ip_output.c revision 122062
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 * $FreeBSD: head/sys/netinet/ip_output.c 122062 2003-11-04 16:02:05Z ume $
35 */
36
37#include "opt_ipfw.h"
38#include "opt_ipdn.h"
39#include "opt_ipdivert.h"
40#include "opt_ipfilter.h"
41#include "opt_ipsec.h"
42#include "opt_mac.h"
43#include "opt_pfil_hooks.h"
44#include "opt_random_ip_id.h"
45#include "opt_mbuf_stress_test.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/kernel.h>
50#include <sys/mac.h>
51#include <sys/malloc.h>
52#include <sys/mbuf.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/sysctl.h>
57
58#include <net/if.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_var.h>
66#include <netinet/ip_var.h>
67
68#ifdef PFIL_HOOKS
69#include <net/pfil.h>
70#endif
71
72#include <machine/in_cksum.h>
73
74static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
75
76#ifdef IPSEC
77#include <netinet6/ipsec.h>
78#include <netkey/key.h>
79#ifdef IPSEC_DEBUG
80#include <netkey/key_debug.h>
81#else
82#define	KEYDEBUG(lev,arg)
83#endif
84#endif /*IPSEC*/
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#include <netipsec/xform.h>
89#include <netipsec/key.h>
90#endif /*FAST_IPSEC*/
91
92#include <netinet/ip_fw.h>
93#include <netinet/ip_dummynet.h>
94
95#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
96				x, (ntohl(a.s_addr)>>24)&0xFF,\
97				  (ntohl(a.s_addr)>>16)&0xFF,\
98				  (ntohl(a.s_addr)>>8)&0xFF,\
99				  (ntohl(a.s_addr))&0xFF, y);
100
101u_short ip_id;
102
103#ifdef MBUF_STRESS_TEST
104int mbuf_frag_size = 0;
105SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
106	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
107#endif
108
109static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
110static struct ifnet *ip_multicast_if(struct in_addr *, int *);
111static void	ip_mloopback
112	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
113static int	ip_getmoptions
114	(struct sockopt *, struct ip_moptions *);
115static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
116static int	ip_setmoptions
117	(struct sockopt *, struct ip_moptions **);
118
119int	ip_optcopy(struct ip *, struct ip *);
120
121
122extern	struct protosw inetsw[];
123
124/*
125 * IP output.  The packet in mbuf chain m contains a skeletal IP
126 * header (with len, off, ttl, proto, tos, src, dst).
127 * The mbuf chain containing the packet will be freed.
128 * The mbuf opt, if present, will not be freed.
129 * In the IP forwarding case, the packet will arrive with options already
130 * inserted, so must have a NULL opt pointer.
131 */
132int
133ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
134	int flags, struct ip_moptions *imo, struct inpcb *inp)
135{
136	struct ip *ip;
137	struct ifnet *ifp = NULL;	/* keep compiler happy */
138	struct mbuf *m;
139	int hlen = sizeof (struct ip);
140	int len, off, error = 0;
141	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
142	struct in_ifaddr *ia = NULL;
143	int isbroadcast, sw_csum;
144	struct in_addr pkt_dst;
145#ifdef IPSEC
146	struct route iproute;
147	struct socket *so;
148	struct secpolicy *sp = NULL;
149#endif
150#ifdef FAST_IPSEC
151	struct route iproute;
152	struct m_tag *mtag;
153	struct secpolicy *sp = NULL;
154	struct tdb_ident *tdbi;
155	int s;
156#endif /* FAST_IPSEC */
157	struct ip_fw_args args;
158	int src_was_INADDR_ANY = 0;	/* as the name says... */
159
160	args.eh = NULL;
161	args.rule = NULL;
162	args.next_hop = NULL;
163	args.divert_rule = 0;			/* divert cookie */
164
165	/* Grab info from MT_TAG mbufs prepended to the chain. */
166	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
167		switch(m0->_m_tag_id) {
168		default:
169			printf("ip_output: unrecognised MT_TAG tag %d\n",
170			    m0->_m_tag_id);
171			break;
172
173		case PACKET_TAG_DUMMYNET:
174			/*
175			 * the packet was already tagged, so part of the
176			 * processing was already done, and we need to go down.
177			 * Get parameters from the header.
178			 */
179			args.rule = ((struct dn_pkt *)m0)->rule;
180			opt = NULL ;
181			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
182			imo = NULL ;
183			dst = ((struct dn_pkt *)m0)->dn_dst ;
184			ifp = ((struct dn_pkt *)m0)->ifp ;
185			flags = ((struct dn_pkt *)m0)->flags ;
186			break;
187
188		case PACKET_TAG_DIVERT:
189			args.divert_rule = (intptr_t)m0->m_data & 0xffff;
190			break;
191
192		case PACKET_TAG_IPFORWARD:
193			args.next_hop = (struct sockaddr_in *)m0->m_data;
194			break;
195		}
196	}
197	m = m0;
198
199#ifdef IPSEC
200	so = ipsec_getsocket(m);
201	(void)ipsec_setsocket(m, NULL);
202#endif /*IPSEC*/
203
204	M_ASSERTPKTHDR(m);
205#ifndef FAST_IPSEC
206	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
207	    mtod(m, struct ip *)->ip_p));
208#endif
209
210	if (args.rule != NULL) {	/* dummynet already saw us */
211		ip = mtod(m, struct ip *);
212		hlen = ip->ip_hl << 2 ;
213		if (ro->ro_rt)
214			ia = ifatoia(ro->ro_rt->rt_ifa);
215		goto sendit;
216	}
217
218	if (opt) {
219		len = 0;
220		m = ip_insertoptions(m, opt, &len);
221		if (len != 0)
222			hlen = len;
223	}
224	ip = mtod(m, struct ip *);
225	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
226
227	/*
228	 * Fill in IP header.  If we are not allowing fragmentation,
229	 * then the ip_id field is meaningless, so send it as zero
230	 * to reduce information leakage.  Otherwise, if we are not
231	 * randomizing ip_id, then don't bother to convert it to network
232	 * byte order -- it's just a nonce.  Note that a 16-bit counter
233	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
234	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
235	 * for Counting NATted Hosts", Proc. IMW'02, available at
236	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
237	 */
238	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
239		ip->ip_v = IPVERSION;
240		ip->ip_hl = hlen >> 2;
241		if ((ip->ip_off & IP_DF) == 0) {
242			ip->ip_off = 0;
243#ifdef RANDOM_IP_ID
244			ip->ip_id = ip_randomid();
245#else
246			ip->ip_id = ip_id++;
247#endif
248		} else {
249			ip->ip_off = IP_DF;
250			ip->ip_id = 0;
251		}
252		ipstat.ips_localout++;
253	} else {
254		hlen = ip->ip_hl << 2;
255	}
256
257#ifdef FAST_IPSEC
258	if (ro == NULL) {
259		ro = &iproute;
260		bzero(ro, sizeof (*ro));
261	}
262#endif /* FAST_IPSEC */
263	dst = (struct sockaddr_in *)&ro->ro_dst;
264	/*
265	 * If there is a cached route,
266	 * check that it is to the same destination
267	 * and is still up.  If not, free it and try again.
268	 * The address family should also be checked in case of sharing the
269	 * cache with IPv6.
270	 */
271	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
272			  dst->sin_family != AF_INET ||
273			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
274		RTFREE(ro->ro_rt);
275		ro->ro_rt = (struct rtentry *)0;
276	}
277	if (ro->ro_rt == 0) {
278		bzero(dst, sizeof(*dst));
279		dst->sin_family = AF_INET;
280		dst->sin_len = sizeof(*dst);
281		dst->sin_addr = pkt_dst;
282	}
283	/*
284	 * If routing to interface only,
285	 * short circuit routing lookup.
286	 */
287	if (flags & IP_ROUTETOIF) {
288		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
289		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
290			ipstat.ips_noroute++;
291			error = ENETUNREACH;
292			goto bad;
293		}
294		ifp = ia->ia_ifp;
295		ip->ip_ttl = 1;
296		isbroadcast = in_broadcast(dst->sin_addr, ifp);
297	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
298	    imo != NULL && imo->imo_multicast_ifp != NULL) {
299		/*
300		 * Bypass the normal routing lookup for multicast
301		 * packets if the interface is specified.
302		 */
303		ifp = imo->imo_multicast_ifp;
304		IFP_TO_IA(ifp, ia);
305		isbroadcast = 0;	/* fool gcc */
306	} else {
307		/*
308		 * If this is the case, we probably don't want to allocate
309		 * a protocol-cloned route since we didn't get one from the
310		 * ULP.  This lets TCP do its thing, while not burdening
311		 * forwarding or ICMP with the overhead of cloning a route.
312		 * Of course, we still want to do any cloning requested by
313		 * the link layer, as this is probably required in all cases
314		 * for correct operation (as it is for ARP).
315		 */
316		if (ro->ro_rt == 0)
317			rtalloc_ign(ro, RTF_PRCLONING);
318		if (ro->ro_rt == 0) {
319			ipstat.ips_noroute++;
320			error = EHOSTUNREACH;
321			goto bad;
322		}
323		ia = ifatoia(ro->ro_rt->rt_ifa);
324		ifp = ro->ro_rt->rt_ifp;
325		ro->ro_rt->rt_use++;
326		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
327			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
328		if (ro->ro_rt->rt_flags & RTF_HOST)
329			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
330		else
331			isbroadcast = in_broadcast(dst->sin_addr, ifp);
332	}
333	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
334		struct in_multi *inm;
335
336		m->m_flags |= M_MCAST;
337		/*
338		 * IP destination address is multicast.  Make sure "dst"
339		 * still points to the address in "ro".  (It may have been
340		 * changed to point to a gateway address, above.)
341		 */
342		dst = (struct sockaddr_in *)&ro->ro_dst;
343		/*
344		 * See if the caller provided any multicast options
345		 */
346		if (imo != NULL) {
347			ip->ip_ttl = imo->imo_multicast_ttl;
348			if (imo->imo_multicast_vif != -1)
349				ip->ip_src.s_addr =
350				    ip_mcast_src ?
351				    ip_mcast_src(imo->imo_multicast_vif) :
352				    INADDR_ANY;
353		} else
354			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
355		/*
356		 * Confirm that the outgoing interface supports multicast.
357		 */
358		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
359			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
360				ipstat.ips_noroute++;
361				error = ENETUNREACH;
362				goto bad;
363			}
364		}
365		/*
366		 * If source address not specified yet, use address
367		 * of outgoing interface.
368		 */
369		if (ip->ip_src.s_addr == INADDR_ANY) {
370			/* Interface may have no addresses. */
371			if (ia != NULL)
372				ip->ip_src = IA_SIN(ia)->sin_addr;
373		}
374
375		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
376			/*
377			 * XXX
378			 * delayed checksums are not currently
379			 * compatible with IP multicast routing
380			 */
381			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
382				in_delayed_cksum(m);
383				m->m_pkthdr.csum_flags &=
384					~CSUM_DELAY_DATA;
385			}
386		}
387		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
388		if (inm != NULL &&
389		   (imo == NULL || imo->imo_multicast_loop)) {
390			/*
391			 * If we belong to the destination multicast group
392			 * on the outgoing interface, and the caller did not
393			 * forbid loopback, loop back a copy.
394			 */
395			ip_mloopback(ifp, m, dst, hlen);
396		}
397		else {
398			/*
399			 * If we are acting as a multicast router, perform
400			 * multicast forwarding as if the packet had just
401			 * arrived on the interface to which we are about
402			 * to send.  The multicast forwarding function
403			 * recursively calls this function, using the
404			 * IP_FORWARDING flag to prevent infinite recursion.
405			 *
406			 * Multicasts that are looped back by ip_mloopback(),
407			 * above, will be forwarded by the ip_input() routine,
408			 * if necessary.
409			 */
410			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
411				/*
412				 * If rsvp daemon is not running, do not
413				 * set ip_moptions. This ensures that the packet
414				 * is multicast and not just sent down one link
415				 * as prescribed by rsvpd.
416				 */
417				if (!rsvp_on)
418					imo = NULL;
419				if (ip_mforward &&
420				    ip_mforward(ip, ifp, m, imo) != 0) {
421					m_freem(m);
422					goto done;
423				}
424			}
425		}
426
427		/*
428		 * Multicasts with a time-to-live of zero may be looped-
429		 * back, above, but must not be transmitted on a network.
430		 * Also, multicasts addressed to the loopback interface
431		 * are not sent -- the above call to ip_mloopback() will
432		 * loop back a copy if this host actually belongs to the
433		 * destination group on the loopback interface.
434		 */
435		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
436			m_freem(m);
437			goto done;
438		}
439
440		goto sendit;
441	}
442#ifndef notdef
443	/*
444	 * If the source address is not specified yet, use the address
445	 * of the outoing interface. In case, keep note we did that, so
446	 * if the the firewall changes the next-hop causing the output
447	 * interface to change, we can fix that.
448	 */
449	if (ip->ip_src.s_addr == INADDR_ANY) {
450		/* Interface may have no addresses. */
451		if (ia != NULL) {
452			ip->ip_src = IA_SIN(ia)->sin_addr;
453			src_was_INADDR_ANY = 1;
454		}
455	}
456#endif /* notdef */
457	/*
458	 * Verify that we have any chance at all of being able to queue
459	 *      the packet or packet fragments
460	 */
461	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
462		ifp->if_snd.ifq_maxlen) {
463			error = ENOBUFS;
464			ipstat.ips_odropped++;
465			goto bad;
466	}
467
468	/*
469	 * Look for broadcast address and
470	 * verify user is allowed to send
471	 * such a packet.
472	 */
473	if (isbroadcast) {
474		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
475			error = EADDRNOTAVAIL;
476			goto bad;
477		}
478		if ((flags & IP_ALLOWBROADCAST) == 0) {
479			error = EACCES;
480			goto bad;
481		}
482		/* don't allow broadcast messages to be fragmented */
483		if (ip->ip_len > ifp->if_mtu) {
484			error = EMSGSIZE;
485			goto bad;
486		}
487		if (flags & IP_SENDONES)
488			ip->ip_dst.s_addr = INADDR_BROADCAST;
489		m->m_flags |= M_BCAST;
490	} else {
491		m->m_flags &= ~M_BCAST;
492	}
493
494sendit:
495#ifdef IPSEC
496	/* get SP for this packet */
497	if (so == NULL)
498		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
499		    flags, &error);
500	else
501		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
502
503	if (sp == NULL) {
504		ipsecstat.out_inval++;
505		goto bad;
506	}
507
508	error = 0;
509
510	/* check policy */
511	switch (sp->policy) {
512	case IPSEC_POLICY_DISCARD:
513		/*
514		 * This packet is just discarded.
515		 */
516		ipsecstat.out_polvio++;
517		goto bad;
518
519	case IPSEC_POLICY_BYPASS:
520	case IPSEC_POLICY_NONE:
521		/* no need to do IPsec. */
522		goto skip_ipsec;
523
524	case IPSEC_POLICY_IPSEC:
525		if (sp->req == NULL) {
526			/* acquire a policy */
527			error = key_spdacquire(sp);
528			goto bad;
529		}
530		break;
531
532	case IPSEC_POLICY_ENTRUST:
533	default:
534		printf("ip_output: Invalid policy found. %d\n", sp->policy);
535	}
536    {
537	struct ipsec_output_state state;
538	bzero(&state, sizeof(state));
539	state.m = m;
540	if (flags & IP_ROUTETOIF) {
541		state.ro = &iproute;
542		bzero(&iproute, sizeof(iproute));
543	} else
544		state.ro = ro;
545	state.dst = (struct sockaddr *)dst;
546
547	ip->ip_sum = 0;
548
549	/*
550	 * XXX
551	 * delayed checksums are not currently compatible with IPsec
552	 */
553	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
554		in_delayed_cksum(m);
555		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
556	}
557
558	ip->ip_len = htons(ip->ip_len);
559	ip->ip_off = htons(ip->ip_off);
560
561	error = ipsec4_output(&state, sp, flags);
562
563	m = state.m;
564	if (flags & IP_ROUTETOIF) {
565		/*
566		 * if we have tunnel mode SA, we may need to ignore
567		 * IP_ROUTETOIF.
568		 */
569		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
570			flags &= ~IP_ROUTETOIF;
571			ro = state.ro;
572		}
573	} else
574		ro = state.ro;
575	dst = (struct sockaddr_in *)state.dst;
576	if (error) {
577		/* mbuf is already reclaimed in ipsec4_output. */
578		m0 = NULL;
579		switch (error) {
580		case EHOSTUNREACH:
581		case ENETUNREACH:
582		case EMSGSIZE:
583		case ENOBUFS:
584		case ENOMEM:
585			break;
586		default:
587			printf("ip4_output (ipsec): error code %d\n", error);
588			/*fall through*/
589		case ENOENT:
590			/* don't show these error codes to the user */
591			error = 0;
592			break;
593		}
594		goto bad;
595	}
596    }
597
598	/* be sure to update variables that are affected by ipsec4_output() */
599	ip = mtod(m, struct ip *);
600	hlen = ip->ip_hl << 2;
601	if (ro->ro_rt == NULL) {
602		if ((flags & IP_ROUTETOIF) == 0) {
603			printf("ip_output: "
604				"can't update route after IPsec processing\n");
605			error = EHOSTUNREACH;	/*XXX*/
606			goto bad;
607		}
608	} else {
609		ia = ifatoia(ro->ro_rt->rt_ifa);
610		ifp = ro->ro_rt->rt_ifp;
611	}
612
613	/* make it flipped, again. */
614	ip->ip_len = ntohs(ip->ip_len);
615	ip->ip_off = ntohs(ip->ip_off);
616skip_ipsec:
617#endif /*IPSEC*/
618#ifdef FAST_IPSEC
619	/*
620	 * Check the security policy (SP) for the packet and, if
621	 * required, do IPsec-related processing.  There are two
622	 * cases here; the first time a packet is sent through
623	 * it will be untagged and handled by ipsec4_checkpolicy.
624	 * If the packet is resubmitted to ip_output (e.g. after
625	 * AH, ESP, etc. processing), there will be a tag to bypass
626	 * the lookup and related policy checking.
627	 */
628	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
629	s = splnet();
630	if (mtag != NULL) {
631		tdbi = (struct tdb_ident *)(mtag + 1);
632		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
633		if (sp == NULL)
634			error = -EINVAL;	/* force silent drop */
635		m_tag_delete(m, mtag);
636	} else {
637		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
638					&error, inp);
639	}
640	/*
641	 * There are four return cases:
642	 *    sp != NULL	 	    apply IPsec policy
643	 *    sp == NULL, error == 0	    no IPsec handling needed
644	 *    sp == NULL, error == -EINVAL  discard packet w/o error
645	 *    sp == NULL, error != 0	    discard packet, report error
646	 */
647	if (sp != NULL) {
648		/* Loop detection, check if ipsec processing already done */
649		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
650		for (mtag = m_tag_first(m); mtag != NULL;
651		     mtag = m_tag_next(m, mtag)) {
652			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
653				continue;
654			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
655			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
656				continue;
657			/*
658			 * Check if policy has an SA associated with it.
659			 * This can happen when an SP has yet to acquire
660			 * an SA; e.g. on first reference.  If it occurs,
661			 * then we let ipsec4_process_packet do its thing.
662			 */
663			if (sp->req->sav == NULL)
664				break;
665			tdbi = (struct tdb_ident *)(mtag + 1);
666			if (tdbi->spi == sp->req->sav->spi &&
667			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
668			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
669				 sizeof (union sockaddr_union)) == 0) {
670				/*
671				 * No IPsec processing is needed, free
672				 * reference to SP.
673				 *
674				 * NB: null pointer to avoid free at
675				 *     done: below.
676				 */
677				KEY_FREESP(&sp), sp = NULL;
678				splx(s);
679				goto spd_done;
680			}
681		}
682
683		/*
684		 * Do delayed checksums now because we send before
685		 * this is done in the normal processing path.
686		 */
687		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
688			in_delayed_cksum(m);
689			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
690		}
691
692		ip->ip_len = htons(ip->ip_len);
693		ip->ip_off = htons(ip->ip_off);
694
695		/* NB: callee frees mbuf */
696		error = ipsec4_process_packet(m, sp->req, flags, 0);
697		/*
698		 * Preserve KAME behaviour: ENOENT can be returned
699		 * when an SA acquire is in progress.  Don't propagate
700		 * this to user-level; it confuses applications.
701		 *
702		 * XXX this will go away when the SADB is redone.
703		 */
704		if (error == ENOENT)
705			error = 0;
706		splx(s);
707		goto done;
708	} else {
709		splx(s);
710
711		if (error != 0) {
712			/*
713			 * Hack: -EINVAL is used to signal that a packet
714			 * should be silently discarded.  This is typically
715			 * because we asked key management for an SA and
716			 * it was delayed (e.g. kicked up to IKE).
717			 */
718			if (error == -EINVAL)
719				error = 0;
720			goto bad;
721		} else {
722			/* No IPsec processing for this packet. */
723		}
724#ifdef notyet
725		/*
726		 * If deferred crypto processing is needed, check that
727		 * the interface supports it.
728		 */
729		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
730		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
731			/* notify IPsec to do its own crypto */
732			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
733			error = EHOSTUNREACH;
734			goto bad;
735		}
736#endif
737	}
738spd_done:
739#endif /* FAST_IPSEC */
740
741	/*
742	 * IpHack's section.
743	 * - Xlate: translate packet's addr/port (NAT).
744	 * - Firewall: deny/allow/etc.
745	 * - Wrap: fake packet's addr/port <unimpl.>
746	 * - Encapsulate: put it in another IP and send out. <unimp.>
747	 */
748#ifdef PFIL_HOOKS
749	/*
750	 * Run through list of hooks for output packets.
751	 */
752	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
753	if (error != 0 || m == NULL)
754		goto done;
755	ip = mtod(m, struct ip *);
756#endif /* PFIL_HOOKS */
757
758	/*
759	 * Check with the firewall...
760	 * but not if we are already being fwd'd from a firewall.
761	 */
762	if (fw_enable && IPFW_LOADED && !args.next_hop) {
763		struct sockaddr_in *old = dst;
764
765		args.m = m;
766		args.next_hop = dst;
767		args.oif = ifp;
768		off = ip_fw_chk_ptr(&args);
769		m = args.m;
770		dst = args.next_hop;
771
772                /*
773		 * On return we must do the following:
774		 * m == NULL	-> drop the pkt (old interface, deprecated)
775		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
776		 * 1<=off<= 0xffff		-> DIVERT
777		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
778		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
779		 * dst != old			-> IPFIREWALL_FORWARD
780		 * off==0, dst==old		-> accept
781		 * If some of the above modules are not compiled in, then
782		 * we should't have to check the corresponding condition
783		 * (because the ipfw control socket should not accept
784		 * unsupported rules), but better play safe and drop
785		 * packets in case of doubt.
786		 */
787		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
788			if (m)
789				m_freem(m);
790			error = EACCES;
791			goto done;
792		}
793		ip = mtod(m, struct ip *);
794		if (off == 0 && dst == old)		/* common case */
795			goto pass;
796                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
797			/*
798			 * pass the pkt to dummynet. Need to include
799			 * pipe number, m, ifp, ro, dst because these are
800			 * not recomputed in the next pass.
801			 * All other parameters have been already used and
802			 * so they are not needed anymore.
803			 * XXX note: if the ifp or ro entry are deleted
804			 * while a pkt is in dummynet, we are in trouble!
805			 */
806			args.ro = ro;
807			args.dst = dst;
808			args.flags = flags;
809
810			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
811				&args);
812			goto done;
813		}
814#ifdef IPDIVERT
815		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
816			struct mbuf *clone = NULL;
817
818			/* Clone packet if we're doing a 'tee' */
819			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
820				clone = m_dup(m, M_DONTWAIT);
821
822			/*
823			 * XXX
824			 * delayed checksums are not currently compatible
825			 * with divert sockets.
826			 */
827			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
828				in_delayed_cksum(m);
829				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
830			}
831
832			/* Restore packet header fields to original values */
833			ip->ip_len = htons(ip->ip_len);
834			ip->ip_off = htons(ip->ip_off);
835
836			/* Deliver packet to divert input routine */
837			divert_packet(m, 0, off & 0xffff, args.divert_rule);
838
839			/* If 'tee', continue with original packet */
840			if (clone != NULL) {
841				m = clone;
842				ip = mtod(m, struct ip *);
843				goto pass;
844			}
845			goto done;
846		}
847#endif
848
849		/* IPFIREWALL_FORWARD */
850		/*
851		 * Check dst to make sure it is directly reachable on the
852		 * interface we previously thought it was.
853		 * If it isn't (which may be likely in some situations) we have
854		 * to re-route it (ie, find a route for the next-hop and the
855		 * associated interface) and set them here. This is nested
856		 * forwarding which in most cases is undesirable, except where
857		 * such control is nigh impossible. So we do it here.
858		 * And I'm babbling.
859		 */
860		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
861#if 0
862			/*
863			 * XXX To improve readability, this block should be
864			 * changed into a function call as below:
865			 */
866			error = ip_ipforward(&m, &dst, &ifp);
867			if (error)
868				goto bad;
869			if (m == NULL) /* ip_input consumed the mbuf */
870				goto done;
871#else
872			struct in_ifaddr *ia;
873
874			/*
875			 * XXX sro_fwd below is static, and a pointer
876			 * to it gets passed to routines downstream.
877			 * This could have surprisingly bad results in
878			 * practice, because its content is overwritten
879			 * by subsequent packets.
880			 */
881			/* There must be a better way to do this next line... */
882			static struct route sro_fwd;
883			struct route *ro_fwd = &sro_fwd;
884
885#if 0
886			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
887			    dst->sin_addr, "\n");
888#endif
889
890			/*
891			 * We need to figure out if we have been forwarded
892			 * to a local socket. If so, then we should somehow
893			 * "loop back" to ip_input, and get directed to the
894			 * PCB as if we had received this packet. This is
895			 * because it may be dificult to identify the packets
896			 * you want to forward until they are being output
897			 * and have selected an interface. (e.g. locally
898			 * initiated packets) If we used the loopback inteface,
899			 * we would not be able to control what happens
900			 * as the packet runs through ip_input() as
901			 * it is done through an ISR.
902			 */
903			LIST_FOREACH(ia,
904			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
905				/*
906				 * If the addr to forward to is one
907				 * of ours, we pretend to
908				 * be the destination for this packet.
909				 */
910				if (IA_SIN(ia)->sin_addr.s_addr ==
911						 dst->sin_addr.s_addr)
912					break;
913			}
914			if (ia) {	/* tell ip_input "dont filter" */
915				struct m_hdr tag;
916
917				tag.mh_type = MT_TAG;
918				tag.mh_flags = PACKET_TAG_IPFORWARD;
919				tag.mh_data = (caddr_t)args.next_hop;
920				tag.mh_next = m;
921
922				if (m->m_pkthdr.rcvif == NULL)
923					m->m_pkthdr.rcvif = ifunit("lo0");
924				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
925					m->m_pkthdr.csum_flags |=
926					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
927					m0->m_pkthdr.csum_data = 0xffff;
928				}
929				m->m_pkthdr.csum_flags |=
930				    CSUM_IP_CHECKED | CSUM_IP_VALID;
931				ip->ip_len = htons(ip->ip_len);
932				ip->ip_off = htons(ip->ip_off);
933				ip_input((struct mbuf *)&tag);
934				goto done;
935			}
936			/* Some of the logic for this was
937			 * nicked from above.
938			 *
939			 * This rewrites the cached route in a local PCB.
940			 * Is this what we want to do?
941			 */
942			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
943
944			ro_fwd->ro_rt = 0;
945			rtalloc_ign(ro_fwd, RTF_PRCLONING);
946
947			if (ro_fwd->ro_rt == 0) {
948				ipstat.ips_noroute++;
949				error = EHOSTUNREACH;
950				goto bad;
951			}
952
953			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
954			ifp = ro_fwd->ro_rt->rt_ifp;
955			ro_fwd->ro_rt->rt_use++;
956			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
957				dst = (struct sockaddr_in *)
958					ro_fwd->ro_rt->rt_gateway;
959			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
960				isbroadcast =
961				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
962			else
963				isbroadcast = in_broadcast(dst->sin_addr, ifp);
964			if (ro->ro_rt)
965				RTFREE(ro->ro_rt);
966			ro->ro_rt = ro_fwd->ro_rt;
967			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
968
969#endif	/* ... block to be put into a function */
970			/*
971			 * If we added a default src ip earlier,
972			 * which would have been gotten from the-then
973			 * interface, do it again, from the new one.
974			 */
975			if (src_was_INADDR_ANY)
976				ip->ip_src = IA_SIN(ia)->sin_addr;
977			goto pass ;
978		}
979
980                /*
981                 * if we get here, none of the above matches, and
982                 * we have to drop the pkt
983                 */
984		m_freem(m);
985                error = EACCES; /* not sure this is the right error msg */
986                goto done;
987	}
988
989pass:
990	/* 127/8 must not appear on wire - RFC1122. */
991	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
992	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
993		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
994			ipstat.ips_badaddr++;
995			error = EADDRNOTAVAIL;
996			goto bad;
997		}
998	}
999
1000	m->m_pkthdr.csum_flags |= CSUM_IP;
1001	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
1002	if (sw_csum & CSUM_DELAY_DATA) {
1003		in_delayed_cksum(m);
1004		sw_csum &= ~CSUM_DELAY_DATA;
1005	}
1006	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
1007
1008	/*
1009	 * If small enough for interface, or the interface will take
1010	 * care of the fragmentation for us, can just send directly.
1011	 */
1012	if (ip->ip_len <= ifp->if_mtu || ifp->if_hwassist & CSUM_FRAGMENT) {
1013		ip->ip_len = htons(ip->ip_len);
1014		ip->ip_off = htons(ip->ip_off);
1015		ip->ip_sum = 0;
1016		if (sw_csum & CSUM_DELAY_IP)
1017			ip->ip_sum = in_cksum(m, hlen);
1018
1019		/* Record statistics for this interface address. */
1020		if (!(flags & IP_FORWARDING) && ia) {
1021			ia->ia_ifa.if_opackets++;
1022			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1023		}
1024
1025#ifdef IPSEC
1026		/* clean ipsec history once it goes out of the node */
1027		ipsec_delaux(m);
1028#endif
1029
1030#ifdef MBUF_STRESS_TEST
1031		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
1032			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
1033#endif
1034		error = (*ifp->if_output)(ifp, m,
1035				(struct sockaddr *)dst, ro->ro_rt);
1036		goto done;
1037	}
1038
1039	if (ip->ip_off & IP_DF) {
1040		error = EMSGSIZE;
1041		/*
1042		 * This case can happen if the user changed the MTU
1043		 * of an interface after enabling IP on it.  Because
1044		 * most netifs don't keep track of routes pointing to
1045		 * them, there is no way for one to update all its
1046		 * routes when the MTU is changed.
1047		 */
1048		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1049		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1050		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1051			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1052		}
1053		ipstat.ips_cantfrag++;
1054		goto bad;
1055	}
1056
1057	/*
1058	 * Too large for interface; fragment if possible. If successful,
1059	 * on return, m will point to a list of packets to be sent.
1060	 */
1061	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1062	if (error)
1063		goto bad;
1064	for (; m; m = m0) {
1065		m0 = m->m_nextpkt;
1066		m->m_nextpkt = 0;
1067#ifdef IPSEC
1068		/* clean ipsec history once it goes out of the node */
1069		ipsec_delaux(m);
1070#endif
1071		if (error == 0) {
1072			/* Record statistics for this interface address. */
1073			if (ia != NULL) {
1074				ia->ia_ifa.if_opackets++;
1075				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1076			}
1077
1078			error = (*ifp->if_output)(ifp, m,
1079			    (struct sockaddr *)dst, ro->ro_rt);
1080		} else
1081			m_freem(m);
1082	}
1083
1084	if (error == 0)
1085		ipstat.ips_fragmented++;
1086
1087done:
1088#ifdef IPSEC
1089	if (ro == &iproute && ro->ro_rt) {
1090		RTFREE(ro->ro_rt);
1091		ro->ro_rt = NULL;
1092	}
1093	if (sp != NULL) {
1094		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1095			printf("DP ip_output call free SP:%p\n", sp));
1096		key_freesp(sp);
1097	}
1098#endif
1099#ifdef FAST_IPSEC
1100	if (ro == &iproute && ro->ro_rt) {
1101		RTFREE(ro->ro_rt);
1102		ro->ro_rt = NULL;
1103	}
1104	if (sp != NULL)
1105		KEY_FREESP(&sp);
1106#endif
1107	return (error);
1108bad:
1109	m_freem(m);
1110	goto done;
1111}
1112
1113/*
1114 * Create a chain of fragments which fit the given mtu. m_frag points to the
1115 * mbuf to be fragmented; on return it points to the chain with the fragments.
1116 * Return 0 if no error. If error, m_frag may contain a partially built
1117 * chain of fragments that should be freed by the caller.
1118 *
1119 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1120 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1121 */
1122int
1123ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1124	    u_long if_hwassist_flags, int sw_csum)
1125{
1126	int error = 0;
1127	int hlen = ip->ip_hl << 2;
1128	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1129	int off;
1130	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1131	int firstlen;
1132	struct mbuf **mnext;
1133	int nfrags;
1134
1135	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1136		ipstat.ips_cantfrag++;
1137		return EMSGSIZE;
1138	}
1139
1140	/*
1141	 * Must be able to put at least 8 bytes per fragment.
1142	 */
1143	if (len < 8)
1144		return EMSGSIZE;
1145
1146	/*
1147	 * If the interface will not calculate checksums on
1148	 * fragmented packets, then do it here.
1149	 */
1150	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1151	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1152		in_delayed_cksum(m0);
1153		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1154	}
1155
1156	if (len > PAGE_SIZE) {
1157		/*
1158		 * Fragment large datagrams such that each segment
1159		 * contains a multiple of PAGE_SIZE amount of data,
1160		 * plus headers. This enables a receiver to perform
1161		 * page-flipping zero-copy optimizations.
1162		 *
1163		 * XXX When does this help given that sender and receiver
1164		 * could have different page sizes, and also mtu could
1165		 * be less than the receiver's page size ?
1166		 */
1167		int newlen;
1168		struct mbuf *m;
1169
1170		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1171			off += m->m_len;
1172
1173		/*
1174		 * firstlen (off - hlen) must be aligned on an
1175		 * 8-byte boundary
1176		 */
1177		if (off < hlen)
1178			goto smart_frag_failure;
1179		off = ((off - hlen) & ~7) + hlen;
1180		newlen = (~PAGE_MASK) & mtu;
1181		if ((newlen + sizeof (struct ip)) > mtu) {
1182			/* we failed, go back the default */
1183smart_frag_failure:
1184			newlen = len;
1185			off = hlen + len;
1186		}
1187		len = newlen;
1188
1189	} else {
1190		off = hlen + len;
1191	}
1192
1193	firstlen = off - hlen;
1194	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1195
1196	/*
1197	 * Loop through length of segment after first fragment,
1198	 * make new header and copy data of each part and link onto chain.
1199	 * Here, m0 is the original packet, m is the fragment being created.
1200	 * The fragments are linked off the m_nextpkt of the original
1201	 * packet, which after processing serves as the first fragment.
1202	 */
1203	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1204		struct ip *mhip;	/* ip header on the fragment */
1205		struct mbuf *m;
1206		int mhlen = sizeof (struct ip);
1207
1208		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1209		if (m == 0) {
1210			error = ENOBUFS;
1211			ipstat.ips_odropped++;
1212			goto done;
1213		}
1214		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1215		/*
1216		 * In the first mbuf, leave room for the link header, then
1217		 * copy the original IP header including options. The payload
1218		 * goes into an additional mbuf chain returned by m_copy().
1219		 */
1220		m->m_data += max_linkhdr;
1221		mhip = mtod(m, struct ip *);
1222		*mhip = *ip;
1223		if (hlen > sizeof (struct ip)) {
1224			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1225			mhip->ip_v = IPVERSION;
1226			mhip->ip_hl = mhlen >> 2;
1227		}
1228		m->m_len = mhlen;
1229		/* XXX do we need to add ip->ip_off below ? */
1230		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1231		if (off + len >= ip->ip_len) {	/* last fragment */
1232			len = ip->ip_len - off;
1233			m->m_flags |= M_LASTFRAG;
1234		} else
1235			mhip->ip_off |= IP_MF;
1236		mhip->ip_len = htons((u_short)(len + mhlen));
1237		m->m_next = m_copy(m0, off, len);
1238		if (m->m_next == 0) {		/* copy failed */
1239			m_free(m);
1240			error = ENOBUFS;	/* ??? */
1241			ipstat.ips_odropped++;
1242			goto done;
1243		}
1244		m->m_pkthdr.len = mhlen + len;
1245		m->m_pkthdr.rcvif = (struct ifnet *)0;
1246#ifdef MAC
1247		mac_create_fragment(m0, m);
1248#endif
1249		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1250		mhip->ip_off = htons(mhip->ip_off);
1251		mhip->ip_sum = 0;
1252		if (sw_csum & CSUM_DELAY_IP)
1253			mhip->ip_sum = in_cksum(m, mhlen);
1254		*mnext = m;
1255		mnext = &m->m_nextpkt;
1256	}
1257	ipstat.ips_ofragments += nfrags;
1258
1259	/* set first marker for fragment chain */
1260	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1261	m0->m_pkthdr.csum_data = nfrags;
1262
1263	/*
1264	 * Update first fragment by trimming what's been copied out
1265	 * and updating header.
1266	 */
1267	m_adj(m0, hlen + firstlen - ip->ip_len);
1268	m0->m_pkthdr.len = hlen + firstlen;
1269	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1270	ip->ip_off |= IP_MF;
1271	ip->ip_off = htons(ip->ip_off);
1272	ip->ip_sum = 0;
1273	if (sw_csum & CSUM_DELAY_IP)
1274		ip->ip_sum = in_cksum(m0, hlen);
1275
1276done:
1277	*m_frag = m0;
1278	return error;
1279}
1280
1281void
1282in_delayed_cksum(struct mbuf *m)
1283{
1284	struct ip *ip;
1285	u_short csum, offset;
1286
1287	ip = mtod(m, struct ip *);
1288	offset = ip->ip_hl << 2 ;
1289	csum = in_cksum_skip(m, ip->ip_len, offset);
1290	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1291		csum = 0xffff;
1292	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1293
1294	if (offset + sizeof(u_short) > m->m_len) {
1295		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1296		    m->m_len, offset, ip->ip_p);
1297		/*
1298		 * XXX
1299		 * this shouldn't happen, but if it does, the
1300		 * correct behavior may be to insert the checksum
1301		 * in the existing chain instead of rearranging it.
1302		 */
1303		m = m_pullup(m, offset + sizeof(u_short));
1304	}
1305	*(u_short *)(m->m_data + offset) = csum;
1306}
1307
1308/*
1309 * Insert IP options into preformed packet.
1310 * Adjust IP destination as required for IP source routing,
1311 * as indicated by a non-zero in_addr at the start of the options.
1312 *
1313 * XXX This routine assumes that the packet has no options in place.
1314 */
1315static struct mbuf *
1316ip_insertoptions(m, opt, phlen)
1317	register struct mbuf *m;
1318	struct mbuf *opt;
1319	int *phlen;
1320{
1321	register struct ipoption *p = mtod(opt, struct ipoption *);
1322	struct mbuf *n;
1323	register struct ip *ip = mtod(m, struct ip *);
1324	unsigned optlen;
1325
1326	optlen = opt->m_len - sizeof(p->ipopt_dst);
1327	if (optlen + ip->ip_len > IP_MAXPACKET) {
1328		*phlen = 0;
1329		return (m);		/* XXX should fail */
1330	}
1331	if (p->ipopt_dst.s_addr)
1332		ip->ip_dst = p->ipopt_dst;
1333	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1334		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1335		if (n == 0) {
1336			*phlen = 0;
1337			return (m);
1338		}
1339		n->m_pkthdr.rcvif = (struct ifnet *)0;
1340#ifdef MAC
1341		mac_create_mbuf_from_mbuf(m, n);
1342#endif
1343		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1344		m->m_len -= sizeof(struct ip);
1345		m->m_data += sizeof(struct ip);
1346		n->m_next = m;
1347		m = n;
1348		m->m_len = optlen + sizeof(struct ip);
1349		m->m_data += max_linkhdr;
1350		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1351	} else {
1352		m->m_data -= optlen;
1353		m->m_len += optlen;
1354		m->m_pkthdr.len += optlen;
1355		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1356	}
1357	ip = mtod(m, struct ip *);
1358	bcopy(p->ipopt_list, ip + 1, optlen);
1359	*phlen = sizeof(struct ip) + optlen;
1360	ip->ip_v = IPVERSION;
1361	ip->ip_hl = *phlen >> 2;
1362	ip->ip_len += optlen;
1363	return (m);
1364}
1365
1366/*
1367 * Copy options from ip to jp,
1368 * omitting those not copied during fragmentation.
1369 */
1370int
1371ip_optcopy(ip, jp)
1372	struct ip *ip, *jp;
1373{
1374	register u_char *cp, *dp;
1375	int opt, optlen, cnt;
1376
1377	cp = (u_char *)(ip + 1);
1378	dp = (u_char *)(jp + 1);
1379	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1380	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1381		opt = cp[0];
1382		if (opt == IPOPT_EOL)
1383			break;
1384		if (opt == IPOPT_NOP) {
1385			/* Preserve for IP mcast tunnel's LSRR alignment. */
1386			*dp++ = IPOPT_NOP;
1387			optlen = 1;
1388			continue;
1389		}
1390
1391		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1392		    ("ip_optcopy: malformed ipv4 option"));
1393		optlen = cp[IPOPT_OLEN];
1394		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1395		    ("ip_optcopy: malformed ipv4 option"));
1396
1397		/* bogus lengths should have been caught by ip_dooptions */
1398		if (optlen > cnt)
1399			optlen = cnt;
1400		if (IPOPT_COPIED(opt)) {
1401			bcopy(cp, dp, optlen);
1402			dp += optlen;
1403		}
1404	}
1405	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1406		*dp++ = IPOPT_EOL;
1407	return (optlen);
1408}
1409
1410/*
1411 * IP socket option processing.
1412 */
1413int
1414ip_ctloutput(so, sopt)
1415	struct socket *so;
1416	struct sockopt *sopt;
1417{
1418	struct	inpcb *inp = sotoinpcb(so);
1419	int	error, optval;
1420
1421	error = optval = 0;
1422	if (sopt->sopt_level != IPPROTO_IP) {
1423		return (EINVAL);
1424	}
1425
1426	switch (sopt->sopt_dir) {
1427	case SOPT_SET:
1428		switch (sopt->sopt_name) {
1429		case IP_OPTIONS:
1430#ifdef notyet
1431		case IP_RETOPTS:
1432#endif
1433		{
1434			struct mbuf *m;
1435			if (sopt->sopt_valsize > MLEN) {
1436				error = EMSGSIZE;
1437				break;
1438			}
1439			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1440			if (m == 0) {
1441				error = ENOBUFS;
1442				break;
1443			}
1444			m->m_len = sopt->sopt_valsize;
1445			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1446					    m->m_len);
1447
1448			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1449					   m));
1450		}
1451
1452		case IP_TOS:
1453		case IP_TTL:
1454		case IP_RECVOPTS:
1455		case IP_RECVRETOPTS:
1456		case IP_RECVDSTADDR:
1457		case IP_RECVTTL:
1458		case IP_RECVIF:
1459		case IP_FAITH:
1460		case IP_ONESBCAST:
1461			error = sooptcopyin(sopt, &optval, sizeof optval,
1462					    sizeof optval);
1463			if (error)
1464				break;
1465
1466			switch (sopt->sopt_name) {
1467			case IP_TOS:
1468				inp->inp_ip_tos = optval;
1469				break;
1470
1471			case IP_TTL:
1472				inp->inp_ip_ttl = optval;
1473				break;
1474#define	OPTSET(bit) \
1475	if (optval) \
1476		inp->inp_flags |= bit; \
1477	else \
1478		inp->inp_flags &= ~bit;
1479
1480			case IP_RECVOPTS:
1481				OPTSET(INP_RECVOPTS);
1482				break;
1483
1484			case IP_RECVRETOPTS:
1485				OPTSET(INP_RECVRETOPTS);
1486				break;
1487
1488			case IP_RECVDSTADDR:
1489				OPTSET(INP_RECVDSTADDR);
1490				break;
1491
1492			case IP_RECVTTL:
1493				OPTSET(INP_RECVTTL);
1494				break;
1495
1496			case IP_RECVIF:
1497				OPTSET(INP_RECVIF);
1498				break;
1499
1500			case IP_FAITH:
1501				OPTSET(INP_FAITH);
1502				break;
1503
1504			case IP_ONESBCAST:
1505				OPTSET(INP_ONESBCAST);
1506				break;
1507			}
1508			break;
1509#undef OPTSET
1510
1511		case IP_MULTICAST_IF:
1512		case IP_MULTICAST_VIF:
1513		case IP_MULTICAST_TTL:
1514		case IP_MULTICAST_LOOP:
1515		case IP_ADD_MEMBERSHIP:
1516		case IP_DROP_MEMBERSHIP:
1517			error = ip_setmoptions(sopt, &inp->inp_moptions);
1518			break;
1519
1520		case IP_PORTRANGE:
1521			error = sooptcopyin(sopt, &optval, sizeof optval,
1522					    sizeof optval);
1523			if (error)
1524				break;
1525
1526			switch (optval) {
1527			case IP_PORTRANGE_DEFAULT:
1528				inp->inp_flags &= ~(INP_LOWPORT);
1529				inp->inp_flags &= ~(INP_HIGHPORT);
1530				break;
1531
1532			case IP_PORTRANGE_HIGH:
1533				inp->inp_flags &= ~(INP_LOWPORT);
1534				inp->inp_flags |= INP_HIGHPORT;
1535				break;
1536
1537			case IP_PORTRANGE_LOW:
1538				inp->inp_flags &= ~(INP_HIGHPORT);
1539				inp->inp_flags |= INP_LOWPORT;
1540				break;
1541
1542			default:
1543				error = EINVAL;
1544				break;
1545			}
1546			break;
1547
1548#if defined(IPSEC) || defined(FAST_IPSEC)
1549		case IP_IPSEC_POLICY:
1550		{
1551			caddr_t req;
1552			size_t len = 0;
1553			int priv;
1554			struct mbuf *m;
1555			int optname;
1556
1557			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1558				break;
1559			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1560				break;
1561			priv = (sopt->sopt_td != NULL &&
1562				suser(sopt->sopt_td) != 0) ? 0 : 1;
1563			req = mtod(m, caddr_t);
1564			len = m->m_len;
1565			optname = sopt->sopt_name;
1566			error = ipsec4_set_policy(inp, optname, req, len, priv);
1567			m_freem(m);
1568			break;
1569		}
1570#endif /*IPSEC*/
1571
1572		default:
1573			error = ENOPROTOOPT;
1574			break;
1575		}
1576		break;
1577
1578	case SOPT_GET:
1579		switch (sopt->sopt_name) {
1580		case IP_OPTIONS:
1581		case IP_RETOPTS:
1582			if (inp->inp_options)
1583				error = sooptcopyout(sopt,
1584						     mtod(inp->inp_options,
1585							  char *),
1586						     inp->inp_options->m_len);
1587			else
1588				sopt->sopt_valsize = 0;
1589			break;
1590
1591		case IP_TOS:
1592		case IP_TTL:
1593		case IP_RECVOPTS:
1594		case IP_RECVRETOPTS:
1595		case IP_RECVDSTADDR:
1596		case IP_RECVTTL:
1597		case IP_RECVIF:
1598		case IP_PORTRANGE:
1599		case IP_FAITH:
1600		case IP_ONESBCAST:
1601			switch (sopt->sopt_name) {
1602
1603			case IP_TOS:
1604				optval = inp->inp_ip_tos;
1605				break;
1606
1607			case IP_TTL:
1608				optval = inp->inp_ip_ttl;
1609				break;
1610
1611#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1612
1613			case IP_RECVOPTS:
1614				optval = OPTBIT(INP_RECVOPTS);
1615				break;
1616
1617			case IP_RECVRETOPTS:
1618				optval = OPTBIT(INP_RECVRETOPTS);
1619				break;
1620
1621			case IP_RECVDSTADDR:
1622				optval = OPTBIT(INP_RECVDSTADDR);
1623				break;
1624
1625			case IP_RECVTTL:
1626				optval = OPTBIT(INP_RECVTTL);
1627				break;
1628
1629			case IP_RECVIF:
1630				optval = OPTBIT(INP_RECVIF);
1631				break;
1632
1633			case IP_PORTRANGE:
1634				if (inp->inp_flags & INP_HIGHPORT)
1635					optval = IP_PORTRANGE_HIGH;
1636				else if (inp->inp_flags & INP_LOWPORT)
1637					optval = IP_PORTRANGE_LOW;
1638				else
1639					optval = 0;
1640				break;
1641
1642			case IP_FAITH:
1643				optval = OPTBIT(INP_FAITH);
1644				break;
1645
1646			case IP_ONESBCAST:
1647				optval = OPTBIT(INP_ONESBCAST);
1648				break;
1649			}
1650			error = sooptcopyout(sopt, &optval, sizeof optval);
1651			break;
1652
1653		case IP_MULTICAST_IF:
1654		case IP_MULTICAST_VIF:
1655		case IP_MULTICAST_TTL:
1656		case IP_MULTICAST_LOOP:
1657		case IP_ADD_MEMBERSHIP:
1658		case IP_DROP_MEMBERSHIP:
1659			error = ip_getmoptions(sopt, inp->inp_moptions);
1660			break;
1661
1662#if defined(IPSEC) || defined(FAST_IPSEC)
1663		case IP_IPSEC_POLICY:
1664		{
1665			struct mbuf *m = NULL;
1666			caddr_t req = NULL;
1667			size_t len = 0;
1668
1669			if (m != 0) {
1670				req = mtod(m, caddr_t);
1671				len = m->m_len;
1672			}
1673			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1674			if (error == 0)
1675				error = soopt_mcopyout(sopt, m); /* XXX */
1676			if (error == 0)
1677				m_freem(m);
1678			break;
1679		}
1680#endif /*IPSEC*/
1681
1682		default:
1683			error = ENOPROTOOPT;
1684			break;
1685		}
1686		break;
1687	}
1688	return (error);
1689}
1690
1691/*
1692 * Set up IP options in pcb for insertion in output packets.
1693 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1694 * with destination address if source routed.
1695 */
1696static int
1697ip_pcbopts(optname, pcbopt, m)
1698	int optname;
1699	struct mbuf **pcbopt;
1700	register struct mbuf *m;
1701{
1702	register int cnt, optlen;
1703	register u_char *cp;
1704	u_char opt;
1705
1706	/* turn off any old options */
1707	if (*pcbopt)
1708		(void)m_free(*pcbopt);
1709	*pcbopt = 0;
1710	if (m == (struct mbuf *)0 || m->m_len == 0) {
1711		/*
1712		 * Only turning off any previous options.
1713		 */
1714		if (m)
1715			(void)m_free(m);
1716		return (0);
1717	}
1718
1719	if (m->m_len % sizeof(int32_t))
1720		goto bad;
1721	/*
1722	 * IP first-hop destination address will be stored before
1723	 * actual options; move other options back
1724	 * and clear it when none present.
1725	 */
1726	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1727		goto bad;
1728	cnt = m->m_len;
1729	m->m_len += sizeof(struct in_addr);
1730	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1731	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1732	bzero(mtod(m, void *), sizeof(struct in_addr));
1733
1734	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1735		opt = cp[IPOPT_OPTVAL];
1736		if (opt == IPOPT_EOL)
1737			break;
1738		if (opt == IPOPT_NOP)
1739			optlen = 1;
1740		else {
1741			if (cnt < IPOPT_OLEN + sizeof(*cp))
1742				goto bad;
1743			optlen = cp[IPOPT_OLEN];
1744			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1745				goto bad;
1746		}
1747		switch (opt) {
1748
1749		default:
1750			break;
1751
1752		case IPOPT_LSRR:
1753		case IPOPT_SSRR:
1754			/*
1755			 * user process specifies route as:
1756			 *	->A->B->C->D
1757			 * D must be our final destination (but we can't
1758			 * check that since we may not have connected yet).
1759			 * A is first hop destination, which doesn't appear in
1760			 * actual IP option, but is stored before the options.
1761			 */
1762			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1763				goto bad;
1764			m->m_len -= sizeof(struct in_addr);
1765			cnt -= sizeof(struct in_addr);
1766			optlen -= sizeof(struct in_addr);
1767			cp[IPOPT_OLEN] = optlen;
1768			/*
1769			 * Move first hop before start of options.
1770			 */
1771			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1772			    sizeof(struct in_addr));
1773			/*
1774			 * Then copy rest of options back
1775			 * to close up the deleted entry.
1776			 */
1777			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1778			    &cp[IPOPT_OFFSET+1],
1779			    (unsigned)cnt + sizeof(struct in_addr));
1780			break;
1781		}
1782	}
1783	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1784		goto bad;
1785	*pcbopt = m;
1786	return (0);
1787
1788bad:
1789	(void)m_free(m);
1790	return (EINVAL);
1791}
1792
1793/*
1794 * XXX
1795 * The whole multicast option thing needs to be re-thought.
1796 * Several of these options are equally applicable to non-multicast
1797 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1798 * standard option (IP_TTL).
1799 */
1800
1801/*
1802 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1803 */
1804static struct ifnet *
1805ip_multicast_if(a, ifindexp)
1806	struct in_addr *a;
1807	int *ifindexp;
1808{
1809	int ifindex;
1810	struct ifnet *ifp;
1811
1812	if (ifindexp)
1813		*ifindexp = 0;
1814	if (ntohl(a->s_addr) >> 24 == 0) {
1815		ifindex = ntohl(a->s_addr) & 0xffffff;
1816		if (ifindex < 0 || if_index < ifindex)
1817			return NULL;
1818		ifp = ifnet_byindex(ifindex);
1819		if (ifindexp)
1820			*ifindexp = ifindex;
1821	} else {
1822		INADDR_TO_IFP(*a, ifp);
1823	}
1824	return ifp;
1825}
1826
1827/*
1828 * Set the IP multicast options in response to user setsockopt().
1829 */
1830static int
1831ip_setmoptions(sopt, imop)
1832	struct sockopt *sopt;
1833	struct ip_moptions **imop;
1834{
1835	int error = 0;
1836	int i;
1837	struct in_addr addr;
1838	struct ip_mreq mreq;
1839	struct ifnet *ifp;
1840	struct ip_moptions *imo = *imop;
1841	struct route ro;
1842	struct sockaddr_in *dst;
1843	int ifindex;
1844	int s;
1845
1846	if (imo == NULL) {
1847		/*
1848		 * No multicast option buffer attached to the pcb;
1849		 * allocate one and initialize to default values.
1850		 */
1851		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1852		    M_WAITOK);
1853
1854		if (imo == NULL)
1855			return (ENOBUFS);
1856		*imop = imo;
1857		imo->imo_multicast_ifp = NULL;
1858		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1859		imo->imo_multicast_vif = -1;
1860		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1861		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1862		imo->imo_num_memberships = 0;
1863	}
1864
1865	switch (sopt->sopt_name) {
1866	/* store an index number for the vif you wanna use in the send */
1867	case IP_MULTICAST_VIF:
1868		if (legal_vif_num == 0) {
1869			error = EOPNOTSUPP;
1870			break;
1871		}
1872		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1873		if (error)
1874			break;
1875		if (!legal_vif_num(i) && (i != -1)) {
1876			error = EINVAL;
1877			break;
1878		}
1879		imo->imo_multicast_vif = i;
1880		break;
1881
1882	case IP_MULTICAST_IF:
1883		/*
1884		 * Select the interface for outgoing multicast packets.
1885		 */
1886		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1887		if (error)
1888			break;
1889		/*
1890		 * INADDR_ANY is used to remove a previous selection.
1891		 * When no interface is selected, a default one is
1892		 * chosen every time a multicast packet is sent.
1893		 */
1894		if (addr.s_addr == INADDR_ANY) {
1895			imo->imo_multicast_ifp = NULL;
1896			break;
1897		}
1898		/*
1899		 * The selected interface is identified by its local
1900		 * IP address.  Find the interface and confirm that
1901		 * it supports multicasting.
1902		 */
1903		s = splimp();
1904		ifp = ip_multicast_if(&addr, &ifindex);
1905		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1906			splx(s);
1907			error = EADDRNOTAVAIL;
1908			break;
1909		}
1910		imo->imo_multicast_ifp = ifp;
1911		if (ifindex)
1912			imo->imo_multicast_addr = addr;
1913		else
1914			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1915		splx(s);
1916		break;
1917
1918	case IP_MULTICAST_TTL:
1919		/*
1920		 * Set the IP time-to-live for outgoing multicast packets.
1921		 * The original multicast API required a char argument,
1922		 * which is inconsistent with the rest of the socket API.
1923		 * We allow either a char or an int.
1924		 */
1925		if (sopt->sopt_valsize == 1) {
1926			u_char ttl;
1927			error = sooptcopyin(sopt, &ttl, 1, 1);
1928			if (error)
1929				break;
1930			imo->imo_multicast_ttl = ttl;
1931		} else {
1932			u_int ttl;
1933			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1934					    sizeof ttl);
1935			if (error)
1936				break;
1937			if (ttl > 255)
1938				error = EINVAL;
1939			else
1940				imo->imo_multicast_ttl = ttl;
1941		}
1942		break;
1943
1944	case IP_MULTICAST_LOOP:
1945		/*
1946		 * Set the loopback flag for outgoing multicast packets.
1947		 * Must be zero or one.  The original multicast API required a
1948		 * char argument, which is inconsistent with the rest
1949		 * of the socket API.  We allow either a char or an int.
1950		 */
1951		if (sopt->sopt_valsize == 1) {
1952			u_char loop;
1953			error = sooptcopyin(sopt, &loop, 1, 1);
1954			if (error)
1955				break;
1956			imo->imo_multicast_loop = !!loop;
1957		} else {
1958			u_int loop;
1959			error = sooptcopyin(sopt, &loop, sizeof loop,
1960					    sizeof loop);
1961			if (error)
1962				break;
1963			imo->imo_multicast_loop = !!loop;
1964		}
1965		break;
1966
1967	case IP_ADD_MEMBERSHIP:
1968		/*
1969		 * Add a multicast group membership.
1970		 * Group must be a valid IP multicast address.
1971		 */
1972		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1973		if (error)
1974			break;
1975
1976		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1977			error = EINVAL;
1978			break;
1979		}
1980		s = splimp();
1981		/*
1982		 * If no interface address was provided, use the interface of
1983		 * the route to the given multicast address.
1984		 */
1985		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1986			bzero((caddr_t)&ro, sizeof(ro));
1987			dst = (struct sockaddr_in *)&ro.ro_dst;
1988			dst->sin_len = sizeof(*dst);
1989			dst->sin_family = AF_INET;
1990			dst->sin_addr = mreq.imr_multiaddr;
1991			rtalloc(&ro);
1992			if (ro.ro_rt == NULL) {
1993				error = EADDRNOTAVAIL;
1994				splx(s);
1995				break;
1996			}
1997			ifp = ro.ro_rt->rt_ifp;
1998			RTFREE(ro.ro_rt);
1999		}
2000		else {
2001			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2002		}
2003
2004		/*
2005		 * See if we found an interface, and confirm that it
2006		 * supports multicast.
2007		 */
2008		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2009			error = EADDRNOTAVAIL;
2010			splx(s);
2011			break;
2012		}
2013		/*
2014		 * See if the membership already exists or if all the
2015		 * membership slots are full.
2016		 */
2017		for (i = 0; i < imo->imo_num_memberships; ++i) {
2018			if (imo->imo_membership[i]->inm_ifp == ifp &&
2019			    imo->imo_membership[i]->inm_addr.s_addr
2020						== mreq.imr_multiaddr.s_addr)
2021				break;
2022		}
2023		if (i < imo->imo_num_memberships) {
2024			error = EADDRINUSE;
2025			splx(s);
2026			break;
2027		}
2028		if (i == IP_MAX_MEMBERSHIPS) {
2029			error = ETOOMANYREFS;
2030			splx(s);
2031			break;
2032		}
2033		/*
2034		 * Everything looks good; add a new record to the multicast
2035		 * address list for the given interface.
2036		 */
2037		if ((imo->imo_membership[i] =
2038		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2039			error = ENOBUFS;
2040			splx(s);
2041			break;
2042		}
2043		++imo->imo_num_memberships;
2044		splx(s);
2045		break;
2046
2047	case IP_DROP_MEMBERSHIP:
2048		/*
2049		 * Drop a multicast group membership.
2050		 * Group must be a valid IP multicast address.
2051		 */
2052		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2053		if (error)
2054			break;
2055
2056		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2057			error = EINVAL;
2058			break;
2059		}
2060
2061		s = splimp();
2062		/*
2063		 * If an interface address was specified, get a pointer
2064		 * to its ifnet structure.
2065		 */
2066		if (mreq.imr_interface.s_addr == INADDR_ANY)
2067			ifp = NULL;
2068		else {
2069			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2070			if (ifp == NULL) {
2071				error = EADDRNOTAVAIL;
2072				splx(s);
2073				break;
2074			}
2075		}
2076		/*
2077		 * Find the membership in the membership array.
2078		 */
2079		for (i = 0; i < imo->imo_num_memberships; ++i) {
2080			if ((ifp == NULL ||
2081			     imo->imo_membership[i]->inm_ifp == ifp) &&
2082			     imo->imo_membership[i]->inm_addr.s_addr ==
2083			     mreq.imr_multiaddr.s_addr)
2084				break;
2085		}
2086		if (i == imo->imo_num_memberships) {
2087			error = EADDRNOTAVAIL;
2088			splx(s);
2089			break;
2090		}
2091		/*
2092		 * Give up the multicast address record to which the
2093		 * membership points.
2094		 */
2095		in_delmulti(imo->imo_membership[i]);
2096		/*
2097		 * Remove the gap in the membership array.
2098		 */
2099		for (++i; i < imo->imo_num_memberships; ++i)
2100			imo->imo_membership[i-1] = imo->imo_membership[i];
2101		--imo->imo_num_memberships;
2102		splx(s);
2103		break;
2104
2105	default:
2106		error = EOPNOTSUPP;
2107		break;
2108	}
2109
2110	/*
2111	 * If all options have default values, no need to keep the mbuf.
2112	 */
2113	if (imo->imo_multicast_ifp == NULL &&
2114	    imo->imo_multicast_vif == -1 &&
2115	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2116	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2117	    imo->imo_num_memberships == 0) {
2118		free(*imop, M_IPMOPTS);
2119		*imop = NULL;
2120	}
2121
2122	return (error);
2123}
2124
2125/*
2126 * Return the IP multicast options in response to user getsockopt().
2127 */
2128static int
2129ip_getmoptions(sopt, imo)
2130	struct sockopt *sopt;
2131	register struct ip_moptions *imo;
2132{
2133	struct in_addr addr;
2134	struct in_ifaddr *ia;
2135	int error, optval;
2136	u_char coptval;
2137
2138	error = 0;
2139	switch (sopt->sopt_name) {
2140	case IP_MULTICAST_VIF:
2141		if (imo != NULL)
2142			optval = imo->imo_multicast_vif;
2143		else
2144			optval = -1;
2145		error = sooptcopyout(sopt, &optval, sizeof optval);
2146		break;
2147
2148	case IP_MULTICAST_IF:
2149		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2150			addr.s_addr = INADDR_ANY;
2151		else if (imo->imo_multicast_addr.s_addr) {
2152			/* return the value user has set */
2153			addr = imo->imo_multicast_addr;
2154		} else {
2155			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2156			addr.s_addr = (ia == NULL) ? INADDR_ANY
2157				: IA_SIN(ia)->sin_addr.s_addr;
2158		}
2159		error = sooptcopyout(sopt, &addr, sizeof addr);
2160		break;
2161
2162	case IP_MULTICAST_TTL:
2163		if (imo == 0)
2164			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2165		else
2166			optval = coptval = imo->imo_multicast_ttl;
2167		if (sopt->sopt_valsize == 1)
2168			error = sooptcopyout(sopt, &coptval, 1);
2169		else
2170			error = sooptcopyout(sopt, &optval, sizeof optval);
2171		break;
2172
2173	case IP_MULTICAST_LOOP:
2174		if (imo == 0)
2175			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2176		else
2177			optval = coptval = imo->imo_multicast_loop;
2178		if (sopt->sopt_valsize == 1)
2179			error = sooptcopyout(sopt, &coptval, 1);
2180		else
2181			error = sooptcopyout(sopt, &optval, sizeof optval);
2182		break;
2183
2184	default:
2185		error = ENOPROTOOPT;
2186		break;
2187	}
2188	return (error);
2189}
2190
2191/*
2192 * Discard the IP multicast options.
2193 */
2194void
2195ip_freemoptions(imo)
2196	register struct ip_moptions *imo;
2197{
2198	register int i;
2199
2200	if (imo != NULL) {
2201		for (i = 0; i < imo->imo_num_memberships; ++i)
2202			in_delmulti(imo->imo_membership[i]);
2203		free(imo, M_IPMOPTS);
2204	}
2205}
2206
2207/*
2208 * Routine called from ip_output() to loop back a copy of an IP multicast
2209 * packet to the input queue of a specified interface.  Note that this
2210 * calls the output routine of the loopback "driver", but with an interface
2211 * pointer that might NOT be a loopback interface -- evil, but easier than
2212 * replicating that code here.
2213 */
2214static void
2215ip_mloopback(ifp, m, dst, hlen)
2216	struct ifnet *ifp;
2217	register struct mbuf *m;
2218	register struct sockaddr_in *dst;
2219	int hlen;
2220{
2221	register struct ip *ip;
2222	struct mbuf *copym;
2223
2224	copym = m_copy(m, 0, M_COPYALL);
2225	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2226		copym = m_pullup(copym, hlen);
2227	if (copym != NULL) {
2228		/*
2229		 * We don't bother to fragment if the IP length is greater
2230		 * than the interface's MTU.  Can this possibly matter?
2231		 */
2232		ip = mtod(copym, struct ip *);
2233		ip->ip_len = htons(ip->ip_len);
2234		ip->ip_off = htons(ip->ip_off);
2235		ip->ip_sum = 0;
2236		ip->ip_sum = in_cksum(copym, hlen);
2237		/*
2238		 * NB:
2239		 * It's not clear whether there are any lingering
2240		 * reentrancy problems in other areas which might
2241		 * be exposed by using ip_input directly (in
2242		 * particular, everything which modifies the packet
2243		 * in-place).  Yet another option is using the
2244		 * protosw directly to deliver the looped back
2245		 * packet.  For the moment, we'll err on the side
2246		 * of safety by using if_simloop().
2247		 */
2248#if 1 /* XXX */
2249		if (dst->sin_family != AF_INET) {
2250			printf("ip_mloopback: bad address family %d\n",
2251						dst->sin_family);
2252			dst->sin_family = AF_INET;
2253		}
2254#endif
2255
2256#ifdef notdef
2257		copym->m_pkthdr.rcvif = ifp;
2258		ip_input(copym);
2259#else
2260		/* if the checksum hasn't been computed, mark it as valid */
2261		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2262			copym->m_pkthdr.csum_flags |=
2263			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2264			copym->m_pkthdr.csum_data = 0xffff;
2265		}
2266		if_simloop(ifp, copym, dst->sin_family, 0);
2267#endif
2268	}
2269}
2270