:
1482		case IP_MULTICAST_TTL:
1483		case IP_MULTICAST_LOOP:
1484		case IP_ADD_MEMBERSHIP:
1485		case IP_DROP_MEMBERSHIP:
1486			error = ip_setmoptions(sopt, &inp->inp_moptions);
1487			break;
1488
1489		case IP_PORTRANGE:
1490			error = sooptcopyin(sopt, &optval, sizeof optval,
1491					    sizeof optval);
1492			if (error)
1493				break;
1494
1495			INP_LOCK(inp);
1496			switch (optval) {
1497			case IP_PORTRANGE_DEFAULT:
1498				inp->inp_flags &= ~(INP_LOWPORT);
1499				inp->inp_flags &= ~(INP_HIGHPORT);
1500				break;
1501
1502			case IP_PORTRANGE_HIGH:
1503				inp->inp_flags &= ~(INP_LOWPORT);
1504				inp->inp_flags |= INP_HIGHPORT;
1505				break;
1506
1507			case IP_PORTRANGE_LOW:
1508				inp->inp_flags &= ~(INP_HIGHPORT);
1509				inp->inp_flags |= INP_LOWPORT;
1510				break;
1511
1512			default:
1513				error = EINVAL;
1514				break;
1515			}
1516			INP_UNLOCK(inp);
1517			break;
1518
1519#if defined(IPSEC) || defined(FAST_IPSEC)
1520		case IP_IPSEC_POLICY:
1521		{
1522			caddr_t req;
1523			size_t len = 0;
1524			int priv;
1525			struct mbuf *m;
1526			int optname;
1527
1528			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1529				break;
1530			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1531				break;
1532			priv = (sopt->sopt_td != NULL &&
1533				suser(sopt->sopt_td) != 0) ? 0 : 1;
1534			req = mtod(m, caddr_t);
1535			len = m->m_len;
1536			optname = sopt->sopt_name;
1537			error = ipsec4_set_policy(inp, optname, req, len, priv);
1538			m_freem(m);
1539			break;
1540		}
1541#endif /*IPSEC*/
1542
1543		default:
1544			error = ENOPROTOOPT;
1545			break;
1546		}
1547		break;
1548
1549	case SOPT_GET:
1550		switch (sopt->sopt_name) {
1551		case IP_OPTIONS:
1552		case IP_RETOPTS:
1553			if (inp->inp_options)
1554				error = sooptcopyout(sopt,
1555						     mtod(inp->inp_options,
1556							  char *),
1557						     inp->inp_options->m_len);
1558			else
1559				sopt->sopt_valsize = 0;
1560			break;
1561
1562		case IP_TOS:
1563		case IP_TTL:
1564		case IP_RECVOPTS:
1565		case IP_RECVRETOPTS:
1566		case IP_RECVDSTADDR:
1567		case IP_RECVTTL:
1568		case IP_RECVIF:
1569		case IP_PORTRANGE:
1570		case IP_FAITH:
1571		case IP_ONESBCAST:
1572			switch (sopt->sopt_name) {
1573
1574			case IP_TOS:
1575				optval = inp->inp_ip_tos;
1576				break;
1577
1578			case IP_TTL:
1579				optval = inp->inp_ip_ttl;
1580				break;
1581
1582#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1583
1584			case IP_RECVOPTS:
1585				optval = OPTBIT(INP_RECVOPTS);
1586				break;
1587
1588			case IP_RECVRETOPTS:
1589				optval = OPTBIT(INP_RECVRETOPTS);
1590				break;
1591
1592			case IP_RECVDSTADDR:
1593				optval = OPTBIT(INP_RECVDSTADDR);
1594				break;
1595
1596			case IP_RECVTTL:
1597				optval = OPTBIT(INP_RECVTTL);
1598				break;
1599
1600			case IP_RECVIF:
1601				optval = OPTBIT(INP_RECVIF);
1602				break;
1603
1604			case IP_PORTRANGE:
1605				if (inp->inp_flags & INP_HIGHPORT)
1606					optval = IP_PORTRANGE_HIGH;
1607				else if (inp->inp_flags & INP_LOWPORT)
1608					optval = IP_PORTRANGE_LOW;
1609				else
1610					optval = 0;
1611				break;
1612
1613			case IP_FAITH:
1614				optval = OPTBIT(INP_FAITH);
1615				break;
1616
1617			case IP_ONESBCAST:
1618				optval = OPTBIT(INP_ONESBCAST);
1619				break;
1620			}
1621			error = sooptcopyout(sopt, &optval, sizeof optval);
1622			break;
1623
1624		case IP_MULTICAST_IF:
1625		case IP_MULTICAST_VIF:
1626		case IP_MULTICAST_TTL:
1627		case IP_MULTICAST_LOOP:
1628		case IP_ADD_MEMBERSHIP:
1629		case IP_DROP_MEMBERSHIP:
1630			error = ip_getmoptions(sopt, inp->inp_moptions);
1631			break;
1632
1633#if defined(IPSEC) || defined(FAST_IPSEC)
1634		case IP_IPSEC_POLICY:
1635		{
1636			struct mbuf *m = NULL;
1637			caddr_t req = NULL;
1638			size_t len = 0;
1639
1640			if (m != 0) {
1641				req = mtod(m, caddr_t);
1642				len = m->m_len;
1643			}
1644			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1645			if (error == 0)
1646				error = soopt_mcopyout(sopt, m); /* XXX */
1647			if (error == 0)
1648				m_freem(m);
1649			break;
1650		}
1651#endif /*IPSEC*/
1652
1653		default:
1654			error = ENOPROTOOPT;
1655			break;
1656		}
1657		break;
1658	}
1659	return (error);
1660}
1661
1662/*
1663 * Set up IP options in pcb for insertion in output packets.
1664 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1665 * with destination address if source routed.
1666 */
1667static int
1668ip_pcbopts(optname, pcbopt, m)
1669	int optname;
1670	struct mbuf **pcbopt;
1671	register struct mbuf *m;
1672{
1673	register int cnt, optlen;
1674	register u_char *cp;
1675	u_char opt;
1676
1677	/* turn off any old options */
1678	if (*pcbopt)
1679		(void)m_free(*pcbopt);
1680	*pcbopt = 0;
1681	if (m == (struct mbuf *)0 || m->m_len == 0) {
1682		/*
1683		 * Only turning off any previous options.
1684		 */
1685		if (m)
1686			(void)m_free(m);
1687		return (0);
1688	}
1689
1690	if (m->m_len % sizeof(int32_t))
1691		goto bad;
1692	/*
1693	 * IP first-hop destination address will be stored before
1694	 * actual options; move other options back
1695	 * and clear it when none present.
1696	 */
1697	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1698		goto bad;
1699	cnt = m->m_len;
1700	m->m_len += sizeof(struct in_addr);
1701	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1702	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1703	bzero(mtod(m, void *), sizeof(struct in_addr));
1704
1705	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1706		opt = cp[IPOPT_OPTVAL];
1707		if (opt == IPOPT_EOL)
1708			break;
1709		if (opt == IPOPT_NOP)
1710			optlen = 1;
1711		else {
1712			if (cnt < IPOPT_OLEN + sizeof(*cp))
1713				goto bad;
1714			optlen = cp[IPOPT_OLEN];
1715			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1716				goto bad;
1717		}
1718		switch (opt) {
1719
1720		default:
1721			break;
1722
1723		case IPOPT_LSRR:
1724		case IPOPT_SSRR:
1725			/*
1726			 * user process specifies route as:
1727			 *	->A->B->C->D
1728			 * D must be our final destination (but we can't
1729			 * check that since we may not have connected yet).
1730			 * A is first hop destination, which doesn't appear in
1731			 * actual IP option, but is stored before the options.
1732			 */
1733			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1734				goto bad;
1735			m->m_len -= sizeof(struct in_addr);
1736			cnt -= sizeof(struct in_addr);
1737			optlen -= sizeof(struct in_addr);
1738			cp[IPOPT_OLEN] = optlen;
1739			/*
1740			 * Move first hop before start of options.
1741			 */
1742			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1743			    sizeof(struct in_addr));
1744			/*
1745			 * Then copy rest of options back
1746			 * to close up the deleted entry.
1747			 */
1748			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1749			    &cp[IPOPT_OFFSET+1],
1750			    (unsigned)cnt - (IPOPT_MINOFF - 1));
1751			break;
1752		}
1753	}
1754	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1755		goto bad;
1756	*pcbopt = m;
1757	return (0);
1758
1759bad:
1760	(void)m_free(m);
1761	return (EINVAL);
1762}
1763
1764/*
1765 * XXX
1766 * The whole multicast option thing needs to be re-thought.
1767 * Several of these options are equally applicable to non-multicast
1768 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1769 * standard option (IP_TTL).
1770 */
1771
1772/*
1773 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1774 */
1775static struct ifnet *
1776ip_multicast_if(a, ifindexp)
1777	struct in_addr *a;
1778	int *ifindexp;
1779{
1780	int ifindex;
1781	struct ifnet *ifp;
1782
1783	if (ifindexp)
1784		*ifindexp = 0;
1785	if (ntohl(a->s_addr) >> 24 == 0) {
1786		ifindex = ntohl(a->s_addr) & 0xffffff;
1787		if (ifindex < 0 || if_index < ifindex)
1788			return NULL;
1789		ifp = ifnet_byindex(ifindex);
1790		if (ifindexp)
1791			*ifindexp = ifindex;
1792	} else {
1793		INADDR_TO_IFP(*a, ifp);
1794	}
1795	return ifp;
1796}
1797
1798/*
1799 * Set the IP multicast options in response to user setsockopt().
1800 */
1801static int
1802ip_setmoptions(sopt, imop)
1803	struct sockopt *sopt;
1804	struct ip_moptions **imop;
1805{
1806	int error = 0;
1807	int i;
1808	struct in_addr addr;
1809	struct ip_mreq mreq;
1810	struct ifnet *ifp;
1811	struct ip_moptions *imo = *imop;
1812	struct route ro;
1813	struct sockaddr_in *dst;
1814	int ifindex;
1815	int s;
1816
1817	if (imo == NULL) {
1818		/*
1819		 * No multicast option buffer attached to the pcb;
1820		 * allocate one and initialize to default values.
1821		 */
1822		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1823		    M_WAITOK);
1824
1825		if (imo == NULL)
1826			return (ENOBUFS);
1827		*imop = imo;
1828		imo->imo_multicast_ifp = NULL;
1829		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1830		imo->imo_multicast_vif = -1;
1831		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1832		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1833		imo->imo_num_memberships = 0;
1834	}
1835
1836	switch (sopt->sopt_name) {
1837	/* store an index number for the vif you wanna use in the send */
1838	case IP_MULTICAST_VIF:
1839		if (legal_vif_num == 0) {
1840			error = EOPNOTSUPP;
1841			break;
1842		}
1843		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1844		if (error)
1845			break;
1846		if (!legal_vif_num(i) && (i != -1)) {
1847			error = EINVAL;
1848			break;
1849		}
1850		imo->imo_multicast_vif = i;
1851		break;
1852
1853	case IP_MULTICAST_IF:
1854		/*
1855		 * Select the interface for outgoing multicast packets.
1856		 */
1857		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1858		if (error)
1859			break;
1860		/*
1861		 * INADDR_ANY is used to remove a previous selection.
1862		 * When no interface is selected, a default one is
1863		 * chosen every time a multicast packet is sent.
1864		 */
1865		if (addr.s_addr == INADDR_ANY) {
1866			imo->imo_multicast_ifp = NULL;
1867			break;
1868		}
1869		/*
1870		 * The selected interface is identified by its local
1871		 * IP address.  Find the interface and confirm that
1872		 * it supports multicasting.
1873		 */
1874		s = splimp();
1875		ifp = ip_multicast_if(&addr, &ifindex);
1876		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1877			splx(s);
1878			error = EADDRNOTAVAIL;
1879			break;
1880		}
1881		imo->imo_multicast_ifp = ifp;
1882		if (ifindex)
1883			imo->imo_multicast_addr = addr;
1884		else
1885			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1886		splx(s);
1887		break;
1888
1889	case IP_MULTICAST_TTL:
1890		/*
1891		 * Set the IP time-to-live for outgoing multicast packets.
1892		 * The original multicast API required a char argument,
1893		 * which is inconsistent with the rest of the socket API.
1894		 * We allow either a char or an int.
1895		 */
1896		if (sopt->sopt_valsize == 1) {
1897			u_char ttl;
1898			error = sooptcopyin(sopt, &ttl, 1, 1);
1899			if (error)
1900				break;
1901			imo->imo_multicast_ttl = ttl;
1902		} else {
1903			u_int ttl;
1904			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1905					    sizeof ttl);
1906			if (error)
1907				break;
1908			if (ttl > 255)
1909				error = EINVAL;
1910			else
1911				imo->imo_multicast_ttl = ttl;
1912		}
1913		break;
1914
1915	case IP_MULTICAST_LOOP:
1916		/*
1917		 * Set the loopback flag for outgoing multicast packets.
1918		 * Must be zero or one.  The original multicast API required a
1919		 * char argument, which is inconsistent with the rest
1920		 * of the socket API.  We allow either a char or an int.
1921		 */
1922		if (sopt->sopt_valsize == 1) {
1923			u_char loop;
1924			error = sooptcopyin(sopt, &loop, 1, 1);
1925			if (error)
1926				break;
1927			imo->imo_multicast_loop = !!loop;
1928		} else {
1929			u_int loop;
1930			error = sooptcopyin(sopt, &loop, sizeof loop,
1931					    sizeof loop);
1932			if (error)
1933				break;
1934			imo->imo_multicast_loop = !!loop;
1935		}
1936		break;
1937
1938	case IP_ADD_MEMBERSHIP:
1939		/*
1940		 * Add a multicast group membership.
1941		 * Group must be a valid IP multicast address.
1942		 */
1943		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1944		if (error)
1945			break;
1946
1947		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1948			error = EINVAL;
1949			break;
1950		}
1951		s = splimp();
1952		/*
1953		 * If no interface address was provided, use the interface of
1954		 * the route to the given multicast address.
1955		 */
1956		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1957			bzero((caddr_t)&ro, sizeof(ro));
1958			dst = (struct sockaddr_in *)&ro.ro_dst;
1959			dst->sin_len = sizeof(*dst);
1960			dst->sin_family = AF_INET;
1961			dst->sin_addr = mreq.imr_multiaddr;
1962			rtalloc_ign(&ro, RTF_CLONING);
1963			if (ro.ro_rt == NULL) {
1964				error = EADDRNOTAVAIL;
1965				splx(s);
1966				break;
1967			}
1968			ifp = ro.ro_rt->rt_ifp;
1969			RTFREE(ro.ro_rt);
1970		}
1971		else {
1972			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1973		}
1974
1975		/*
1976		 * See if we found an interface, and confirm that it
1977		 * supports multicast.
1978		 */
1979		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1980			error = EADDRNOTAVAIL;
1981			splx(s);
1982			break;
1983		}
1984		/*
1985		 * See if the membership already exists or if all the
1986		 * membership slots are full.
1987		 */
1988		for (i = 0; i < imo->imo_num_memberships; ++i) {
1989			if (imo->imo_membership[i]->inm_ifp == ifp &&
1990			    imo->imo_membership[i]->inm_addr.s_addr
1991						== mreq.imr_multiaddr.s_addr)
1992				break;
1993		}
1994		if (i < imo->imo_num_memberships) {
1995			error = EADDRINUSE;
1996			splx(s);
1997			break;
1998		}
1999		if (i == IP_MAX_MEMBERSHIPS) {
2000			error = ETOOMANYREFS;
2001			splx(s);
2002			break;
2003		}
2004		/*
2005		 * Everything looks good; add a new record to the multicast
2006		 * address list for the given interface.
2007		 */
2008		if ((imo->imo_membership[i] =
2009		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2010			error = ENOBUFS;
2011			splx(s);
2012			break;
2013		}
2014		++imo->imo_num_memberships;
2015		splx(s);
2016		break;
2017
2018	case IP_DROP_MEMBERSHIP:
2019		/*
2020		 * Drop a multicast group membership.
2021		 * Group must be a valid IP multicast address.
2022		 */
2023		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2024		if (error)
2025			break;
2026
2027		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2028			error = EINVAL;
2029			break;
2030		}
2031
2032		s = splimp();
2033		/*
2034		 * If an interface address was specified, get a pointer
2035		 * to its ifnet structure.
2036		 */
2037		if (mreq.imr_interface.s_addr == INADDR_ANY)
2038			ifp = NULL;
2039		else {
2040			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2041			if (ifp == NULL) {
2042				error = EADDRNOTAVAIL;
2043				splx(s);
2044				break;
2045			}
2046		}
2047		/*
2048		 * Find the membership in the membership array.
2049		 */
2050		for (i = 0; i < imo->imo_num_memberships; ++i) {
2051			if ((ifp == NULL ||
2052			     imo->imo_membership[i]->inm_ifp == ifp) &&
2053			     imo->imo_membership[i]->inm_addr.s_addr ==
2054			     mreq.imr_multiaddr.s_addr)
2055				break;
2056		}
2057		if (i == imo->imo_num_memberships) {
2058			error = EADDRNOTAVAIL;
2059			splx(s);
2060			break;
2061		}
2062		/*
2063		 * Give up the multicast address record to which the
2064		 * membership points.
2065		 */
2066		in_delmulti(imo->imo_membership[i]);
2067		/*
2068		 * Remove the gap in the membership array.
2069		 */
2070		for (++i; i < imo->imo_num_memberships; ++i)
2071			imo->imo_membership[i-1] = imo->imo_membership[i];
2072		--imo->imo_num_memberships;
2073		splx(s);
2074		break;
2075
2076	default:
2077		error = EOPNOTSUPP;
2078		break;
2079	}
2080
2081	/*
2082	 * If all options have default values, no need to keep the mbuf.
2083	 */
2084	if (imo->imo_multicast_ifp == NULL &&
2085	    imo->imo_multicast_vif == -1 &&
2086	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2087	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2088	    imo->imo_num_memberships == 0) {
2089		free(*imop, M_IPMOPTS);
2090		*imop = NULL;
2091	}
2092
2093	return (error);
2094}
2095
2096/*
2097 * Return the IP multicast options in response to user getsockopt().
2098 */
2099static int
2100ip_getmoptions(sopt, imo)
2101	struct sockopt *sopt;
2102	register struct ip_moptions *imo;
2103{
2104	struct in_addr addr;
2105	struct in_ifaddr *ia;
2106	int error, optval;
2107	u_char coptval;
2108
2109	error = 0;
2110	switch (sopt->sopt_name) {
2111	case IP_MULTICAST_VIF:
2112		if (imo != NULL)
2113			optval = imo->imo_multicast_vif;
2114		else
2115			optval = -1;
2116		error = sooptcopyout(sopt, &optval, sizeof optval);
2117		break;
2118
2119	case IP_MULTICAST_IF:
2120		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2121			addr.s_addr = INADDR_ANY;
2122		else if (imo->imo_multicast_addr.s_addr) {
2123			/* return the value user has set */
2124			addr = imo->imo_multicast_addr;
2125		} else {
2126			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2127			addr.s_addr = (ia == NULL) ? INADDR_ANY
2128				: IA_SIN(ia)->sin_addr.s_addr;
2129		}
2130		error = sooptcopyout(sopt, &addr, sizeof addr);
2131		break;
2132
2133	case IP_MULTICAST_TTL:
2134		if (imo == 0)
2135			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2136		else
2137			optval = coptval = imo->imo_multicast_ttl;
2138		if (sopt->sopt_valsize == 1)
2139			error = sooptcopyout(sopt, &coptval, 1);
2140		else
2141			error = sooptcopyout(sopt, &optval, sizeof optval);
2142		break;
2143
2144	case IP_MULTICAST_LOOP:
2145		if (imo == 0)
2146			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2147		else
2148			optval = coptval = imo->imo_multicast_loop;
2149		if (sopt->sopt_valsize == 1)
2150			error = sooptcopyout(sopt, &coptval, 1);
2151		else
2152			error = sooptcopyout(sopt, &optval, sizeof optval);
2153		break;
2154
2155	default:
2156		error = ENOPROTOOPT;
2157		break;
2158	}
2159	return (error);
2160}
2161
2162/*
2163 * Discard the IP multicast options.
2164 */
2165void
2166ip_freemoptions(imo)
2167	register struct ip_moptions *imo;
2168{
2169	register int i;
2170
2171	if (imo != NULL) {
2172		for (i = 0; i < imo->imo_num_memberships; ++i)
2173			in_delmulti(imo->imo_membership[i]);
2174		free(imo, M_IPMOPTS);
2175	}
2176}
2177
2178/*
2179 * Routine called from ip_output() to loop back a copy of an IP multicast
2180 * packet to the input queue of a specified interface.  Note that this
2181 * calls the output routine of the loopback "driver", but with an interface
2182 * pointer that might NOT be a loopback interface -- evil, but easier than
2183 * replicating that code here.
2184 */
2185static void
2186ip_mloopback(ifp, m, dst, hlen)
2187	struct ifnet *ifp;
2188	register struct mbuf *m;
2189	register struct sockaddr_in *dst;
2190	int hlen;
2191{
2192	register struct ip *ip;
2193	struct mbuf *copym;
2194
2195	copym = m_copy(m, 0, M_COPYALL);
2196	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2197		copym = m_pullup(copym, hlen);
2198	if (copym != NULL) {
2199		/* If needed, compute the checksum and mark it as valid. */
2200		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2201			in_delayed_cksum(copym);
2202			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2203			copym->m_pkthdr.csum_flags |=
2204			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2205			copym->m_pkthdr.csum_data = 0xffff;
2206		}
2207		/*
2208		 * We don't bother to fragment if the IP length is greater
2209		 * than the interface's MTU.  Can this possibly matter?
2210		 */
2211		ip = mtod(copym, struct ip *);
2212		ip->ip_len = htons(ip->ip_len);
2213		ip->ip_off = htons(ip->ip_off);
2214		ip->ip_sum = 0;
2215		ip->ip_sum = in_cksum(copym, hlen);
2216		/*
2217		 * NB:
2218		 * It's not clear whether there are any lingering
2219		 * reentrancy problems in other areas which might
2220		 * be exposed by using ip_input directly (in
2221		 * particular, everything which modifies the packet
2222		 * in-place).  Yet another option is using the
2223		 * protosw directly to deliver the looped back
2224		 * packet.  For the moment, we'll err on the side
2225		 * of safety by using if_simloop().
2226		 */
2227#if 1 /* XXX */
2228		if (dst->sin_family != AF_INET) {
2229			printf("ip_mloopback: bad address family %d\n",
2230						dst->sin_family);
2231			dst->sin_family = AF_INET;
2232		}
2233#endif
2234
2235#ifdef notdef
2236		copym->m_pkthdr.rcvif = ifp;
2237		ip_input(copym);
2238#else
2239		if_simloop(ifp, copym, dst->sin_family, 0);
2240#endif
2241	}
2242}
2243