ip_output.c revision 128003
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 * $FreeBSD: head/sys/netinet/ip_output.c 128003 2004-04-07 10:01:39Z ru $
35 */
36
37#include "opt_ipfw.h"
38#include "opt_ipdn.h"
39#include "opt_ipdivert.h"
40#include "opt_ipfilter.h"
41#include "opt_ipsec.h"
42#include "opt_mac.h"
43#include "opt_pfil_hooks.h"
44#include "opt_random_ip_id.h"
45#include "opt_mbuf_stress_test.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/kernel.h>
50#include <sys/mac.h>
51#include <sys/malloc.h>
52#include <sys/mbuf.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/sysctl.h>
57
58#include <net/if.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_var.h>
66#include <netinet/ip_var.h>
67
68#ifdef PFIL_HOOKS
69#include <net/pfil.h>
70#endif
71
72#include <machine/in_cksum.h>
73
74static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
75
76#ifdef IPSEC
77#include <netinet6/ipsec.h>
78#include <netkey/key.h>
79#ifdef IPSEC_DEBUG
80#include <netkey/key_debug.h>
81#else
82#define	KEYDEBUG(lev,arg)
83#endif
84#endif /*IPSEC*/
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#include <netipsec/xform.h>
89#include <netipsec/key.h>
90#endif /*FAST_IPSEC*/
91
92#include <netinet/ip_fw.h>
93#include <netinet/ip_divert.h>
94#include <netinet/ip_dummynet.h>
95
96#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
97				x, (ntohl(a.s_addr)>>24)&0xFF,\
98				  (ntohl(a.s_addr)>>16)&0xFF,\
99				  (ntohl(a.s_addr)>>8)&0xFF,\
100				  (ntohl(a.s_addr))&0xFF, y);
101
102u_short ip_id;
103
104#ifdef MBUF_STRESS_TEST
105int mbuf_frag_size = 0;
106SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
107	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
108#endif
109
110static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
111static struct ifnet *ip_multicast_if(struct in_addr *, int *);
112static void	ip_mloopback
113	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
114static int	ip_getmoptions
115	(struct sockopt *, struct ip_moptions *);
116static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
117static int	ip_setmoptions
118	(struct sockopt *, struct ip_moptions **);
119
120int	ip_optcopy(struct ip *, struct ip *);
121
122
123extern	struct protosw inetsw[];
124
125/*
126 * IP output.  The packet in mbuf chain m contains a skeletal IP
127 * header (with len, off, ttl, proto, tos, src, dst).
128 * The mbuf chain containing the packet will be freed.
129 * The mbuf opt, if present, will not be freed.
130 * In the IP forwarding case, the packet will arrive with options already
131 * inserted, so must have a NULL opt pointer.
132 */
133int
134ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro,
135	int flags, struct ip_moptions *imo, struct inpcb *inp)
136{
137	struct ip *ip;
138	struct ifnet *ifp = NULL;	/* keep compiler happy */
139	struct mbuf *m0;
140	int hlen = sizeof (struct ip);
141	int len, off, error = 0;
142	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
143	struct in_ifaddr *ia = NULL;
144	int isbroadcast, sw_csum;
145	struct in_addr pkt_dst;
146	struct route iproute;
147	struct m_tag *mtag, *dummytag;
148#ifdef IPSEC
149	struct secpolicy *sp = NULL;
150#endif
151#ifdef FAST_IPSEC
152	struct secpolicy *sp = NULL;
153	struct tdb_ident *tdbi;
154	int s;
155#endif /* FAST_IPSEC */
156	struct ip_fw_args args;
157	int src_was_INADDR_ANY = 0;	/* as the name says... */
158
159	args.eh = NULL;
160	args.rule = NULL;
161
162	M_ASSERTPKTHDR(m);
163
164	args.next_hop = ip_claim_next_hop(m);
165	dummytag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
166	if (dummytag != NULL) {
167		struct dn_pkt_tag *dt = (struct dn_pkt_tag *)(dummytag+1);
168		/*
169		 * Prevent lower layers from finding the tag
170		 * Cleanup and free is done below
171		 */
172		m_tag_unlink(m, dummytag);
173		/*
174		 * the packet was already tagged, so part of the
175		 * processing was already done, and we need to go down.
176		 * Get parameters from the header.
177		 */
178		args.rule = dt->rule;
179		ro = &(dt->ro);
180		dst = dt->dn_dst;
181		ifp = dt->ifp;
182	}
183
184	if (ro == NULL) {
185		ro = &iproute;
186		bzero(ro, sizeof (*ro));
187	}
188
189	if (inp != NULL)
190		INP_LOCK_ASSERT(inp);
191
192	if (args.rule != NULL) {	/* dummynet already saw us */
193		ip = mtod(m, struct ip *);
194		hlen = ip->ip_hl << 2 ;
195		if (ro->ro_rt)
196			ia = ifatoia(ro->ro_rt->rt_ifa);
197		goto sendit;
198	}
199
200	if (opt) {
201		len = 0;
202		m = ip_insertoptions(m, opt, &len);
203		if (len != 0)
204			hlen = len;
205	}
206	ip = mtod(m, struct ip *);
207	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
208
209	/*
210	 * Fill in IP header.  If we are not allowing fragmentation,
211	 * then the ip_id field is meaningless, but we don't set it
212	 * to zero.  Doing so causes various problems when devices along
213	 * the path (routers, load balancers, firewalls, etc.) illegally
214	 * disable DF on our packet.  Note that a 16-bit counter
215	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
216	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
217	 * for Counting NATted Hosts", Proc. IMW'02, available at
218	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
219	 */
220	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
221		ip->ip_v = IPVERSION;
222		ip->ip_hl = hlen >> 2;
223#ifdef RANDOM_IP_ID
224		ip->ip_id = ip_randomid();
225#else
226		ip->ip_id = htons(ip_id++);
227#endif
228		ipstat.ips_localout++;
229	} else {
230		hlen = ip->ip_hl << 2;
231	}
232
233	dst = (struct sockaddr_in *)&ro->ro_dst;
234	/*
235	 * If there is a cached route,
236	 * check that it is to the same destination
237	 * and is still up.  If not, free it and try again.
238	 * The address family should also be checked in case of sharing the
239	 * cache with IPv6.
240	 */
241	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
242			  dst->sin_family != AF_INET ||
243			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
244		RTFREE(ro->ro_rt);
245		ro->ro_rt = (struct rtentry *)0;
246	}
247	if (ro->ro_rt == 0) {
248		bzero(dst, sizeof(*dst));
249		dst->sin_family = AF_INET;
250		dst->sin_len = sizeof(*dst);
251		dst->sin_addr = pkt_dst;
252	}
253	/*
254	 * If routing to interface only,
255	 * short circuit routing lookup.
256	 */
257	if (flags & IP_ROUTETOIF) {
258		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
259		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
260			ipstat.ips_noroute++;
261			error = ENETUNREACH;
262			goto bad;
263		}
264		ifp = ia->ia_ifp;
265		ip->ip_ttl = 1;
266		isbroadcast = in_broadcast(dst->sin_addr, ifp);
267	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
268	    imo != NULL && imo->imo_multicast_ifp != NULL) {
269		/*
270		 * Bypass the normal routing lookup for multicast
271		 * packets if the interface is specified.
272		 */
273		ifp = imo->imo_multicast_ifp;
274		IFP_TO_IA(ifp, ia);
275		isbroadcast = 0;	/* fool gcc */
276	} else {
277		/*
278		 * We want to do any cloning requested by the link layer,
279		 * as this is probably required in all cases for correct
280		 * operation (as it is for ARP).
281		 */
282		if (ro->ro_rt == 0)
283			rtalloc(ro);
284		if (ro->ro_rt == 0) {
285			ipstat.ips_noroute++;
286			error = EHOSTUNREACH;
287			goto bad;
288		}
289		ia = ifatoia(ro->ro_rt->rt_ifa);
290		ifp = ro->ro_rt->rt_ifp;
291		ro->ro_rt->rt_rmx.rmx_pksent++;
292		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
293			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
294		if (ro->ro_rt->rt_flags & RTF_HOST)
295			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
296		else
297			isbroadcast = in_broadcast(dst->sin_addr, ifp);
298	}
299	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
300		struct in_multi *inm;
301
302		m->m_flags |= M_MCAST;
303		/*
304		 * IP destination address is multicast.  Make sure "dst"
305		 * still points to the address in "ro".  (It may have been
306		 * changed to point to a gateway address, above.)
307		 */
308		dst = (struct sockaddr_in *)&ro->ro_dst;
309		/*
310		 * See if the caller provided any multicast options
311		 */
312		if (imo != NULL) {
313			ip->ip_ttl = imo->imo_multicast_ttl;
314			if (imo->imo_multicast_vif != -1)
315				ip->ip_src.s_addr =
316				    ip_mcast_src ?
317				    ip_mcast_src(imo->imo_multicast_vif) :
318				    INADDR_ANY;
319		} else
320			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
321		/*
322		 * Confirm that the outgoing interface supports multicast.
323		 */
324		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
325			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
326				ipstat.ips_noroute++;
327				error = ENETUNREACH;
328				goto bad;
329			}
330		}
331		/*
332		 * If source address not specified yet, use address
333		 * of outgoing interface.
334		 */
335		if (ip->ip_src.s_addr == INADDR_ANY) {
336			/* Interface may have no addresses. */
337			if (ia != NULL)
338				ip->ip_src = IA_SIN(ia)->sin_addr;
339		}
340
341		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
342		if (inm != NULL &&
343		   (imo == NULL || imo->imo_multicast_loop)) {
344			/*
345			 * If we belong to the destination multicast group
346			 * on the outgoing interface, and the caller did not
347			 * forbid loopback, loop back a copy.
348			 */
349			ip_mloopback(ifp, m, dst, hlen);
350		}
351		else {
352			/*
353			 * If we are acting as a multicast router, perform
354			 * multicast forwarding as if the packet had just
355			 * arrived on the interface to which we are about
356			 * to send.  The multicast forwarding function
357			 * recursively calls this function, using the
358			 * IP_FORWARDING flag to prevent infinite recursion.
359			 *
360			 * Multicasts that are looped back by ip_mloopback(),
361			 * above, will be forwarded by the ip_input() routine,
362			 * if necessary.
363			 */
364			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
365				/*
366				 * If rsvp daemon is not running, do not
367				 * set ip_moptions. This ensures that the packet
368				 * is multicast and not just sent down one link
369				 * as prescribed by rsvpd.
370				 */
371				if (!rsvp_on)
372					imo = NULL;
373				if (ip_mforward &&
374				    ip_mforward(ip, ifp, m, imo) != 0) {
375					m_freem(m);
376					goto done;
377				}
378			}
379		}
380
381		/*
382		 * Multicasts with a time-to-live of zero may be looped-
383		 * back, above, but must not be transmitted on a network.
384		 * Also, multicasts addressed to the loopback interface
385		 * are not sent -- the above call to ip_mloopback() will
386		 * loop back a copy if this host actually belongs to the
387		 * destination group on the loopback interface.
388		 */
389		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
390			m_freem(m);
391			goto done;
392		}
393
394		goto sendit;
395	}
396#ifndef notdef
397	/*
398	 * If the source address is not specified yet, use the address
399	 * of the outoing interface. In case, keep note we did that, so
400	 * if the the firewall changes the next-hop causing the output
401	 * interface to change, we can fix that.
402	 */
403	if (ip->ip_src.s_addr == INADDR_ANY) {
404		/* Interface may have no addresses. */
405		if (ia != NULL) {
406			ip->ip_src = IA_SIN(ia)->sin_addr;
407			src_was_INADDR_ANY = 1;
408		}
409	}
410#endif /* notdef */
411	/*
412	 * Verify that we have any chance at all of being able to queue
413	 *      the packet or packet fragments
414	 */
415	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
416		ifp->if_snd.ifq_maxlen) {
417			error = ENOBUFS;
418			ipstat.ips_odropped++;
419			goto bad;
420	}
421
422	/*
423	 * Look for broadcast address and
424	 * verify user is allowed to send
425	 * such a packet.
426	 */
427	if (isbroadcast) {
428		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
429			error = EADDRNOTAVAIL;
430			goto bad;
431		}
432		if ((flags & IP_ALLOWBROADCAST) == 0) {
433			error = EACCES;
434			goto bad;
435		}
436		/* don't allow broadcast messages to be fragmented */
437		if (ip->ip_len > ifp->if_mtu) {
438			error = EMSGSIZE;
439			goto bad;
440		}
441		if (flags & IP_SENDONES)
442			ip->ip_dst.s_addr = INADDR_BROADCAST;
443		m->m_flags |= M_BCAST;
444	} else {
445		m->m_flags &= ~M_BCAST;
446	}
447
448sendit:
449#ifdef IPSEC
450	/* get SP for this packet */
451	if (inp == NULL)
452		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
453		    flags, &error);
454	else
455		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
456
457	if (sp == NULL) {
458		ipsecstat.out_inval++;
459		goto bad;
460	}
461
462	error = 0;
463
464	/* check policy */
465	switch (sp->policy) {
466	case IPSEC_POLICY_DISCARD:
467		/*
468		 * This packet is just discarded.
469		 */
470		ipsecstat.out_polvio++;
471		goto bad;
472
473	case IPSEC_POLICY_BYPASS:
474	case IPSEC_POLICY_NONE:
475	case IPSEC_POLICY_TCP:
476		/* no need to do IPsec. */
477		goto skip_ipsec;
478
479	case IPSEC_POLICY_IPSEC:
480		if (sp->req == NULL) {
481			/* acquire a policy */
482			error = key_spdacquire(sp);
483			goto bad;
484		}
485		break;
486
487	case IPSEC_POLICY_ENTRUST:
488	default:
489		printf("ip_output: Invalid policy found. %d\n", sp->policy);
490	}
491    {
492	struct ipsec_output_state state;
493	bzero(&state, sizeof(state));
494	state.m = m;
495	if (flags & IP_ROUTETOIF) {
496		state.ro = &iproute;
497		bzero(&iproute, sizeof(iproute));
498	} else
499		state.ro = ro;
500	state.dst = (struct sockaddr *)dst;
501
502	ip->ip_sum = 0;
503
504	/*
505	 * XXX
506	 * delayed checksums are not currently compatible with IPsec
507	 */
508	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
509		in_delayed_cksum(m);
510		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
511	}
512
513	ip->ip_len = htons(ip->ip_len);
514	ip->ip_off = htons(ip->ip_off);
515
516	error = ipsec4_output(&state, sp, flags);
517
518	m = state.m;
519	if (flags & IP_ROUTETOIF) {
520		/*
521		 * if we have tunnel mode SA, we may need to ignore
522		 * IP_ROUTETOIF.
523		 */
524		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
525			flags &= ~IP_ROUTETOIF;
526			ro = state.ro;
527		}
528	} else
529		ro = state.ro;
530	dst = (struct sockaddr_in *)state.dst;
531	if (error) {
532		/* mbuf is already reclaimed in ipsec4_output. */
533		m = NULL;
534		switch (error) {
535		case EHOSTUNREACH:
536		case ENETUNREACH:
537		case EMSGSIZE:
538		case ENOBUFS:
539		case ENOMEM:
540			break;
541		default:
542			printf("ip4_output (ipsec): error code %d\n", error);
543			/*fall through*/
544		case ENOENT:
545			/* don't show these error codes to the user */
546			error = 0;
547			break;
548		}
549		goto bad;
550	}
551
552	/* be sure to update variables that are affected by ipsec4_output() */
553	ip = mtod(m, struct ip *);
554	hlen = ip->ip_hl << 2;
555	if (ro->ro_rt == NULL) {
556		if ((flags & IP_ROUTETOIF) == 0) {
557			printf("ip_output: "
558				"can't update route after IPsec processing\n");
559			error = EHOSTUNREACH;	/*XXX*/
560			goto bad;
561		}
562	} else {
563		if (state.encap) {
564			ia = ifatoia(ro->ro_rt->rt_ifa);
565			ifp = ro->ro_rt->rt_ifp;
566		}
567	}
568    }
569
570	/* make it flipped, again. */
571	ip->ip_len = ntohs(ip->ip_len);
572	ip->ip_off = ntohs(ip->ip_off);
573skip_ipsec:
574#endif /*IPSEC*/
575#ifdef FAST_IPSEC
576	/*
577	 * Check the security policy (SP) for the packet and, if
578	 * required, do IPsec-related processing.  There are two
579	 * cases here; the first time a packet is sent through
580	 * it will be untagged and handled by ipsec4_checkpolicy.
581	 * If the packet is resubmitted to ip_output (e.g. after
582	 * AH, ESP, etc. processing), there will be a tag to bypass
583	 * the lookup and related policy checking.
584	 */
585	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
586	s = splnet();
587	if (mtag != NULL) {
588		tdbi = (struct tdb_ident *)(mtag + 1);
589		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
590		if (sp == NULL)
591			error = -EINVAL;	/* force silent drop */
592		m_tag_delete(m, mtag);
593	} else {
594		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
595					&error, inp);
596	}
597	/*
598	 * There are four return cases:
599	 *    sp != NULL	 	    apply IPsec policy
600	 *    sp == NULL, error == 0	    no IPsec handling needed
601	 *    sp == NULL, error == -EINVAL  discard packet w/o error
602	 *    sp == NULL, error != 0	    discard packet, report error
603	 */
604	if (sp != NULL) {
605		/* Loop detection, check if ipsec processing already done */
606		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
607		for (mtag = m_tag_first(m); mtag != NULL;
608		     mtag = m_tag_next(m, mtag)) {
609			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
610				continue;
611			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
612			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
613				continue;
614			/*
615			 * Check if policy has an SA associated with it.
616			 * This can happen when an SP has yet to acquire
617			 * an SA; e.g. on first reference.  If it occurs,
618			 * then we let ipsec4_process_packet do its thing.
619			 */
620			if (sp->req->sav == NULL)
621				break;
622			tdbi = (struct tdb_ident *)(mtag + 1);
623			if (tdbi->spi == sp->req->sav->spi &&
624			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
625			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
626				 sizeof (union sockaddr_union)) == 0) {
627				/*
628				 * No IPsec processing is needed, free
629				 * reference to SP.
630				 *
631				 * NB: null pointer to avoid free at
632				 *     done: below.
633				 */
634				KEY_FREESP(&sp), sp = NULL;
635				splx(s);
636				goto spd_done;
637			}
638		}
639
640		/*
641		 * Do delayed checksums now because we send before
642		 * this is done in the normal processing path.
643		 */
644		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
645			in_delayed_cksum(m);
646			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
647		}
648
649		ip->ip_len = htons(ip->ip_len);
650		ip->ip_off = htons(ip->ip_off);
651
652		/* NB: callee frees mbuf */
653		error = ipsec4_process_packet(m, sp->req, flags, 0);
654		/*
655		 * Preserve KAME behaviour: ENOENT can be returned
656		 * when an SA acquire is in progress.  Don't propagate
657		 * this to user-level; it confuses applications.
658		 *
659		 * XXX this will go away when the SADB is redone.
660		 */
661		if (error == ENOENT)
662			error = 0;
663		splx(s);
664		goto done;
665	} else {
666		splx(s);
667
668		if (error != 0) {
669			/*
670			 * Hack: -EINVAL is used to signal that a packet
671			 * should be silently discarded.  This is typically
672			 * because we asked key management for an SA and
673			 * it was delayed (e.g. kicked up to IKE).
674			 */
675			if (error == -EINVAL)
676				error = 0;
677			goto bad;
678		} else {
679			/* No IPsec processing for this packet. */
680		}
681#ifdef notyet
682		/*
683		 * If deferred crypto processing is needed, check that
684		 * the interface supports it.
685		 */
686		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
687		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
688			/* notify IPsec to do its own crypto */
689			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
690			error = EHOSTUNREACH;
691			goto bad;
692		}
693#endif
694	}
695spd_done:
696#endif /* FAST_IPSEC */
697
698	/*
699	 * IpHack's section.
700	 * - Xlate: translate packet's addr/port (NAT).
701	 * - Firewall: deny/allow/etc.
702	 * - Wrap: fake packet's addr/port <unimpl.>
703	 * - Encapsulate: put it in another IP and send out. <unimp.>
704	 */
705#ifdef PFIL_HOOKS
706	/*
707	 * Run through list of hooks for output packets.
708	 */
709	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
710	if (error != 0 || m == NULL)
711		goto done;
712	ip = mtod(m, struct ip *);
713#endif /* PFIL_HOOKS */
714
715	/*
716	 * Check with the firewall...
717	 * but not if we are already being fwd'd from a firewall.
718	 */
719	if (fw_enable && IPFW_LOADED && !args.next_hop) {
720		struct sockaddr_in *old = dst;
721
722		args.m = m;
723		args.next_hop = dst;
724		args.oif = ifp;
725		off = ip_fw_chk_ptr(&args);
726		m = args.m;
727		dst = args.next_hop;
728
729                /*
730		 * On return we must do the following:
731		 * m == NULL	-> drop the pkt (old interface, deprecated)
732		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
733		 * 1<=off<= 0xffff		-> DIVERT
734		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
735		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
736		 * dst != old			-> IPFIREWALL_FORWARD
737		 * off==0, dst==old		-> accept
738		 * If some of the above modules are not compiled in, then
739		 * we should't have to check the corresponding condition
740		 * (because the ipfw control socket should not accept
741		 * unsupported rules), but better play safe and drop
742		 * packets in case of doubt.
743		 */
744		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
745			if (m)
746				m_freem(m);
747			error = EACCES;
748			goto done;
749		}
750		ip = mtod(m, struct ip *);
751		if (off == 0 && dst == old)		/* common case */
752			goto pass;
753                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
754			/*
755			 * pass the pkt to dummynet. Need to include
756			 * pipe number, m, ifp, ro, dst because these are
757			 * not recomputed in the next pass.
758			 * All other parameters have been already used and
759			 * so they are not needed anymore.
760			 * XXX note: if the ifp or ro entry are deleted
761			 * while a pkt is in dummynet, we are in trouble!
762			 */
763			args.ro = ro;
764			args.dst = dst;
765			args.flags = flags;
766
767			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
768				&args);
769			goto done;
770		}
771#ifdef IPDIVERT
772		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
773			struct mbuf *clone;
774
775			/* Clone packet if we're doing a 'tee' */
776			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
777				clone = divert_clone(m);
778			else
779				clone = NULL;
780
781			/*
782			 * XXX
783			 * delayed checksums are not currently compatible
784			 * with divert sockets.
785			 */
786			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
787				in_delayed_cksum(m);
788				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
789			}
790
791			/* Restore packet header fields to original values */
792			ip->ip_len = htons(ip->ip_len);
793			ip->ip_off = htons(ip->ip_off);
794
795			/* Deliver packet to divert input routine */
796			divert_packet(m, 0);
797
798			/* If 'tee', continue with original packet */
799			if (clone != NULL) {
800				m = clone;
801				ip = mtod(m, struct ip *);
802				goto pass;
803			}
804			goto done;
805		}
806#endif
807
808		/* IPFIREWALL_FORWARD */
809		/*
810		 * Check dst to make sure it is directly reachable on the
811		 * interface we previously thought it was.
812		 * If it isn't (which may be likely in some situations) we have
813		 * to re-route it (ie, find a route for the next-hop and the
814		 * associated interface) and set them here. This is nested
815		 * forwarding which in most cases is undesirable, except where
816		 * such control is nigh impossible. So we do it here.
817		 * And I'm babbling.
818		 */
819		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
820#if 0
821			/*
822			 * XXX To improve readability, this block should be
823			 * changed into a function call as below:
824			 */
825			error = ip_ipforward(&m, &dst, &ifp);
826			if (error)
827				goto bad;
828			if (m == NULL) /* ip_input consumed the mbuf */
829				goto done;
830#else
831			struct in_ifaddr *ia;
832
833			/*
834			 * XXX sro_fwd below is static, and a pointer
835			 * to it gets passed to routines downstream.
836			 * This could have surprisingly bad results in
837			 * practice, because its content is overwritten
838			 * by subsequent packets.
839			 */
840			/* There must be a better way to do this next line... */
841			static struct route sro_fwd;
842			struct route *ro_fwd = &sro_fwd;
843
844#if 0
845			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
846			    dst->sin_addr, "\n");
847#endif
848
849			/*
850			 * We need to figure out if we have been forwarded
851			 * to a local socket. If so, then we should somehow
852			 * "loop back" to ip_input, and get directed to the
853			 * PCB as if we had received this packet. This is
854			 * because it may be dificult to identify the packets
855			 * you want to forward until they are being output
856			 * and have selected an interface. (e.g. locally
857			 * initiated packets) If we used the loopback inteface,
858			 * we would not be able to control what happens
859			 * as the packet runs through ip_input() as
860			 * it is done through an ISR.
861			 */
862			LIST_FOREACH(ia,
863			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
864				/*
865				 * If the addr to forward to is one
866				 * of ours, we pretend to
867				 * be the destination for this packet.
868				 */
869				if (IA_SIN(ia)->sin_addr.s_addr ==
870						 dst->sin_addr.s_addr)
871					break;
872			}
873			if (ia) {	/* tell ip_input "dont filter" */
874				mtag = m_tag_get(
875				    PACKET_TAG_IPFORWARD,
876				    sizeof(struct sockaddr_in *), M_NOWAIT);
877				if (mtag == NULL) {
878					error = ENOBUFS;
879					goto bad;
880				}
881				*(struct sockaddr_in **)(mtag+1) =
882				    args.next_hop;
883				m_tag_prepend(m, mtag);
884
885				if (m->m_pkthdr.rcvif == NULL)
886					m->m_pkthdr.rcvif = ifunit("lo0");
887				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
888					m->m_pkthdr.csum_flags |=
889					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
890					m->m_pkthdr.csum_data = 0xffff;
891				}
892				m->m_pkthdr.csum_flags |=
893				    CSUM_IP_CHECKED | CSUM_IP_VALID;
894				ip->ip_len = htons(ip->ip_len);
895				ip->ip_off = htons(ip->ip_off);
896				ip_input(m);
897				goto done;
898			}
899			/*
900			 * Some of the logic for this was
901			 * nicked from above.
902			 */
903			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
904
905			ro_fwd->ro_rt = 0;
906			rtalloc_ign(ro_fwd, RTF_CLONING);
907
908			if (ro_fwd->ro_rt == 0) {
909				ipstat.ips_noroute++;
910				error = EHOSTUNREACH;
911				goto bad;
912			}
913
914			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
915			ifp = ro_fwd->ro_rt->rt_ifp;
916			ro_fwd->ro_rt->rt_rmx.rmx_pksent++;
917			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
918				dst = (struct sockaddr_in *)
919					ro_fwd->ro_rt->rt_gateway;
920			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
921				isbroadcast =
922				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
923			else
924				isbroadcast = in_broadcast(dst->sin_addr, ifp);
925			if (ro->ro_rt)
926				RTFREE(ro->ro_rt);
927			ro->ro_rt = ro_fwd->ro_rt;
928			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
929
930#endif	/* ... block to be put into a function */
931			/*
932			 * If we added a default src ip earlier,
933			 * which would have been gotten from the-then
934			 * interface, do it again, from the new one.
935			 */
936			if (src_was_INADDR_ANY)
937				ip->ip_src = IA_SIN(ia)->sin_addr;
938			goto pass ;
939		}
940
941                /*
942                 * if we get here, none of the above matches, and
943                 * we have to drop the pkt
944                 */
945		m_freem(m);
946                error = EACCES; /* not sure this is the right error msg */
947                goto done;
948	}
949
950pass:
951	/* 127/8 must not appear on wire - RFC1122. */
952	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
953	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
954		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
955			ipstat.ips_badaddr++;
956			error = EADDRNOTAVAIL;
957			goto bad;
958		}
959	}
960
961	m->m_pkthdr.csum_flags |= CSUM_IP;
962	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
963	if (sw_csum & CSUM_DELAY_DATA) {
964		in_delayed_cksum(m);
965		sw_csum &= ~CSUM_DELAY_DATA;
966	}
967	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
968
969	/*
970	 * If small enough for interface, or the interface will take
971	 * care of the fragmentation for us, can just send directly.
972	 */
973	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
974	    ((ip->ip_off & IP_DF) == 0))) {
975		ip->ip_len = htons(ip->ip_len);
976		ip->ip_off = htons(ip->ip_off);
977		ip->ip_sum = 0;
978		if (sw_csum & CSUM_DELAY_IP)
979			ip->ip_sum = in_cksum(m, hlen);
980
981		/* Record statistics for this interface address. */
982		if (!(flags & IP_FORWARDING) && ia) {
983			ia->ia_ifa.if_opackets++;
984			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
985		}
986
987#ifdef IPSEC
988		/* clean ipsec history once it goes out of the node */
989		ipsec_delaux(m);
990#endif
991
992#ifdef MBUF_STRESS_TEST
993		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
994			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
995#endif
996		error = (*ifp->if_output)(ifp, m,
997				(struct sockaddr *)dst, ro->ro_rt);
998		goto done;
999	}
1000
1001	if (ip->ip_off & IP_DF) {
1002		error = EMSGSIZE;
1003		/*
1004		 * This case can happen if the user changed the MTU
1005		 * of an interface after enabling IP on it.  Because
1006		 * most netifs don't keep track of routes pointing to
1007		 * them, there is no way for one to update all its
1008		 * routes when the MTU is changed.
1009		 */
1010		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1011		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1012			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1013		}
1014		ipstat.ips_cantfrag++;
1015		goto bad;
1016	}
1017
1018	/*
1019	 * Too large for interface; fragment if possible. If successful,
1020	 * on return, m will point to a list of packets to be sent.
1021	 */
1022	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1023	if (error)
1024		goto bad;
1025	for (; m; m = m0) {
1026		m0 = m->m_nextpkt;
1027		m->m_nextpkt = 0;
1028#ifdef IPSEC
1029		/* clean ipsec history once it goes out of the node */
1030		ipsec_delaux(m);
1031#endif
1032		if (error == 0) {
1033			/* Record statistics for this interface address. */
1034			if (ia != NULL) {
1035				ia->ia_ifa.if_opackets++;
1036				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1037			}
1038
1039			error = (*ifp->if_output)(ifp, m,
1040			    (struct sockaddr *)dst, ro->ro_rt);
1041		} else
1042			m_freem(m);
1043	}
1044
1045	if (error == 0)
1046		ipstat.ips_fragmented++;
1047
1048done:
1049	if (ro == &iproute && ro->ro_rt) {
1050		RTFREE(ro->ro_rt);
1051		ro->ro_rt = NULL;
1052	}
1053	if (dummytag) {
1054		struct dn_pkt_tag *dt = (struct dn_pkt_tag *)(dummytag+1);
1055		if (dt->ro.ro_rt)
1056			RTFREE(dt->ro.ro_rt);
1057		m_tag_free(dummytag);
1058	}
1059#ifdef IPSEC
1060	if (sp != NULL) {
1061		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1062			printf("DP ip_output call free SP:%p\n", sp));
1063		key_freesp(sp);
1064	}
1065#endif
1066#ifdef FAST_IPSEC
1067	if (sp != NULL)
1068		KEY_FREESP(&sp);
1069#endif
1070	return (error);
1071bad:
1072	m_freem(m);
1073	goto done;
1074}
1075
1076/*
1077 * Create a chain of fragments which fit the given mtu. m_frag points to the
1078 * mbuf to be fragmented; on return it points to the chain with the fragments.
1079 * Return 0 if no error. If error, m_frag may contain a partially built
1080 * chain of fragments that should be freed by the caller.
1081 *
1082 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1083 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1084 */
1085int
1086ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1087	    u_long if_hwassist_flags, int sw_csum)
1088{
1089	int error = 0;
1090	int hlen = ip->ip_hl << 2;
1091	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1092	int off;
1093	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1094	int firstlen;
1095	struct mbuf **mnext;
1096	int nfrags;
1097
1098	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1099		ipstat.ips_cantfrag++;
1100		return EMSGSIZE;
1101	}
1102
1103	/*
1104	 * Must be able to put at least 8 bytes per fragment.
1105	 */
1106	if (len < 8)
1107		return EMSGSIZE;
1108
1109	/*
1110	 * If the interface will not calculate checksums on
1111	 * fragmented packets, then do it here.
1112	 */
1113	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1114	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1115		in_delayed_cksum(m0);
1116		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1117	}
1118
1119	if (len > PAGE_SIZE) {
1120		/*
1121		 * Fragment large datagrams such that each segment
1122		 * contains a multiple of PAGE_SIZE amount of data,
1123		 * plus headers. This enables a receiver to perform
1124		 * page-flipping zero-copy optimizations.
1125		 *
1126		 * XXX When does this help given that sender and receiver
1127		 * could have different page sizes, and also mtu could
1128		 * be less than the receiver's page size ?
1129		 */
1130		int newlen;
1131		struct mbuf *m;
1132
1133		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1134			off += m->m_len;
1135
1136		/*
1137		 * firstlen (off - hlen) must be aligned on an
1138		 * 8-byte boundary
1139		 */
1140		if (off < hlen)
1141			goto smart_frag_failure;
1142		off = ((off - hlen) & ~7) + hlen;
1143		newlen = (~PAGE_MASK) & mtu;
1144		if ((newlen + sizeof (struct ip)) > mtu) {
1145			/* we failed, go back the default */
1146smart_frag_failure:
1147			newlen = len;
1148			off = hlen + len;
1149		}
1150		len = newlen;
1151
1152	} else {
1153		off = hlen + len;
1154	}
1155
1156	firstlen = off - hlen;
1157	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1158
1159	/*
1160	 * Loop through length of segment after first fragment,
1161	 * make new header and copy data of each part and link onto chain.
1162	 * Here, m0 is the original packet, m is the fragment being created.
1163	 * The fragments are linked off the m_nextpkt of the original
1164	 * packet, which after processing serves as the first fragment.
1165	 */
1166	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1167		struct ip *mhip;	/* ip header on the fragment */
1168		struct mbuf *m;
1169		int mhlen = sizeof (struct ip);
1170
1171		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1172		if (m == 0) {
1173			error = ENOBUFS;
1174			ipstat.ips_odropped++;
1175			goto done;
1176		}
1177		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1178		/*
1179		 * In the first mbuf, leave room for the link header, then
1180		 * copy the original IP header including options. The payload
1181		 * goes into an additional mbuf chain returned by m_copy().
1182		 */
1183		m->m_data += max_linkhdr;
1184		mhip = mtod(m, struct ip *);
1185		*mhip = *ip;
1186		if (hlen > sizeof (struct ip)) {
1187			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1188			mhip->ip_v = IPVERSION;
1189			mhip->ip_hl = mhlen >> 2;
1190		}
1191		m->m_len = mhlen;
1192		/* XXX do we need to add ip->ip_off below ? */
1193		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1194		if (off + len >= ip->ip_len) {	/* last fragment */
1195			len = ip->ip_len - off;
1196			m->m_flags |= M_LASTFRAG;
1197		} else
1198			mhip->ip_off |= IP_MF;
1199		mhip->ip_len = htons((u_short)(len + mhlen));
1200		m->m_next = m_copy(m0, off, len);
1201		if (m->m_next == 0) {		/* copy failed */
1202			m_free(m);
1203			error = ENOBUFS;	/* ??? */
1204			ipstat.ips_odropped++;
1205			goto done;
1206		}
1207		m->m_pkthdr.len = mhlen + len;
1208		m->m_pkthdr.rcvif = (struct ifnet *)0;
1209#ifdef MAC
1210		mac_create_fragment(m0, m);
1211#endif
1212		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1213		mhip->ip_off = htons(mhip->ip_off);
1214		mhip->ip_sum = 0;
1215		if (sw_csum & CSUM_DELAY_IP)
1216			mhip->ip_sum = in_cksum(m, mhlen);
1217		*mnext = m;
1218		mnext = &m->m_nextpkt;
1219	}
1220	ipstat.ips_ofragments += nfrags;
1221
1222	/* set first marker for fragment chain */
1223	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1224	m0->m_pkthdr.csum_data = nfrags;
1225
1226	/*
1227	 * Update first fragment by trimming what's been copied out
1228	 * and updating header.
1229	 */
1230	m_adj(m0, hlen + firstlen - ip->ip_len);
1231	m0->m_pkthdr.len = hlen + firstlen;
1232	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1233	ip->ip_off |= IP_MF;
1234	ip->ip_off = htons(ip->ip_off);
1235	ip->ip_sum = 0;
1236	if (sw_csum & CSUM_DELAY_IP)
1237		ip->ip_sum = in_cksum(m0, hlen);
1238
1239done:
1240	*m_frag = m0;
1241	return error;
1242}
1243
1244void
1245in_delayed_cksum(struct mbuf *m)
1246{
1247	struct ip *ip;
1248	u_short csum, offset;
1249
1250	ip = mtod(m, struct ip *);
1251	offset = ip->ip_hl << 2 ;
1252	csum = in_cksum_skip(m, ip->ip_len, offset);
1253	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1254		csum = 0xffff;
1255	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1256
1257	if (offset + sizeof(u_short) > m->m_len) {
1258		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1259		    m->m_len, offset, ip->ip_p);
1260		/*
1261		 * XXX
1262		 * this shouldn't happen, but if it does, the
1263		 * correct behavior may be to insert the checksum
1264		 * in the existing chain instead of rearranging it.
1265		 */
1266		m = m_pullup(m, offset + sizeof(u_short));
1267	}
1268	*(u_short *)(m->m_data + offset) = csum;
1269}
1270
1271/*
1272 * Insert IP options into preformed packet.
1273 * Adjust IP destination as required for IP source routing,
1274 * as indicated by a non-zero in_addr at the start of the options.
1275 *
1276 * XXX This routine assumes that the packet has no options in place.
1277 */
1278static struct mbuf *
1279ip_insertoptions(m, opt, phlen)
1280	register struct mbuf *m;
1281	struct mbuf *opt;
1282	int *phlen;
1283{
1284	register struct ipoption *p = mtod(opt, struct ipoption *);
1285	struct mbuf *n;
1286	register struct ip *ip = mtod(m, struct ip *);
1287	unsigned optlen;
1288
1289	optlen = opt->m_len - sizeof(p->ipopt_dst);
1290	if (optlen + ip->ip_len > IP_MAXPACKET) {
1291		*phlen = 0;
1292		return (m);		/* XXX should fail */
1293	}
1294	if (p->ipopt_dst.s_addr)
1295		ip->ip_dst = p->ipopt_dst;
1296	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1297		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1298		if (n == 0) {
1299			*phlen = 0;
1300			return (m);
1301		}
1302		n->m_pkthdr.rcvif = (struct ifnet *)0;
1303#ifdef MAC
1304		mac_create_mbuf_from_mbuf(m, n);
1305#endif
1306		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1307		m->m_len -= sizeof(struct ip);
1308		m->m_data += sizeof(struct ip);
1309		n->m_next = m;
1310		m = n;
1311		m->m_len = optlen + sizeof(struct ip);
1312		m->m_data += max_linkhdr;
1313		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1314	} else {
1315		m->m_data -= optlen;
1316		m->m_len += optlen;
1317		m->m_pkthdr.len += optlen;
1318		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1319	}
1320	ip = mtod(m, struct ip *);
1321	bcopy(p->ipopt_list, ip + 1, optlen);
1322	*phlen = sizeof(struct ip) + optlen;
1323	ip->ip_v = IPVERSION;
1324	ip->ip_hl = *phlen >> 2;
1325	ip->ip_len += optlen;
1326	return (m);
1327}
1328
1329/*
1330 * Copy options from ip to jp,
1331 * omitting those not copied during fragmentation.
1332 */
1333int
1334ip_optcopy(ip, jp)
1335	struct ip *ip, *jp;
1336{
1337	register u_char *cp, *dp;
1338	int opt, optlen, cnt;
1339
1340	cp = (u_char *)(ip + 1);
1341	dp = (u_char *)(jp + 1);
1342	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1343	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1344		opt = cp[0];
1345		if (opt == IPOPT_EOL)
1346			break;
1347		if (opt == IPOPT_NOP) {
1348			/* Preserve for IP mcast tunnel's LSRR alignment. */
1349			*dp++ = IPOPT_NOP;
1350			optlen = 1;
1351			continue;
1352		}
1353
1354		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1355		    ("ip_optcopy: malformed ipv4 option"));
1356		optlen = cp[IPOPT_OLEN];
1357		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1358		    ("ip_optcopy: malformed ipv4 option"));
1359
1360		/* bogus lengths should have been caught by ip_dooptions */
1361		if (optlen > cnt)
1362			optlen = cnt;
1363		if (IPOPT_COPIED(opt)) {
1364			bcopy(cp, dp, optlen);
1365			dp += optlen;
1366		}
1367	}
1368	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1369		*dp++ = IPOPT_EOL;
1370	return (optlen);
1371}
1372
1373/*
1374 * IP socket option processing.
1375 */
1376int
1377ip_ctloutput(so, sopt)
1378	struct socket *so;
1379	struct sockopt *sopt;
1380{
1381	struct	inpcb *inp = sotoinpcb(so);
1382	int	error, optval;
1383
1384	error = optval = 0;
1385	if (sopt->sopt_level != IPPROTO_IP) {
1386		return (EINVAL);
1387	}
1388
1389	switch (sopt->sopt_dir) {
1390	case SOPT_SET:
1391		switch (sopt->sopt_name) {
1392		case IP_OPTIONS:
1393#ifdef notyet
1394		case IP_RETOPTS:
1395#endif
1396		{
1397			struct mbuf *m;
1398			if (sopt->sopt_valsize > MLEN) {
1399				error = EMSGSIZE;
1400				break;
1401			}
1402			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1403			if (m == 0) {
1404				error = ENOBUFS;
1405				break;
1406			}
1407			m->m_len = sopt->sopt_valsize;
1408			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1409					    m->m_len);
1410
1411			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1412					   m));
1413		}
1414
1415		case IP_TOS:
1416		case IP_TTL:
1417		case IP_RECVOPTS:
1418		case IP_RECVRETOPTS:
1419		case IP_RECVDSTADDR:
1420		case IP_RECVTTL:
1421		case IP_RECVIF:
1422		case IP_FAITH:
1423		case IP_ONESBCAST:
1424			error = sooptcopyin(sopt, &optval, sizeof optval,
1425					    sizeof optval);
1426			if (error)
1427				break;
1428
1429			switch (sopt->sopt_name) {
1430			case IP_TOS:
1431				inp->inp_ip_tos = optval;
1432				break;
1433
1434			case IP_TTL:
1435				inp->inp_ip_ttl = optval;
1436				break;
1437#define	OPTSET(bit) \
1438	if (optval) \
1439		inp->inp_flags |= bit; \
1440	else \
1441		inp->inp_flags &= ~bit;
1442
1443			case IP_RECVOPTS:
1444				OPTSET(INP_RECVOPTS);
1445				break;
1446
1447			case IP_RECVRETOPTS:
1448				OPTSET(INP_RECVRETOPTS);
1449				break;
1450
1451			case IP_RECVDSTADDR:
1452				OPTSET(INP_RECVDSTADDR);
1453				break;
1454
1455			case IP_RECVTTL:
1456				OPTSET(INP_RECVTTL);
1457				break;
1458
1459			case IP_RECVIF:
1460				OPTSET(INP_RECVIF);
1461				break;
1462
1463			case IP_FAITH:
1464				OPTSET(INP_FAITH);
1465				break;
1466
1467			case IP_ONESBCAST:
1468				OPTSET(INP_ONESBCAST);
1469				break;
1470			}
1471			break;
1472#undef OPTSET
1473
1474		case IP_MULTICAST_IF:
1475		case IP_MULTICAST_VIF:
1476		case IP_MULTICAST_TTL:
1477		case IP_MULTICAST_LOOP:
1478		case IP_ADD_MEMBERSHIP:
1479		case IP_DROP_MEMBERSHIP:
1480			error = ip_setmoptions(sopt, &inp->inp_moptions);
1481			break;
1482
1483		case IP_PORTRANGE:
1484			error = sooptcopyin(sopt, &optval, sizeof optval,
1485					    sizeof optval);
1486			if (error)
1487				break;
1488
1489			switch (optval) {
1490			case IP_PORTRANGE_DEFAULT:
1491				inp->inp_flags &= ~(INP_LOWPORT);
1492				inp->inp_flags &= ~(INP_HIGHPORT);
1493				break;
1494
1495			case IP_PORTRANGE_HIGH:
1496				inp->inp_flags &= ~(INP_LOWPORT);
1497				inp->inp_flags |= INP_HIGHPORT;
1498				break;
1499
1500			case IP_PORTRANGE_LOW:
1501				inp->inp_flags &= ~(INP_HIGHPORT);
1502				inp->inp_flags |= INP_LOWPORT;
1503				break;
1504
1505			default:
1506				error = EINVAL;
1507				break;
1508			}
1509			break;
1510
1511#if defined(IPSEC) || defined(FAST_IPSEC)
1512		case IP_IPSEC_POLICY:
1513		{
1514			caddr_t req;
1515			size_t len = 0;
1516			int priv;
1517			struct mbuf *m;
1518			int optname;
1519
1520			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1521				break;
1522			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1523				break;
1524			priv = (sopt->sopt_td != NULL &&
1525				suser(sopt->sopt_td) != 0) ? 0 : 1;
1526			req = mtod(m, caddr_t);
1527			len = m->m_len;
1528			optname = sopt->sopt_name;
1529			error = ipsec4_set_policy(inp, optname, req, len, priv);
1530			m_freem(m);
1531			break;
1532		}
1533#endif /*IPSEC*/
1534
1535		default:
1536			error = ENOPROTOOPT;
1537			break;
1538		}
1539		break;
1540
1541	case SOPT_GET:
1542		switch (sopt->sopt_name) {
1543		case IP_OPTIONS:
1544		case IP_RETOPTS:
1545			if (inp->inp_options)
1546				error = sooptcopyout(sopt,
1547						     mtod(inp->inp_options,
1548							  char *),
1549						     inp->inp_options->m_len);
1550			else
1551				sopt->sopt_valsize = 0;
1552			break;
1553
1554		case IP_TOS:
1555		case IP_TTL:
1556		case IP_RECVOPTS:
1557		case IP_RECVRETOPTS:
1558		case IP_RECVDSTADDR:
1559		case IP_RECVTTL:
1560		case IP_RECVIF:
1561		case IP_PORTRANGE:
1562		case IP_FAITH:
1563		case IP_ONESBCAST:
1564			switch (sopt->sopt_name) {
1565
1566			case IP_TOS:
1567				optval = inp->inp_ip_tos;
1568				break;
1569
1570			case IP_TTL:
1571				optval = inp->inp_ip_ttl;
1572				break;
1573
1574#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1575
1576			case IP_RECVOPTS:
1577				optval = OPTBIT(INP_RECVOPTS);
1578				break;
1579
1580			case IP_RECVRETOPTS:
1581				optval = OPTBIT(INP_RECVRETOPTS);
1582				break;
1583
1584			case IP_RECVDSTADDR:
1585				optval = OPTBIT(INP_RECVDSTADDR);
1586				break;
1587
1588			case IP_RECVTTL:
1589				optval = OPTBIT(INP_RECVTTL);
1590				break;
1591
1592			case IP_RECVIF:
1593				optval = OPTBIT(INP_RECVIF);
1594				break;
1595
1596			case IP_PORTRANGE:
1597				if (inp->inp_flags & INP_HIGHPORT)
1598					optval = IP_PORTRANGE_HIGH;
1599				else if (inp->inp_flags & INP_LOWPORT)
1600					optval = IP_PORTRANGE_LOW;
1601				else
1602					optval = 0;
1603				break;
1604
1605			case IP_FAITH:
1606				optval = OPTBIT(INP_FAITH);
1607				break;
1608
1609			case IP_ONESBCAST:
1610				optval = OPTBIT(INP_ONESBCAST);
1611				break;
1612			}
1613			error = sooptcopyout(sopt, &optval, sizeof optval);
1614			break;
1615
1616		case IP_MULTICAST_IF:
1617		case IP_MULTICAST_VIF:
1618		case IP_MULTICAST_TTL:
1619		case IP_MULTICAST_LOOP:
1620		case IP_ADD_MEMBERSHIP:
1621		case IP_DROP_MEMBERSHIP:
1622			error = ip_getmoptions(sopt, inp->inp_moptions);
1623			break;
1624
1625#if defined(IPSEC) || defined(FAST_IPSEC)
1626		case IP_IPSEC_POLICY:
1627		{
1628			struct mbuf *m = NULL;
1629			caddr_t req = NULL;
1630			size_t len = 0;
1631
1632			if (m != 0) {
1633				req = mtod(m, caddr_t);
1634				len = m->m_len;
1635			}
1636			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1637			if (error == 0)
1638				error = soopt_mcopyout(sopt, m); /* XXX */
1639			if (error == 0)
1640				m_freem(m);
1641			break;
1642		}
1643#endif /*IPSEC*/
1644
1645		default:
1646			error = ENOPROTOOPT;
1647			break;
1648		}
1649		break;
1650	}
1651	return (error);
1652}
1653
1654/*
1655 * Set up IP options in pcb for insertion in output packets.
1656 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1657 * with destination address if source routed.
1658 */
1659static int
1660ip_pcbopts(optname, pcbopt, m)
1661	int optname;
1662	struct mbuf **pcbopt;
1663	register struct mbuf *m;
1664{
1665	register int cnt, optlen;
1666	register u_char *cp;
1667	u_char opt;
1668
1669	/* turn off any old options */
1670	if (*pcbopt)
1671		(void)m_free(*pcbopt);
1672	*pcbopt = 0;
1673	if (m == (struct mbuf *)0 || m->m_len == 0) {
1674		/*
1675		 * Only turning off any previous options.
1676		 */
1677		if (m)
1678			(void)m_free(m);
1679		return (0);
1680	}
1681
1682	if (m->m_len % sizeof(int32_t))
1683		goto bad;
1684	/*
1685	 * IP first-hop destination address will be stored before
1686	 * actual options; move other options back
1687	 * and clear it when none present.
1688	 */
1689	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1690		goto bad;
1691	cnt = m->m_len;
1692	m->m_len += sizeof(struct in_addr);
1693	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1694	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1695	bzero(mtod(m, void *), sizeof(struct in_addr));
1696
1697	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1698		opt = cp[IPOPT_OPTVAL];
1699		if (opt == IPOPT_EOL)
1700			break;
1701		if (opt == IPOPT_NOP)
1702			optlen = 1;
1703		else {
1704			if (cnt < IPOPT_OLEN + sizeof(*cp))
1705				goto bad;
1706			optlen = cp[IPOPT_OLEN];
1707			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1708				goto bad;
1709		}
1710		switch (opt) {
1711
1712		default:
1713			break;
1714
1715		case IPOPT_LSRR:
1716		case IPOPT_SSRR:
1717			/*
1718			 * user process specifies route as:
1719			 *	->A->B->C->D
1720			 * D must be our final destination (but we can't
1721			 * check that since we may not have connected yet).
1722			 * A is first hop destination, which doesn't appear in
1723			 * actual IP option, but is stored before the options.
1724			 */
1725			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1726				goto bad;
1727			m->m_len -= sizeof(struct in_addr);
1728			cnt -= sizeof(struct in_addr);
1729			optlen -= sizeof(struct in_addr);
1730			cp[IPOPT_OLEN] = optlen;
1731			/*
1732			 * Move first hop before start of options.
1733			 */
1734			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1735			    sizeof(struct in_addr));
1736			/*
1737			 * Then copy rest of options back
1738			 * to close up the deleted entry.
1739			 */
1740			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1741			    &cp[IPOPT_OFFSET+1],
1742			    (unsigned)cnt + sizeof(struct in_addr));
1743			break;
1744		}
1745	}
1746	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1747		goto bad;
1748	*pcbopt = m;
1749	return (0);
1750
1751bad:
1752	(void)m_free(m);
1753	return (EINVAL);
1754}
1755
1756/*
1757 * XXX
1758 * The whole multicast option thing needs to be re-thought.
1759 * Several of these options are equally applicable to non-multicast
1760 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1761 * standard option (IP_TTL).
1762 */
1763
1764/*
1765 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1766 */
1767static struct ifnet *
1768ip_multicast_if(a, ifindexp)
1769	struct in_addr *a;
1770	int *ifindexp;
1771{
1772	int ifindex;
1773	struct ifnet *ifp;
1774
1775	if (ifindexp)
1776		*ifindexp = 0;
1777	if (ntohl(a->s_addr) >> 24 == 0) {
1778		ifindex = ntohl(a->s_addr) & 0xffffff;
1779		if (ifindex < 0 || if_index < ifindex)
1780			return NULL;
1781		ifp = ifnet_byindex(ifindex);
1782		if (ifindexp)
1783			*ifindexp = ifindex;
1784	} else {
1785		INADDR_TO_IFP(*a, ifp);
1786	}
1787	return ifp;
1788}
1789
1790/*
1791 * Set the IP multicast options in response to user setsockopt().
1792 */
1793static int
1794ip_setmoptions(sopt, imop)
1795	struct sockopt *sopt;
1796	struct ip_moptions **imop;
1797{
1798	int error = 0;
1799	int i;
1800	struct in_addr addr;
1801	struct ip_mreq mreq;
1802	struct ifnet *ifp;
1803	struct ip_moptions *imo = *imop;
1804	struct route ro;
1805	struct sockaddr_in *dst;
1806	int ifindex;
1807	int s;
1808
1809	if (imo == NULL) {
1810		/*
1811		 * No multicast option buffer attached to the pcb;
1812		 * allocate one and initialize to default values.
1813		 */
1814		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1815		    M_WAITOK);
1816
1817		if (imo == NULL)
1818			return (ENOBUFS);
1819		*imop = imo;
1820		imo->imo_multicast_ifp = NULL;
1821		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1822		imo->imo_multicast_vif = -1;
1823		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1824		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1825		imo->imo_num_memberships = 0;
1826	}
1827
1828	switch (sopt->sopt_name) {
1829	/* store an index number for the vif you wanna use in the send */
1830	case IP_MULTICAST_VIF:
1831		if (legal_vif_num == 0) {
1832			error = EOPNOTSUPP;
1833			break;
1834		}
1835		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1836		if (error)
1837			break;
1838		if (!legal_vif_num(i) && (i != -1)) {
1839			error = EINVAL;
1840			break;
1841		}
1842		imo->imo_multicast_vif = i;
1843		break;
1844
1845	case IP_MULTICAST_IF:
1846		/*
1847		 * Select the interface for outgoing multicast packets.
1848		 */
1849		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1850		if (error)
1851			break;
1852		/*
1853		 * INADDR_ANY is used to remove a previous selection.
1854		 * When no interface is selected, a default one is
1855		 * chosen every time a multicast packet is sent.
1856		 */
1857		if (addr.s_addr == INADDR_ANY) {
1858			imo->imo_multicast_ifp = NULL;
1859			break;
1860		}
1861		/*
1862		 * The selected interface is identified by its local
1863		 * IP address.  Find the interface and confirm that
1864		 * it supports multicasting.
1865		 */
1866		s = splimp();
1867		ifp = ip_multicast_if(&addr, &ifindex);
1868		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1869			splx(s);
1870			error = EADDRNOTAVAIL;
1871			break;
1872		}
1873		imo->imo_multicast_ifp = ifp;
1874		if (ifindex)
1875			imo->imo_multicast_addr = addr;
1876		else
1877			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1878		splx(s);
1879		break;
1880
1881	case IP_MULTICAST_TTL:
1882		/*
1883		 * Set the IP time-to-live for outgoing multicast packets.
1884		 * The original multicast API required a char argument,
1885		 * which is inconsistent with the rest of the socket API.
1886		 * We allow either a char or an int.
1887		 */
1888		if (sopt->sopt_valsize == 1) {
1889			u_char ttl;
1890			error = sooptcopyin(sopt, &ttl, 1, 1);
1891			if (error)
1892				break;
1893			imo->imo_multicast_ttl = ttl;
1894		} else {
1895			u_int ttl;
1896			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1897					    sizeof ttl);
1898			if (error)
1899				break;
1900			if (ttl > 255)
1901				error = EINVAL;
1902			else
1903				imo->imo_multicast_ttl = ttl;
1904		}
1905		break;
1906
1907	case IP_MULTICAST_LOOP:
1908		/*
1909		 * Set the loopback flag for outgoing multicast packets.
1910		 * Must be zero or one.  The original multicast API required a
1911		 * char argument, which is inconsistent with the rest
1912		 * of the socket API.  We allow either a char or an int.
1913		 */
1914		if (sopt->sopt_valsize == 1) {
1915			u_char loop;
1916			error = sooptcopyin(sopt, &loop, 1, 1);
1917			if (error)
1918				break;
1919			imo->imo_multicast_loop = !!loop;
1920		} else {
1921			u_int loop;
1922			error = sooptcopyin(sopt, &loop, sizeof loop,
1923					    sizeof loop);
1924			if (error)
1925				break;
1926			imo->imo_multicast_loop = !!loop;
1927		}
1928		break;
1929
1930	case IP_ADD_MEMBERSHIP:
1931		/*
1932		 * Add a multicast group membership.
1933		 * Group must be a valid IP multicast address.
1934		 */
1935		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1936		if (error)
1937			break;
1938
1939		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1940			error = EINVAL;
1941			break;
1942		}
1943		s = splimp();
1944		/*
1945		 * If no interface address was provided, use the interface of
1946		 * the route to the given multicast address.
1947		 */
1948		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1949			bzero((caddr_t)&ro, sizeof(ro));
1950			dst = (struct sockaddr_in *)&ro.ro_dst;
1951			dst->sin_len = sizeof(*dst);
1952			dst->sin_family = AF_INET;
1953			dst->sin_addr = mreq.imr_multiaddr;
1954			rtalloc_ign(&ro, RTF_CLONING);
1955			if (ro.ro_rt == NULL) {
1956				error = EADDRNOTAVAIL;
1957				splx(s);
1958				break;
1959			}
1960			ifp = ro.ro_rt->rt_ifp;
1961			RTFREE(ro.ro_rt);
1962		}
1963		else {
1964			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1965		}
1966
1967		/*
1968		 * See if we found an interface, and confirm that it
1969		 * supports multicast.
1970		 */
1971		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1972			error = EADDRNOTAVAIL;
1973			splx(s);
1974			break;
1975		}
1976		/*
1977		 * See if the membership already exists or if all the
1978		 * membership slots are full.
1979		 */
1980		for (i = 0; i < imo->imo_num_memberships; ++i) {
1981			if (imo->imo_membership[i]->inm_ifp == ifp &&
1982			    imo->imo_membership[i]->inm_addr.s_addr
1983						== mreq.imr_multiaddr.s_addr)
1984				break;
1985		}
1986		if (i < imo->imo_num_memberships) {
1987			error = EADDRINUSE;
1988			splx(s);
1989			break;
1990		}
1991		if (i == IP_MAX_MEMBERSHIPS) {
1992			error = ETOOMANYREFS;
1993			splx(s);
1994			break;
1995		}
1996		/*
1997		 * Everything looks good; add a new record to the multicast
1998		 * address list for the given interface.
1999		 */
2000		if ((imo->imo_membership[i] =
2001		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2002			error = ENOBUFS;
2003			splx(s);
2004			break;
2005		}
2006		++imo->imo_num_memberships;
2007		splx(s);
2008		break;
2009
2010	case IP_DROP_MEMBERSHIP:
2011		/*
2012		 * Drop a multicast group membership.
2013		 * Group must be a valid IP multicast address.
2014		 */
2015		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2016		if (error)
2017			break;
2018
2019		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2020			error = EINVAL;
2021			break;
2022		}
2023
2024		s = splimp();
2025		/*
2026		 * If an interface address was specified, get a pointer
2027		 * to its ifnet structure.
2028		 */
2029		if (mreq.imr_interface.s_addr == INADDR_ANY)
2030			ifp = NULL;
2031		else {
2032			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2033			if (ifp == NULL) {
2034				error = EADDRNOTAVAIL;
2035				splx(s);
2036				break;
2037			}
2038		}
2039		/*
2040		 * Find the membership in the membership array.
2041		 */
2042		for (i = 0; i < imo->imo_num_memberships; ++i) {
2043			if ((ifp == NULL ||
2044			     imo->imo_membership[i]->inm_ifp == ifp) &&
2045			     imo->imo_membership[i]->inm_addr.s_addr ==
2046			     mreq.imr_multiaddr.s_addr)
2047				break;
2048		}
2049		if (i == imo->imo_num_memberships) {
2050			error = EADDRNOTAVAIL;
2051			splx(s);
2052			break;
2053		}
2054		/*
2055		 * Give up the multicast address record to which the
2056		 * membership points.
2057		 */
2058		in_delmulti(imo->imo_membership[i]);
2059		/*
2060		 * Remove the gap in the membership array.
2061		 */
2062		for (++i; i < imo->imo_num_memberships; ++i)
2063			imo->imo_membership[i-1] = imo->imo_membership[i];
2064		--imo->imo_num_memberships;
2065		splx(s);
2066		break;
2067
2068	default:
2069		error = EOPNOTSUPP;
2070		break;
2071	}
2072
2073	/*
2074	 * If all options have default values, no need to keep the mbuf.
2075	 */
2076	if (imo->imo_multicast_ifp == NULL &&
2077	    imo->imo_multicast_vif == -1 &&
2078	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2079	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2080	    imo->imo_num_memberships == 0) {
2081		free(*imop, M_IPMOPTS);
2082		*imop = NULL;
2083	}
2084
2085	return (error);
2086}
2087
2088/*
2089 * Return the IP multicast options in response to user getsockopt().
2090 */
2091static int
2092ip_getmoptions(sopt, imo)
2093	struct sockopt *sopt;
2094	register struct ip_moptions *imo;
2095{
2096	struct in_addr addr;
2097	struct in_ifaddr *ia;
2098	int error, optval;
2099	u_char coptval;
2100
2101	error = 0;
2102	switch (sopt->sopt_name) {
2103	case IP_MULTICAST_VIF:
2104		if (imo != NULL)
2105			optval = imo->imo_multicast_vif;
2106		else
2107			optval = -1;
2108		error = sooptcopyout(sopt, &optval, sizeof optval);
2109		break;
2110
2111	case IP_MULTICAST_IF:
2112		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2113			addr.s_addr = INADDR_ANY;
2114		else if (imo->imo_multicast_addr.s_addr) {
2115			/* return the value user has set */
2116			addr = imo->imo_multicast_addr;
2117		} else {
2118			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2119			addr.s_addr = (ia == NULL) ? INADDR_ANY
2120				: IA_SIN(ia)->sin_addr.s_addr;
2121		}
2122		error = sooptcopyout(sopt, &addr, sizeof addr);
2123		break;
2124
2125	case IP_MULTICAST_TTL:
2126		if (imo == 0)
2127			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2128		else
2129			optval = coptval = imo->imo_multicast_ttl;
2130		if (sopt->sopt_valsize == 1)
2131			error = sooptcopyout(sopt, &coptval, 1);
2132		else
2133			error = sooptcopyout(sopt, &optval, sizeof optval);
2134		break;
2135
2136	case IP_MULTICAST_LOOP:
2137		if (imo == 0)
2138			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2139		else
2140			optval = coptval = imo->imo_multicast_loop;
2141		if (sopt->sopt_valsize == 1)
2142			error = sooptcopyout(sopt, &coptval, 1);
2143		else
2144			error = sooptcopyout(sopt, &optval, sizeof optval);
2145		break;
2146
2147	default:
2148		error = ENOPROTOOPT;
2149		break;
2150	}
2151	return (error);
2152}
2153
2154/*
2155 * Discard the IP multicast options.
2156 */
2157void
2158ip_freemoptions(imo)
2159	register struct ip_moptions *imo;
2160{
2161	register int i;
2162
2163	if (imo != NULL) {
2164		for (i = 0; i < imo->imo_num_memberships; ++i)
2165			in_delmulti(imo->imo_membership[i]);
2166		free(imo, M_IPMOPTS);
2167	}
2168}
2169
2170/*
2171 * Routine called from ip_output() to loop back a copy of an IP multicast
2172 * packet to the input queue of a specified interface.  Note that this
2173 * calls the output routine of the loopback "driver", but with an interface
2174 * pointer that might NOT be a loopback interface -- evil, but easier than
2175 * replicating that code here.
2176 */
2177static void
2178ip_mloopback(ifp, m, dst, hlen)
2179	struct ifnet *ifp;
2180	register struct mbuf *m;
2181	register struct sockaddr_in *dst;
2182	int hlen;
2183{
2184	register struct ip *ip;
2185	struct mbuf *copym;
2186
2187	copym = m_copy(m, 0, M_COPYALL);
2188	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2189		copym = m_pullup(copym, hlen);
2190	if (copym != NULL) {
2191		/* If needed, compute the checksum and mark it as valid. */
2192		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2193			in_delayed_cksum(copym);
2194			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2195			copym->m_pkthdr.csum_flags |=
2196			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2197			copym->m_pkthdr.csum_data = 0xffff;
2198		}
2199		/*
2200		 * We don't bother to fragment if the IP length is greater
2201		 * than the interface's MTU.  Can this possibly matter?
2202		 */
2203		ip = mtod(copym, struct ip *);
2204		ip->ip_len = htons(ip->ip_len);
2205		ip->ip_off = htons(ip->ip_off);
2206		ip->ip_sum = 0;
2207		ip->ip_sum = in_cksum(copym, hlen);
2208		/*
2209		 * NB:
2210		 * It's not clear whether there are any lingering
2211		 * reentrancy problems in other areas which might
2212		 * be exposed by using ip_input directly (in
2213		 * particular, everything which modifies the packet
2214		 * in-place).  Yet another option is using the
2215		 * protosw directly to deliver the looped back
2216		 * packet.  For the moment, we'll err on the side
2217		 * of safety by using if_simloop().
2218		 */
2219#if 1 /* XXX */
2220		if (dst->sin_family != AF_INET) {
2221			printf("ip_mloopback: bad address family %d\n",
2222						dst->sin_family);
2223			dst->sin_family = AF_INET;
2224		}
2225#endif
2226
2227#ifdef notdef
2228		copym->m_pkthdr.rcvif = ifp;
2229		ip_input(copym);
2230#else
2231		if_simloop(ifp, copym, dst->sin_family, 0);
2232#endif
2233	}
2234}
2235