ip_output.c revision 12934
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 *	$Id: ip_output.c,v 1.26 1995/12/05 17:46:15 wollman Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/errno.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/socketvar.h>
45#include <sys/queue.h>
46
47#include <net/if.h>
48#include <net/route.h>
49
50#include <netinet/in.h>
51#include <netinet/in_systm.h>
52#include <netinet/ip.h>
53#include <netinet/in_pcb.h>
54#include <netinet/in_var.h>
55#include <netinet/ip_var.h>
56
57#include <netinet/ip_fw.h>
58
59#ifdef vax
60#include <machine/mtpr.h>
61#endif
62
63u_short ip_id;
64
65static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
66static void	ip_mloopback
67	__P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
68static int	ip_getmoptions
69	__P((int, struct ip_moptions *, struct mbuf **));
70static int	ip_optcopy __P((struct ip *, struct ip *));
71static int	ip_pcbopts __P((struct mbuf **, struct mbuf *));
72static int	ip_setmoptions
73	__P((int, struct ip_moptions **, struct mbuf *));
74
75/*
76 * IP output.  The packet in mbuf chain m contains a skeletal IP
77 * header (with len, off, ttl, proto, tos, src, dst).
78 * The mbuf chain containing the packet will be freed.
79 * The mbuf opt, if present, will not be freed.
80 */
81int
82ip_output(m0, opt, ro, flags, imo)
83	struct mbuf *m0;
84	struct mbuf *opt;
85	struct route *ro;
86	int flags;
87	struct ip_moptions *imo;
88{
89	register struct ip *ip, *mhip;
90	register struct ifnet *ifp;
91	register struct mbuf *m = m0;
92	register int hlen = sizeof (struct ip);
93	int len, off, error = 0;
94	/*
95	 * It might seem obvious at first glance that one could easily
96	 * make a one-behind cache out of this by simply making `iproute'
97	 * static and eliminating the bzero() below.  However, this turns
98	 * out not to work, for two reasons:
99	 *
100	 * 1) This routine needs to be reentrant.  It can be called
101	 * recursively from encapsulating network interfaces, and it
102	 * is always called recursively from ip_mforward().
103	 *
104	 * 2) You turn out not to gain much.  There is already a one-
105	 * behind cache implemented for the specific case of forwarding,
106	 * and sends on a connected socket will use a route associated
107	 * with the PCB.  The only cases left are sends on unconnected
108	 * and raw sockets, and if these cases are really significant,
109	 * something is seriously wrong.
110	 */
111	struct route iproute;
112	struct sockaddr_in *dst;
113	struct in_ifaddr *ia;
114
115#ifdef	DIAGNOSTIC
116	if ((m->m_flags & M_PKTHDR) == 0)
117		panic("ip_output no HDR");
118#endif
119	if (opt) {
120		m = ip_insertoptions(m, opt, &len);
121		hlen = len;
122	}
123	ip = mtod(m, struct ip *);
124	/*
125	 * Fill in IP header.
126	 */
127	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
128		ip->ip_v = IPVERSION;
129		ip->ip_off &= IP_DF;
130		ip->ip_id = htons(ip_id++);
131		ip->ip_hl = hlen >> 2;
132		ipstat.ips_localout++;
133	} else {
134		hlen = ip->ip_hl << 2;
135	}
136	/*
137	 * Route packet.
138	 */
139	if (ro == 0) {
140		ro = &iproute;
141		bzero((caddr_t)ro, sizeof (*ro));
142	}
143	dst = (struct sockaddr_in *)&ro->ro_dst;
144	/*
145	 * If there is a cached route,
146	 * check that it is to the same destination
147	 * and is still up.  If not, free it and try again.
148	 */
149	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
150	   dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
151		RTFREE(ro->ro_rt);
152		ro->ro_rt = (struct rtentry *)0;
153	}
154	if (ro->ro_rt == 0) {
155		dst->sin_family = AF_INET;
156		dst->sin_len = sizeof(*dst);
157		dst->sin_addr = ip->ip_dst;
158	}
159	/*
160	 * If routing to interface only,
161	 * short circuit routing lookup.
162	 */
163#define ifatoia(ifa)	((struct in_ifaddr *)(ifa))
164#define sintosa(sin)	((struct sockaddr *)(sin))
165	if (flags & IP_ROUTETOIF) {
166		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
167		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
168			ipstat.ips_noroute++;
169			error = ENETUNREACH;
170			goto bad;
171		}
172		ifp = ia->ia_ifp;
173		ip->ip_ttl = 1;
174	} else {
175		/*
176		 * If this is the case, we probably don't want to allocate
177		 * a protocol-cloned route since we didn't get one from the
178		 * ULP.  This lets TCP do its thing, while not burdening
179		 * forwarding or ICMP with the overhead of cloning a route.
180		 * Of course, we still want to do any cloning requested by
181		 * the link layer, as this is probably required in all cases
182		 * for correct operation (as it is for ARP).
183		 */
184		if (ro->ro_rt == 0)
185			rtalloc_ign(ro, RTF_PRCLONING);
186		if (ro->ro_rt == 0) {
187			ipstat.ips_noroute++;
188			error = EHOSTUNREACH;
189			goto bad;
190		}
191		ia = ifatoia(ro->ro_rt->rt_ifa);
192		ifp = ro->ro_rt->rt_ifp;
193		ro->ro_rt->rt_use++;
194		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
195			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
196	}
197	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
198		struct in_multi *inm;
199
200		m->m_flags |= M_MCAST;
201		/*
202		 * IP destination address is multicast.  Make sure "dst"
203		 * still points to the address in "ro".  (It may have been
204		 * changed to point to a gateway address, above.)
205		 */
206		dst = (struct sockaddr_in *)&ro->ro_dst;
207		/*
208		 * See if the caller provided any multicast options
209		 */
210		if (imo != NULL) {
211			ip->ip_ttl = imo->imo_multicast_ttl;
212			if (imo->imo_multicast_ifp != NULL)
213				ifp = imo->imo_multicast_ifp;
214			if (imo->imo_multicast_vif != -1)
215				ip->ip_src.s_addr =
216				    ip_mcast_src(imo->imo_multicast_vif);
217		} else
218			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
219		/*
220		 * Confirm that the outgoing interface supports multicast.
221		 */
222		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
223			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
224				ipstat.ips_noroute++;
225				error = ENETUNREACH;
226				goto bad;
227			}
228		}
229		/*
230		 * If source address not specified yet, use address
231		 * of outgoing interface.
232		 */
233		if (ip->ip_src.s_addr == INADDR_ANY) {
234			register struct in_ifaddr *ia;
235
236			for (ia = in_ifaddr; ia; ia = ia->ia_next)
237				if (ia->ia_ifp == ifp) {
238					ip->ip_src = IA_SIN(ia)->sin_addr;
239					break;
240				}
241		}
242
243		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
244		if (inm != NULL &&
245		   (imo == NULL || imo->imo_multicast_loop)) {
246			/*
247			 * If we belong to the destination multicast group
248			 * on the outgoing interface, and the caller did not
249			 * forbid loopback, loop back a copy.
250			 */
251			ip_mloopback(ifp, m, dst);
252		}
253		else {
254			/*
255			 * If we are acting as a multicast router, perform
256			 * multicast forwarding as if the packet had just
257			 * arrived on the interface to which we are about
258			 * to send.  The multicast forwarding function
259			 * recursively calls this function, using the
260			 * IP_FORWARDING flag to prevent infinite recursion.
261			 *
262			 * Multicasts that are looped back by ip_mloopback(),
263			 * above, will be forwarded by the ip_input() routine,
264			 * if necessary.
265			 */
266			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
267				/*
268				 * Check if rsvp daemon is running. If not, don't
269				 * set ip_moptions. This ensures that the packet
270				 * is multicast and not just sent down one link
271				 * as prescribed by rsvpd.
272				 */
273				if (!rsvp_on)
274				  imo = NULL;
275				if (ip_mforward(ip, ifp, m, imo) != 0) {
276					m_freem(m);
277					goto done;
278				}
279			}
280		}
281
282		/*
283		 * Multicasts with a time-to-live of zero may be looped-
284		 * back, above, but must not be transmitted on a network.
285		 * Also, multicasts addressed to the loopback interface
286		 * are not sent -- the above call to ip_mloopback() will
287		 * loop back a copy if this host actually belongs to the
288		 * destination group on the loopback interface.
289		 */
290		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
291			m_freem(m);
292			goto done;
293		}
294
295		goto sendit;
296	}
297#ifndef notdef
298	/*
299	 * If source address not specified yet, use address
300	 * of outgoing interface.
301	 */
302	if (ip->ip_src.s_addr == INADDR_ANY)
303		ip->ip_src = IA_SIN(ia)->sin_addr;
304#endif
305	/*
306	 * Verify that we have any chance at all of being able to queue
307	 *      the packet or packet fragments
308	 */
309	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
310		ifp->if_snd.ifq_maxlen) {
311			error = ENOBUFS;
312			goto bad;
313	}
314
315	/*
316	 * Look for broadcast address and
317	 * and verify user is allowed to send
318	 * such a packet.
319	 */
320	if (in_broadcast(dst->sin_addr, ifp)) {
321		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
322			error = EADDRNOTAVAIL;
323			goto bad;
324		}
325		if ((flags & IP_ALLOWBROADCAST) == 0) {
326			error = EACCES;
327			goto bad;
328		}
329		/* don't allow broadcast messages to be fragmented */
330		if ((u_short)ip->ip_len > ifp->if_mtu) {
331			error = EMSGSIZE;
332			goto bad;
333		}
334		m->m_flags |= M_BCAST;
335	} else
336		m->m_flags &= ~M_BCAST;
337
338sendit:
339	/*
340	 * If small enough for interface, can just send directly.
341	 */
342	if ((u_short)ip->ip_len <= ifp->if_mtu) {
343		ip->ip_len = htons((u_short)ip->ip_len);
344		ip->ip_off = htons((u_short)ip->ip_off);
345		ip->ip_sum = 0;
346		ip->ip_sum = in_cksum(m, hlen);
347		error = (*ifp->if_output)(ifp, m,
348				(struct sockaddr *)dst, ro->ro_rt);
349		goto done;
350	}
351	/*
352	 * Too large for interface; fragment if possible.
353	 * Must be able to put at least 8 bytes per fragment.
354	 */
355	if (ip->ip_off & IP_DF) {
356		error = EMSGSIZE;
357#if 1
358		/*
359		 * This case can happen if the user changed the MTU
360		 * of an interface after enabling IP on it.  Because
361		 * most netifs don't keep track of routes pointing to
362		 * them, there is no way for one to update all its
363		 * routes when the MTU is changed.
364		 */
365		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST))
366		    && !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU)
367		    && (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
368			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
369		}
370#endif
371		ipstat.ips_cantfrag++;
372		goto bad;
373	}
374	len = (ifp->if_mtu - hlen) &~ 7;
375	if (len < 8) {
376		error = EMSGSIZE;
377		goto bad;
378	}
379
380    {
381	int mhlen, firstlen = len;
382	struct mbuf **mnext = &m->m_nextpkt;
383
384	/*
385	 * Loop through length of segment after first fragment,
386	 * make new header and copy data of each part and link onto chain.
387	 */
388	m0 = m;
389	mhlen = sizeof (struct ip);
390	for (off = hlen + len; off < (u_short)ip->ip_len; off += len) {
391		MGETHDR(m, M_DONTWAIT, MT_HEADER);
392		if (m == 0) {
393			error = ENOBUFS;
394			ipstat.ips_odropped++;
395			goto sendorfree;
396		}
397		m->m_data += max_linkhdr;
398		mhip = mtod(m, struct ip *);
399		*mhip = *ip;
400		if (hlen > sizeof (struct ip)) {
401			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
402			mhip->ip_hl = mhlen >> 2;
403		}
404		m->m_len = mhlen;
405		mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & ~IP_MF);
406		if (ip->ip_off & IP_MF)
407			mhip->ip_off |= IP_MF;
408		if (off + len >= (u_short)ip->ip_len)
409			len = (u_short)ip->ip_len - off;
410		else
411			mhip->ip_off |= IP_MF;
412		mhip->ip_len = htons((u_short)(len + mhlen));
413		m->m_next = m_copy(m0, off, len);
414		if (m->m_next == 0) {
415			(void) m_free(m);
416			error = ENOBUFS;	/* ??? */
417			ipstat.ips_odropped++;
418			goto sendorfree;
419		}
420		m->m_pkthdr.len = mhlen + len;
421		m->m_pkthdr.rcvif = (struct ifnet *)0;
422		mhip->ip_off = htons((u_short)mhip->ip_off);
423		mhip->ip_sum = 0;
424		mhip->ip_sum = in_cksum(m, mhlen);
425		*mnext = m;
426		mnext = &m->m_nextpkt;
427		ipstat.ips_ofragments++;
428	}
429	/*
430	 * Update first fragment by trimming what's been copied out
431	 * and updating header, then send each fragment (in order).
432	 */
433	m = m0;
434	m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
435	m->m_pkthdr.len = hlen + firstlen;
436	ip->ip_len = htons((u_short)m->m_pkthdr.len);
437	ip->ip_off = htons((u_short)(ip->ip_off | IP_MF));
438	ip->ip_sum = 0;
439	ip->ip_sum = in_cksum(m, hlen);
440sendorfree:
441	for (m = m0; m; m = m0) {
442		m0 = m->m_nextpkt;
443		m->m_nextpkt = 0;
444		if (error == 0)
445			error = (*ifp->if_output)(ifp, m,
446			    (struct sockaddr *)dst, ro->ro_rt);
447		else
448			m_freem(m);
449	}
450
451	if (error == 0)
452		ipstat.ips_fragmented++;
453    }
454done:
455	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt)
456		RTFREE(ro->ro_rt);
457	/*
458	 * Count outgoing packet,here we count both our packets and
459	 * those we forward.
460	 * Here we want to convert ip_len to host byte order when counting
461	 * so we set 3rd arg to 1.
462	 * This is locally generated packet so it has not
463	 * incoming interface.
464	 */
465	if (ip_acct_cnt_ptr!=NULL)
466		(*ip_acct_cnt_ptr)(ip,NULL,ip_acct_chain,1);
467
468	return (error);
469bad:
470	m_freem(m0);
471	goto done;
472}
473
474/*
475 * Insert IP options into preformed packet.
476 * Adjust IP destination as required for IP source routing,
477 * as indicated by a non-zero in_addr at the start of the options.
478 */
479static struct mbuf *
480ip_insertoptions(m, opt, phlen)
481	register struct mbuf *m;
482	struct mbuf *opt;
483	int *phlen;
484{
485	register struct ipoption *p = mtod(opt, struct ipoption *);
486	struct mbuf *n;
487	register struct ip *ip = mtod(m, struct ip *);
488	unsigned optlen;
489
490	optlen = opt->m_len - sizeof(p->ipopt_dst);
491	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET)
492		return (m);		/* XXX should fail */
493	if (p->ipopt_dst.s_addr)
494		ip->ip_dst = p->ipopt_dst;
495	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
496		MGETHDR(n, M_DONTWAIT, MT_HEADER);
497		if (n == 0)
498			return (m);
499		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
500		m->m_len -= sizeof(struct ip);
501		m->m_data += sizeof(struct ip);
502		n->m_next = m;
503		m = n;
504		m->m_len = optlen + sizeof(struct ip);
505		m->m_data += max_linkhdr;
506		(void)memcpy(mtod(m, void *), ip, sizeof(struct ip));
507	} else {
508		m->m_data -= optlen;
509		m->m_len += optlen;
510		m->m_pkthdr.len += optlen;
511		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
512	}
513	ip = mtod(m, struct ip *);
514	(void)memcpy(ip + 1, p->ipopt_list, (unsigned)optlen);
515	*phlen = sizeof(struct ip) + optlen;
516	ip->ip_len += optlen;
517	return (m);
518}
519
520/*
521 * Copy options from ip to jp,
522 * omitting those not copied during fragmentation.
523 */
524static int
525ip_optcopy(ip, jp)
526	struct ip *ip, *jp;
527{
528	register u_char *cp, *dp;
529	int opt, optlen, cnt;
530
531	cp = (u_char *)(ip + 1);
532	dp = (u_char *)(jp + 1);
533	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
534	for (; cnt > 0; cnt -= optlen, cp += optlen) {
535		opt = cp[0];
536		if (opt == IPOPT_EOL)
537			break;
538		if (opt == IPOPT_NOP) {
539			/* Preserve for IP mcast tunnel's LSRR alignment. */
540			*dp++ = IPOPT_NOP;
541			optlen = 1;
542			continue;
543		} else
544			optlen = cp[IPOPT_OLEN];
545		/* bogus lengths should have been caught by ip_dooptions */
546		if (optlen > cnt)
547			optlen = cnt;
548		if (IPOPT_COPIED(opt)) {
549			(void)memcpy(dp, cp, (unsigned)optlen);
550			dp += optlen;
551		}
552	}
553	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
554		*dp++ = IPOPT_EOL;
555	return (optlen);
556}
557
558/*
559 * IP socket option processing.
560 */
561int
562ip_ctloutput(op, so, level, optname, mp)
563	int op;
564	struct socket *so;
565	int level, optname;
566	struct mbuf **mp;
567{
568	register struct inpcb *inp = sotoinpcb(so);
569	register struct mbuf *m = *mp;
570	register int optval = 0;
571	int error = 0;
572
573	if (level != IPPROTO_IP) {
574		error = EINVAL;
575		if (op == PRCO_SETOPT && *mp)
576			(void) m_free(*mp);
577	} else switch (op) {
578
579	case PRCO_SETOPT:
580		switch (optname) {
581		case IP_OPTIONS:
582#ifdef notyet
583		case IP_RETOPTS:
584			return (ip_pcbopts(optname, &inp->inp_options, m));
585#else
586			return (ip_pcbopts(&inp->inp_options, m));
587#endif
588
589		case IP_TOS:
590		case IP_TTL:
591		case IP_RECVOPTS:
592		case IP_RECVRETOPTS:
593		case IP_RECVDSTADDR:
594			if (m == 0 || m->m_len != sizeof(int))
595				error = EINVAL;
596			else {
597				optval = *mtod(m, int *);
598				switch (optname) {
599
600				case IP_TOS:
601					inp->inp_ip.ip_tos = optval;
602					break;
603
604				case IP_TTL:
605					inp->inp_ip.ip_ttl = optval;
606					break;
607#define	OPTSET(bit) \
608	if (optval) \
609		inp->inp_flags |= bit; \
610	else \
611		inp->inp_flags &= ~bit;
612
613				case IP_RECVOPTS:
614					OPTSET(INP_RECVOPTS);
615					break;
616
617				case IP_RECVRETOPTS:
618					OPTSET(INP_RECVRETOPTS);
619					break;
620
621				case IP_RECVDSTADDR:
622					OPTSET(INP_RECVDSTADDR);
623					break;
624				}
625			}
626			break;
627#undef OPTSET
628
629		case IP_MULTICAST_IF:
630		case IP_MULTICAST_VIF:
631		case IP_MULTICAST_TTL:
632		case IP_MULTICAST_LOOP:
633		case IP_ADD_MEMBERSHIP:
634		case IP_DROP_MEMBERSHIP:
635			error = ip_setmoptions(optname, &inp->inp_moptions, m);
636			break;
637
638		default:
639			error = ENOPROTOOPT;
640			break;
641		}
642		if (m)
643			(void)m_free(m);
644		break;
645
646	case PRCO_GETOPT:
647		switch (optname) {
648		case IP_OPTIONS:
649		case IP_RETOPTS:
650			*mp = m = m_get(M_WAIT, MT_SOOPTS);
651			if (inp->inp_options) {
652				m->m_len = inp->inp_options->m_len;
653				(void)memcpy(mtod(m, void *),
654				    mtod(inp->inp_options, void *), (unsigned)m->m_len);
655			} else
656				m->m_len = 0;
657			break;
658
659		case IP_TOS:
660		case IP_TTL:
661		case IP_RECVOPTS:
662		case IP_RECVRETOPTS:
663		case IP_RECVDSTADDR:
664			*mp = m = m_get(M_WAIT, MT_SOOPTS);
665			m->m_len = sizeof(int);
666			switch (optname) {
667
668			case IP_TOS:
669				optval = inp->inp_ip.ip_tos;
670				break;
671
672			case IP_TTL:
673				optval = inp->inp_ip.ip_ttl;
674				break;
675
676#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
677
678			case IP_RECVOPTS:
679				optval = OPTBIT(INP_RECVOPTS);
680				break;
681
682			case IP_RECVRETOPTS:
683				optval = OPTBIT(INP_RECVRETOPTS);
684				break;
685
686			case IP_RECVDSTADDR:
687				optval = OPTBIT(INP_RECVDSTADDR);
688				break;
689			}
690			*mtod(m, int *) = optval;
691			break;
692
693		case IP_MULTICAST_IF:
694		case IP_MULTICAST_VIF:
695		case IP_MULTICAST_TTL:
696		case IP_MULTICAST_LOOP:
697		case IP_ADD_MEMBERSHIP:
698		case IP_DROP_MEMBERSHIP:
699			error = ip_getmoptions(optname, inp->inp_moptions, mp);
700			break;
701
702		default:
703			error = ENOPROTOOPT;
704			break;
705		}
706		break;
707	}
708	return (error);
709}
710
711/*
712 * Set up IP options in pcb for insertion in output packets.
713 * Store in mbuf with pointer in pcbopt, adding pseudo-option
714 * with destination address if source routed.
715 */
716static int
717#ifdef notyet
718ip_pcbopts(optname, pcbopt, m)
719	int optname;
720#else
721ip_pcbopts(pcbopt, m)
722#endif
723	struct mbuf **pcbopt;
724	register struct mbuf *m;
725{
726	register cnt, optlen;
727	register u_char *cp;
728	u_char opt;
729
730	/* turn off any old options */
731	if (*pcbopt)
732		(void)m_free(*pcbopt);
733	*pcbopt = 0;
734	if (m == (struct mbuf *)0 || m->m_len == 0) {
735		/*
736		 * Only turning off any previous options.
737		 */
738		if (m)
739			(void)m_free(m);
740		return (0);
741	}
742
743#ifndef	vax
744	if (m->m_len % sizeof(long))
745		goto bad;
746#endif
747	/*
748	 * IP first-hop destination address will be stored before
749	 * actual options; move other options back
750	 * and clear it when none present.
751	 */
752	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
753		goto bad;
754	cnt = m->m_len;
755	m->m_len += sizeof(struct in_addr);
756	cp = mtod(m, u_char *) + sizeof(struct in_addr);
757	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
758	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
759
760	for (; cnt > 0; cnt -= optlen, cp += optlen) {
761		opt = cp[IPOPT_OPTVAL];
762		if (opt == IPOPT_EOL)
763			break;
764		if (opt == IPOPT_NOP)
765			optlen = 1;
766		else {
767			optlen = cp[IPOPT_OLEN];
768			if (optlen <= IPOPT_OLEN || optlen > cnt)
769				goto bad;
770		}
771		switch (opt) {
772
773		default:
774			break;
775
776		case IPOPT_LSRR:
777		case IPOPT_SSRR:
778			/*
779			 * user process specifies route as:
780			 *	->A->B->C->D
781			 * D must be our final destination (but we can't
782			 * check that since we may not have connected yet).
783			 * A is first hop destination, which doesn't appear in
784			 * actual IP option, but is stored before the options.
785			 */
786			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
787				goto bad;
788			m->m_len -= sizeof(struct in_addr);
789			cnt -= sizeof(struct in_addr);
790			optlen -= sizeof(struct in_addr);
791			cp[IPOPT_OLEN] = optlen;
792			/*
793			 * Move first hop before start of options.
794			 */
795			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
796			    sizeof(struct in_addr));
797			/*
798			 * Then copy rest of options back
799			 * to close up the deleted entry.
800			 */
801			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
802			    sizeof(struct in_addr)),
803			    (caddr_t)&cp[IPOPT_OFFSET+1],
804			    (unsigned)cnt + sizeof(struct in_addr));
805			break;
806		}
807	}
808	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
809		goto bad;
810	*pcbopt = m;
811	return (0);
812
813bad:
814	(void)m_free(m);
815	return (EINVAL);
816}
817
818/*
819 * Set the IP multicast options in response to user setsockopt().
820 */
821static int
822ip_setmoptions(optname, imop, m)
823	int optname;
824	struct ip_moptions **imop;
825	struct mbuf *m;
826{
827	register int error = 0;
828	u_char loop;
829	register int i;
830	struct in_addr addr;
831	register struct ip_mreq *mreq;
832	register struct ifnet *ifp;
833	register struct ip_moptions *imo = *imop;
834	struct route ro;
835	register struct sockaddr_in *dst;
836	int s;
837
838	if (imo == NULL) {
839		/*
840		 * No multicast option buffer attached to the pcb;
841		 * allocate one and initialize to default values.
842		 */
843		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
844		    M_WAITOK);
845
846		if (imo == NULL)
847			return (ENOBUFS);
848		*imop = imo;
849		imo->imo_multicast_ifp = NULL;
850		imo->imo_multicast_vif = -1;
851		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
852		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
853		imo->imo_num_memberships = 0;
854	}
855
856	switch (optname) {
857	/* store an index number for the vif you wanna use in the send */
858	case IP_MULTICAST_VIF:
859		if (!legal_vif_num) {
860			error = EOPNOTSUPP;
861			break;
862		}
863		if (m == NULL || m->m_len != sizeof(int)) {
864			error = EINVAL;
865			break;
866		}
867		i = *(mtod(m, int *));
868		if (!legal_vif_num(i) && (i != -1)) {
869			error = EINVAL;
870			break;
871		}
872		imo->imo_multicast_vif = i;
873		break;
874
875	case IP_MULTICAST_IF:
876		/*
877		 * Select the interface for outgoing multicast packets.
878		 */
879		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
880			error = EINVAL;
881			break;
882		}
883		addr = *(mtod(m, struct in_addr *));
884		/*
885		 * INADDR_ANY is used to remove a previous selection.
886		 * When no interface is selected, a default one is
887		 * chosen every time a multicast packet is sent.
888		 */
889		if (addr.s_addr == INADDR_ANY) {
890			imo->imo_multicast_ifp = NULL;
891			break;
892		}
893		/*
894		 * The selected interface is identified by its local
895		 * IP address.  Find the interface and confirm that
896		 * it supports multicasting.
897		 */
898		s = splimp();
899		INADDR_TO_IFP(addr, ifp);
900		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
901			error = EADDRNOTAVAIL;
902			break;
903		}
904		imo->imo_multicast_ifp = ifp;
905		splx(s);
906		break;
907
908	case IP_MULTICAST_TTL:
909		/*
910		 * Set the IP time-to-live for outgoing multicast packets.
911		 */
912		if (m == NULL || m->m_len != 1) {
913			error = EINVAL;
914			break;
915		}
916		imo->imo_multicast_ttl = *(mtod(m, u_char *));
917		break;
918
919	case IP_MULTICAST_LOOP:
920		/*
921		 * Set the loopback flag for outgoing multicast packets.
922		 * Must be zero or one.
923		 */
924		if (m == NULL || m->m_len != 1 ||
925		   (loop = *(mtod(m, u_char *))) > 1) {
926			error = EINVAL;
927			break;
928		}
929		imo->imo_multicast_loop = loop;
930		break;
931
932	case IP_ADD_MEMBERSHIP:
933		/*
934		 * Add a multicast group membership.
935		 * Group must be a valid IP multicast address.
936		 */
937		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
938			error = EINVAL;
939			break;
940		}
941		mreq = mtod(m, struct ip_mreq *);
942		if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {
943			error = EINVAL;
944			break;
945		}
946		s = splimp();
947		/*
948		 * If no interface address was provided, use the interface of
949		 * the route to the given multicast address.
950		 */
951		if (mreq->imr_interface.s_addr == INADDR_ANY) {
952			bzero((caddr_t)&ro, sizeof(ro));
953			dst = (struct sockaddr_in *)&ro.ro_dst;
954			dst->sin_len = sizeof(*dst);
955			dst->sin_family = AF_INET;
956			dst->sin_addr = mreq->imr_multiaddr;
957			rtalloc(&ro);
958			if (ro.ro_rt == NULL) {
959				error = EADDRNOTAVAIL;
960				splx(s);
961				break;
962			}
963			ifp = ro.ro_rt->rt_ifp;
964			rtfree(ro.ro_rt);
965		}
966		else {
967			INADDR_TO_IFP(mreq->imr_interface, ifp);
968		}
969
970		/*
971		 * See if we found an interface, and confirm that it
972		 * supports multicast.
973		 */
974		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
975			error = EADDRNOTAVAIL;
976			splx(s);
977			break;
978		}
979		/*
980		 * See if the membership already exists or if all the
981		 * membership slots are full.
982		 */
983		for (i = 0; i < imo->imo_num_memberships; ++i) {
984			if (imo->imo_membership[i]->inm_ifp == ifp &&
985			    imo->imo_membership[i]->inm_addr.s_addr
986						== mreq->imr_multiaddr.s_addr)
987				break;
988		}
989		if (i < imo->imo_num_memberships) {
990			error = EADDRINUSE;
991			splx(s);
992			break;
993		}
994		if (i == IP_MAX_MEMBERSHIPS) {
995			error = ETOOMANYREFS;
996			splx(s);
997			break;
998		}
999		/*
1000		 * Everything looks good; add a new record to the multicast
1001		 * address list for the given interface.
1002		 */
1003		if ((imo->imo_membership[i] =
1004		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1005			error = ENOBUFS;
1006			splx(s);
1007			break;
1008		}
1009		++imo->imo_num_memberships;
1010		splx(s);
1011		break;
1012
1013	case IP_DROP_MEMBERSHIP:
1014		/*
1015		 * Drop a multicast group membership.
1016		 * Group must be a valid IP multicast address.
1017		 */
1018		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1019			error = EINVAL;
1020			break;
1021		}
1022		mreq = mtod(m, struct ip_mreq *);
1023		if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {
1024			error = EINVAL;
1025			break;
1026		}
1027
1028		s = splimp();
1029		/*
1030		 * If an interface address was specified, get a pointer
1031		 * to its ifnet structure.
1032		 */
1033		if (mreq->imr_interface.s_addr == INADDR_ANY)
1034			ifp = NULL;
1035		else {
1036			INADDR_TO_IFP(mreq->imr_interface, ifp);
1037			if (ifp == NULL) {
1038				error = EADDRNOTAVAIL;
1039				splx(s);
1040				break;
1041			}
1042		}
1043		/*
1044		 * Find the membership in the membership array.
1045		 */
1046		for (i = 0; i < imo->imo_num_memberships; ++i) {
1047			if ((ifp == NULL ||
1048			     imo->imo_membership[i]->inm_ifp == ifp) &&
1049			     imo->imo_membership[i]->inm_addr.s_addr ==
1050			     mreq->imr_multiaddr.s_addr)
1051				break;
1052		}
1053		if (i == imo->imo_num_memberships) {
1054			error = EADDRNOTAVAIL;
1055			splx(s);
1056			break;
1057		}
1058		/*
1059		 * Give up the multicast address record to which the
1060		 * membership points.
1061		 */
1062		in_delmulti(imo->imo_membership[i]);
1063		/*
1064		 * Remove the gap in the membership array.
1065		 */
1066		for (++i; i < imo->imo_num_memberships; ++i)
1067			imo->imo_membership[i-1] = imo->imo_membership[i];
1068		--imo->imo_num_memberships;
1069		splx(s);
1070		break;
1071
1072	default:
1073		error = EOPNOTSUPP;
1074		break;
1075	}
1076
1077	/*
1078	 * If all options have default values, no need to keep the mbuf.
1079	 */
1080	if (imo->imo_multicast_ifp == NULL &&
1081	    imo->imo_multicast_vif == -1 &&
1082	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1083	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1084	    imo->imo_num_memberships == 0) {
1085		free(*imop, M_IPMOPTS);
1086		*imop = NULL;
1087	}
1088
1089	return (error);
1090}
1091
1092/*
1093 * Return the IP multicast options in response to user getsockopt().
1094 */
1095static int
1096ip_getmoptions(optname, imo, mp)
1097	int optname;
1098	register struct ip_moptions *imo;
1099	register struct mbuf **mp;
1100{
1101	u_char *ttl;
1102	u_char *loop;
1103	struct in_addr *addr;
1104	struct in_ifaddr *ia;
1105
1106	*mp = m_get(M_WAIT, MT_SOOPTS);
1107
1108	switch (optname) {
1109
1110	case IP_MULTICAST_VIF:
1111		if (imo != NULL)
1112			*(mtod(*mp, int *)) = imo->imo_multicast_vif;
1113		else
1114			*(mtod(*mp, int *)) = -1;
1115		(*mp)->m_len = sizeof(int);
1116		return(0);
1117
1118	case IP_MULTICAST_IF:
1119		addr = mtod(*mp, struct in_addr *);
1120		(*mp)->m_len = sizeof(struct in_addr);
1121		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1122			addr->s_addr = INADDR_ANY;
1123		else {
1124			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1125			addr->s_addr = (ia == NULL) ? INADDR_ANY
1126					: IA_SIN(ia)->sin_addr.s_addr;
1127		}
1128		return (0);
1129
1130	case IP_MULTICAST_TTL:
1131		ttl = mtod(*mp, u_char *);
1132		(*mp)->m_len = 1;
1133		*ttl = (imo == NULL) ? IP_DEFAULT_MULTICAST_TTL
1134				     : imo->imo_multicast_ttl;
1135		return (0);
1136
1137	case IP_MULTICAST_LOOP:
1138		loop = mtod(*mp, u_char *);
1139		(*mp)->m_len = 1;
1140		*loop = (imo == NULL) ? IP_DEFAULT_MULTICAST_LOOP
1141				      : imo->imo_multicast_loop;
1142		return (0);
1143
1144	default:
1145		return (EOPNOTSUPP);
1146	}
1147}
1148
1149/*
1150 * Discard the IP multicast options.
1151 */
1152void
1153ip_freemoptions(imo)
1154	register struct ip_moptions *imo;
1155{
1156	register int i;
1157
1158	if (imo != NULL) {
1159		for (i = 0; i < imo->imo_num_memberships; ++i)
1160			in_delmulti(imo->imo_membership[i]);
1161		free(imo, M_IPMOPTS);
1162	}
1163}
1164
1165/*
1166 * Routine called from ip_output() to loop back a copy of an IP multicast
1167 * packet to the input queue of a specified interface.  Note that this
1168 * calls the output routine of the loopback "driver", but with an interface
1169 * pointer that might NOT be a loopback interface -- evil, but easier than
1170 * replicating that code here.
1171 */
1172static void
1173ip_mloopback(ifp, m, dst)
1174	struct ifnet *ifp;
1175	register struct mbuf *m;
1176	register struct sockaddr_in *dst;
1177{
1178	register struct ip *ip;
1179	struct mbuf *copym;
1180
1181	copym = m_copy(m, 0, M_COPYALL);
1182	if (copym != NULL) {
1183		/*
1184		 * We don't bother to fragment if the IP length is greater
1185		 * than the interface's MTU.  Can this possibly matter?
1186		 */
1187		ip = mtod(copym, struct ip *);
1188		ip->ip_len = htons((u_short)ip->ip_len);
1189		ip->ip_off = htons((u_short)ip->ip_off);
1190		ip->ip_sum = 0;
1191		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1192		(void) looutput(ifp, copym, (struct sockaddr *)dst, NULL);
1193	}
1194}
1195