ip_output.c revision 125680
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 * $FreeBSD: head/sys/netinet/ip_output.c 125680 2004-02-11 04:26:04Z bms $
35 */
36
37#include "opt_ipfw.h"
38#include "opt_ipdn.h"
39#include "opt_ipdivert.h"
40#include "opt_ipfilter.h"
41#include "opt_ipsec.h"
42#include "opt_mac.h"
43#include "opt_pfil_hooks.h"
44#include "opt_random_ip_id.h"
45#include "opt_mbuf_stress_test.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/kernel.h>
50#include <sys/mac.h>
51#include <sys/malloc.h>
52#include <sys/mbuf.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/sysctl.h>
57
58#include <net/if.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_var.h>
66#include <netinet/ip_var.h>
67
68#ifdef PFIL_HOOKS
69#include <net/pfil.h>
70#endif
71
72#include <machine/in_cksum.h>
73
74static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
75
76#ifdef IPSEC
77#include <netinet6/ipsec.h>
78#include <netkey/key.h>
79#ifdef IPSEC_DEBUG
80#include <netkey/key_debug.h>
81#else
82#define	KEYDEBUG(lev,arg)
83#endif
84#endif /*IPSEC*/
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#include <netipsec/xform.h>
89#include <netipsec/key.h>
90#endif /*FAST_IPSEC*/
91
92#include <netinet/ip_fw.h>
93#include <netinet/ip_dummynet.h>
94
95#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
96				x, (ntohl(a.s_addr)>>24)&0xFF,\
97				  (ntohl(a.s_addr)>>16)&0xFF,\
98				  (ntohl(a.s_addr)>>8)&0xFF,\
99				  (ntohl(a.s_addr))&0xFF, y);
100
101u_short ip_id;
102
103#ifdef MBUF_STRESS_TEST
104int mbuf_frag_size = 0;
105SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
106	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
107#endif
108
109static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
110static struct ifnet *ip_multicast_if(struct in_addr *, int *);
111static void	ip_mloopback
112	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
113static int	ip_getmoptions
114	(struct sockopt *, struct ip_moptions *);
115static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
116static int	ip_setmoptions
117	(struct sockopt *, struct ip_moptions **);
118
119int	ip_optcopy(struct ip *, struct ip *);
120
121
122extern	struct protosw inetsw[];
123
124/*
125 * IP output.  The packet in mbuf chain m contains a skeletal IP
126 * header (with len, off, ttl, proto, tos, src, dst).
127 * The mbuf chain containing the packet will be freed.
128 * The mbuf opt, if present, will not be freed.
129 * In the IP forwarding case, the packet will arrive with options already
130 * inserted, so must have a NULL opt pointer.
131 */
132int
133ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
134	int flags, struct ip_moptions *imo, struct inpcb *inp)
135{
136	struct ip *ip;
137	struct ifnet *ifp = NULL;	/* keep compiler happy */
138	struct mbuf *m;
139	int hlen = sizeof (struct ip);
140	int len, off, error = 0;
141	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
142	struct in_ifaddr *ia = NULL;
143	int isbroadcast, sw_csum;
144	struct in_addr pkt_dst;
145	struct route iproute;
146#ifdef IPSEC
147	struct secpolicy *sp = NULL;
148#endif
149#ifdef FAST_IPSEC
150	struct m_tag *mtag;
151	struct secpolicy *sp = NULL;
152	struct tdb_ident *tdbi;
153	int s;
154#endif /* FAST_IPSEC */
155	struct ip_fw_args args;
156	int src_was_INADDR_ANY = 0;	/* as the name says... */
157
158	args.eh = NULL;
159	args.rule = NULL;
160	args.next_hop = NULL;
161	args.divert_rule = 0;			/* divert cookie */
162
163	/* Grab info from MT_TAG mbufs prepended to the chain. */
164	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
165		switch(m0->_m_tag_id) {
166		default:
167			printf("ip_output: unrecognised MT_TAG tag %d\n",
168			    m0->_m_tag_id);
169			break;
170
171		case PACKET_TAG_DUMMYNET:
172			/*
173			 * the packet was already tagged, so part of the
174			 * processing was already done, and we need to go down.
175			 * Get parameters from the header.
176			 */
177			args.rule = ((struct dn_pkt *)m0)->rule;
178			opt = NULL ;
179			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
180			imo = NULL ;
181			dst = ((struct dn_pkt *)m0)->dn_dst ;
182			ifp = ((struct dn_pkt *)m0)->ifp ;
183			flags = ((struct dn_pkt *)m0)->flags ;
184			break;
185
186		case PACKET_TAG_DIVERT:
187			args.divert_rule = (intptr_t)m0->m_data & 0xffff;
188			break;
189
190		case PACKET_TAG_IPFORWARD:
191			args.next_hop = (struct sockaddr_in *)m0->m_data;
192			break;
193		}
194	}
195	m = m0;
196
197	M_ASSERTPKTHDR(m);
198
199	if (ro == NULL) {
200		ro = &iproute;
201		bzero(ro, sizeof (*ro));
202	}
203
204	if (inp != NULL)
205		INP_LOCK_ASSERT(inp);
206
207	if (args.rule != NULL) {	/* dummynet already saw us */
208		ip = mtod(m, struct ip *);
209		hlen = ip->ip_hl << 2 ;
210		if (ro->ro_rt)
211			ia = ifatoia(ro->ro_rt->rt_ifa);
212		goto sendit;
213	}
214
215	if (opt) {
216		len = 0;
217		m = ip_insertoptions(m, opt, &len);
218		if (len != 0)
219			hlen = len;
220	}
221	ip = mtod(m, struct ip *);
222	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
223
224	/*
225	 * Fill in IP header.  If we are not allowing fragmentation,
226	 * then the ip_id field is meaningless, but we don't set it
227	 * to zero.  Doing so causes various problems when devices along
228	 * the path (routers, load balancers, firewalls, etc.) illegally
229	 * disable DF on our packet.  Note that a 16-bit counter
230	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
231	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
232	 * for Counting NATted Hosts", Proc. IMW'02, available at
233	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
234	 */
235	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236		ip->ip_v = IPVERSION;
237		ip->ip_hl = hlen >> 2;
238#ifdef RANDOM_IP_ID
239		ip->ip_id = ip_randomid();
240#else
241		ip->ip_id = htons(ip_id++);
242#endif
243		ipstat.ips_localout++;
244	} else {
245		hlen = ip->ip_hl << 2;
246	}
247
248	dst = (struct sockaddr_in *)&ro->ro_dst;
249	/*
250	 * If there is a cached route,
251	 * check that it is to the same destination
252	 * and is still up.  If not, free it and try again.
253	 * The address family should also be checked in case of sharing the
254	 * cache with IPv6.
255	 */
256	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
257			  dst->sin_family != AF_INET ||
258			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
259		RTFREE(ro->ro_rt);
260		ro->ro_rt = (struct rtentry *)0;
261	}
262	if (ro->ro_rt == 0) {
263		bzero(dst, sizeof(*dst));
264		dst->sin_family = AF_INET;
265		dst->sin_len = sizeof(*dst);
266		dst->sin_addr = pkt_dst;
267	}
268	/*
269	 * If routing to interface only,
270	 * short circuit routing lookup.
271	 */
272	if (flags & IP_ROUTETOIF) {
273		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
274		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
275			ipstat.ips_noroute++;
276			error = ENETUNREACH;
277			goto bad;
278		}
279		ifp = ia->ia_ifp;
280		ip->ip_ttl = 1;
281		isbroadcast = in_broadcast(dst->sin_addr, ifp);
282	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
283	    imo != NULL && imo->imo_multicast_ifp != NULL) {
284		/*
285		 * Bypass the normal routing lookup for multicast
286		 * packets if the interface is specified.
287		 */
288		ifp = imo->imo_multicast_ifp;
289		IFP_TO_IA(ifp, ia);
290		isbroadcast = 0;	/* fool gcc */
291	} else {
292		/*
293		 * We want to do any cloning requested by the link layer,
294		 * as this is probably required in all cases for correct
295		 * operation (as it is for ARP).
296		 */
297		if (ro->ro_rt == 0)
298			rtalloc(ro);
299		if (ro->ro_rt == 0) {
300			ipstat.ips_noroute++;
301			error = EHOSTUNREACH;
302			goto bad;
303		}
304		ia = ifatoia(ro->ro_rt->rt_ifa);
305		ifp = ro->ro_rt->rt_ifp;
306		ro->ro_rt->rt_rmx.rmx_pksent++;
307		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
308			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
309		if (ro->ro_rt->rt_flags & RTF_HOST)
310			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
311		else
312			isbroadcast = in_broadcast(dst->sin_addr, ifp);
313	}
314	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
315		struct in_multi *inm;
316
317		m->m_flags |= M_MCAST;
318		/*
319		 * IP destination address is multicast.  Make sure "dst"
320		 * still points to the address in "ro".  (It may have been
321		 * changed to point to a gateway address, above.)
322		 */
323		dst = (struct sockaddr_in *)&ro->ro_dst;
324		/*
325		 * See if the caller provided any multicast options
326		 */
327		if (imo != NULL) {
328			ip->ip_ttl = imo->imo_multicast_ttl;
329			if (imo->imo_multicast_vif != -1)
330				ip->ip_src.s_addr =
331				    ip_mcast_src ?
332				    ip_mcast_src(imo->imo_multicast_vif) :
333				    INADDR_ANY;
334		} else
335			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
336		/*
337		 * Confirm that the outgoing interface supports multicast.
338		 */
339		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
340			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
341				ipstat.ips_noroute++;
342				error = ENETUNREACH;
343				goto bad;
344			}
345		}
346		/*
347		 * If source address not specified yet, use address
348		 * of outgoing interface.
349		 */
350		if (ip->ip_src.s_addr == INADDR_ANY) {
351			/* Interface may have no addresses. */
352			if (ia != NULL)
353				ip->ip_src = IA_SIN(ia)->sin_addr;
354		}
355
356		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
357			/*
358			 * XXX
359			 * delayed checksums are not currently
360			 * compatible with IP multicast routing
361			 */
362			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
363				in_delayed_cksum(m);
364				m->m_pkthdr.csum_flags &=
365					~CSUM_DELAY_DATA;
366			}
367		}
368		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
369		if (inm != NULL &&
370		   (imo == NULL || imo->imo_multicast_loop)) {
371			/*
372			 * If we belong to the destination multicast group
373			 * on the outgoing interface, and the caller did not
374			 * forbid loopback, loop back a copy.
375			 */
376			ip_mloopback(ifp, m, dst, hlen);
377		}
378		else {
379			/*
380			 * If we are acting as a multicast router, perform
381			 * multicast forwarding as if the packet had just
382			 * arrived on the interface to which we are about
383			 * to send.  The multicast forwarding function
384			 * recursively calls this function, using the
385			 * IP_FORWARDING flag to prevent infinite recursion.
386			 *
387			 * Multicasts that are looped back by ip_mloopback(),
388			 * above, will be forwarded by the ip_input() routine,
389			 * if necessary.
390			 */
391			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
392				/*
393				 * If rsvp daemon is not running, do not
394				 * set ip_moptions. This ensures that the packet
395				 * is multicast and not just sent down one link
396				 * as prescribed by rsvpd.
397				 */
398				if (!rsvp_on)
399					imo = NULL;
400				if (ip_mforward &&
401				    ip_mforward(ip, ifp, m, imo) != 0) {
402					m_freem(m);
403					goto done;
404				}
405			}
406		}
407
408		/*
409		 * Multicasts with a time-to-live of zero may be looped-
410		 * back, above, but must not be transmitted on a network.
411		 * Also, multicasts addressed to the loopback interface
412		 * are not sent -- the above call to ip_mloopback() will
413		 * loop back a copy if this host actually belongs to the
414		 * destination group on the loopback interface.
415		 */
416		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
417			m_freem(m);
418			goto done;
419		}
420
421		goto sendit;
422	}
423#ifndef notdef
424	/*
425	 * If the source address is not specified yet, use the address
426	 * of the outoing interface. In case, keep note we did that, so
427	 * if the the firewall changes the next-hop causing the output
428	 * interface to change, we can fix that.
429	 */
430	if (ip->ip_src.s_addr == INADDR_ANY) {
431		/* Interface may have no addresses. */
432		if (ia != NULL) {
433			ip->ip_src = IA_SIN(ia)->sin_addr;
434			src_was_INADDR_ANY = 1;
435		}
436	}
437#endif /* notdef */
438	/*
439	 * Verify that we have any chance at all of being able to queue
440	 *      the packet or packet fragments
441	 */
442	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
443		ifp->if_snd.ifq_maxlen) {
444			error = ENOBUFS;
445			ipstat.ips_odropped++;
446			goto bad;
447	}
448
449	/*
450	 * Look for broadcast address and
451	 * verify user is allowed to send
452	 * such a packet.
453	 */
454	if (isbroadcast) {
455		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
456			error = EADDRNOTAVAIL;
457			goto bad;
458		}
459		if ((flags & IP_ALLOWBROADCAST) == 0) {
460			error = EACCES;
461			goto bad;
462		}
463		/* don't allow broadcast messages to be fragmented */
464		if (ip->ip_len > ifp->if_mtu) {
465			error = EMSGSIZE;
466			goto bad;
467		}
468		if (flags & IP_SENDONES)
469			ip->ip_dst.s_addr = INADDR_BROADCAST;
470		m->m_flags |= M_BCAST;
471	} else {
472		m->m_flags &= ~M_BCAST;
473	}
474
475sendit:
476#ifdef IPSEC
477	/* get SP for this packet */
478	if (inp == NULL)
479		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
480		    flags, &error);
481	else
482		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
483
484	if (sp == NULL) {
485		ipsecstat.out_inval++;
486		goto bad;
487	}
488
489	error = 0;
490
491	/* check policy */
492	switch (sp->policy) {
493	case IPSEC_POLICY_DISCARD:
494		/*
495		 * This packet is just discarded.
496		 */
497		ipsecstat.out_polvio++;
498		goto bad;
499
500	case IPSEC_POLICY_BYPASS:
501	case IPSEC_POLICY_NONE:
502	case IPSEC_POLICY_TCP:
503		/* no need to do IPsec. */
504		goto skip_ipsec;
505
506	case IPSEC_POLICY_IPSEC:
507		if (sp->req == NULL) {
508			/* acquire a policy */
509			error = key_spdacquire(sp);
510			goto bad;
511		}
512		break;
513
514	case IPSEC_POLICY_ENTRUST:
515	default:
516		printf("ip_output: Invalid policy found. %d\n", sp->policy);
517	}
518    {
519	struct ipsec_output_state state;
520	bzero(&state, sizeof(state));
521	state.m = m;
522	if (flags & IP_ROUTETOIF) {
523		state.ro = &iproute;
524		bzero(&iproute, sizeof(iproute));
525	} else
526		state.ro = ro;
527	state.dst = (struct sockaddr *)dst;
528
529	ip->ip_sum = 0;
530
531	/*
532	 * XXX
533	 * delayed checksums are not currently compatible with IPsec
534	 */
535	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
536		in_delayed_cksum(m);
537		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
538	}
539
540	ip->ip_len = htons(ip->ip_len);
541	ip->ip_off = htons(ip->ip_off);
542
543	error = ipsec4_output(&state, sp, flags);
544
545	m = state.m;
546	if (flags & IP_ROUTETOIF) {
547		/*
548		 * if we have tunnel mode SA, we may need to ignore
549		 * IP_ROUTETOIF.
550		 */
551		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
552			flags &= ~IP_ROUTETOIF;
553			ro = state.ro;
554		}
555	} else
556		ro = state.ro;
557	dst = (struct sockaddr_in *)state.dst;
558	if (error) {
559		/* mbuf is already reclaimed in ipsec4_output. */
560		m0 = NULL;
561		switch (error) {
562		case EHOSTUNREACH:
563		case ENETUNREACH:
564		case EMSGSIZE:
565		case ENOBUFS:
566		case ENOMEM:
567			break;
568		default:
569			printf("ip4_output (ipsec): error code %d\n", error);
570			/*fall through*/
571		case ENOENT:
572			/* don't show these error codes to the user */
573			error = 0;
574			break;
575		}
576		goto bad;
577	}
578    }
579
580	/* be sure to update variables that are affected by ipsec4_output() */
581	ip = mtod(m, struct ip *);
582	hlen = ip->ip_hl << 2;
583	if (ro->ro_rt == NULL) {
584		if ((flags & IP_ROUTETOIF) == 0) {
585			printf("ip_output: "
586				"can't update route after IPsec processing\n");
587			error = EHOSTUNREACH;	/*XXX*/
588			goto bad;
589		}
590	} else {
591		ia = ifatoia(ro->ro_rt->rt_ifa);
592		ifp = ro->ro_rt->rt_ifp;
593	}
594
595	/* make it flipped, again. */
596	ip->ip_len = ntohs(ip->ip_len);
597	ip->ip_off = ntohs(ip->ip_off);
598skip_ipsec:
599#endif /*IPSEC*/
600#ifdef FAST_IPSEC
601	/*
602	 * Check the security policy (SP) for the packet and, if
603	 * required, do IPsec-related processing.  There are two
604	 * cases here; the first time a packet is sent through
605	 * it will be untagged and handled by ipsec4_checkpolicy.
606	 * If the packet is resubmitted to ip_output (e.g. after
607	 * AH, ESP, etc. processing), there will be a tag to bypass
608	 * the lookup and related policy checking.
609	 */
610	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
611	s = splnet();
612	if (mtag != NULL) {
613		tdbi = (struct tdb_ident *)(mtag + 1);
614		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
615		if (sp == NULL)
616			error = -EINVAL;	/* force silent drop */
617		m_tag_delete(m, mtag);
618	} else {
619		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
620					&error, inp);
621	}
622	/*
623	 * There are four return cases:
624	 *    sp != NULL	 	    apply IPsec policy
625	 *    sp == NULL, error == 0	    no IPsec handling needed
626	 *    sp == NULL, error == -EINVAL  discard packet w/o error
627	 *    sp == NULL, error != 0	    discard packet, report error
628	 */
629	if (sp != NULL) {
630		/* Loop detection, check if ipsec processing already done */
631		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
632		for (mtag = m_tag_first(m); mtag != NULL;
633		     mtag = m_tag_next(m, mtag)) {
634			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
635				continue;
636			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
637			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
638				continue;
639			/*
640			 * Check if policy has an SA associated with it.
641			 * This can happen when an SP has yet to acquire
642			 * an SA; e.g. on first reference.  If it occurs,
643			 * then we let ipsec4_process_packet do its thing.
644			 */
645			if (sp->req->sav == NULL)
646				break;
647			tdbi = (struct tdb_ident *)(mtag + 1);
648			if (tdbi->spi == sp->req->sav->spi &&
649			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
650			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
651				 sizeof (union sockaddr_union)) == 0) {
652				/*
653				 * No IPsec processing is needed, free
654				 * reference to SP.
655				 *
656				 * NB: null pointer to avoid free at
657				 *     done: below.
658				 */
659				KEY_FREESP(&sp), sp = NULL;
660				splx(s);
661				goto spd_done;
662			}
663		}
664
665		/*
666		 * Do delayed checksums now because we send before
667		 * this is done in the normal processing path.
668		 */
669		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
670			in_delayed_cksum(m);
671			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
672		}
673
674		ip->ip_len = htons(ip->ip_len);
675		ip->ip_off = htons(ip->ip_off);
676
677		/* NB: callee frees mbuf */
678		error = ipsec4_process_packet(m, sp->req, flags, 0);
679		/*
680		 * Preserve KAME behaviour: ENOENT can be returned
681		 * when an SA acquire is in progress.  Don't propagate
682		 * this to user-level; it confuses applications.
683		 *
684		 * XXX this will go away when the SADB is redone.
685		 */
686		if (error == ENOENT)
687			error = 0;
688		splx(s);
689		goto done;
690	} else {
691		splx(s);
692
693		if (error != 0) {
694			/*
695			 * Hack: -EINVAL is used to signal that a packet
696			 * should be silently discarded.  This is typically
697			 * because we asked key management for an SA and
698			 * it was delayed (e.g. kicked up to IKE).
699			 */
700			if (error == -EINVAL)
701				error = 0;
702			goto bad;
703		} else {
704			/* No IPsec processing for this packet. */
705		}
706#ifdef notyet
707		/*
708		 * If deferred crypto processing is needed, check that
709		 * the interface supports it.
710		 */
711		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
712		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
713			/* notify IPsec to do its own crypto */
714			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
715			error = EHOSTUNREACH;
716			goto bad;
717		}
718#endif
719	}
720spd_done:
721#endif /* FAST_IPSEC */
722
723	/*
724	 * IpHack's section.
725	 * - Xlate: translate packet's addr/port (NAT).
726	 * - Firewall: deny/allow/etc.
727	 * - Wrap: fake packet's addr/port <unimpl.>
728	 * - Encapsulate: put it in another IP and send out. <unimp.>
729	 */
730#ifdef PFIL_HOOKS
731	/*
732	 * Run through list of hooks for output packets.
733	 */
734	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
735	if (error != 0 || m == NULL)
736		goto done;
737	ip = mtod(m, struct ip *);
738#endif /* PFIL_HOOKS */
739
740	/*
741	 * Check with the firewall...
742	 * but not if we are already being fwd'd from a firewall.
743	 */
744	if (fw_enable && IPFW_LOADED && !args.next_hop) {
745		struct sockaddr_in *old = dst;
746
747		args.m = m;
748		args.next_hop = dst;
749		args.oif = ifp;
750		off = ip_fw_chk_ptr(&args);
751		m = args.m;
752		dst = args.next_hop;
753
754                /*
755		 * On return we must do the following:
756		 * m == NULL	-> drop the pkt (old interface, deprecated)
757		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
758		 * 1<=off<= 0xffff		-> DIVERT
759		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
760		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
761		 * dst != old			-> IPFIREWALL_FORWARD
762		 * off==0, dst==old		-> accept
763		 * If some of the above modules are not compiled in, then
764		 * we should't have to check the corresponding condition
765		 * (because the ipfw control socket should not accept
766		 * unsupported rules), but better play safe and drop
767		 * packets in case of doubt.
768		 */
769		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
770			if (m)
771				m_freem(m);
772			error = EACCES;
773			goto done;
774		}
775		ip = mtod(m, struct ip *);
776		if (off == 0 && dst == old)		/* common case */
777			goto pass;
778                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
779			/*
780			 * pass the pkt to dummynet. Need to include
781			 * pipe number, m, ifp, ro, dst because these are
782			 * not recomputed in the next pass.
783			 * All other parameters have been already used and
784			 * so they are not needed anymore.
785			 * XXX note: if the ifp or ro entry are deleted
786			 * while a pkt is in dummynet, we are in trouble!
787			 */
788			args.ro = ro;
789			args.dst = dst;
790			args.flags = flags;
791
792			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
793				&args);
794			goto done;
795		}
796#ifdef IPDIVERT
797		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
798			struct mbuf *clone = NULL;
799
800			/* Clone packet if we're doing a 'tee' */
801			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
802				clone = m_dup(m, M_DONTWAIT);
803
804			/*
805			 * XXX
806			 * delayed checksums are not currently compatible
807			 * with divert sockets.
808			 */
809			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
810				in_delayed_cksum(m);
811				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
812			}
813
814			/* Restore packet header fields to original values */
815			ip->ip_len = htons(ip->ip_len);
816			ip->ip_off = htons(ip->ip_off);
817
818			/* Deliver packet to divert input routine */
819			divert_packet(m, 0, off & 0xffff, args.divert_rule);
820
821			/* If 'tee', continue with original packet */
822			if (clone != NULL) {
823				m = clone;
824				ip = mtod(m, struct ip *);
825				goto pass;
826			}
827			goto done;
828		}
829#endif
830
831		/* IPFIREWALL_FORWARD */
832		/*
833		 * Check dst to make sure it is directly reachable on the
834		 * interface we previously thought it was.
835		 * If it isn't (which may be likely in some situations) we have
836		 * to re-route it (ie, find a route for the next-hop and the
837		 * associated interface) and set them here. This is nested
838		 * forwarding which in most cases is undesirable, except where
839		 * such control is nigh impossible. So we do it here.
840		 * And I'm babbling.
841		 */
842		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
843#if 0
844			/*
845			 * XXX To improve readability, this block should be
846			 * changed into a function call as below:
847			 */
848			error = ip_ipforward(&m, &dst, &ifp);
849			if (error)
850				goto bad;
851			if (m == NULL) /* ip_input consumed the mbuf */
852				goto done;
853#else
854			struct in_ifaddr *ia;
855
856			/*
857			 * XXX sro_fwd below is static, and a pointer
858			 * to it gets passed to routines downstream.
859			 * This could have surprisingly bad results in
860			 * practice, because its content is overwritten
861			 * by subsequent packets.
862			 */
863			/* There must be a better way to do this next line... */
864			static struct route sro_fwd;
865			struct route *ro_fwd = &sro_fwd;
866
867#if 0
868			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
869			    dst->sin_addr, "\n");
870#endif
871
872			/*
873			 * We need to figure out if we have been forwarded
874			 * to a local socket. If so, then we should somehow
875			 * "loop back" to ip_input, and get directed to the
876			 * PCB as if we had received this packet. This is
877			 * because it may be dificult to identify the packets
878			 * you want to forward until they are being output
879			 * and have selected an interface. (e.g. locally
880			 * initiated packets) If we used the loopback inteface,
881			 * we would not be able to control what happens
882			 * as the packet runs through ip_input() as
883			 * it is done through an ISR.
884			 */
885			LIST_FOREACH(ia,
886			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
887				/*
888				 * If the addr to forward to is one
889				 * of ours, we pretend to
890				 * be the destination for this packet.
891				 */
892				if (IA_SIN(ia)->sin_addr.s_addr ==
893						 dst->sin_addr.s_addr)
894					break;
895			}
896			if (ia) {	/* tell ip_input "dont filter" */
897				struct m_hdr tag;
898
899				tag.mh_type = MT_TAG;
900				tag.mh_flags = PACKET_TAG_IPFORWARD;
901				tag.mh_data = (caddr_t)args.next_hop;
902				tag.mh_next = m;
903				tag.mh_nextpkt = NULL;
904
905				if (m->m_pkthdr.rcvif == NULL)
906					m->m_pkthdr.rcvif = ifunit("lo0");
907				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
908					m->m_pkthdr.csum_flags |=
909					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
910					m0->m_pkthdr.csum_data = 0xffff;
911				}
912				m->m_pkthdr.csum_flags |=
913				    CSUM_IP_CHECKED | CSUM_IP_VALID;
914				ip->ip_len = htons(ip->ip_len);
915				ip->ip_off = htons(ip->ip_off);
916				ip_input((struct mbuf *)&tag);
917				goto done;
918			}
919			/*
920			 * Some of the logic for this was
921			 * nicked from above.
922			 */
923			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
924
925			ro_fwd->ro_rt = 0;
926			rtalloc_ign(ro_fwd, RTF_CLONING);
927
928			if (ro_fwd->ro_rt == 0) {
929				ipstat.ips_noroute++;
930				error = EHOSTUNREACH;
931				goto bad;
932			}
933
934			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
935			ifp = ro_fwd->ro_rt->rt_ifp;
936			ro_fwd->ro_rt->rt_rmx.rmx_pksent++;
937			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
938				dst = (struct sockaddr_in *)
939					ro_fwd->ro_rt->rt_gateway;
940			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
941				isbroadcast =
942				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
943			else
944				isbroadcast = in_broadcast(dst->sin_addr, ifp);
945			if (ro->ro_rt)
946				RTFREE(ro->ro_rt);
947			ro->ro_rt = ro_fwd->ro_rt;
948			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
949
950#endif	/* ... block to be put into a function */
951			/*
952			 * If we added a default src ip earlier,
953			 * which would have been gotten from the-then
954			 * interface, do it again, from the new one.
955			 */
956			if (src_was_INADDR_ANY)
957				ip->ip_src = IA_SIN(ia)->sin_addr;
958			goto pass ;
959		}
960
961                /*
962                 * if we get here, none of the above matches, and
963                 * we have to drop the pkt
964                 */
965		m_freem(m);
966                error = EACCES; /* not sure this is the right error msg */
967                goto done;
968	}
969
970pass:
971	/* 127/8 must not appear on wire - RFC1122. */
972	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
973	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
974		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
975			ipstat.ips_badaddr++;
976			error = EADDRNOTAVAIL;
977			goto bad;
978		}
979	}
980
981	m->m_pkthdr.csum_flags |= CSUM_IP;
982	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
983	if (sw_csum & CSUM_DELAY_DATA) {
984		in_delayed_cksum(m);
985		sw_csum &= ~CSUM_DELAY_DATA;
986	}
987	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
988
989	/*
990	 * If small enough for interface, or the interface will take
991	 * care of the fragmentation for us, can just send directly.
992	 */
993	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
994	    ((ip->ip_off & IP_DF) == 0))) {
995		ip->ip_len = htons(ip->ip_len);
996		ip->ip_off = htons(ip->ip_off);
997		ip->ip_sum = 0;
998		if (sw_csum & CSUM_DELAY_IP)
999			ip->ip_sum = in_cksum(m, hlen);
1000
1001		/* Record statistics for this interface address. */
1002		if (!(flags & IP_FORWARDING) && ia) {
1003			ia->ia_ifa.if_opackets++;
1004			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1005		}
1006
1007#ifdef IPSEC
1008		/* clean ipsec history once it goes out of the node */
1009		ipsec_delaux(m);
1010#endif
1011
1012#ifdef MBUF_STRESS_TEST
1013		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
1014			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
1015#endif
1016		error = (*ifp->if_output)(ifp, m,
1017				(struct sockaddr *)dst, ro->ro_rt);
1018		goto done;
1019	}
1020
1021	if (ip->ip_off & IP_DF) {
1022		error = EMSGSIZE;
1023		/*
1024		 * This case can happen if the user changed the MTU
1025		 * of an interface after enabling IP on it.  Because
1026		 * most netifs don't keep track of routes pointing to
1027		 * them, there is no way for one to update all its
1028		 * routes when the MTU is changed.
1029		 */
1030		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1031		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1032			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1033		}
1034		ipstat.ips_cantfrag++;
1035		goto bad;
1036	}
1037
1038	/*
1039	 * Too large for interface; fragment if possible. If successful,
1040	 * on return, m will point to a list of packets to be sent.
1041	 */
1042	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1043	if (error)
1044		goto bad;
1045	for (; m; m = m0) {
1046		m0 = m->m_nextpkt;
1047		m->m_nextpkt = 0;
1048#ifdef IPSEC
1049		/* clean ipsec history once it goes out of the node */
1050		ipsec_delaux(m);
1051#endif
1052		if (error == 0) {
1053			/* Record statistics for this interface address. */
1054			if (ia != NULL) {
1055				ia->ia_ifa.if_opackets++;
1056				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1057			}
1058
1059			error = (*ifp->if_output)(ifp, m,
1060			    (struct sockaddr *)dst, ro->ro_rt);
1061		} else
1062			m_freem(m);
1063	}
1064
1065	if (error == 0)
1066		ipstat.ips_fragmented++;
1067
1068done:
1069	if (ro == &iproute && ro->ro_rt) {
1070		RTFREE(ro->ro_rt);
1071		ro->ro_rt = NULL;
1072	}
1073#ifdef IPSEC
1074	if (sp != NULL) {
1075		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1076			printf("DP ip_output call free SP:%p\n", sp));
1077		key_freesp(sp);
1078	}
1079#endif
1080#ifdef FAST_IPSEC
1081	if (sp != NULL)
1082		KEY_FREESP(&sp);
1083#endif
1084	return (error);
1085bad:
1086	m_freem(m);
1087	goto done;
1088}
1089
1090/*
1091 * Create a chain of fragments which fit the given mtu. m_frag points to the
1092 * mbuf to be fragmented; on return it points to the chain with the fragments.
1093 * Return 0 if no error. If error, m_frag may contain a partially built
1094 * chain of fragments that should be freed by the caller.
1095 *
1096 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1097 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1098 */
1099int
1100ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1101	    u_long if_hwassist_flags, int sw_csum)
1102{
1103	int error = 0;
1104	int hlen = ip->ip_hl << 2;
1105	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1106	int off;
1107	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1108	int firstlen;
1109	struct mbuf **mnext;
1110	int nfrags;
1111
1112	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1113		ipstat.ips_cantfrag++;
1114		return EMSGSIZE;
1115	}
1116
1117	/*
1118	 * Must be able to put at least 8 bytes per fragment.
1119	 */
1120	if (len < 8)
1121		return EMSGSIZE;
1122
1123	/*
1124	 * If the interface will not calculate checksums on
1125	 * fragmented packets, then do it here.
1126	 */
1127	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1128	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1129		in_delayed_cksum(m0);
1130		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1131	}
1132
1133	if (len > PAGE_SIZE) {
1134		/*
1135		 * Fragment large datagrams such that each segment
1136		 * contains a multiple of PAGE_SIZE amount of data,
1137		 * plus headers. This enables a receiver to perform
1138		 * page-flipping zero-copy optimizations.
1139		 *
1140		 * XXX When does this help given that sender and receiver
1141		 * could have different page sizes, and also mtu could
1142		 * be less than the receiver's page size ?
1143		 */
1144		int newlen;
1145		struct mbuf *m;
1146
1147		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1148			off += m->m_len;
1149
1150		/*
1151		 * firstlen (off - hlen) must be aligned on an
1152		 * 8-byte boundary
1153		 */
1154		if (off < hlen)
1155			goto smart_frag_failure;
1156		off = ((off - hlen) & ~7) + hlen;
1157		newlen = (~PAGE_MASK) & mtu;
1158		if ((newlen + sizeof (struct ip)) > mtu) {
1159			/* we failed, go back the default */
1160smart_frag_failure:
1161			newlen = len;
1162			off = hlen + len;
1163		}
1164		len = newlen;
1165
1166	} else {
1167		off = hlen + len;
1168	}
1169
1170	firstlen = off - hlen;
1171	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1172
1173	/*
1174	 * Loop through length of segment after first fragment,
1175	 * make new header and copy data of each part and link onto chain.
1176	 * Here, m0 is the original packet, m is the fragment being created.
1177	 * The fragments are linked off the m_nextpkt of the original
1178	 * packet, which after processing serves as the first fragment.
1179	 */
1180	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1181		struct ip *mhip;	/* ip header on the fragment */
1182		struct mbuf *m;
1183		int mhlen = sizeof (struct ip);
1184
1185		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1186		if (m == 0) {
1187			error = ENOBUFS;
1188			ipstat.ips_odropped++;
1189			goto done;
1190		}
1191		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1192		/*
1193		 * In the first mbuf, leave room for the link header, then
1194		 * copy the original IP header including options. The payload
1195		 * goes into an additional mbuf chain returned by m_copy().
1196		 */
1197		m->m_data += max_linkhdr;
1198		mhip = mtod(m, struct ip *);
1199		*mhip = *ip;
1200		if (hlen > sizeof (struct ip)) {
1201			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1202			mhip->ip_v = IPVERSION;
1203			mhip->ip_hl = mhlen >> 2;
1204		}
1205		m->m_len = mhlen;
1206		/* XXX do we need to add ip->ip_off below ? */
1207		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1208		if (off + len >= ip->ip_len) {	/* last fragment */
1209			len = ip->ip_len - off;
1210			m->m_flags |= M_LASTFRAG;
1211		} else
1212			mhip->ip_off |= IP_MF;
1213		mhip->ip_len = htons((u_short)(len + mhlen));
1214		m->m_next = m_copy(m0, off, len);
1215		if (m->m_next == 0) {		/* copy failed */
1216			m_free(m);
1217			error = ENOBUFS;	/* ??? */
1218			ipstat.ips_odropped++;
1219			goto done;
1220		}
1221		m->m_pkthdr.len = mhlen + len;
1222		m->m_pkthdr.rcvif = (struct ifnet *)0;
1223#ifdef MAC
1224		mac_create_fragment(m0, m);
1225#endif
1226		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1227		mhip->ip_off = htons(mhip->ip_off);
1228		mhip->ip_sum = 0;
1229		if (sw_csum & CSUM_DELAY_IP)
1230			mhip->ip_sum = in_cksum(m, mhlen);
1231		*mnext = m;
1232		mnext = &m->m_nextpkt;
1233	}
1234	ipstat.ips_ofragments += nfrags;
1235
1236	/* set first marker for fragment chain */
1237	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1238	m0->m_pkthdr.csum_data = nfrags;
1239
1240	/*
1241	 * Update first fragment by trimming what's been copied out
1242	 * and updating header.
1243	 */
1244	m_adj(m0, hlen + firstlen - ip->ip_len);
1245	m0->m_pkthdr.len = hlen + firstlen;
1246	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1247	ip->ip_off |= IP_MF;
1248	ip->ip_off = htons(ip->ip_off);
1249	ip->ip_sum = 0;
1250	if (sw_csum & CSUM_DELAY_IP)
1251		ip->ip_sum = in_cksum(m0, hlen);
1252
1253done:
1254	*m_frag = m0;
1255	return error;
1256}
1257
1258void
1259in_delayed_cksum(struct mbuf *m)
1260{
1261	struct ip *ip;
1262	u_short csum, offset;
1263
1264	ip = mtod(m, struct ip *);
1265	offset = ip->ip_hl << 2 ;
1266	csum = in_cksum_skip(m, ip->ip_len, offset);
1267	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1268		csum = 0xffff;
1269	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1270
1271	if (offset + sizeof(u_short) > m->m_len) {
1272		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1273		    m->m_len, offset, ip->ip_p);
1274		/*
1275		 * XXX
1276		 * this shouldn't happen, but if it does, the
1277		 * correct behavior may be to insert the checksum
1278		 * in the existing chain instead of rearranging it.
1279		 */
1280		m = m_pullup(m, offset + sizeof(u_short));
1281	}
1282	*(u_short *)(m->m_data + offset) = csum;
1283}
1284
1285/*
1286 * Insert IP options into preformed packet.
1287 * Adjust IP destination as required for IP source routing,
1288 * as indicated by a non-zero in_addr at the start of the options.
1289 *
1290 * XXX This routine assumes that the packet has no options in place.
1291 */
1292static struct mbuf *
1293ip_insertoptions(m, opt, phlen)
1294	register struct mbuf *m;
1295	struct mbuf *opt;
1296	int *phlen;
1297{
1298	register struct ipoption *p = mtod(opt, struct ipoption *);
1299	struct mbuf *n;
1300	register struct ip *ip = mtod(m, struct ip *);
1301	unsigned optlen;
1302
1303	optlen = opt->m_len - sizeof(p->ipopt_dst);
1304	if (optlen + ip->ip_len > IP_MAXPACKET) {
1305		*phlen = 0;
1306		return (m);		/* XXX should fail */
1307	}
1308	if (p->ipopt_dst.s_addr)
1309		ip->ip_dst = p->ipopt_dst;
1310	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1311		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1312		if (n == 0) {
1313			*phlen = 0;
1314			return (m);
1315		}
1316		n->m_pkthdr.rcvif = (struct ifnet *)0;
1317#ifdef MAC
1318		mac_create_mbuf_from_mbuf(m, n);
1319#endif
1320		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1321		m->m_len -= sizeof(struct ip);
1322		m->m_data += sizeof(struct ip);
1323		n->m_next = m;
1324		m = n;
1325		m->m_len = optlen + sizeof(struct ip);
1326		m->m_data += max_linkhdr;
1327		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1328	} else {
1329		m->m_data -= optlen;
1330		m->m_len += optlen;
1331		m->m_pkthdr.len += optlen;
1332		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1333	}
1334	ip = mtod(m, struct ip *);
1335	bcopy(p->ipopt_list, ip + 1, optlen);
1336	*phlen = sizeof(struct ip) + optlen;
1337	ip->ip_v = IPVERSION;
1338	ip->ip_hl = *phlen >> 2;
1339	ip->ip_len += optlen;
1340	return (m);
1341}
1342
1343/*
1344 * Copy options from ip to jp,
1345 * omitting those not copied during fragmentation.
1346 */
1347int
1348ip_optcopy(ip, jp)
1349	struct ip *ip, *jp;
1350{
1351	register u_char *cp, *dp;
1352	int opt, optlen, cnt;
1353
1354	cp = (u_char *)(ip + 1);
1355	dp = (u_char *)(jp + 1);
1356	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1357	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1358		opt = cp[0];
1359		if (opt == IPOPT_EOL)
1360			break;
1361		if (opt == IPOPT_NOP) {
1362			/* Preserve for IP mcast tunnel's LSRR alignment. */
1363			*dp++ = IPOPT_NOP;
1364			optlen = 1;
1365			continue;
1366		}
1367
1368		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1369		    ("ip_optcopy: malformed ipv4 option"));
1370		optlen = cp[IPOPT_OLEN];
1371		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1372		    ("ip_optcopy: malformed ipv4 option"));
1373
1374		/* bogus lengths should have been caught by ip_dooptions */
1375		if (optlen > cnt)
1376			optlen = cnt;
1377		if (IPOPT_COPIED(opt)) {
1378			bcopy(cp, dp, optlen);
1379			dp += optlen;
1380		}
1381	}
1382	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1383		*dp++ = IPOPT_EOL;
1384	return (optlen);
1385}
1386
1387/*
1388 * IP socket option processing.
1389 */
1390int
1391ip_ctloutput(so, sopt)
1392	struct socket *so;
1393	struct sockopt *sopt;
1394{
1395	struct	inpcb *inp = sotoinpcb(so);
1396	int	error, optval;
1397
1398	error = optval = 0;
1399	if (sopt->sopt_level != IPPROTO_IP) {
1400		return (EINVAL);
1401	}
1402
1403	switch (sopt->sopt_dir) {
1404	case SOPT_SET:
1405		switch (sopt->sopt_name) {
1406		case IP_OPTIONS:
1407#ifdef notyet
1408		case IP_RETOPTS:
1409#endif
1410		{
1411			struct mbuf *m;
1412			if (sopt->sopt_valsize > MLEN) {
1413				error = EMSGSIZE;
1414				break;
1415			}
1416			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1417			if (m == 0) {
1418				error = ENOBUFS;
1419				break;
1420			}
1421			m->m_len = sopt->sopt_valsize;
1422			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1423					    m->m_len);
1424
1425			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1426					   m));
1427		}
1428
1429		case IP_TOS:
1430		case IP_TTL:
1431		case IP_RECVOPTS:
1432		case IP_RECVRETOPTS:
1433		case IP_RECVDSTADDR:
1434		case IP_RECVTTL:
1435		case IP_RECVIF:
1436		case IP_FAITH:
1437		case IP_ONESBCAST:
1438			error = sooptcopyin(sopt, &optval, sizeof optval,
1439					    sizeof optval);
1440			if (error)
1441				break;
1442
1443			switch (sopt->sopt_name) {
1444			case IP_TOS:
1445				inp->inp_ip_tos = optval;
1446				break;
1447
1448			case IP_TTL:
1449				inp->inp_ip_ttl = optval;
1450				break;
1451#define	OPTSET(bit) \
1452	if (optval) \
1453		inp->inp_flags |= bit; \
1454	else \
1455		inp->inp_flags &= ~bit;
1456
1457			case IP_RECVOPTS:
1458				OPTSET(INP_RECVOPTS);
1459				break;
1460
1461			case IP_RECVRETOPTS:
1462				OPTSET(INP_RECVRETOPTS);
1463				break;
1464
1465			case IP_RECVDSTADDR:
1466				OPTSET(INP_RECVDSTADDR);
1467				break;
1468
1469			case IP_RECVTTL:
1470				OPTSET(INP_RECVTTL);
1471				break;
1472
1473			case IP_RECVIF:
1474				OPTSET(INP_RECVIF);
1475				break;
1476
1477			case IP_FAITH:
1478				OPTSET(INP_FAITH);
1479				break;
1480
1481			case IP_ONESBCAST:
1482				OPTSET(INP_ONESBCAST);
1483				break;
1484			}
1485			break;
1486#undef OPTSET
1487
1488		case IP_MULTICAST_IF:
1489		case IP_MULTICAST_VIF:
1490		case IP_MULTICAST_TTL:
1491		case IP_MULTICAST_LOOP:
1492		case IP_ADD_MEMBERSHIP:
1493		case IP_DROP_MEMBERSHIP:
1494			error = ip_setmoptions(sopt, &inp->inp_moptions);
1495			break;
1496
1497		case IP_PORTRANGE:
1498			error = sooptcopyin(sopt, &optval, sizeof optval,
1499					    sizeof optval);
1500			if (error)
1501				break;
1502
1503			switch (optval) {
1504			case IP_PORTRANGE_DEFAULT:
1505				inp->inp_flags &= ~(INP_LOWPORT);
1506				inp->inp_flags &= ~(INP_HIGHPORT);
1507				break;
1508
1509			case IP_PORTRANGE_HIGH:
1510				inp->inp_flags &= ~(INP_LOWPORT);
1511				inp->inp_flags |= INP_HIGHPORT;
1512				break;
1513
1514			case IP_PORTRANGE_LOW:
1515				inp->inp_flags &= ~(INP_HIGHPORT);
1516				inp->inp_flags |= INP_LOWPORT;
1517				break;
1518
1519			default:
1520				error = EINVAL;
1521				break;
1522			}
1523			break;
1524
1525#if defined(IPSEC) || defined(FAST_IPSEC)
1526		case IP_IPSEC_POLICY:
1527		{
1528			caddr_t req;
1529			size_t len = 0;
1530			int priv;
1531			struct mbuf *m;
1532			int optname;
1533
1534			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1535				break;
1536			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1537				break;
1538			priv = (sopt->sopt_td != NULL &&
1539				suser(sopt->sopt_td) != 0) ? 0 : 1;
1540			req = mtod(m, caddr_t);
1541			len = m->m_len;
1542			optname = sopt->sopt_name;
1543			error = ipsec4_set_policy(inp, optname, req, len, priv);
1544			m_freem(m);
1545			break;
1546		}
1547#endif /*IPSEC*/
1548
1549		default:
1550			error = ENOPROTOOPT;
1551			break;
1552		}
1553		break;
1554
1555	case SOPT_GET:
1556		switch (sopt->sopt_name) {
1557		case IP_OPTIONS:
1558		case IP_RETOPTS:
1559			if (inp->inp_options)
1560				error = sooptcopyout(sopt,
1561						     mtod(inp->inp_options,
1562							  char *),
1563						     inp->inp_options->m_len);
1564			else
1565				sopt->sopt_valsize = 0;
1566			break;
1567
1568		case IP_TOS:
1569		case IP_TTL:
1570		case IP_RECVOPTS:
1571		case IP_RECVRETOPTS:
1572		case IP_RECVDSTADDR:
1573		case IP_RECVTTL:
1574		case IP_RECVIF:
1575		case IP_PORTRANGE:
1576		case IP_FAITH:
1577		case IP_ONESBCAST:
1578			switch (sopt->sopt_name) {
1579
1580			case IP_TOS:
1581				optval = inp->inp_ip_tos;
1582				break;
1583
1584			case IP_TTL:
1585				optval = inp->inp_ip_ttl;
1586				break;
1587
1588#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1589
1590			case IP_RECVOPTS:
1591				optval = OPTBIT(INP_RECVOPTS);
1592				break;
1593
1594			case IP_RECVRETOPTS:
1595				optval = OPTBIT(INP_RECVRETOPTS);
1596				break;
1597
1598			case IP_RECVDSTADDR:
1599				optval = OPTBIT(INP_RECVDSTADDR);
1600				break;
1601
1602			case IP_RECVTTL:
1603				optval = OPTBIT(INP_RECVTTL);
1604				break;
1605
1606			case IP_RECVIF:
1607				optval = OPTBIT(INP_RECVIF);
1608				break;
1609
1610			case IP_PORTRANGE:
1611				if (inp->inp_flags & INP_HIGHPORT)
1612					optval = IP_PORTRANGE_HIGH;
1613				else if (inp->inp_flags & INP_LOWPORT)
1614					optval = IP_PORTRANGE_LOW;
1615				else
1616					optval = 0;
1617				break;
1618
1619			case IP_FAITH:
1620				optval = OPTBIT(INP_FAITH);
1621				break;
1622
1623			case IP_ONESBCAST:
1624				optval = OPTBIT(INP_ONESBCAST);
1625				break;
1626			}
1627			error = sooptcopyout(sopt, &optval, sizeof optval);
1628			break;
1629
1630		case IP_MULTICAST_IF:
1631		case IP_MULTICAST_VIF:
1632		case IP_MULTICAST_TTL:
1633		case IP_MULTICAST_LOOP:
1634		case IP_ADD_MEMBERSHIP:
1635		case IP_DROP_MEMBERSHIP:
1636			error = ip_getmoptions(sopt, inp->inp_moptions);
1637			break;
1638
1639#if defined(IPSEC) || defined(FAST_IPSEC)
1640		case IP_IPSEC_POLICY:
1641		{
1642			struct mbuf *m = NULL;
1643			caddr_t req = NULL;
1644			size_t len = 0;
1645
1646			if (m != 0) {
1647				req = mtod(m, caddr_t);
1648				len = m->m_len;
1649			}
1650			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1651			if (error == 0)
1652				error = soopt_mcopyout(sopt, m); /* XXX */
1653			if (error == 0)
1654				m_freem(m);
1655			break;
1656		}
1657#endif /*IPSEC*/
1658
1659		default:
1660			error = ENOPROTOOPT;
1661			break;
1662		}
1663		break;
1664	}
1665	return (error);
1666}
1667
1668/*
1669 * Set up IP options in pcb for insertion in output packets.
1670 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1671 * with destination address if source routed.
1672 */
1673static int
1674ip_pcbopts(optname, pcbopt, m)
1675	int optname;
1676	struct mbuf **pcbopt;
1677	register struct mbuf *m;
1678{
1679	register int cnt, optlen;
1680	register u_char *cp;
1681	u_char opt;
1682
1683	/* turn off any old options */
1684	if (*pcbopt)
1685		(void)m_free(*pcbopt);
1686	*pcbopt = 0;
1687	if (m == (struct mbuf *)0 || m->m_len == 0) {
1688		/*
1689		 * Only turning off any previous options.
1690		 */
1691		if (m)
1692			(void)m_free(m);
1693		return (0);
1694	}
1695
1696	if (m->m_len % sizeof(int32_t))
1697		goto bad;
1698	/*
1699	 * IP first-hop destination address will be stored before
1700	 * actual options; move other options back
1701	 * and clear it when none present.
1702	 */
1703	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1704		goto bad;
1705	cnt = m->m_len;
1706	m->m_len += sizeof(struct in_addr);
1707	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1708	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1709	bzero(mtod(m, void *), sizeof(struct in_addr));
1710
1711	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1712		opt = cp[IPOPT_OPTVAL];
1713		if (opt == IPOPT_EOL)
1714			break;
1715		if (opt == IPOPT_NOP)
1716			optlen = 1;
1717		else {
1718			if (cnt < IPOPT_OLEN + sizeof(*cp))
1719				goto bad;
1720			optlen = cp[IPOPT_OLEN];
1721			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1722				goto bad;
1723		}
1724		switch (opt) {
1725
1726		default:
1727			break;
1728
1729		case IPOPT_LSRR:
1730		case IPOPT_SSRR:
1731			/*
1732			 * user process specifies route as:
1733			 *	->A->B->C->D
1734			 * D must be our final destination (but we can't
1735			 * check that since we may not have connected yet).
1736			 * A is first hop destination, which doesn't appear in
1737			 * actual IP option, but is stored before the options.
1738			 */
1739			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1740				goto bad;
1741			m->m_len -= sizeof(struct in_addr);
1742			cnt -= sizeof(struct in_addr);
1743			optlen -= sizeof(struct in_addr);
1744			cp[IPOPT_OLEN] = optlen;
1745			/*
1746			 * Move first hop before start of options.
1747			 */
1748			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1749			    sizeof(struct in_addr));
1750			/*
1751			 * Then copy rest of options back
1752			 * to close up the deleted entry.
1753			 */
1754			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1755			    &cp[IPOPT_OFFSET+1],
1756			    (unsigned)cnt + sizeof(struct in_addr));
1757			break;
1758		}
1759	}
1760	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1761		goto bad;
1762	*pcbopt = m;
1763	return (0);
1764
1765bad:
1766	(void)m_free(m);
1767	return (EINVAL);
1768}
1769
1770/*
1771 * XXX
1772 * The whole multicast option thing needs to be re-thought.
1773 * Several of these options are equally applicable to non-multicast
1774 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1775 * standard option (IP_TTL).
1776 */
1777
1778/*
1779 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1780 */
1781static struct ifnet *
1782ip_multicast_if(a, ifindexp)
1783	struct in_addr *a;
1784	int *ifindexp;
1785{
1786	int ifindex;
1787	struct ifnet *ifp;
1788
1789	if (ifindexp)
1790		*ifindexp = 0;
1791	if (ntohl(a->s_addr) >> 24 == 0) {
1792		ifindex = ntohl(a->s_addr) & 0xffffff;
1793		if (ifindex < 0 || if_index < ifindex)
1794			return NULL;
1795		ifp = ifnet_byindex(ifindex);
1796		if (ifindexp)
1797			*ifindexp = ifindex;
1798	} else {
1799		INADDR_TO_IFP(*a, ifp);
1800	}
1801	return ifp;
1802}
1803
1804/*
1805 * Set the IP multicast options in response to user setsockopt().
1806 */
1807static int
1808ip_setmoptions(sopt, imop)
1809	struct sockopt *sopt;
1810	struct ip_moptions **imop;
1811{
1812	int error = 0;
1813	int i;
1814	struct in_addr addr;
1815	struct ip_mreq mreq;
1816	struct ifnet *ifp;
1817	struct ip_moptions *imo = *imop;
1818	struct route ro;
1819	struct sockaddr_in *dst;
1820	int ifindex;
1821	int s;
1822
1823	if (imo == NULL) {
1824		/*
1825		 * No multicast option buffer attached to the pcb;
1826		 * allocate one and initialize to default values.
1827		 */
1828		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1829		    M_WAITOK);
1830
1831		if (imo == NULL)
1832			return (ENOBUFS);
1833		*imop = imo;
1834		imo->imo_multicast_ifp = NULL;
1835		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1836		imo->imo_multicast_vif = -1;
1837		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1838		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1839		imo->imo_num_memberships = 0;
1840	}
1841
1842	switch (sopt->sopt_name) {
1843	/* store an index number for the vif you wanna use in the send */
1844	case IP_MULTICAST_VIF:
1845		if (legal_vif_num == 0) {
1846			error = EOPNOTSUPP;
1847			break;
1848		}
1849		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1850		if (error)
1851			break;
1852		if (!legal_vif_num(i) && (i != -1)) {
1853			error = EINVAL;
1854			break;
1855		}
1856		imo->imo_multicast_vif = i;
1857		break;
1858
1859	case IP_MULTICAST_IF:
1860		/*
1861		 * Select the interface for outgoing multicast packets.
1862		 */
1863		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1864		if (error)
1865			break;
1866		/*
1867		 * INADDR_ANY is used to remove a previous selection.
1868		 * When no interface is selected, a default one is
1869		 * chosen every time a multicast packet is sent.
1870		 */
1871		if (addr.s_addr == INADDR_ANY) {
1872			imo->imo_multicast_ifp = NULL;
1873			break;
1874		}
1875		/*
1876		 * The selected interface is identified by its local
1877		 * IP address.  Find the interface and confirm that
1878		 * it supports multicasting.
1879		 */
1880		s = splimp();
1881		ifp = ip_multicast_if(&addr, &ifindex);
1882		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1883			splx(s);
1884			error = EADDRNOTAVAIL;
1885			break;
1886		}
1887		imo->imo_multicast_ifp = ifp;
1888		if (ifindex)
1889			imo->imo_multicast_addr = addr;
1890		else
1891			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1892		splx(s);
1893		break;
1894
1895	case IP_MULTICAST_TTL:
1896		/*
1897		 * Set the IP time-to-live for outgoing multicast packets.
1898		 * The original multicast API required a char argument,
1899		 * which is inconsistent with the rest of the socket API.
1900		 * We allow either a char or an int.
1901		 */
1902		if (sopt->sopt_valsize == 1) {
1903			u_char ttl;
1904			error = sooptcopyin(sopt, &ttl, 1, 1);
1905			if (error)
1906				break;
1907			imo->imo_multicast_ttl = ttl;
1908		} else {
1909			u_int ttl;
1910			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1911					    sizeof ttl);
1912			if (error)
1913				break;
1914			if (ttl > 255)
1915				error = EINVAL;
1916			else
1917				imo->imo_multicast_ttl = ttl;
1918		}
1919		break;
1920
1921	case IP_MULTICAST_LOOP:
1922		/*
1923		 * Set the loopback flag for outgoing multicast packets.
1924		 * Must be zero or one.  The original multicast API required a
1925		 * char argument, which is inconsistent with the rest
1926		 * of the socket API.  We allow either a char or an int.
1927		 */
1928		if (sopt->sopt_valsize == 1) {
1929			u_char loop;
1930			error = sooptcopyin(sopt, &loop, 1, 1);
1931			if (error)
1932				break;
1933			imo->imo_multicast_loop = !!loop;
1934		} else {
1935			u_int loop;
1936			error = sooptcopyin(sopt, &loop, sizeof loop,
1937					    sizeof loop);
1938			if (error)
1939				break;
1940			imo->imo_multicast_loop = !!loop;
1941		}
1942		break;
1943
1944	case IP_ADD_MEMBERSHIP:
1945		/*
1946		 * Add a multicast group membership.
1947		 * Group must be a valid IP multicast address.
1948		 */
1949		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1950		if (error)
1951			break;
1952
1953		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1954			error = EINVAL;
1955			break;
1956		}
1957		s = splimp();
1958		/*
1959		 * If no interface address was provided, use the interface of
1960		 * the route to the given multicast address.
1961		 */
1962		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1963			bzero((caddr_t)&ro, sizeof(ro));
1964			dst = (struct sockaddr_in *)&ro.ro_dst;
1965			dst->sin_len = sizeof(*dst);
1966			dst->sin_family = AF_INET;
1967			dst->sin_addr = mreq.imr_multiaddr;
1968			rtalloc_ign(&ro, RTF_CLONING);
1969			if (ro.ro_rt == NULL) {
1970				error = EADDRNOTAVAIL;
1971				splx(s);
1972				break;
1973			}
1974			ifp = ro.ro_rt->rt_ifp;
1975			RTFREE(ro.ro_rt);
1976		}
1977		else {
1978			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1979		}
1980
1981		/*
1982		 * See if we found an interface, and confirm that it
1983		 * supports multicast.
1984		 */
1985		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1986			error = EADDRNOTAVAIL;
1987			splx(s);
1988			break;
1989		}
1990		/*
1991		 * See if the membership already exists or if all the
1992		 * membership slots are full.
1993		 */
1994		for (i = 0; i < imo->imo_num_memberships; ++i) {
1995			if (imo->imo_membership[i]->inm_ifp == ifp &&
1996			    imo->imo_membership[i]->inm_addr.s_addr
1997						== mreq.imr_multiaddr.s_addr)
1998				break;
1999		}
2000		if (i < imo->imo_num_memberships) {
2001			error = EADDRINUSE;
2002			splx(s);
2003			break;
2004		}
2005		if (i == IP_MAX_MEMBERSHIPS) {
2006			error = ETOOMANYREFS;
2007			splx(s);
2008			break;
2009		}
2010		/*
2011		 * Everything looks good; add a new record to the multicast
2012		 * address list for the given interface.
2013		 */
2014		if ((imo->imo_membership[i] =
2015		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2016			error = ENOBUFS;
2017			splx(s);
2018			break;
2019		}
2020		++imo->imo_num_memberships;
2021		splx(s);
2022		break;
2023
2024	case IP_DROP_MEMBERSHIP:
2025		/*
2026		 * Drop a multicast group membership.
2027		 * Group must be a valid IP multicast address.
2028		 */
2029		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2030		if (error)
2031			break;
2032
2033		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2034			error = EINVAL;
2035			break;
2036		}
2037
2038		s = splimp();
2039		/*
2040		 * If an interface address was specified, get a pointer
2041		 * to its ifnet structure.
2042		 */
2043		if (mreq.imr_interface.s_addr == INADDR_ANY)
2044			ifp = NULL;
2045		else {
2046			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2047			if (ifp == NULL) {
2048				error = EADDRNOTAVAIL;
2049				splx(s);
2050				break;
2051			}
2052		}
2053		/*
2054		 * Find the membership in the membership array.
2055		 */
2056		for (i = 0; i < imo->imo_num_memberships; ++i) {
2057			if ((ifp == NULL ||
2058			     imo->imo_membership[i]->inm_ifp == ifp) &&
2059			     imo->imo_membership[i]->inm_addr.s_addr ==
2060			     mreq.imr_multiaddr.s_addr)
2061				break;
2062		}
2063		if (i == imo->imo_num_memberships) {
2064			error = EADDRNOTAVAIL;
2065			splx(s);
2066			break;
2067		}
2068		/*
2069		 * Give up the multicast address record to which the
2070		 * membership points.
2071		 */
2072		in_delmulti(imo->imo_membership[i]);
2073		/*
2074		 * Remove the gap in the membership array.
2075		 */
2076		for (++i; i < imo->imo_num_memberships; ++i)
2077			imo->imo_membership[i-1] = imo->imo_membership[i];
2078		--imo->imo_num_memberships;
2079		splx(s);
2080		break;
2081
2082	default:
2083		error = EOPNOTSUPP;
2084		break;
2085	}
2086
2087	/*
2088	 * If all options have default values, no need to keep the mbuf.
2089	 */
2090	if (imo->imo_multicast_ifp == NULL &&
2091	    imo->imo_multicast_vif == -1 &&
2092	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2093	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2094	    imo->imo_num_memberships == 0) {
2095		free(*imop, M_IPMOPTS);
2096		*imop = NULL;
2097	}
2098
2099	return (error);
2100}
2101
2102/*
2103 * Return the IP multicast options in response to user getsockopt().
2104 */
2105static int
2106ip_getmoptions(sopt, imo)
2107	struct sockopt *sopt;
2108	register struct ip_moptions *imo;
2109{
2110	struct in_addr addr;
2111	struct in_ifaddr *ia;
2112	int error, optval;
2113	u_char coptval;
2114
2115	error = 0;
2116	switch (sopt->sopt_name) {
2117	case IP_MULTICAST_VIF:
2118		if (imo != NULL)
2119			optval = imo->imo_multicast_vif;
2120		else
2121			optval = -1;
2122		error = sooptcopyout(sopt, &optval, sizeof optval);
2123		break;
2124
2125	case IP_MULTICAST_IF:
2126		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2127			addr.s_addr = INADDR_ANY;
2128		else if (imo->imo_multicast_addr.s_addr) {
2129			/* return the value user has set */
2130			addr = imo->imo_multicast_addr;
2131		} else {
2132			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2133			addr.s_addr = (ia == NULL) ? INADDR_ANY
2134				: IA_SIN(ia)->sin_addr.s_addr;
2135		}
2136		error = sooptcopyout(sopt, &addr, sizeof addr);
2137		break;
2138
2139	case IP_MULTICAST_TTL:
2140		if (imo == 0)
2141			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2142		else
2143			optval = coptval = imo->imo_multicast_ttl;
2144		if (sopt->sopt_valsize == 1)
2145			error = sooptcopyout(sopt, &coptval, 1);
2146		else
2147			error = sooptcopyout(sopt, &optval, sizeof optval);
2148		break;
2149
2150	case IP_MULTICAST_LOOP:
2151		if (imo == 0)
2152			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2153		else
2154			optval = coptval = imo->imo_multicast_loop;
2155		if (sopt->sopt_valsize == 1)
2156			error = sooptcopyout(sopt, &coptval, 1);
2157		else
2158			error = sooptcopyout(sopt, &optval, sizeof optval);
2159		break;
2160
2161	default:
2162		error = ENOPROTOOPT;
2163		break;
2164	}
2165	return (error);
2166}
2167
2168/*
2169 * Discard the IP multicast options.
2170 */
2171void
2172ip_freemoptions(imo)
2173	register struct ip_moptions *imo;
2174{
2175	register int i;
2176
2177	if (imo != NULL) {
2178		for (i = 0; i < imo->imo_num_memberships; ++i)
2179			in_delmulti(imo->imo_membership[i]);
2180		free(imo, M_IPMOPTS);
2181	}
2182}
2183
2184/*
2185 * Routine called from ip_output() to loop back a copy of an IP multicast
2186 * packet to the input queue of a specified interface.  Note that this
2187 * calls the output routine of the loopback "driver", but with an interface
2188 * pointer that might NOT be a loopback interface -- evil, but easier than
2189 * replicating that code here.
2190 */
2191static void
2192ip_mloopback(ifp, m, dst, hlen)
2193	struct ifnet *ifp;
2194	register struct mbuf *m;
2195	register struct sockaddr_in *dst;
2196	int hlen;
2197{
2198	register struct ip *ip;
2199	struct mbuf *copym;
2200
2201	copym = m_copy(m, 0, M_COPYALL);
2202	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2203		copym = m_pullup(copym, hlen);
2204	if (copym != NULL) {
2205		/*
2206		 * We don't bother to fragment if the IP length is greater
2207		 * than the interface's MTU.  Can this possibly matter?
2208		 */
2209		ip = mtod(copym, struct ip *);
2210		ip->ip_len = htons(ip->ip_len);
2211		ip->ip_off = htons(ip->ip_off);
2212		ip->ip_sum = 0;
2213		ip->ip_sum = in_cksum(copym, hlen);
2214		/*
2215		 * NB:
2216		 * It's not clear whether there are any lingering
2217		 * reentrancy problems in other areas which might
2218		 * be exposed by using ip_input directly (in
2219		 * particular, everything which modifies the packet
2220		 * in-place).  Yet another option is using the
2221		 * protosw directly to deliver the looped back
2222		 * packet.  For the moment, we'll err on the side
2223		 * of safety by using if_simloop().
2224		 */
2225#if 1 /* XXX */
2226		if (dst->sin_family != AF_INET) {
2227			printf("ip_mloopback: bad address family %d\n",
2228						dst->sin_family);
2229			dst->sin_family = AF_INET;
2230		}
2231#endif
2232
2233#ifdef notdef
2234		copym->m_pkthdr.rcvif = ifp;
2235		ip_input(copym);
2236#else
2237		/* if the checksum hasn't been computed, mark it as valid */
2238		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2239			copym->m_pkthdr.csum_flags |=
2240			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2241			copym->m_pkthdr.csum_data = 0xffff;
2242		}
2243		if_simloop(ifp, copym, dst->sin_family, 0);
2244#endif
2245	}
2246}
2247