ip_output.c revision 122702
1251876Speter/*
2251876Speter * Copyright (c) 1982, 1986, 1988, 1990, 1993
3251876Speter *	The Regents of the University of California.  All rights reserved.
4251876Speter *
5251876Speter * Redistribution and use in source and binary forms, with or without
6251876Speter * modification, are permitted provided that the following conditions
7251876Speter * are met:
8251876Speter * 1. Redistributions of source code must retain the above copyright
9251876Speter *    notice, this list of conditions and the following disclaimer.
10251876Speter * 2. Redistributions in binary form must reproduce the above copyright
11251876Speter *    notice, this list of conditions and the following disclaimer in the
12251876Speter *    documentation and/or other materials provided with the distribution.
13251876Speter * 3. All advertising materials mentioning features or use of this software
14251876Speter *    must display the following acknowledgement:
15251876Speter *	This product includes software developed by the University of
16251876Speter *	California, Berkeley and its contributors.
17251876Speter * 4. Neither the name of the University nor the names of its contributors
18251876Speter *    may be used to endorse or promote products derived from this software
19251876Speter *    without specific prior written permission.
20251876Speter *
21251876Speter * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22251876Speter * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23251876Speter * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24251876Speter * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25251876Speter * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26251876Speter * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27251876Speter * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28251876Speter * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29251876Speter * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30251876Speter * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31251876Speter * SUCH DAMAGE.
32251876Speter *
33251876Speter *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34251876Speter * $FreeBSD: head/sys/netinet/ip_output.c 122702 2003-11-14 21:02:22Z andre $
35251876Speter */
36251876Speter
37251876Speter#include "opt_ipfw.h"
38251876Speter#include "opt_ipdn.h"
39251876Speter#include "opt_ipdivert.h"
40251876Speter#include "opt_ipfilter.h"
41251876Speter#include "opt_ipsec.h"
42251876Speter#include "opt_mac.h"
43251876Speter#include "opt_pfil_hooks.h"
44251876Speter#include "opt_random_ip_id.h"
45251876Speter#include "opt_mbuf_stress_test.h"
46251876Speter
47251876Speter#include <sys/param.h>
48251876Speter#include <sys/systm.h>
49251876Speter#include <sys/kernel.h>
50251876Speter#include <sys/mac.h>
51251876Speter#include <sys/malloc.h>
52251876Speter#include <sys/mbuf.h>
53251876Speter#include <sys/protosw.h>
54251876Speter#include <sys/socket.h>
55251876Speter#include <sys/socketvar.h>
56251876Speter#include <sys/sysctl.h>
57251876Speter
58251876Speter#include <net/if.h>
59251876Speter#include <net/route.h>
60251876Speter
61251876Speter#include <netinet/in.h>
62251876Speter#include <netinet/in_systm.h>
63251876Speter#include <netinet/ip.h>
64251876Speter#include <netinet/in_pcb.h>
65251876Speter#include <netinet/in_var.h>
66251876Speter#include <netinet/ip_var.h>
67251876Speter
68251876Speter#ifdef PFIL_HOOKS
69251876Speter#include <net/pfil.h>
70251876Speter#endif
71251876Speter
72251876Speter#include <machine/in_cksum.h>
73251876Speter
74251876Speterstatic MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
75251876Speter
76251876Speter#ifdef IPSEC
77251876Speter#include <netinet6/ipsec.h>
78251876Speter#include <netkey/key.h>
79251876Speter#ifdef IPSEC_DEBUG
80251876Speter#include <netkey/key_debug.h>
81251876Speter#else
82251876Speter#define	KEYDEBUG(lev,arg)
83251876Speter#endif
84251876Speter#endif /*IPSEC*/
85251876Speter
86251876Speter#ifdef FAST_IPSEC
87251876Speter#include <netipsec/ipsec.h>
88251876Speter#include <netipsec/xform.h>
89251876Speter#include <netipsec/key.h>
90251876Speter#endif /*FAST_IPSEC*/
91251876Speter
92251876Speter#include <netinet/ip_fw.h>
93251876Speter#include <netinet/ip_dummynet.h>
94251876Speter
95251876Speter#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
96251876Speter				x, (ntohl(a.s_addr)>>24)&0xFF,\
97251876Speter				  (ntohl(a.s_addr)>>16)&0xFF,\
98251876Speter				  (ntohl(a.s_addr)>>8)&0xFF,\
99251876Speter				  (ntohl(a.s_addr))&0xFF, y);
100251876Speter
101251876Speteru_short ip_id;
102251876Speter
103251876Speter#ifdef MBUF_STRESS_TEST
104251876Speterint mbuf_frag_size = 0;
105251876SpeterSYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
106251876Speter	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
107251876Speter#endif
108251876Speter
109251876Speterstatic struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
110251876Speterstatic struct ifnet *ip_multicast_if(struct in_addr *, int *);
111251876Speterstatic void	ip_mloopback
112251876Speter	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
113251876Speterstatic int	ip_getmoptions
114251876Speter	(struct sockopt *, struct ip_moptions *);
115251876Speterstatic int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
116251876Speterstatic int	ip_setmoptions
117251876Speter	(struct sockopt *, struct ip_moptions **);
118251876Speter
119251876Speterint	ip_optcopy(struct ip *, struct ip *);
120251876Speter
121251876Speter
122251876Speterextern	struct protosw inetsw[];
123251876Speter
124251876Speter/*
125251876Speter * IP output.  The packet in mbuf chain m contains a skeletal IP
126251876Speter * header (with len, off, ttl, proto, tos, src, dst).
127251876Speter * The mbuf chain containing the packet will be freed.
128251876Speter * The mbuf opt, if present, will not be freed.
129251876Speter * In the IP forwarding case, the packet will arrive with options already
130251876Speter * inserted, so must have a NULL opt pointer.
131251876Speter */
132251876Speterint
133251876Speterip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
134251876Speter	int flags, struct ip_moptions *imo, struct inpcb *inp)
135251876Speter{
136251876Speter	struct ip *ip;
137251876Speter	struct ifnet *ifp = NULL;	/* keep compiler happy */
138251876Speter	struct mbuf *m;
139251876Speter	int hlen = sizeof (struct ip);
140251876Speter	int len, off, error = 0;
141251876Speter	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
142251876Speter	struct in_ifaddr *ia = NULL;
143251876Speter	int isbroadcast, sw_csum;
144251876Speter	struct in_addr pkt_dst;
145251876Speter#ifdef IPSEC
146251876Speter	struct route iproute;
147251876Speter	struct socket *so;
148251876Speter	struct secpolicy *sp = NULL;
149251876Speter#endif
150251876Speter#ifdef FAST_IPSEC
151251876Speter	struct route iproute;
152251876Speter	struct m_tag *mtag;
153251876Speter	struct secpolicy *sp = NULL;
154251876Speter	struct tdb_ident *tdbi;
155251876Speter	int s;
156251876Speter#endif /* FAST_IPSEC */
157251876Speter	struct ip_fw_args args;
158251876Speter	int src_was_INADDR_ANY = 0;	/* as the name says... */
159251876Speter
160251876Speter	args.eh = NULL;
161251876Speter	args.rule = NULL;
162251876Speter	args.next_hop = NULL;
163251876Speter	args.divert_rule = 0;			/* divert cookie */
164251876Speter
165251876Speter	/* Grab info from MT_TAG mbufs prepended to the chain. */
166251876Speter	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
167251876Speter		switch(m0->_m_tag_id) {
168251876Speter		default:
169251876Speter			printf("ip_output: unrecognised MT_TAG tag %d\n",
170251876Speter			    m0->_m_tag_id);
171251876Speter			break;
172251876Speter
173251876Speter		case PACKET_TAG_DUMMYNET:
174251876Speter			/*
175251876Speter			 * the packet was already tagged, so part of the
176251876Speter			 * processing was already done, and we need to go down.
177251876Speter			 * Get parameters from the header.
178251876Speter			 */
179251876Speter			args.rule = ((struct dn_pkt *)m0)->rule;
180251876Speter			opt = NULL ;
181251876Speter			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
182251876Speter			imo = NULL ;
183251876Speter			dst = ((struct dn_pkt *)m0)->dn_dst ;
184251876Speter			ifp = ((struct dn_pkt *)m0)->ifp ;
185251876Speter			flags = ((struct dn_pkt *)m0)->flags ;
186251876Speter			break;
187251876Speter
188251876Speter		case PACKET_TAG_DIVERT:
189251876Speter			args.divert_rule = (intptr_t)m0->m_data & 0xffff;
190251876Speter			break;
191251876Speter
192		case PACKET_TAG_IPFORWARD:
193			args.next_hop = (struct sockaddr_in *)m0->m_data;
194			break;
195		}
196	}
197	m = m0;
198
199#ifdef IPSEC
200	so = ipsec_getsocket(m);
201	(void)ipsec_setsocket(m, NULL);
202#endif /*IPSEC*/
203
204	M_ASSERTPKTHDR(m);
205#ifndef FAST_IPSEC
206	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
207	    mtod(m, struct ip *)->ip_p));
208#endif
209	if (inp != NULL)
210		INP_LOCK_ASSERT(inp);
211
212	if (args.rule != NULL) {	/* dummynet already saw us */
213		ip = mtod(m, struct ip *);
214		hlen = ip->ip_hl << 2 ;
215		if (ro->ro_rt)
216			ia = ifatoia(ro->ro_rt->rt_ifa);
217		goto sendit;
218	}
219
220	if (opt) {
221		len = 0;
222		m = ip_insertoptions(m, opt, &len);
223		if (len != 0)
224			hlen = len;
225	}
226	ip = mtod(m, struct ip *);
227	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
228
229	/*
230	 * Fill in IP header.  If we are not allowing fragmentation,
231	 * then the ip_id field is meaningless, so send it as zero
232	 * to reduce information leakage.  Otherwise, if we are not
233	 * randomizing ip_id, then don't bother to convert it to network
234	 * byte order -- it's just a nonce.  Note that a 16-bit counter
235	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
236	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
237	 * for Counting NATted Hosts", Proc. IMW'02, available at
238	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
239	 */
240	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
241		ip->ip_v = IPVERSION;
242		ip->ip_hl = hlen >> 2;
243		if ((ip->ip_off & IP_DF) == 0) {
244			ip->ip_off = 0;
245#ifdef RANDOM_IP_ID
246			ip->ip_id = ip_randomid();
247#else
248			ip->ip_id = ip_id++;
249#endif
250		} else {
251			ip->ip_off = IP_DF;
252			ip->ip_id = 0;
253		}
254		ipstat.ips_localout++;
255	} else {
256		hlen = ip->ip_hl << 2;
257	}
258
259#ifdef FAST_IPSEC
260	if (ro == NULL) {
261		ro = &iproute;
262		bzero(ro, sizeof (*ro));
263	}
264#endif /* FAST_IPSEC */
265	dst = (struct sockaddr_in *)&ro->ro_dst;
266	/*
267	 * If there is a cached route,
268	 * check that it is to the same destination
269	 * and is still up.  If not, free it and try again.
270	 * The address family should also be checked in case of sharing the
271	 * cache with IPv6.
272	 */
273	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
274			  dst->sin_family != AF_INET ||
275			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
276		RTFREE(ro->ro_rt);
277		ro->ro_rt = (struct rtentry *)0;
278	}
279	if (ro->ro_rt == 0) {
280		bzero(dst, sizeof(*dst));
281		dst->sin_family = AF_INET;
282		dst->sin_len = sizeof(*dst);
283		dst->sin_addr = pkt_dst;
284	}
285	/*
286	 * If routing to interface only,
287	 * short circuit routing lookup.
288	 */
289	if (flags & IP_ROUTETOIF) {
290		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
291		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
292			ipstat.ips_noroute++;
293			error = ENETUNREACH;
294			goto bad;
295		}
296		ifp = ia->ia_ifp;
297		ip->ip_ttl = 1;
298		isbroadcast = in_broadcast(dst->sin_addr, ifp);
299	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
300	    imo != NULL && imo->imo_multicast_ifp != NULL) {
301		/*
302		 * Bypass the normal routing lookup for multicast
303		 * packets if the interface is specified.
304		 */
305		ifp = imo->imo_multicast_ifp;
306		IFP_TO_IA(ifp, ia);
307		isbroadcast = 0;	/* fool gcc */
308	} else {
309		/*
310		 * If this is the case, we probably don't want to allocate
311		 * a protocol-cloned route since we didn't get one from the
312		 * ULP.  This lets TCP do its thing, while not burdening
313		 * forwarding or ICMP with the overhead of cloning a route.
314		 * Of course, we still want to do any cloning requested by
315		 * the link layer, as this is probably required in all cases
316		 * for correct operation (as it is for ARP).
317		 */
318		if (ro->ro_rt == 0)
319			rtalloc_ign(ro, RTF_PRCLONING);
320		if (ro->ro_rt == 0) {
321			ipstat.ips_noroute++;
322			error = EHOSTUNREACH;
323			goto bad;
324		}
325		ia = ifatoia(ro->ro_rt->rt_ifa);
326		ifp = ro->ro_rt->rt_ifp;
327		ro->ro_rt->rt_use++;
328		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
329			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
330		if (ro->ro_rt->rt_flags & RTF_HOST)
331			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
332		else
333			isbroadcast = in_broadcast(dst->sin_addr, ifp);
334	}
335	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
336		struct in_multi *inm;
337
338		m->m_flags |= M_MCAST;
339		/*
340		 * IP destination address is multicast.  Make sure "dst"
341		 * still points to the address in "ro".  (It may have been
342		 * changed to point to a gateway address, above.)
343		 */
344		dst = (struct sockaddr_in *)&ro->ro_dst;
345		/*
346		 * See if the caller provided any multicast options
347		 */
348		if (imo != NULL) {
349			ip->ip_ttl = imo->imo_multicast_ttl;
350			if (imo->imo_multicast_vif != -1)
351				ip->ip_src.s_addr =
352				    ip_mcast_src ?
353				    ip_mcast_src(imo->imo_multicast_vif) :
354				    INADDR_ANY;
355		} else
356			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
357		/*
358		 * Confirm that the outgoing interface supports multicast.
359		 */
360		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
361			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
362				ipstat.ips_noroute++;
363				error = ENETUNREACH;
364				goto bad;
365			}
366		}
367		/*
368		 * If source address not specified yet, use address
369		 * of outgoing interface.
370		 */
371		if (ip->ip_src.s_addr == INADDR_ANY) {
372			/* Interface may have no addresses. */
373			if (ia != NULL)
374				ip->ip_src = IA_SIN(ia)->sin_addr;
375		}
376
377		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
378			/*
379			 * XXX
380			 * delayed checksums are not currently
381			 * compatible with IP multicast routing
382			 */
383			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
384				in_delayed_cksum(m);
385				m->m_pkthdr.csum_flags &=
386					~CSUM_DELAY_DATA;
387			}
388		}
389		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
390		if (inm != NULL &&
391		   (imo == NULL || imo->imo_multicast_loop)) {
392			/*
393			 * If we belong to the destination multicast group
394			 * on the outgoing interface, and the caller did not
395			 * forbid loopback, loop back a copy.
396			 */
397			ip_mloopback(ifp, m, dst, hlen);
398		}
399		else {
400			/*
401			 * If we are acting as a multicast router, perform
402			 * multicast forwarding as if the packet had just
403			 * arrived on the interface to which we are about
404			 * to send.  The multicast forwarding function
405			 * recursively calls this function, using the
406			 * IP_FORWARDING flag to prevent infinite recursion.
407			 *
408			 * Multicasts that are looped back by ip_mloopback(),
409			 * above, will be forwarded by the ip_input() routine,
410			 * if necessary.
411			 */
412			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
413				/*
414				 * If rsvp daemon is not running, do not
415				 * set ip_moptions. This ensures that the packet
416				 * is multicast and not just sent down one link
417				 * as prescribed by rsvpd.
418				 */
419				if (!rsvp_on)
420					imo = NULL;
421				if (ip_mforward &&
422				    ip_mforward(ip, ifp, m, imo) != 0) {
423					m_freem(m);
424					goto done;
425				}
426			}
427		}
428
429		/*
430		 * Multicasts with a time-to-live of zero may be looped-
431		 * back, above, but must not be transmitted on a network.
432		 * Also, multicasts addressed to the loopback interface
433		 * are not sent -- the above call to ip_mloopback() will
434		 * loop back a copy if this host actually belongs to the
435		 * destination group on the loopback interface.
436		 */
437		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
438			m_freem(m);
439			goto done;
440		}
441
442		goto sendit;
443	}
444#ifndef notdef
445	/*
446	 * If the source address is not specified yet, use the address
447	 * of the outoing interface. In case, keep note we did that, so
448	 * if the the firewall changes the next-hop causing the output
449	 * interface to change, we can fix that.
450	 */
451	if (ip->ip_src.s_addr == INADDR_ANY) {
452		/* Interface may have no addresses. */
453		if (ia != NULL) {
454			ip->ip_src = IA_SIN(ia)->sin_addr;
455			src_was_INADDR_ANY = 1;
456		}
457	}
458#endif /* notdef */
459	/*
460	 * Verify that we have any chance at all of being able to queue
461	 *      the packet or packet fragments
462	 */
463	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
464		ifp->if_snd.ifq_maxlen) {
465			error = ENOBUFS;
466			ipstat.ips_odropped++;
467			goto bad;
468	}
469
470	/*
471	 * Look for broadcast address and
472	 * verify user is allowed to send
473	 * such a packet.
474	 */
475	if (isbroadcast) {
476		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
477			error = EADDRNOTAVAIL;
478			goto bad;
479		}
480		if ((flags & IP_ALLOWBROADCAST) == 0) {
481			error = EACCES;
482			goto bad;
483		}
484		/* don't allow broadcast messages to be fragmented */
485		if (ip->ip_len > ifp->if_mtu) {
486			error = EMSGSIZE;
487			goto bad;
488		}
489		if (flags & IP_SENDONES)
490			ip->ip_dst.s_addr = INADDR_BROADCAST;
491		m->m_flags |= M_BCAST;
492	} else {
493		m->m_flags &= ~M_BCAST;
494	}
495
496sendit:
497#ifdef IPSEC
498	/* get SP for this packet */
499	if (so == NULL)
500		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
501		    flags, &error);
502	else
503		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
504
505	if (sp == NULL) {
506		ipsecstat.out_inval++;
507		goto bad;
508	}
509
510	error = 0;
511
512	/* check policy */
513	switch (sp->policy) {
514	case IPSEC_POLICY_DISCARD:
515		/*
516		 * This packet is just discarded.
517		 */
518		ipsecstat.out_polvio++;
519		goto bad;
520
521	case IPSEC_POLICY_BYPASS:
522	case IPSEC_POLICY_NONE:
523		/* no need to do IPsec. */
524		goto skip_ipsec;
525
526	case IPSEC_POLICY_IPSEC:
527		if (sp->req == NULL) {
528			/* acquire a policy */
529			error = key_spdacquire(sp);
530			goto bad;
531		}
532		break;
533
534	case IPSEC_POLICY_ENTRUST:
535	default:
536		printf("ip_output: Invalid policy found. %d\n", sp->policy);
537	}
538    {
539	struct ipsec_output_state state;
540	bzero(&state, sizeof(state));
541	state.m = m;
542	if (flags & IP_ROUTETOIF) {
543		state.ro = &iproute;
544		bzero(&iproute, sizeof(iproute));
545	} else
546		state.ro = ro;
547	state.dst = (struct sockaddr *)dst;
548
549	ip->ip_sum = 0;
550
551	/*
552	 * XXX
553	 * delayed checksums are not currently compatible with IPsec
554	 */
555	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
556		in_delayed_cksum(m);
557		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
558	}
559
560	ip->ip_len = htons(ip->ip_len);
561	ip->ip_off = htons(ip->ip_off);
562
563	error = ipsec4_output(&state, sp, flags);
564
565	m = state.m;
566	if (flags & IP_ROUTETOIF) {
567		/*
568		 * if we have tunnel mode SA, we may need to ignore
569		 * IP_ROUTETOIF.
570		 */
571		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
572			flags &= ~IP_ROUTETOIF;
573			ro = state.ro;
574		}
575	} else
576		ro = state.ro;
577	dst = (struct sockaddr_in *)state.dst;
578	if (error) {
579		/* mbuf is already reclaimed in ipsec4_output. */
580		m0 = NULL;
581		switch (error) {
582		case EHOSTUNREACH:
583		case ENETUNREACH:
584		case EMSGSIZE:
585		case ENOBUFS:
586		case ENOMEM:
587			break;
588		default:
589			printf("ip4_output (ipsec): error code %d\n", error);
590			/*fall through*/
591		case ENOENT:
592			/* don't show these error codes to the user */
593			error = 0;
594			break;
595		}
596		goto bad;
597	}
598    }
599
600	/* be sure to update variables that are affected by ipsec4_output() */
601	ip = mtod(m, struct ip *);
602	hlen = ip->ip_hl << 2;
603	if (ro->ro_rt == NULL) {
604		if ((flags & IP_ROUTETOIF) == 0) {
605			printf("ip_output: "
606				"can't update route after IPsec processing\n");
607			error = EHOSTUNREACH;	/*XXX*/
608			goto bad;
609		}
610	} else {
611		ia = ifatoia(ro->ro_rt->rt_ifa);
612		ifp = ro->ro_rt->rt_ifp;
613	}
614
615	/* make it flipped, again. */
616	ip->ip_len = ntohs(ip->ip_len);
617	ip->ip_off = ntohs(ip->ip_off);
618skip_ipsec:
619#endif /*IPSEC*/
620#ifdef FAST_IPSEC
621	/*
622	 * Check the security policy (SP) for the packet and, if
623	 * required, do IPsec-related processing.  There are two
624	 * cases here; the first time a packet is sent through
625	 * it will be untagged and handled by ipsec4_checkpolicy.
626	 * If the packet is resubmitted to ip_output (e.g. after
627	 * AH, ESP, etc. processing), there will be a tag to bypass
628	 * the lookup and related policy checking.
629	 */
630	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
631	s = splnet();
632	if (mtag != NULL) {
633		tdbi = (struct tdb_ident *)(mtag + 1);
634		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
635		if (sp == NULL)
636			error = -EINVAL;	/* force silent drop */
637		m_tag_delete(m, mtag);
638	} else {
639		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
640					&error, inp);
641	}
642	/*
643	 * There are four return cases:
644	 *    sp != NULL	 	    apply IPsec policy
645	 *    sp == NULL, error == 0	    no IPsec handling needed
646	 *    sp == NULL, error == -EINVAL  discard packet w/o error
647	 *    sp == NULL, error != 0	    discard packet, report error
648	 */
649	if (sp != NULL) {
650		/* Loop detection, check if ipsec processing already done */
651		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
652		for (mtag = m_tag_first(m); mtag != NULL;
653		     mtag = m_tag_next(m, mtag)) {
654			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
655				continue;
656			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
657			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
658				continue;
659			/*
660			 * Check if policy has an SA associated with it.
661			 * This can happen when an SP has yet to acquire
662			 * an SA; e.g. on first reference.  If it occurs,
663			 * then we let ipsec4_process_packet do its thing.
664			 */
665			if (sp->req->sav == NULL)
666				break;
667			tdbi = (struct tdb_ident *)(mtag + 1);
668			if (tdbi->spi == sp->req->sav->spi &&
669			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
670			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
671				 sizeof (union sockaddr_union)) == 0) {
672				/*
673				 * No IPsec processing is needed, free
674				 * reference to SP.
675				 *
676				 * NB: null pointer to avoid free at
677				 *     done: below.
678				 */
679				KEY_FREESP(&sp), sp = NULL;
680				splx(s);
681				goto spd_done;
682			}
683		}
684
685		/*
686		 * Do delayed checksums now because we send before
687		 * this is done in the normal processing path.
688		 */
689		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
690			in_delayed_cksum(m);
691			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
692		}
693
694		ip->ip_len = htons(ip->ip_len);
695		ip->ip_off = htons(ip->ip_off);
696
697		/* NB: callee frees mbuf */
698		error = ipsec4_process_packet(m, sp->req, flags, 0);
699		/*
700		 * Preserve KAME behaviour: ENOENT can be returned
701		 * when an SA acquire is in progress.  Don't propagate
702		 * this to user-level; it confuses applications.
703		 *
704		 * XXX this will go away when the SADB is redone.
705		 */
706		if (error == ENOENT)
707			error = 0;
708		splx(s);
709		goto done;
710	} else {
711		splx(s);
712
713		if (error != 0) {
714			/*
715			 * Hack: -EINVAL is used to signal that a packet
716			 * should be silently discarded.  This is typically
717			 * because we asked key management for an SA and
718			 * it was delayed (e.g. kicked up to IKE).
719			 */
720			if (error == -EINVAL)
721				error = 0;
722			goto bad;
723		} else {
724			/* No IPsec processing for this packet. */
725		}
726#ifdef notyet
727		/*
728		 * If deferred crypto processing is needed, check that
729		 * the interface supports it.
730		 */
731		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
732		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
733			/* notify IPsec to do its own crypto */
734			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
735			error = EHOSTUNREACH;
736			goto bad;
737		}
738#endif
739	}
740spd_done:
741#endif /* FAST_IPSEC */
742
743	/*
744	 * IpHack's section.
745	 * - Xlate: translate packet's addr/port (NAT).
746	 * - Firewall: deny/allow/etc.
747	 * - Wrap: fake packet's addr/port <unimpl.>
748	 * - Encapsulate: put it in another IP and send out. <unimp.>
749	 */
750#ifdef PFIL_HOOKS
751	/*
752	 * Run through list of hooks for output packets.
753	 */
754	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
755	if (error != 0 || m == NULL)
756		goto done;
757	ip = mtod(m, struct ip *);
758#endif /* PFIL_HOOKS */
759
760	/*
761	 * Check with the firewall...
762	 * but not if we are already being fwd'd from a firewall.
763	 */
764	if (fw_enable && IPFW_LOADED && !args.next_hop) {
765		struct sockaddr_in *old = dst;
766
767		args.m = m;
768		args.next_hop = dst;
769		args.oif = ifp;
770		off = ip_fw_chk_ptr(&args);
771		m = args.m;
772		dst = args.next_hop;
773
774                /*
775		 * On return we must do the following:
776		 * m == NULL	-> drop the pkt (old interface, deprecated)
777		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
778		 * 1<=off<= 0xffff		-> DIVERT
779		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
780		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
781		 * dst != old			-> IPFIREWALL_FORWARD
782		 * off==0, dst==old		-> accept
783		 * If some of the above modules are not compiled in, then
784		 * we should't have to check the corresponding condition
785		 * (because the ipfw control socket should not accept
786		 * unsupported rules), but better play safe and drop
787		 * packets in case of doubt.
788		 */
789		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
790			if (m)
791				m_freem(m);
792			error = EACCES;
793			goto done;
794		}
795		ip = mtod(m, struct ip *);
796		if (off == 0 && dst == old)		/* common case */
797			goto pass;
798                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
799			/*
800			 * pass the pkt to dummynet. Need to include
801			 * pipe number, m, ifp, ro, dst because these are
802			 * not recomputed in the next pass.
803			 * All other parameters have been already used and
804			 * so they are not needed anymore.
805			 * XXX note: if the ifp or ro entry are deleted
806			 * while a pkt is in dummynet, we are in trouble!
807			 */
808			args.ro = ro;
809			args.dst = dst;
810			args.flags = flags;
811
812			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
813				&args);
814			goto done;
815		}
816#ifdef IPDIVERT
817		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
818			struct mbuf *clone = NULL;
819
820			/* Clone packet if we're doing a 'tee' */
821			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
822				clone = m_dup(m, M_DONTWAIT);
823
824			/*
825			 * XXX
826			 * delayed checksums are not currently compatible
827			 * with divert sockets.
828			 */
829			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
830				in_delayed_cksum(m);
831				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
832			}
833
834			/* Restore packet header fields to original values */
835			ip->ip_len = htons(ip->ip_len);
836			ip->ip_off = htons(ip->ip_off);
837
838			/* Deliver packet to divert input routine */
839			divert_packet(m, 0, off & 0xffff, args.divert_rule);
840
841			/* If 'tee', continue with original packet */
842			if (clone != NULL) {
843				m = clone;
844				ip = mtod(m, struct ip *);
845				goto pass;
846			}
847			goto done;
848		}
849#endif
850
851		/* IPFIREWALL_FORWARD */
852		/*
853		 * Check dst to make sure it is directly reachable on the
854		 * interface we previously thought it was.
855		 * If it isn't (which may be likely in some situations) we have
856		 * to re-route it (ie, find a route for the next-hop and the
857		 * associated interface) and set them here. This is nested
858		 * forwarding which in most cases is undesirable, except where
859		 * such control is nigh impossible. So we do it here.
860		 * And I'm babbling.
861		 */
862		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
863#if 0
864			/*
865			 * XXX To improve readability, this block should be
866			 * changed into a function call as below:
867			 */
868			error = ip_ipforward(&m, &dst, &ifp);
869			if (error)
870				goto bad;
871			if (m == NULL) /* ip_input consumed the mbuf */
872				goto done;
873#else
874			struct in_ifaddr *ia;
875
876			/*
877			 * XXX sro_fwd below is static, and a pointer
878			 * to it gets passed to routines downstream.
879			 * This could have surprisingly bad results in
880			 * practice, because its content is overwritten
881			 * by subsequent packets.
882			 */
883			/* There must be a better way to do this next line... */
884			static struct route sro_fwd;
885			struct route *ro_fwd = &sro_fwd;
886
887#if 0
888			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
889			    dst->sin_addr, "\n");
890#endif
891
892			/*
893			 * We need to figure out if we have been forwarded
894			 * to a local socket. If so, then we should somehow
895			 * "loop back" to ip_input, and get directed to the
896			 * PCB as if we had received this packet. This is
897			 * because it may be dificult to identify the packets
898			 * you want to forward until they are being output
899			 * and have selected an interface. (e.g. locally
900			 * initiated packets) If we used the loopback inteface,
901			 * we would not be able to control what happens
902			 * as the packet runs through ip_input() as
903			 * it is done through an ISR.
904			 */
905			LIST_FOREACH(ia,
906			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
907				/*
908				 * If the addr to forward to is one
909				 * of ours, we pretend to
910				 * be the destination for this packet.
911				 */
912				if (IA_SIN(ia)->sin_addr.s_addr ==
913						 dst->sin_addr.s_addr)
914					break;
915			}
916			if (ia) {	/* tell ip_input "dont filter" */
917				struct m_hdr tag;
918
919				tag.mh_type = MT_TAG;
920				tag.mh_flags = PACKET_TAG_IPFORWARD;
921				tag.mh_data = (caddr_t)args.next_hop;
922				tag.mh_next = m;
923				tag.mh_nextpkt = NULL;
924
925				if (m->m_pkthdr.rcvif == NULL)
926					m->m_pkthdr.rcvif = ifunit("lo0");
927				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
928					m->m_pkthdr.csum_flags |=
929					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
930					m0->m_pkthdr.csum_data = 0xffff;
931				}
932				m->m_pkthdr.csum_flags |=
933				    CSUM_IP_CHECKED | CSUM_IP_VALID;
934				ip->ip_len = htons(ip->ip_len);
935				ip->ip_off = htons(ip->ip_off);
936				ip_input((struct mbuf *)&tag);
937				goto done;
938			}
939			/* Some of the logic for this was
940			 * nicked from above.
941			 *
942			 * This rewrites the cached route in a local PCB.
943			 * Is this what we want to do?
944			 */
945			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
946
947			ro_fwd->ro_rt = 0;
948			rtalloc_ign(ro_fwd, RTF_PRCLONING);
949
950			if (ro_fwd->ro_rt == 0) {
951				ipstat.ips_noroute++;
952				error = EHOSTUNREACH;
953				goto bad;
954			}
955
956			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
957			ifp = ro_fwd->ro_rt->rt_ifp;
958			ro_fwd->ro_rt->rt_use++;
959			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
960				dst = (struct sockaddr_in *)
961					ro_fwd->ro_rt->rt_gateway;
962			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
963				isbroadcast =
964				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
965			else
966				isbroadcast = in_broadcast(dst->sin_addr, ifp);
967			if (ro->ro_rt)
968				RTFREE(ro->ro_rt);
969			ro->ro_rt = ro_fwd->ro_rt;
970			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
971
972#endif	/* ... block to be put into a function */
973			/*
974			 * If we added a default src ip earlier,
975			 * which would have been gotten from the-then
976			 * interface, do it again, from the new one.
977			 */
978			if (src_was_INADDR_ANY)
979				ip->ip_src = IA_SIN(ia)->sin_addr;
980			goto pass ;
981		}
982
983                /*
984                 * if we get here, none of the above matches, and
985                 * we have to drop the pkt
986                 */
987		m_freem(m);
988                error = EACCES; /* not sure this is the right error msg */
989                goto done;
990	}
991
992pass:
993	/* 127/8 must not appear on wire - RFC1122. */
994	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
995	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
996		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
997			ipstat.ips_badaddr++;
998			error = EADDRNOTAVAIL;
999			goto bad;
1000		}
1001	}
1002
1003	m->m_pkthdr.csum_flags |= CSUM_IP;
1004	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
1005	if (sw_csum & CSUM_DELAY_DATA) {
1006		in_delayed_cksum(m);
1007		sw_csum &= ~CSUM_DELAY_DATA;
1008	}
1009	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
1010
1011	/*
1012	 * If small enough for interface, or the interface will take
1013	 * care of the fragmentation for us, can just send directly.
1014	 */
1015	if (ip->ip_len <= ifp->if_mtu || (ifp->if_hwassist & CSUM_FRAGMENT &&
1016	    ((ip->ip_off & IP_DF) == 0))) {
1017		ip->ip_len = htons(ip->ip_len);
1018		ip->ip_off = htons(ip->ip_off);
1019		ip->ip_sum = 0;
1020		if (sw_csum & CSUM_DELAY_IP)
1021			ip->ip_sum = in_cksum(m, hlen);
1022
1023		/* Record statistics for this interface address. */
1024		if (!(flags & IP_FORWARDING) && ia) {
1025			ia->ia_ifa.if_opackets++;
1026			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1027		}
1028
1029#ifdef IPSEC
1030		/* clean ipsec history once it goes out of the node */
1031		ipsec_delaux(m);
1032#endif
1033
1034#ifdef MBUF_STRESS_TEST
1035		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
1036			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
1037#endif
1038		error = (*ifp->if_output)(ifp, m,
1039				(struct sockaddr *)dst, ro->ro_rt);
1040		goto done;
1041	}
1042
1043	if (ip->ip_off & IP_DF) {
1044		error = EMSGSIZE;
1045		/*
1046		 * This case can happen if the user changed the MTU
1047		 * of an interface after enabling IP on it.  Because
1048		 * most netifs don't keep track of routes pointing to
1049		 * them, there is no way for one to update all its
1050		 * routes when the MTU is changed.
1051		 */
1052		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1053		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1054		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1055			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1056		}
1057		ipstat.ips_cantfrag++;
1058		goto bad;
1059	}
1060
1061	/*
1062	 * Too large for interface; fragment if possible. If successful,
1063	 * on return, m will point to a list of packets to be sent.
1064	 */
1065	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1066	if (error)
1067		goto bad;
1068	for (; m; m = m0) {
1069		m0 = m->m_nextpkt;
1070		m->m_nextpkt = 0;
1071#ifdef IPSEC
1072		/* clean ipsec history once it goes out of the node */
1073		ipsec_delaux(m);
1074#endif
1075		if (error == 0) {
1076			/* Record statistics for this interface address. */
1077			if (ia != NULL) {
1078				ia->ia_ifa.if_opackets++;
1079				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1080			}
1081
1082			error = (*ifp->if_output)(ifp, m,
1083			    (struct sockaddr *)dst, ro->ro_rt);
1084		} else
1085			m_freem(m);
1086	}
1087
1088	if (error == 0)
1089		ipstat.ips_fragmented++;
1090
1091done:
1092#ifdef IPSEC
1093	if (ro == &iproute && ro->ro_rt) {
1094		RTFREE(ro->ro_rt);
1095		ro->ro_rt = NULL;
1096	}
1097	if (sp != NULL) {
1098		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1099			printf("DP ip_output call free SP:%p\n", sp));
1100		key_freesp(sp);
1101	}
1102#endif
1103#ifdef FAST_IPSEC
1104	if (ro == &iproute && ro->ro_rt) {
1105		RTFREE(ro->ro_rt);
1106		ro->ro_rt = NULL;
1107	}
1108	if (sp != NULL)
1109		KEY_FREESP(&sp);
1110#endif
1111	return (error);
1112bad:
1113	m_freem(m);
1114	goto done;
1115}
1116
1117/*
1118 * Create a chain of fragments which fit the given mtu. m_frag points to the
1119 * mbuf to be fragmented; on return it points to the chain with the fragments.
1120 * Return 0 if no error. If error, m_frag may contain a partially built
1121 * chain of fragments that should be freed by the caller.
1122 *
1123 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1124 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1125 */
1126int
1127ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1128	    u_long if_hwassist_flags, int sw_csum)
1129{
1130	int error = 0;
1131	int hlen = ip->ip_hl << 2;
1132	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1133	int off;
1134	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1135	int firstlen;
1136	struct mbuf **mnext;
1137	int nfrags;
1138
1139	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1140		ipstat.ips_cantfrag++;
1141		return EMSGSIZE;
1142	}
1143
1144	/*
1145	 * Must be able to put at least 8 bytes per fragment.
1146	 */
1147	if (len < 8)
1148		return EMSGSIZE;
1149
1150	/*
1151	 * If the interface will not calculate checksums on
1152	 * fragmented packets, then do it here.
1153	 */
1154	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1155	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1156		in_delayed_cksum(m0);
1157		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1158	}
1159
1160	if (len > PAGE_SIZE) {
1161		/*
1162		 * Fragment large datagrams such that each segment
1163		 * contains a multiple of PAGE_SIZE amount of data,
1164		 * plus headers. This enables a receiver to perform
1165		 * page-flipping zero-copy optimizations.
1166		 *
1167		 * XXX When does this help given that sender and receiver
1168		 * could have different page sizes, and also mtu could
1169		 * be less than the receiver's page size ?
1170		 */
1171		int newlen;
1172		struct mbuf *m;
1173
1174		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1175			off += m->m_len;
1176
1177		/*
1178		 * firstlen (off - hlen) must be aligned on an
1179		 * 8-byte boundary
1180		 */
1181		if (off < hlen)
1182			goto smart_frag_failure;
1183		off = ((off - hlen) & ~7) + hlen;
1184		newlen = (~PAGE_MASK) & mtu;
1185		if ((newlen + sizeof (struct ip)) > mtu) {
1186			/* we failed, go back the default */
1187smart_frag_failure:
1188			newlen = len;
1189			off = hlen + len;
1190		}
1191		len = newlen;
1192
1193	} else {
1194		off = hlen + len;
1195	}
1196
1197	firstlen = off - hlen;
1198	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1199
1200	/*
1201	 * Loop through length of segment after first fragment,
1202	 * make new header and copy data of each part and link onto chain.
1203	 * Here, m0 is the original packet, m is the fragment being created.
1204	 * The fragments are linked off the m_nextpkt of the original
1205	 * packet, which after processing serves as the first fragment.
1206	 */
1207	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1208		struct ip *mhip;	/* ip header on the fragment */
1209		struct mbuf *m;
1210		int mhlen = sizeof (struct ip);
1211
1212		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1213		if (m == 0) {
1214			error = ENOBUFS;
1215			ipstat.ips_odropped++;
1216			goto done;
1217		}
1218		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1219		/*
1220		 * In the first mbuf, leave room for the link header, then
1221		 * copy the original IP header including options. The payload
1222		 * goes into an additional mbuf chain returned by m_copy().
1223		 */
1224		m->m_data += max_linkhdr;
1225		mhip = mtod(m, struct ip *);
1226		*mhip = *ip;
1227		if (hlen > sizeof (struct ip)) {
1228			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1229			mhip->ip_v = IPVERSION;
1230			mhip->ip_hl = mhlen >> 2;
1231		}
1232		m->m_len = mhlen;
1233		/* XXX do we need to add ip->ip_off below ? */
1234		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1235		if (off + len >= ip->ip_len) {	/* last fragment */
1236			len = ip->ip_len - off;
1237			m->m_flags |= M_LASTFRAG;
1238		} else
1239			mhip->ip_off |= IP_MF;
1240		mhip->ip_len = htons((u_short)(len + mhlen));
1241		m->m_next = m_copy(m0, off, len);
1242		if (m->m_next == 0) {		/* copy failed */
1243			m_free(m);
1244			error = ENOBUFS;	/* ??? */
1245			ipstat.ips_odropped++;
1246			goto done;
1247		}
1248		m->m_pkthdr.len = mhlen + len;
1249		m->m_pkthdr.rcvif = (struct ifnet *)0;
1250#ifdef MAC
1251		mac_create_fragment(m0, m);
1252#endif
1253		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1254		mhip->ip_off = htons(mhip->ip_off);
1255		mhip->ip_sum = 0;
1256		if (sw_csum & CSUM_DELAY_IP)
1257			mhip->ip_sum = in_cksum(m, mhlen);
1258		*mnext = m;
1259		mnext = &m->m_nextpkt;
1260	}
1261	ipstat.ips_ofragments += nfrags;
1262
1263	/* set first marker for fragment chain */
1264	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1265	m0->m_pkthdr.csum_data = nfrags;
1266
1267	/*
1268	 * Update first fragment by trimming what's been copied out
1269	 * and updating header.
1270	 */
1271	m_adj(m0, hlen + firstlen - ip->ip_len);
1272	m0->m_pkthdr.len = hlen + firstlen;
1273	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1274	ip->ip_off |= IP_MF;
1275	ip->ip_off = htons(ip->ip_off);
1276	ip->ip_sum = 0;
1277	if (sw_csum & CSUM_DELAY_IP)
1278		ip->ip_sum = in_cksum(m0, hlen);
1279
1280done:
1281	*m_frag = m0;
1282	return error;
1283}
1284
1285void
1286in_delayed_cksum(struct mbuf *m)
1287{
1288	struct ip *ip;
1289	u_short csum, offset;
1290
1291	ip = mtod(m, struct ip *);
1292	offset = ip->ip_hl << 2 ;
1293	csum = in_cksum_skip(m, ip->ip_len, offset);
1294	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1295		csum = 0xffff;
1296	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1297
1298	if (offset + sizeof(u_short) > m->m_len) {
1299		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1300		    m->m_len, offset, ip->ip_p);
1301		/*
1302		 * XXX
1303		 * this shouldn't happen, but if it does, the
1304		 * correct behavior may be to insert the checksum
1305		 * in the existing chain instead of rearranging it.
1306		 */
1307		m = m_pullup(m, offset + sizeof(u_short));
1308	}
1309	*(u_short *)(m->m_data + offset) = csum;
1310}
1311
1312/*
1313 * Insert IP options into preformed packet.
1314 * Adjust IP destination as required for IP source routing,
1315 * as indicated by a non-zero in_addr at the start of the options.
1316 *
1317 * XXX This routine assumes that the packet has no options in place.
1318 */
1319static struct mbuf *
1320ip_insertoptions(m, opt, phlen)
1321	register struct mbuf *m;
1322	struct mbuf *opt;
1323	int *phlen;
1324{
1325	register struct ipoption *p = mtod(opt, struct ipoption *);
1326	struct mbuf *n;
1327	register struct ip *ip = mtod(m, struct ip *);
1328	unsigned optlen;
1329
1330	optlen = opt->m_len - sizeof(p->ipopt_dst);
1331	if (optlen + ip->ip_len > IP_MAXPACKET) {
1332		*phlen = 0;
1333		return (m);		/* XXX should fail */
1334	}
1335	if (p->ipopt_dst.s_addr)
1336		ip->ip_dst = p->ipopt_dst;
1337	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1338		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1339		if (n == 0) {
1340			*phlen = 0;
1341			return (m);
1342		}
1343		n->m_pkthdr.rcvif = (struct ifnet *)0;
1344#ifdef MAC
1345		mac_create_mbuf_from_mbuf(m, n);
1346#endif
1347		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1348		m->m_len -= sizeof(struct ip);
1349		m->m_data += sizeof(struct ip);
1350		n->m_next = m;
1351		m = n;
1352		m->m_len = optlen + sizeof(struct ip);
1353		m->m_data += max_linkhdr;
1354		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1355	} else {
1356		m->m_data -= optlen;
1357		m->m_len += optlen;
1358		m->m_pkthdr.len += optlen;
1359		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1360	}
1361	ip = mtod(m, struct ip *);
1362	bcopy(p->ipopt_list, ip + 1, optlen);
1363	*phlen = sizeof(struct ip) + optlen;
1364	ip->ip_v = IPVERSION;
1365	ip->ip_hl = *phlen >> 2;
1366	ip->ip_len += optlen;
1367	return (m);
1368}
1369
1370/*
1371 * Copy options from ip to jp,
1372 * omitting those not copied during fragmentation.
1373 */
1374int
1375ip_optcopy(ip, jp)
1376	struct ip *ip, *jp;
1377{
1378	register u_char *cp, *dp;
1379	int opt, optlen, cnt;
1380
1381	cp = (u_char *)(ip + 1);
1382	dp = (u_char *)(jp + 1);
1383	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1384	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1385		opt = cp[0];
1386		if (opt == IPOPT_EOL)
1387			break;
1388		if (opt == IPOPT_NOP) {
1389			/* Preserve for IP mcast tunnel's LSRR alignment. */
1390			*dp++ = IPOPT_NOP;
1391			optlen = 1;
1392			continue;
1393		}
1394
1395		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1396		    ("ip_optcopy: malformed ipv4 option"));
1397		optlen = cp[IPOPT_OLEN];
1398		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1399		    ("ip_optcopy: malformed ipv4 option"));
1400
1401		/* bogus lengths should have been caught by ip_dooptions */
1402		if (optlen > cnt)
1403			optlen = cnt;
1404		if (IPOPT_COPIED(opt)) {
1405			bcopy(cp, dp, optlen);
1406			dp += optlen;
1407		}
1408	}
1409	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1410		*dp++ = IPOPT_EOL;
1411	return (optlen);
1412}
1413
1414/*
1415 * IP socket option processing.
1416 */
1417int
1418ip_ctloutput(so, sopt)
1419	struct socket *so;
1420	struct sockopt *sopt;
1421{
1422	struct	inpcb *inp = sotoinpcb(so);
1423	int	error, optval;
1424
1425	error = optval = 0;
1426	if (sopt->sopt_level != IPPROTO_IP) {
1427		return (EINVAL);
1428	}
1429
1430	switch (sopt->sopt_dir) {
1431	case SOPT_SET:
1432		switch (sopt->sopt_name) {
1433		case IP_OPTIONS:
1434#ifdef notyet
1435		case IP_RETOPTS:
1436#endif
1437		{
1438			struct mbuf *m;
1439			if (sopt->sopt_valsize > MLEN) {
1440				error = EMSGSIZE;
1441				break;
1442			}
1443			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1444			if (m == 0) {
1445				error = ENOBUFS;
1446				break;
1447			}
1448			m->m_len = sopt->sopt_valsize;
1449			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1450					    m->m_len);
1451
1452			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1453					   m));
1454		}
1455
1456		case IP_TOS:
1457		case IP_TTL:
1458		case IP_RECVOPTS:
1459		case IP_RECVRETOPTS:
1460		case IP_RECVDSTADDR:
1461		case IP_RECVTTL:
1462		case IP_RECVIF:
1463		case IP_FAITH:
1464		case IP_ONESBCAST:
1465			error = sooptcopyin(sopt, &optval, sizeof optval,
1466					    sizeof optval);
1467			if (error)
1468				break;
1469
1470			switch (sopt->sopt_name) {
1471			case IP_TOS:
1472				inp->inp_ip_tos = optval;
1473				break;
1474
1475			case IP_TTL:
1476				inp->inp_ip_ttl = optval;
1477				break;
1478#define	OPTSET(bit) \
1479	if (optval) \
1480		inp->inp_flags |= bit; \
1481	else \
1482		inp->inp_flags &= ~bit;
1483
1484			case IP_RECVOPTS:
1485				OPTSET(INP_RECVOPTS);
1486				break;
1487
1488			case IP_RECVRETOPTS:
1489				OPTSET(INP_RECVRETOPTS);
1490				break;
1491
1492			case IP_RECVDSTADDR:
1493				OPTSET(INP_RECVDSTADDR);
1494				break;
1495
1496			case IP_RECVTTL:
1497				OPTSET(INP_RECVTTL);
1498				break;
1499
1500			case IP_RECVIF:
1501				OPTSET(INP_RECVIF);
1502				break;
1503
1504			case IP_FAITH:
1505				OPTSET(INP_FAITH);
1506				break;
1507
1508			case IP_ONESBCAST:
1509				OPTSET(INP_ONESBCAST);
1510				break;
1511			}
1512			break;
1513#undef OPTSET
1514
1515		case IP_MULTICAST_IF:
1516		case IP_MULTICAST_VIF:
1517		case IP_MULTICAST_TTL:
1518		case IP_MULTICAST_LOOP:
1519		case IP_ADD_MEMBERSHIP:
1520		case IP_DROP_MEMBERSHIP:
1521			error = ip_setmoptions(sopt, &inp->inp_moptions);
1522			break;
1523
1524		case IP_PORTRANGE:
1525			error = sooptcopyin(sopt, &optval, sizeof optval,
1526					    sizeof optval);
1527			if (error)
1528				break;
1529
1530			switch (optval) {
1531			case IP_PORTRANGE_DEFAULT:
1532				inp->inp_flags &= ~(INP_LOWPORT);
1533				inp->inp_flags &= ~(INP_HIGHPORT);
1534				break;
1535
1536			case IP_PORTRANGE_HIGH:
1537				inp->inp_flags &= ~(INP_LOWPORT);
1538				inp->inp_flags |= INP_HIGHPORT;
1539				break;
1540
1541			case IP_PORTRANGE_LOW:
1542				inp->inp_flags &= ~(INP_HIGHPORT);
1543				inp->inp_flags |= INP_LOWPORT;
1544				break;
1545
1546			default:
1547				error = EINVAL;
1548				break;
1549			}
1550			break;
1551
1552#if defined(IPSEC) || defined(FAST_IPSEC)
1553		case IP_IPSEC_POLICY:
1554		{
1555			caddr_t req;
1556			size_t len = 0;
1557			int priv;
1558			struct mbuf *m;
1559			int optname;
1560
1561			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1562				break;
1563			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1564				break;
1565			priv = (sopt->sopt_td != NULL &&
1566				suser(sopt->sopt_td) != 0) ? 0 : 1;
1567			req = mtod(m, caddr_t);
1568			len = m->m_len;
1569			optname = sopt->sopt_name;
1570			error = ipsec4_set_policy(inp, optname, req, len, priv);
1571			m_freem(m);
1572			break;
1573		}
1574#endif /*IPSEC*/
1575
1576		default:
1577			error = ENOPROTOOPT;
1578			break;
1579		}
1580		break;
1581
1582	case SOPT_GET:
1583		switch (sopt->sopt_name) {
1584		case IP_OPTIONS:
1585		case IP_RETOPTS:
1586			if (inp->inp_options)
1587				error = sooptcopyout(sopt,
1588						     mtod(inp->inp_options,
1589							  char *),
1590						     inp->inp_options->m_len);
1591			else
1592				sopt->sopt_valsize = 0;
1593			break;
1594
1595		case IP_TOS:
1596		case IP_TTL:
1597		case IP_RECVOPTS:
1598		case IP_RECVRETOPTS:
1599		case IP_RECVDSTADDR:
1600		case IP_RECVTTL:
1601		case IP_RECVIF:
1602		case IP_PORTRANGE:
1603		case IP_FAITH:
1604		case IP_ONESBCAST:
1605			switch (sopt->sopt_name) {
1606
1607			case IP_TOS:
1608				optval = inp->inp_ip_tos;
1609				break;
1610
1611			case IP_TTL:
1612				optval = inp->inp_ip_ttl;
1613				break;
1614
1615#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1616
1617			case IP_RECVOPTS:
1618				optval = OPTBIT(INP_RECVOPTS);
1619				break;
1620
1621			case IP_RECVRETOPTS:
1622				optval = OPTBIT(INP_RECVRETOPTS);
1623				break;
1624
1625			case IP_RECVDSTADDR:
1626				optval = OPTBIT(INP_RECVDSTADDR);
1627				break;
1628
1629			case IP_RECVTTL:
1630				optval = OPTBIT(INP_RECVTTL);
1631				break;
1632
1633			case IP_RECVIF:
1634				optval = OPTBIT(INP_RECVIF);
1635				break;
1636
1637			case IP_PORTRANGE:
1638				if (inp->inp_flags & INP_HIGHPORT)
1639					optval = IP_PORTRANGE_HIGH;
1640				else if (inp->inp_flags & INP_LOWPORT)
1641					optval = IP_PORTRANGE_LOW;
1642				else
1643					optval = 0;
1644				break;
1645
1646			case IP_FAITH:
1647				optval = OPTBIT(INP_FAITH);
1648				break;
1649
1650			case IP_ONESBCAST:
1651				optval = OPTBIT(INP_ONESBCAST);
1652				break;
1653			}
1654			error = sooptcopyout(sopt, &optval, sizeof optval);
1655			break;
1656
1657		case IP_MULTICAST_IF:
1658		case IP_MULTICAST_VIF:
1659		case IP_MULTICAST_TTL:
1660		case IP_MULTICAST_LOOP:
1661		case IP_ADD_MEMBERSHIP:
1662		case IP_DROP_MEMBERSHIP:
1663			error = ip_getmoptions(sopt, inp->inp_moptions);
1664			break;
1665
1666#if defined(IPSEC) || defined(FAST_IPSEC)
1667		case IP_IPSEC_POLICY:
1668		{
1669			struct mbuf *m = NULL;
1670			caddr_t req = NULL;
1671			size_t len = 0;
1672
1673			if (m != 0) {
1674				req = mtod(m, caddr_t);
1675				len = m->m_len;
1676			}
1677			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1678			if (error == 0)
1679				error = soopt_mcopyout(sopt, m); /* XXX */
1680			if (error == 0)
1681				m_freem(m);
1682			break;
1683		}
1684#endif /*IPSEC*/
1685
1686		default:
1687			error = ENOPROTOOPT;
1688			break;
1689		}
1690		break;
1691	}
1692	return (error);
1693}
1694
1695/*
1696 * Set up IP options in pcb for insertion in output packets.
1697 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1698 * with destination address if source routed.
1699 */
1700static int
1701ip_pcbopts(optname, pcbopt, m)
1702	int optname;
1703	struct mbuf **pcbopt;
1704	register struct mbuf *m;
1705{
1706	register int cnt, optlen;
1707	register u_char *cp;
1708	u_char opt;
1709
1710	/* turn off any old options */
1711	if (*pcbopt)
1712		(void)m_free(*pcbopt);
1713	*pcbopt = 0;
1714	if (m == (struct mbuf *)0 || m->m_len == 0) {
1715		/*
1716		 * Only turning off any previous options.
1717		 */
1718		if (m)
1719			(void)m_free(m);
1720		return (0);
1721	}
1722
1723	if (m->m_len % sizeof(int32_t))
1724		goto bad;
1725	/*
1726	 * IP first-hop destination address will be stored before
1727	 * actual options; move other options back
1728	 * and clear it when none present.
1729	 */
1730	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1731		goto bad;
1732	cnt = m->m_len;
1733	m->m_len += sizeof(struct in_addr);
1734	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1735	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1736	bzero(mtod(m, void *), sizeof(struct in_addr));
1737
1738	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1739		opt = cp[IPOPT_OPTVAL];
1740		if (opt == IPOPT_EOL)
1741			break;
1742		if (opt == IPOPT_NOP)
1743			optlen = 1;
1744		else {
1745			if (cnt < IPOPT_OLEN + sizeof(*cp))
1746				goto bad;
1747			optlen = cp[IPOPT_OLEN];
1748			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1749				goto bad;
1750		}
1751		switch (opt) {
1752
1753		default:
1754			break;
1755
1756		case IPOPT_LSRR:
1757		case IPOPT_SSRR:
1758			/*
1759			 * user process specifies route as:
1760			 *	->A->B->C->D
1761			 * D must be our final destination (but we can't
1762			 * check that since we may not have connected yet).
1763			 * A is first hop destination, which doesn't appear in
1764			 * actual IP option, but is stored before the options.
1765			 */
1766			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1767				goto bad;
1768			m->m_len -= sizeof(struct in_addr);
1769			cnt -= sizeof(struct in_addr);
1770			optlen -= sizeof(struct in_addr);
1771			cp[IPOPT_OLEN] = optlen;
1772			/*
1773			 * Move first hop before start of options.
1774			 */
1775			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1776			    sizeof(struct in_addr));
1777			/*
1778			 * Then copy rest of options back
1779			 * to close up the deleted entry.
1780			 */
1781			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1782			    &cp[IPOPT_OFFSET+1],
1783			    (unsigned)cnt + sizeof(struct in_addr));
1784			break;
1785		}
1786	}
1787	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1788		goto bad;
1789	*pcbopt = m;
1790	return (0);
1791
1792bad:
1793	(void)m_free(m);
1794	return (EINVAL);
1795}
1796
1797/*
1798 * XXX
1799 * The whole multicast option thing needs to be re-thought.
1800 * Several of these options are equally applicable to non-multicast
1801 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1802 * standard option (IP_TTL).
1803 */
1804
1805/*
1806 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1807 */
1808static struct ifnet *
1809ip_multicast_if(a, ifindexp)
1810	struct in_addr *a;
1811	int *ifindexp;
1812{
1813	int ifindex;
1814	struct ifnet *ifp;
1815
1816	if (ifindexp)
1817		*ifindexp = 0;
1818	if (ntohl(a->s_addr) >> 24 == 0) {
1819		ifindex = ntohl(a->s_addr) & 0xffffff;
1820		if (ifindex < 0 || if_index < ifindex)
1821			return NULL;
1822		ifp = ifnet_byindex(ifindex);
1823		if (ifindexp)
1824			*ifindexp = ifindex;
1825	} else {
1826		INADDR_TO_IFP(*a, ifp);
1827	}
1828	return ifp;
1829}
1830
1831/*
1832 * Set the IP multicast options in response to user setsockopt().
1833 */
1834static int
1835ip_setmoptions(sopt, imop)
1836	struct sockopt *sopt;
1837	struct ip_moptions **imop;
1838{
1839	int error = 0;
1840	int i;
1841	struct in_addr addr;
1842	struct ip_mreq mreq;
1843	struct ifnet *ifp;
1844	struct ip_moptions *imo = *imop;
1845	struct route ro;
1846	struct sockaddr_in *dst;
1847	int ifindex;
1848	int s;
1849
1850	if (imo == NULL) {
1851		/*
1852		 * No multicast option buffer attached to the pcb;
1853		 * allocate one and initialize to default values.
1854		 */
1855		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1856		    M_WAITOK);
1857
1858		if (imo == NULL)
1859			return (ENOBUFS);
1860		*imop = imo;
1861		imo->imo_multicast_ifp = NULL;
1862		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1863		imo->imo_multicast_vif = -1;
1864		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1865		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1866		imo->imo_num_memberships = 0;
1867	}
1868
1869	switch (sopt->sopt_name) {
1870	/* store an index number for the vif you wanna use in the send */
1871	case IP_MULTICAST_VIF:
1872		if (legal_vif_num == 0) {
1873			error = EOPNOTSUPP;
1874			break;
1875		}
1876		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1877		if (error)
1878			break;
1879		if (!legal_vif_num(i) && (i != -1)) {
1880			error = EINVAL;
1881			break;
1882		}
1883		imo->imo_multicast_vif = i;
1884		break;
1885
1886	case IP_MULTICAST_IF:
1887		/*
1888		 * Select the interface for outgoing multicast packets.
1889		 */
1890		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1891		if (error)
1892			break;
1893		/*
1894		 * INADDR_ANY is used to remove a previous selection.
1895		 * When no interface is selected, a default one is
1896		 * chosen every time a multicast packet is sent.
1897		 */
1898		if (addr.s_addr == INADDR_ANY) {
1899			imo->imo_multicast_ifp = NULL;
1900			break;
1901		}
1902		/*
1903		 * The selected interface is identified by its local
1904		 * IP address.  Find the interface and confirm that
1905		 * it supports multicasting.
1906		 */
1907		s = splimp();
1908		ifp = ip_multicast_if(&addr, &ifindex);
1909		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1910			splx(s);
1911			error = EADDRNOTAVAIL;
1912			break;
1913		}
1914		imo->imo_multicast_ifp = ifp;
1915		if (ifindex)
1916			imo->imo_multicast_addr = addr;
1917		else
1918			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1919		splx(s);
1920		break;
1921
1922	case IP_MULTICAST_TTL:
1923		/*
1924		 * Set the IP time-to-live for outgoing multicast packets.
1925		 * The original multicast API required a char argument,
1926		 * which is inconsistent with the rest of the socket API.
1927		 * We allow either a char or an int.
1928		 */
1929		if (sopt->sopt_valsize == 1) {
1930			u_char ttl;
1931			error = sooptcopyin(sopt, &ttl, 1, 1);
1932			if (error)
1933				break;
1934			imo->imo_multicast_ttl = ttl;
1935		} else {
1936			u_int ttl;
1937			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1938					    sizeof ttl);
1939			if (error)
1940				break;
1941			if (ttl > 255)
1942				error = EINVAL;
1943			else
1944				imo->imo_multicast_ttl = ttl;
1945		}
1946		break;
1947
1948	case IP_MULTICAST_LOOP:
1949		/*
1950		 * Set the loopback flag for outgoing multicast packets.
1951		 * Must be zero or one.  The original multicast API required a
1952		 * char argument, which is inconsistent with the rest
1953		 * of the socket API.  We allow either a char or an int.
1954		 */
1955		if (sopt->sopt_valsize == 1) {
1956			u_char loop;
1957			error = sooptcopyin(sopt, &loop, 1, 1);
1958			if (error)
1959				break;
1960			imo->imo_multicast_loop = !!loop;
1961		} else {
1962			u_int loop;
1963			error = sooptcopyin(sopt, &loop, sizeof loop,
1964					    sizeof loop);
1965			if (error)
1966				break;
1967			imo->imo_multicast_loop = !!loop;
1968		}
1969		break;
1970
1971	case IP_ADD_MEMBERSHIP:
1972		/*
1973		 * Add a multicast group membership.
1974		 * Group must be a valid IP multicast address.
1975		 */
1976		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1977		if (error)
1978			break;
1979
1980		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1981			error = EINVAL;
1982			break;
1983		}
1984		s = splimp();
1985		/*
1986		 * If no interface address was provided, use the interface of
1987		 * the route to the given multicast address.
1988		 */
1989		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1990			bzero((caddr_t)&ro, sizeof(ro));
1991			dst = (struct sockaddr_in *)&ro.ro_dst;
1992			dst->sin_len = sizeof(*dst);
1993			dst->sin_family = AF_INET;
1994			dst->sin_addr = mreq.imr_multiaddr;
1995			rtalloc(&ro);
1996			if (ro.ro_rt == NULL) {
1997				error = EADDRNOTAVAIL;
1998				splx(s);
1999				break;
2000			}
2001			ifp = ro.ro_rt->rt_ifp;
2002			RTFREE(ro.ro_rt);
2003		}
2004		else {
2005			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2006		}
2007
2008		/*
2009		 * See if we found an interface, and confirm that it
2010		 * supports multicast.
2011		 */
2012		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2013			error = EADDRNOTAVAIL;
2014			splx(s);
2015			break;
2016		}
2017		/*
2018		 * See if the membership already exists or if all the
2019		 * membership slots are full.
2020		 */
2021		for (i = 0; i < imo->imo_num_memberships; ++i) {
2022			if (imo->imo_membership[i]->inm_ifp == ifp &&
2023			    imo->imo_membership[i]->inm_addr.s_addr
2024						== mreq.imr_multiaddr.s_addr)
2025				break;
2026		}
2027		if (i < imo->imo_num_memberships) {
2028			error = EADDRINUSE;
2029			splx(s);
2030			break;
2031		}
2032		if (i == IP_MAX_MEMBERSHIPS) {
2033			error = ETOOMANYREFS;
2034			splx(s);
2035			break;
2036		}
2037		/*
2038		 * Everything looks good; add a new record to the multicast
2039		 * address list for the given interface.
2040		 */
2041		if ((imo->imo_membership[i] =
2042		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2043			error = ENOBUFS;
2044			splx(s);
2045			break;
2046		}
2047		++imo->imo_num_memberships;
2048		splx(s);
2049		break;
2050
2051	case IP_DROP_MEMBERSHIP:
2052		/*
2053		 * Drop a multicast group membership.
2054		 * Group must be a valid IP multicast address.
2055		 */
2056		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2057		if (error)
2058			break;
2059
2060		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2061			error = EINVAL;
2062			break;
2063		}
2064
2065		s = splimp();
2066		/*
2067		 * If an interface address was specified, get a pointer
2068		 * to its ifnet structure.
2069		 */
2070		if (mreq.imr_interface.s_addr == INADDR_ANY)
2071			ifp = NULL;
2072		else {
2073			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2074			if (ifp == NULL) {
2075				error = EADDRNOTAVAIL;
2076				splx(s);
2077				break;
2078			}
2079		}
2080		/*
2081		 * Find the membership in the membership array.
2082		 */
2083		for (i = 0; i < imo->imo_num_memberships; ++i) {
2084			if ((ifp == NULL ||
2085			     imo->imo_membership[i]->inm_ifp == ifp) &&
2086			     imo->imo_membership[i]->inm_addr.s_addr ==
2087			     mreq.imr_multiaddr.s_addr)
2088				break;
2089		}
2090		if (i == imo->imo_num_memberships) {
2091			error = EADDRNOTAVAIL;
2092			splx(s);
2093			break;
2094		}
2095		/*
2096		 * Give up the multicast address record to which the
2097		 * membership points.
2098		 */
2099		in_delmulti(imo->imo_membership[i]);
2100		/*
2101		 * Remove the gap in the membership array.
2102		 */
2103		for (++i; i < imo->imo_num_memberships; ++i)
2104			imo->imo_membership[i-1] = imo->imo_membership[i];
2105		--imo->imo_num_memberships;
2106		splx(s);
2107		break;
2108
2109	default:
2110		error = EOPNOTSUPP;
2111		break;
2112	}
2113
2114	/*
2115	 * If all options have default values, no need to keep the mbuf.
2116	 */
2117	if (imo->imo_multicast_ifp == NULL &&
2118	    imo->imo_multicast_vif == -1 &&
2119	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2120	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2121	    imo->imo_num_memberships == 0) {
2122		free(*imop, M_IPMOPTS);
2123		*imop = NULL;
2124	}
2125
2126	return (error);
2127}
2128
2129/*
2130 * Return the IP multicast options in response to user getsockopt().
2131 */
2132static int
2133ip_getmoptions(sopt, imo)
2134	struct sockopt *sopt;
2135	register struct ip_moptions *imo;
2136{
2137	struct in_addr addr;
2138	struct in_ifaddr *ia;
2139	int error, optval;
2140	u_char coptval;
2141
2142	error = 0;
2143	switch (sopt->sopt_name) {
2144	case IP_MULTICAST_VIF:
2145		if (imo != NULL)
2146			optval = imo->imo_multicast_vif;
2147		else
2148			optval = -1;
2149		error = sooptcopyout(sopt, &optval, sizeof optval);
2150		break;
2151
2152	case IP_MULTICAST_IF:
2153		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2154			addr.s_addr = INADDR_ANY;
2155		else if (imo->imo_multicast_addr.s_addr) {
2156			/* return the value user has set */
2157			addr = imo->imo_multicast_addr;
2158		} else {
2159			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2160			addr.s_addr = (ia == NULL) ? INADDR_ANY
2161				: IA_SIN(ia)->sin_addr.s_addr;
2162		}
2163		error = sooptcopyout(sopt, &addr, sizeof addr);
2164		break;
2165
2166	case IP_MULTICAST_TTL:
2167		if (imo == 0)
2168			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2169		else
2170			optval = coptval = imo->imo_multicast_ttl;
2171		if (sopt->sopt_valsize == 1)
2172			error = sooptcopyout(sopt, &coptval, 1);
2173		else
2174			error = sooptcopyout(sopt, &optval, sizeof optval);
2175		break;
2176
2177	case IP_MULTICAST_LOOP:
2178		if (imo == 0)
2179			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2180		else
2181			optval = coptval = imo->imo_multicast_loop;
2182		if (sopt->sopt_valsize == 1)
2183			error = sooptcopyout(sopt, &coptval, 1);
2184		else
2185			error = sooptcopyout(sopt, &optval, sizeof optval);
2186		break;
2187
2188	default:
2189		error = ENOPROTOOPT;
2190		break;
2191	}
2192	return (error);
2193}
2194
2195/*
2196 * Discard the IP multicast options.
2197 */
2198void
2199ip_freemoptions(imo)
2200	register struct ip_moptions *imo;
2201{
2202	register int i;
2203
2204	if (imo != NULL) {
2205		for (i = 0; i < imo->imo_num_memberships; ++i)
2206			in_delmulti(imo->imo_membership[i]);
2207		free(imo, M_IPMOPTS);
2208	}
2209}
2210
2211/*
2212 * Routine called from ip_output() to loop back a copy of an IP multicast
2213 * packet to the input queue of a specified interface.  Note that this
2214 * calls the output routine of the loopback "driver", but with an interface
2215 * pointer that might NOT be a loopback interface -- evil, but easier than
2216 * replicating that code here.
2217 */
2218static void
2219ip_mloopback(ifp, m, dst, hlen)
2220	struct ifnet *ifp;
2221	register struct mbuf *m;
2222	register struct sockaddr_in *dst;
2223	int hlen;
2224{
2225	register struct ip *ip;
2226	struct mbuf *copym;
2227
2228	copym = m_copy(m, 0, M_COPYALL);
2229	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2230		copym = m_pullup(copym, hlen);
2231	if (copym != NULL) {
2232		/*
2233		 * We don't bother to fragment if the IP length is greater
2234		 * than the interface's MTU.  Can this possibly matter?
2235		 */
2236		ip = mtod(copym, struct ip *);
2237		ip->ip_len = htons(ip->ip_len);
2238		ip->ip_off = htons(ip->ip_off);
2239		ip->ip_sum = 0;
2240		ip->ip_sum = in_cksum(copym, hlen);
2241		/*
2242		 * NB:
2243		 * It's not clear whether there are any lingering
2244		 * reentrancy problems in other areas which might
2245		 * be exposed by using ip_input directly (in
2246		 * particular, everything which modifies the packet
2247		 * in-place).  Yet another option is using the
2248		 * protosw directly to deliver the looped back
2249		 * packet.  For the moment, we'll err on the side
2250		 * of safety by using if_simloop().
2251		 */
2252#if 1 /* XXX */
2253		if (dst->sin_family != AF_INET) {
2254			printf("ip_mloopback: bad address family %d\n",
2255						dst->sin_family);
2256			dst->sin_family = AF_INET;
2257		}
2258#endif
2259
2260#ifdef notdef
2261		copym->m_pkthdr.rcvif = ifp;
2262		ip_input(copym);
2263#else
2264		/* if the checksum hasn't been computed, mark it as valid */
2265		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2266			copym->m_pkthdr.csum_flags |=
2267			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2268			copym->m_pkthdr.csum_data = 0xffff;
2269		}
2270		if_simloop(ifp, copym, dst->sin_family, 0);
2271#endif
2272	}
2273}
2274