ip_output.c revision 121972
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 * $FreeBSD: head/sys/netinet/ip_output.c 121972 2003-11-03 18:03:05Z rwatson $
35 */
36
37#include "opt_ipfw.h"
38#include "opt_ipdn.h"
39#include "opt_ipdivert.h"
40#include "opt_ipfilter.h"
41#include "opt_ipsec.h"
42#include "opt_mac.h"
43#include "opt_pfil_hooks.h"
44#include "opt_random_ip_id.h"
45#include "opt_mbuf_stress_test.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/kernel.h>
50#include <sys/mac.h>
51#include <sys/malloc.h>
52#include <sys/mbuf.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/sysctl.h>
57
58#include <net/if.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_var.h>
66#include <netinet/ip_var.h>
67
68#ifdef PFIL_HOOKS
69#include <net/pfil.h>
70#endif
71
72#include <machine/in_cksum.h>
73
74static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
75
76#ifdef IPSEC
77#include <netinet6/ipsec.h>
78#include <netkey/key.h>
79#ifdef IPSEC_DEBUG
80#include <netkey/key_debug.h>
81#else
82#define	KEYDEBUG(lev,arg)
83#endif
84#endif /*IPSEC*/
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#include <netipsec/xform.h>
89#include <netipsec/key.h>
90#endif /*FAST_IPSEC*/
91
92#include <netinet/ip_fw.h>
93#include <netinet/ip_dummynet.h>
94
95#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
96				x, (ntohl(a.s_addr)>>24)&0xFF,\
97				  (ntohl(a.s_addr)>>16)&0xFF,\
98				  (ntohl(a.s_addr)>>8)&0xFF,\
99				  (ntohl(a.s_addr))&0xFF, y);
100
101u_short ip_id;
102
103#ifdef MBUF_STRESS_TEST
104int mbuf_frag_size = 0;
105SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
106	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
107#endif
108
109static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
110static struct ifnet *ip_multicast_if(struct in_addr *, int *);
111static void	ip_mloopback
112	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
113static int	ip_getmoptions
114	(struct sockopt *, struct ip_moptions *);
115static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
116static int	ip_setmoptions
117	(struct sockopt *, struct ip_moptions **);
118
119int	ip_optcopy(struct ip *, struct ip *);
120
121
122extern	struct protosw inetsw[];
123
124/*
125 * IP output.  The packet in mbuf chain m contains a skeletal IP
126 * header (with len, off, ttl, proto, tos, src, dst).
127 * The mbuf chain containing the packet will be freed.
128 * The mbuf opt, if present, will not be freed.
129 * In the IP forwarding case, the packet will arrive with options already
130 * inserted, so must have a NULL opt pointer.
131 */
132int
133ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
134	int flags, struct ip_moptions *imo, struct inpcb *inp)
135{
136	struct ip *ip;
137	struct ifnet *ifp = NULL;	/* keep compiler happy */
138	struct mbuf *m;
139	int hlen = sizeof (struct ip);
140	int len, off, error = 0;
141	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
142	struct in_ifaddr *ia = NULL;
143	int isbroadcast, sw_csum;
144	struct in_addr pkt_dst;
145#ifdef IPSEC
146	struct route iproute;
147	struct secpolicy *sp = NULL;
148#endif
149#ifdef FAST_IPSEC
150	struct route iproute;
151	struct m_tag *mtag;
152	struct secpolicy *sp = NULL;
153	struct tdb_ident *tdbi;
154	int s;
155#endif /* FAST_IPSEC */
156	struct ip_fw_args args;
157	int src_was_INADDR_ANY = 0;	/* as the name says... */
158
159	args.eh = NULL;
160	args.rule = NULL;
161	args.next_hop = NULL;
162	args.divert_rule = 0;			/* divert cookie */
163
164	/* Grab info from MT_TAG mbufs prepended to the chain. */
165	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
166		switch(m0->_m_tag_id) {
167		default:
168			printf("ip_output: unrecognised MT_TAG tag %d\n",
169			    m0->_m_tag_id);
170			break;
171
172		case PACKET_TAG_DUMMYNET:
173			/*
174			 * the packet was already tagged, so part of the
175			 * processing was already done, and we need to go down.
176			 * Get parameters from the header.
177			 */
178			args.rule = ((struct dn_pkt *)m0)->rule;
179			opt = NULL ;
180			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
181			imo = NULL ;
182			dst = ((struct dn_pkt *)m0)->dn_dst ;
183			ifp = ((struct dn_pkt *)m0)->ifp ;
184			flags = ((struct dn_pkt *)m0)->flags ;
185			break;
186
187		case PACKET_TAG_DIVERT:
188			args.divert_rule = (intptr_t)m0->m_data & 0xffff;
189			break;
190
191		case PACKET_TAG_IPFORWARD:
192			args.next_hop = (struct sockaddr_in *)m0->m_data;
193			break;
194		}
195	}
196	m = m0;
197
198	M_ASSERTPKTHDR(m);
199#ifndef FAST_IPSEC
200	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
201	    mtod(m, struct ip *)->ip_p));
202#endif
203
204	if (args.rule != NULL) {	/* dummynet already saw us */
205		ip = mtod(m, struct ip *);
206		hlen = ip->ip_hl << 2 ;
207		if (ro->ro_rt)
208			ia = ifatoia(ro->ro_rt->rt_ifa);
209		goto sendit;
210	}
211
212	if (opt) {
213		len = 0;
214		m = ip_insertoptions(m, opt, &len);
215		if (len != 0)
216			hlen = len;
217	}
218	ip = mtod(m, struct ip *);
219	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
220
221	/*
222	 * Fill in IP header.  If we are not allowing fragmentation,
223	 * then the ip_id field is meaningless, so send it as zero
224	 * to reduce information leakage.  Otherwise, if we are not
225	 * randomizing ip_id, then don't bother to convert it to network
226	 * byte order -- it's just a nonce.  Note that a 16-bit counter
227	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
228	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
229	 * for Counting NATted Hosts", Proc. IMW'02, available at
230	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
231	 */
232	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
233		ip->ip_v = IPVERSION;
234		ip->ip_hl = hlen >> 2;
235		if ((ip->ip_off & IP_DF) == 0) {
236			ip->ip_off = 0;
237#ifdef RANDOM_IP_ID
238			ip->ip_id = ip_randomid();
239#else
240			ip->ip_id = ip_id++;
241#endif
242		} else {
243			ip->ip_off = IP_DF;
244			ip->ip_id = 0;
245		}
246		ipstat.ips_localout++;
247	} else {
248		hlen = ip->ip_hl << 2;
249	}
250
251#ifdef FAST_IPSEC
252	if (ro == NULL) {
253		ro = &iproute;
254		bzero(ro, sizeof (*ro));
255	}
256#endif /* FAST_IPSEC */
257	dst = (struct sockaddr_in *)&ro->ro_dst;
258	/*
259	 * If there is a cached route,
260	 * check that it is to the same destination
261	 * and is still up.  If not, free it and try again.
262	 * The address family should also be checked in case of sharing the
263	 * cache with IPv6.
264	 */
265	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
266			  dst->sin_family != AF_INET ||
267			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
268		RTFREE(ro->ro_rt);
269		ro->ro_rt = (struct rtentry *)0;
270	}
271	if (ro->ro_rt == 0) {
272		bzero(dst, sizeof(*dst));
273		dst->sin_family = AF_INET;
274		dst->sin_len = sizeof(*dst);
275		dst->sin_addr = pkt_dst;
276	}
277	/*
278	 * If routing to interface only,
279	 * short circuit routing lookup.
280	 */
281	if (flags & IP_ROUTETOIF) {
282		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
283		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
284			ipstat.ips_noroute++;
285			error = ENETUNREACH;
286			goto bad;
287		}
288		ifp = ia->ia_ifp;
289		ip->ip_ttl = 1;
290		isbroadcast = in_broadcast(dst->sin_addr, ifp);
291	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
292	    imo != NULL && imo->imo_multicast_ifp != NULL) {
293		/*
294		 * Bypass the normal routing lookup for multicast
295		 * packets if the interface is specified.
296		 */
297		ifp = imo->imo_multicast_ifp;
298		IFP_TO_IA(ifp, ia);
299		isbroadcast = 0;	/* fool gcc */
300	} else {
301		/*
302		 * If this is the case, we probably don't want to allocate
303		 * a protocol-cloned route since we didn't get one from the
304		 * ULP.  This lets TCP do its thing, while not burdening
305		 * forwarding or ICMP with the overhead of cloning a route.
306		 * Of course, we still want to do any cloning requested by
307		 * the link layer, as this is probably required in all cases
308		 * for correct operation (as it is for ARP).
309		 */
310		if (ro->ro_rt == 0)
311			rtalloc_ign(ro, RTF_PRCLONING);
312		if (ro->ro_rt == 0) {
313			ipstat.ips_noroute++;
314			error = EHOSTUNREACH;
315			goto bad;
316		}
317		ia = ifatoia(ro->ro_rt->rt_ifa);
318		ifp = ro->ro_rt->rt_ifp;
319		ro->ro_rt->rt_use++;
320		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
321			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
322		if (ro->ro_rt->rt_flags & RTF_HOST)
323			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
324		else
325			isbroadcast = in_broadcast(dst->sin_addr, ifp);
326	}
327	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
328		struct in_multi *inm;
329
330		m->m_flags |= M_MCAST;
331		/*
332		 * IP destination address is multicast.  Make sure "dst"
333		 * still points to the address in "ro".  (It may have been
334		 * changed to point to a gateway address, above.)
335		 */
336		dst = (struct sockaddr_in *)&ro->ro_dst;
337		/*
338		 * See if the caller provided any multicast options
339		 */
340		if (imo != NULL) {
341			ip->ip_ttl = imo->imo_multicast_ttl;
342			if (imo->imo_multicast_vif != -1)
343				ip->ip_src.s_addr =
344				    ip_mcast_src ?
345				    ip_mcast_src(imo->imo_multicast_vif) :
346				    INADDR_ANY;
347		} else
348			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
349		/*
350		 * Confirm that the outgoing interface supports multicast.
351		 */
352		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
353			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
354				ipstat.ips_noroute++;
355				error = ENETUNREACH;
356				goto bad;
357			}
358		}
359		/*
360		 * If source address not specified yet, use address
361		 * of outgoing interface.
362		 */
363		if (ip->ip_src.s_addr == INADDR_ANY) {
364			/* Interface may have no addresses. */
365			if (ia != NULL)
366				ip->ip_src = IA_SIN(ia)->sin_addr;
367		}
368
369		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
370			/*
371			 * XXX
372			 * delayed checksums are not currently
373			 * compatible with IP multicast routing
374			 */
375			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
376				in_delayed_cksum(m);
377				m->m_pkthdr.csum_flags &=
378					~CSUM_DELAY_DATA;
379			}
380		}
381		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
382		if (inm != NULL &&
383		   (imo == NULL || imo->imo_multicast_loop)) {
384			/*
385			 * If we belong to the destination multicast group
386			 * on the outgoing interface, and the caller did not
387			 * forbid loopback, loop back a copy.
388			 */
389			ip_mloopback(ifp, m, dst, hlen);
390		}
391		else {
392			/*
393			 * If we are acting as a multicast router, perform
394			 * multicast forwarding as if the packet had just
395			 * arrived on the interface to which we are about
396			 * to send.  The multicast forwarding function
397			 * recursively calls this function, using the
398			 * IP_FORWARDING flag to prevent infinite recursion.
399			 *
400			 * Multicasts that are looped back by ip_mloopback(),
401			 * above, will be forwarded by the ip_input() routine,
402			 * if necessary.
403			 */
404			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
405				/*
406				 * If rsvp daemon is not running, do not
407				 * set ip_moptions. This ensures that the packet
408				 * is multicast and not just sent down one link
409				 * as prescribed by rsvpd.
410				 */
411				if (!rsvp_on)
412					imo = NULL;
413				if (ip_mforward &&
414				    ip_mforward(ip, ifp, m, imo) != 0) {
415					m_freem(m);
416					goto done;
417				}
418			}
419		}
420
421		/*
422		 * Multicasts with a time-to-live of zero may be looped-
423		 * back, above, but must not be transmitted on a network.
424		 * Also, multicasts addressed to the loopback interface
425		 * are not sent -- the above call to ip_mloopback() will
426		 * loop back a copy if this host actually belongs to the
427		 * destination group on the loopback interface.
428		 */
429		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
430			m_freem(m);
431			goto done;
432		}
433
434		goto sendit;
435	}
436#ifndef notdef
437	/*
438	 * If the source address is not specified yet, use the address
439	 * of the outoing interface. In case, keep note we did that, so
440	 * if the the firewall changes the next-hop causing the output
441	 * interface to change, we can fix that.
442	 */
443	if (ip->ip_src.s_addr == INADDR_ANY) {
444		/* Interface may have no addresses. */
445		if (ia != NULL) {
446			ip->ip_src = IA_SIN(ia)->sin_addr;
447			src_was_INADDR_ANY = 1;
448		}
449	}
450#endif /* notdef */
451	/*
452	 * Verify that we have any chance at all of being able to queue
453	 *      the packet or packet fragments
454	 */
455	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
456		ifp->if_snd.ifq_maxlen) {
457			error = ENOBUFS;
458			ipstat.ips_odropped++;
459			goto bad;
460	}
461
462	/*
463	 * Look for broadcast address and
464	 * verify user is allowed to send
465	 * such a packet.
466	 */
467	if (isbroadcast) {
468		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
469			error = EADDRNOTAVAIL;
470			goto bad;
471		}
472		if ((flags & IP_ALLOWBROADCAST) == 0) {
473			error = EACCES;
474			goto bad;
475		}
476		/* don't allow broadcast messages to be fragmented */
477		if (ip->ip_len > ifp->if_mtu) {
478			error = EMSGSIZE;
479			goto bad;
480		}
481		if (flags & IP_SENDONES)
482			ip->ip_dst.s_addr = INADDR_BROADCAST;
483		m->m_flags |= M_BCAST;
484	} else {
485		m->m_flags &= ~M_BCAST;
486	}
487
488sendit:
489#ifdef IPSEC
490	/* get SP for this packet */
491	if (inp == NULL)
492		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
493	else
494		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
495
496	if (sp == NULL) {
497		ipsecstat.out_inval++;
498		goto bad;
499	}
500
501	error = 0;
502
503	/* check policy */
504	switch (sp->policy) {
505	case IPSEC_POLICY_DISCARD:
506		/*
507		 * This packet is just discarded.
508		 */
509		ipsecstat.out_polvio++;
510		goto bad;
511
512	case IPSEC_POLICY_BYPASS:
513	case IPSEC_POLICY_NONE:
514		/* no need to do IPsec. */
515		goto skip_ipsec;
516
517	case IPSEC_POLICY_IPSEC:
518		if (sp->req == NULL) {
519			/* acquire a policy */
520			error = key_spdacquire(sp);
521			goto bad;
522		}
523		break;
524
525	case IPSEC_POLICY_ENTRUST:
526	default:
527		printf("ip_output: Invalid policy found. %d\n", sp->policy);
528	}
529    {
530	struct ipsec_output_state state;
531	bzero(&state, sizeof(state));
532	state.m = m;
533	if (flags & IP_ROUTETOIF) {
534		state.ro = &iproute;
535		bzero(&iproute, sizeof(iproute));
536	} else
537		state.ro = ro;
538	state.dst = (struct sockaddr *)dst;
539
540	ip->ip_sum = 0;
541
542	/*
543	 * XXX
544	 * delayed checksums are not currently compatible with IPsec
545	 */
546	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
547		in_delayed_cksum(m);
548		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
549	}
550
551	ip->ip_len = htons(ip->ip_len);
552	ip->ip_off = htons(ip->ip_off);
553
554	error = ipsec4_output(&state, sp, flags);
555
556	m = state.m;
557	if (flags & IP_ROUTETOIF) {
558		/*
559		 * if we have tunnel mode SA, we may need to ignore
560		 * IP_ROUTETOIF.
561		 */
562		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
563			flags &= ~IP_ROUTETOIF;
564			ro = state.ro;
565		}
566	} else
567		ro = state.ro;
568	dst = (struct sockaddr_in *)state.dst;
569	if (error) {
570		/* mbuf is already reclaimed in ipsec4_output. */
571		m0 = NULL;
572		switch (error) {
573		case EHOSTUNREACH:
574		case ENETUNREACH:
575		case EMSGSIZE:
576		case ENOBUFS:
577		case ENOMEM:
578			break;
579		default:
580			printf("ip4_output (ipsec): error code %d\n", error);
581			/*fall through*/
582		case ENOENT:
583			/* don't show these error codes to the user */
584			error = 0;
585			break;
586		}
587		goto bad;
588	}
589    }
590
591	/* be sure to update variables that are affected by ipsec4_output() */
592	ip = mtod(m, struct ip *);
593	hlen = ip->ip_hl << 2;
594	if (ro->ro_rt == NULL) {
595		if ((flags & IP_ROUTETOIF) == 0) {
596			printf("ip_output: "
597				"can't update route after IPsec processing\n");
598			error = EHOSTUNREACH;	/*XXX*/
599			goto bad;
600		}
601	} else {
602		ia = ifatoia(ro->ro_rt->rt_ifa);
603		ifp = ro->ro_rt->rt_ifp;
604	}
605
606	/* make it flipped, again. */
607	ip->ip_len = ntohs(ip->ip_len);
608	ip->ip_off = ntohs(ip->ip_off);
609skip_ipsec:
610#endif /*IPSEC*/
611#ifdef FAST_IPSEC
612	/*
613	 * Check the security policy (SP) for the packet and, if
614	 * required, do IPsec-related processing.  There are two
615	 * cases here; the first time a packet is sent through
616	 * it will be untagged and handled by ipsec4_checkpolicy.
617	 * If the packet is resubmitted to ip_output (e.g. after
618	 * AH, ESP, etc. processing), there will be a tag to bypass
619	 * the lookup and related policy checking.
620	 */
621	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
622	s = splnet();
623	if (mtag != NULL) {
624		tdbi = (struct tdb_ident *)(mtag + 1);
625		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
626		if (sp == NULL)
627			error = -EINVAL;	/* force silent drop */
628		m_tag_delete(m, mtag);
629	} else {
630		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
631					&error, inp);
632	}
633	/*
634	 * There are four return cases:
635	 *    sp != NULL	 	    apply IPsec policy
636	 *    sp == NULL, error == 0	    no IPsec handling needed
637	 *    sp == NULL, error == -EINVAL  discard packet w/o error
638	 *    sp == NULL, error != 0	    discard packet, report error
639	 */
640	if (sp != NULL) {
641		/* Loop detection, check if ipsec processing already done */
642		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
643		for (mtag = m_tag_first(m); mtag != NULL;
644		     mtag = m_tag_next(m, mtag)) {
645			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
646				continue;
647			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
648			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
649				continue;
650			/*
651			 * Check if policy has an SA associated with it.
652			 * This can happen when an SP has yet to acquire
653			 * an SA; e.g. on first reference.  If it occurs,
654			 * then we let ipsec4_process_packet do its thing.
655			 */
656			if (sp->req->sav == NULL)
657				break;
658			tdbi = (struct tdb_ident *)(mtag + 1);
659			if (tdbi->spi == sp->req->sav->spi &&
660			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
661			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
662				 sizeof (union sockaddr_union)) == 0) {
663				/*
664				 * No IPsec processing is needed, free
665				 * reference to SP.
666				 *
667				 * NB: null pointer to avoid free at
668				 *     done: below.
669				 */
670				KEY_FREESP(&sp), sp = NULL;
671				splx(s);
672				goto spd_done;
673			}
674		}
675
676		/*
677		 * Do delayed checksums now because we send before
678		 * this is done in the normal processing path.
679		 */
680		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
681			in_delayed_cksum(m);
682			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
683		}
684
685		ip->ip_len = htons(ip->ip_len);
686		ip->ip_off = htons(ip->ip_off);
687
688		/* NB: callee frees mbuf */
689		error = ipsec4_process_packet(m, sp->req, flags, 0);
690		/*
691		 * Preserve KAME behaviour: ENOENT can be returned
692		 * when an SA acquire is in progress.  Don't propagate
693		 * this to user-level; it confuses applications.
694		 *
695		 * XXX this will go away when the SADB is redone.
696		 */
697		if (error == ENOENT)
698			error = 0;
699		splx(s);
700		goto done;
701	} else {
702		splx(s);
703
704		if (error != 0) {
705			/*
706			 * Hack: -EINVAL is used to signal that a packet
707			 * should be silently discarded.  This is typically
708			 * because we asked key management for an SA and
709			 * it was delayed (e.g. kicked up to IKE).
710			 */
711			if (error == -EINVAL)
712				error = 0;
713			goto bad;
714		} else {
715			/* No IPsec processing for this packet. */
716		}
717#ifdef notyet
718		/*
719		 * If deferred crypto processing is needed, check that
720		 * the interface supports it.
721		 */
722		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
723		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
724			/* notify IPsec to do its own crypto */
725			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
726			error = EHOSTUNREACH;
727			goto bad;
728		}
729#endif
730	}
731spd_done:
732#endif /* FAST_IPSEC */
733
734	/*
735	 * IpHack's section.
736	 * - Xlate: translate packet's addr/port (NAT).
737	 * - Firewall: deny/allow/etc.
738	 * - Wrap: fake packet's addr/port <unimpl.>
739	 * - Encapsulate: put it in another IP and send out. <unimp.>
740	 */
741#ifdef PFIL_HOOKS
742	/*
743	 * Run through list of hooks for output packets.
744	 */
745	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
746	if (error != 0 || m == NULL)
747		goto done;
748	ip = mtod(m, struct ip *);
749#endif /* PFIL_HOOKS */
750
751	/*
752	 * Check with the firewall...
753	 * but not if we are already being fwd'd from a firewall.
754	 */
755	if (fw_enable && IPFW_LOADED && !args.next_hop) {
756		struct sockaddr_in *old = dst;
757
758		args.m = m;
759		args.next_hop = dst;
760		args.oif = ifp;
761		off = ip_fw_chk_ptr(&args);
762		m = args.m;
763		dst = args.next_hop;
764
765                /*
766		 * On return we must do the following:
767		 * m == NULL	-> drop the pkt (old interface, deprecated)
768		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
769		 * 1<=off<= 0xffff		-> DIVERT
770		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
771		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
772		 * dst != old			-> IPFIREWALL_FORWARD
773		 * off==0, dst==old		-> accept
774		 * If some of the above modules are not compiled in, then
775		 * we should't have to check the corresponding condition
776		 * (because the ipfw control socket should not accept
777		 * unsupported rules), but better play safe and drop
778		 * packets in case of doubt.
779		 */
780		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
781			if (m)
782				m_freem(m);
783			error = EACCES;
784			goto done;
785		}
786		ip = mtod(m, struct ip *);
787		if (off == 0 && dst == old)		/* common case */
788			goto pass;
789                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
790			/*
791			 * pass the pkt to dummynet. Need to include
792			 * pipe number, m, ifp, ro, dst because these are
793			 * not recomputed in the next pass.
794			 * All other parameters have been already used and
795			 * so they are not needed anymore.
796			 * XXX note: if the ifp or ro entry are deleted
797			 * while a pkt is in dummynet, we are in trouble!
798			 */
799			args.ro = ro;
800			args.dst = dst;
801			args.flags = flags;
802
803			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
804				&args);
805			goto done;
806		}
807#ifdef IPDIVERT
808		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
809			struct mbuf *clone = NULL;
810
811			/* Clone packet if we're doing a 'tee' */
812			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
813				clone = m_dup(m, M_DONTWAIT);
814
815			/*
816			 * XXX
817			 * delayed checksums are not currently compatible
818			 * with divert sockets.
819			 */
820			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
821				in_delayed_cksum(m);
822				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
823			}
824
825			/* Restore packet header fields to original values */
826			ip->ip_len = htons(ip->ip_len);
827			ip->ip_off = htons(ip->ip_off);
828
829			/* Deliver packet to divert input routine */
830			divert_packet(m, 0, off & 0xffff, args.divert_rule);
831
832			/* If 'tee', continue with original packet */
833			if (clone != NULL) {
834				m = clone;
835				ip = mtod(m, struct ip *);
836				goto pass;
837			}
838			goto done;
839		}
840#endif
841
842		/* IPFIREWALL_FORWARD */
843		/*
844		 * Check dst to make sure it is directly reachable on the
845		 * interface we previously thought it was.
846		 * If it isn't (which may be likely in some situations) we have
847		 * to re-route it (ie, find a route for the next-hop and the
848		 * associated interface) and set them here. This is nested
849		 * forwarding which in most cases is undesirable, except where
850		 * such control is nigh impossible. So we do it here.
851		 * And I'm babbling.
852		 */
853		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
854#if 0
855			/*
856			 * XXX To improve readability, this block should be
857			 * changed into a function call as below:
858			 */
859			error = ip_ipforward(&m, &dst, &ifp);
860			if (error)
861				goto bad;
862			if (m == NULL) /* ip_input consumed the mbuf */
863				goto done;
864#else
865			struct in_ifaddr *ia;
866
867			/*
868			 * XXX sro_fwd below is static, and a pointer
869			 * to it gets passed to routines downstream.
870			 * This could have surprisingly bad results in
871			 * practice, because its content is overwritten
872			 * by subsequent packets.
873			 */
874			/* There must be a better way to do this next line... */
875			static struct route sro_fwd;
876			struct route *ro_fwd = &sro_fwd;
877
878#if 0
879			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
880			    dst->sin_addr, "\n");
881#endif
882
883			/*
884			 * We need to figure out if we have been forwarded
885			 * to a local socket. If so, then we should somehow
886			 * "loop back" to ip_input, and get directed to the
887			 * PCB as if we had received this packet. This is
888			 * because it may be dificult to identify the packets
889			 * you want to forward until they are being output
890			 * and have selected an interface. (e.g. locally
891			 * initiated packets) If we used the loopback inteface,
892			 * we would not be able to control what happens
893			 * as the packet runs through ip_input() as
894			 * it is done through an ISR.
895			 */
896			LIST_FOREACH(ia,
897			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
898				/*
899				 * If the addr to forward to is one
900				 * of ours, we pretend to
901				 * be the destination for this packet.
902				 */
903				if (IA_SIN(ia)->sin_addr.s_addr ==
904						 dst->sin_addr.s_addr)
905					break;
906			}
907			if (ia) {	/* tell ip_input "dont filter" */
908				struct m_hdr tag;
909
910				tag.mh_type = MT_TAG;
911				tag.mh_flags = PACKET_TAG_IPFORWARD;
912				tag.mh_data = (caddr_t)args.next_hop;
913				tag.mh_next = m;
914
915				if (m->m_pkthdr.rcvif == NULL)
916					m->m_pkthdr.rcvif = ifunit("lo0");
917				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
918					m->m_pkthdr.csum_flags |=
919					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
920					m0->m_pkthdr.csum_data = 0xffff;
921				}
922				m->m_pkthdr.csum_flags |=
923				    CSUM_IP_CHECKED | CSUM_IP_VALID;
924				ip->ip_len = htons(ip->ip_len);
925				ip->ip_off = htons(ip->ip_off);
926				ip_input((struct mbuf *)&tag);
927				goto done;
928			}
929			/* Some of the logic for this was
930			 * nicked from above.
931			 *
932			 * This rewrites the cached route in a local PCB.
933			 * Is this what we want to do?
934			 */
935			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
936
937			ro_fwd->ro_rt = 0;
938			rtalloc_ign(ro_fwd, RTF_PRCLONING);
939
940			if (ro_fwd->ro_rt == 0) {
941				ipstat.ips_noroute++;
942				error = EHOSTUNREACH;
943				goto bad;
944			}
945
946			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
947			ifp = ro_fwd->ro_rt->rt_ifp;
948			ro_fwd->ro_rt->rt_use++;
949			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
950				dst = (struct sockaddr_in *)
951					ro_fwd->ro_rt->rt_gateway;
952			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
953				isbroadcast =
954				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
955			else
956				isbroadcast = in_broadcast(dst->sin_addr, ifp);
957			if (ro->ro_rt)
958				RTFREE(ro->ro_rt);
959			ro->ro_rt = ro_fwd->ro_rt;
960			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
961
962#endif	/* ... block to be put into a function */
963			/*
964			 * If we added a default src ip earlier,
965			 * which would have been gotten from the-then
966			 * interface, do it again, from the new one.
967			 */
968			if (src_was_INADDR_ANY)
969				ip->ip_src = IA_SIN(ia)->sin_addr;
970			goto pass ;
971		}
972
973                /*
974                 * if we get here, none of the above matches, and
975                 * we have to drop the pkt
976                 */
977		m_freem(m);
978                error = EACCES; /* not sure this is the right error msg */
979                goto done;
980	}
981
982pass:
983	/* 127/8 must not appear on wire - RFC1122. */
984	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
985	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
986		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
987			ipstat.ips_badaddr++;
988			error = EADDRNOTAVAIL;
989			goto bad;
990		}
991	}
992
993	m->m_pkthdr.csum_flags |= CSUM_IP;
994	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
995	if (sw_csum & CSUM_DELAY_DATA) {
996		in_delayed_cksum(m);
997		sw_csum &= ~CSUM_DELAY_DATA;
998	}
999	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
1000
1001	/*
1002	 * If small enough for interface, or the interface will take
1003	 * care of the fragmentation for us, can just send directly.
1004	 */
1005	if (ip->ip_len <= ifp->if_mtu || ifp->if_hwassist & CSUM_FRAGMENT) {
1006		ip->ip_len = htons(ip->ip_len);
1007		ip->ip_off = htons(ip->ip_off);
1008		ip->ip_sum = 0;
1009		if (sw_csum & CSUM_DELAY_IP)
1010			ip->ip_sum = in_cksum(m, hlen);
1011
1012		/* Record statistics for this interface address. */
1013		if (!(flags & IP_FORWARDING) && ia) {
1014			ia->ia_ifa.if_opackets++;
1015			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1016		}
1017
1018#ifdef IPSEC
1019		/* clean ipsec history once it goes out of the node */
1020		ipsec_delaux(m);
1021#endif
1022
1023#ifdef MBUF_STRESS_TEST
1024		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
1025			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
1026#endif
1027		error = (*ifp->if_output)(ifp, m,
1028				(struct sockaddr *)dst, ro->ro_rt);
1029		goto done;
1030	}
1031
1032	if (ip->ip_off & IP_DF) {
1033		error = EMSGSIZE;
1034		/*
1035		 * This case can happen if the user changed the MTU
1036		 * of an interface after enabling IP on it.  Because
1037		 * most netifs don't keep track of routes pointing to
1038		 * them, there is no way for one to update all its
1039		 * routes when the MTU is changed.
1040		 */
1041		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1042		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1043		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1044			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1045		}
1046		ipstat.ips_cantfrag++;
1047		goto bad;
1048	}
1049
1050	/*
1051	 * Too large for interface; fragment if possible. If successful,
1052	 * on return, m will point to a list of packets to be sent.
1053	 */
1054	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1055	if (error)
1056		goto bad;
1057	for (; m; m = m0) {
1058		m0 = m->m_nextpkt;
1059		m->m_nextpkt = 0;
1060#ifdef IPSEC
1061		/* clean ipsec history once it goes out of the node */
1062		ipsec_delaux(m);
1063#endif
1064		if (error == 0) {
1065			/* Record statistics for this interface address. */
1066			if (ia != NULL) {
1067				ia->ia_ifa.if_opackets++;
1068				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1069			}
1070
1071			error = (*ifp->if_output)(ifp, m,
1072			    (struct sockaddr *)dst, ro->ro_rt);
1073		} else
1074			m_freem(m);
1075	}
1076
1077	if (error == 0)
1078		ipstat.ips_fragmented++;
1079
1080done:
1081#ifdef IPSEC
1082	if (ro == &iproute && ro->ro_rt) {
1083		RTFREE(ro->ro_rt);
1084		ro->ro_rt = NULL;
1085	}
1086	if (sp != NULL) {
1087		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1088			printf("DP ip_output call free SP:%p\n", sp));
1089		key_freesp(sp);
1090	}
1091#endif
1092#ifdef FAST_IPSEC
1093	if (ro == &iproute && ro->ro_rt) {
1094		RTFREE(ro->ro_rt);
1095		ro->ro_rt = NULL;
1096	}
1097	if (sp != NULL)
1098		KEY_FREESP(&sp);
1099#endif
1100	return (error);
1101bad:
1102	m_freem(m);
1103	goto done;
1104}
1105
1106/*
1107 * Create a chain of fragments which fit the given mtu. m_frag points to the
1108 * mbuf to be fragmented; on return it points to the chain with the fragments.
1109 * Return 0 if no error. If error, m_frag may contain a partially built
1110 * chain of fragments that should be freed by the caller.
1111 *
1112 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1113 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1114 */
1115int
1116ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1117	    u_long if_hwassist_flags, int sw_csum)
1118{
1119	int error = 0;
1120	int hlen = ip->ip_hl << 2;
1121	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1122	int off;
1123	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1124	int firstlen;
1125	struct mbuf **mnext;
1126	int nfrags;
1127
1128	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1129		ipstat.ips_cantfrag++;
1130		return EMSGSIZE;
1131	}
1132
1133	/*
1134	 * Must be able to put at least 8 bytes per fragment.
1135	 */
1136	if (len < 8)
1137		return EMSGSIZE;
1138
1139	/*
1140	 * If the interface will not calculate checksums on
1141	 * fragmented packets, then do it here.
1142	 */
1143	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1144	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1145		in_delayed_cksum(m0);
1146		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1147	}
1148
1149	if (len > PAGE_SIZE) {
1150		/*
1151		 * Fragment large datagrams such that each segment
1152		 * contains a multiple of PAGE_SIZE amount of data,
1153		 * plus headers. This enables a receiver to perform
1154		 * page-flipping zero-copy optimizations.
1155		 *
1156		 * XXX When does this help given that sender and receiver
1157		 * could have different page sizes, and also mtu could
1158		 * be less than the receiver's page size ?
1159		 */
1160		int newlen;
1161		struct mbuf *m;
1162
1163		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1164			off += m->m_len;
1165
1166		/*
1167		 * firstlen (off - hlen) must be aligned on an
1168		 * 8-byte boundary
1169		 */
1170		if (off < hlen)
1171			goto smart_frag_failure;
1172		off = ((off - hlen) & ~7) + hlen;
1173		newlen = (~PAGE_MASK) & mtu;
1174		if ((newlen + sizeof (struct ip)) > mtu) {
1175			/* we failed, go back the default */
1176smart_frag_failure:
1177			newlen = len;
1178			off = hlen + len;
1179		}
1180		len = newlen;
1181
1182	} else {
1183		off = hlen + len;
1184	}
1185
1186	firstlen = off - hlen;
1187	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1188
1189	/*
1190	 * Loop through length of segment after first fragment,
1191	 * make new header and copy data of each part and link onto chain.
1192	 * Here, m0 is the original packet, m is the fragment being created.
1193	 * The fragments are linked off the m_nextpkt of the original
1194	 * packet, which after processing serves as the first fragment.
1195	 */
1196	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1197		struct ip *mhip;	/* ip header on the fragment */
1198		struct mbuf *m;
1199		int mhlen = sizeof (struct ip);
1200
1201		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1202		if (m == 0) {
1203			error = ENOBUFS;
1204			ipstat.ips_odropped++;
1205			goto done;
1206		}
1207		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1208		/*
1209		 * In the first mbuf, leave room for the link header, then
1210		 * copy the original IP header including options. The payload
1211		 * goes into an additional mbuf chain returned by m_copy().
1212		 */
1213		m->m_data += max_linkhdr;
1214		mhip = mtod(m, struct ip *);
1215		*mhip = *ip;
1216		if (hlen > sizeof (struct ip)) {
1217			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1218			mhip->ip_v = IPVERSION;
1219			mhip->ip_hl = mhlen >> 2;
1220		}
1221		m->m_len = mhlen;
1222		/* XXX do we need to add ip->ip_off below ? */
1223		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1224		if (off + len >= ip->ip_len) {	/* last fragment */
1225			len = ip->ip_len - off;
1226			m->m_flags |= M_LASTFRAG;
1227		} else
1228			mhip->ip_off |= IP_MF;
1229		mhip->ip_len = htons((u_short)(len + mhlen));
1230		m->m_next = m_copy(m0, off, len);
1231		if (m->m_next == 0) {		/* copy failed */
1232			m_free(m);
1233			error = ENOBUFS;	/* ??? */
1234			ipstat.ips_odropped++;
1235			goto done;
1236		}
1237		m->m_pkthdr.len = mhlen + len;
1238		m->m_pkthdr.rcvif = (struct ifnet *)0;
1239#ifdef MAC
1240		mac_create_fragment(m0, m);
1241#endif
1242		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1243		mhip->ip_off = htons(mhip->ip_off);
1244		mhip->ip_sum = 0;
1245		if (sw_csum & CSUM_DELAY_IP)
1246			mhip->ip_sum = in_cksum(m, mhlen);
1247		*mnext = m;
1248		mnext = &m->m_nextpkt;
1249	}
1250	ipstat.ips_ofragments += nfrags;
1251
1252	/* set first marker for fragment chain */
1253	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1254	m0->m_pkthdr.csum_data = nfrags;
1255
1256	/*
1257	 * Update first fragment by trimming what's been copied out
1258	 * and updating header.
1259	 */
1260	m_adj(m0, hlen + firstlen - ip->ip_len);
1261	m0->m_pkthdr.len = hlen + firstlen;
1262	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1263	ip->ip_off |= IP_MF;
1264	ip->ip_off = htons(ip->ip_off);
1265	ip->ip_sum = 0;
1266	if (sw_csum & CSUM_DELAY_IP)
1267		ip->ip_sum = in_cksum(m0, hlen);
1268
1269done:
1270	*m_frag = m0;
1271	return error;
1272}
1273
1274void
1275in_delayed_cksum(struct mbuf *m)
1276{
1277	struct ip *ip;
1278	u_short csum, offset;
1279
1280	ip = mtod(m, struct ip *);
1281	offset = ip->ip_hl << 2 ;
1282	csum = in_cksum_skip(m, ip->ip_len, offset);
1283	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1284		csum = 0xffff;
1285	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1286
1287	if (offset + sizeof(u_short) > m->m_len) {
1288		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1289		    m->m_len, offset, ip->ip_p);
1290		/*
1291		 * XXX
1292		 * this shouldn't happen, but if it does, the
1293		 * correct behavior may be to insert the checksum
1294		 * in the existing chain instead of rearranging it.
1295		 */
1296		m = m_pullup(m, offset + sizeof(u_short));
1297	}
1298	*(u_short *)(m->m_data + offset) = csum;
1299}
1300
1301/*
1302 * Insert IP options into preformed packet.
1303 * Adjust IP destination as required for IP source routing,
1304 * as indicated by a non-zero in_addr at the start of the options.
1305 *
1306 * XXX This routine assumes that the packet has no options in place.
1307 */
1308static struct mbuf *
1309ip_insertoptions(m, opt, phlen)
1310	register struct mbuf *m;
1311	struct mbuf *opt;
1312	int *phlen;
1313{
1314	register struct ipoption *p = mtod(opt, struct ipoption *);
1315	struct mbuf *n;
1316	register struct ip *ip = mtod(m, struct ip *);
1317	unsigned optlen;
1318
1319	optlen = opt->m_len - sizeof(p->ipopt_dst);
1320	if (optlen + ip->ip_len > IP_MAXPACKET) {
1321		*phlen = 0;
1322		return (m);		/* XXX should fail */
1323	}
1324	if (p->ipopt_dst.s_addr)
1325		ip->ip_dst = p->ipopt_dst;
1326	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1327		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1328		if (n == 0) {
1329			*phlen = 0;
1330			return (m);
1331		}
1332		n->m_pkthdr.rcvif = (struct ifnet *)0;
1333#ifdef MAC
1334		mac_create_mbuf_from_mbuf(m, n);
1335#endif
1336		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1337		m->m_len -= sizeof(struct ip);
1338		m->m_data += sizeof(struct ip);
1339		n->m_next = m;
1340		m = n;
1341		m->m_len = optlen + sizeof(struct ip);
1342		m->m_data += max_linkhdr;
1343		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1344	} else {
1345		m->m_data -= optlen;
1346		m->m_len += optlen;
1347		m->m_pkthdr.len += optlen;
1348		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1349	}
1350	ip = mtod(m, struct ip *);
1351	bcopy(p->ipopt_list, ip + 1, optlen);
1352	*phlen = sizeof(struct ip) + optlen;
1353	ip->ip_v = IPVERSION;
1354	ip->ip_hl = *phlen >> 2;
1355	ip->ip_len += optlen;
1356	return (m);
1357}
1358
1359/*
1360 * Copy options from ip to jp,
1361 * omitting those not copied during fragmentation.
1362 */
1363int
1364ip_optcopy(ip, jp)
1365	struct ip *ip, *jp;
1366{
1367	register u_char *cp, *dp;
1368	int opt, optlen, cnt;
1369
1370	cp = (u_char *)(ip + 1);
1371	dp = (u_char *)(jp + 1);
1372	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1373	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1374		opt = cp[0];
1375		if (opt == IPOPT_EOL)
1376			break;
1377		if (opt == IPOPT_NOP) {
1378			/* Preserve for IP mcast tunnel's LSRR alignment. */
1379			*dp++ = IPOPT_NOP;
1380			optlen = 1;
1381			continue;
1382		}
1383
1384		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1385		    ("ip_optcopy: malformed ipv4 option"));
1386		optlen = cp[IPOPT_OLEN];
1387		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1388		    ("ip_optcopy: malformed ipv4 option"));
1389
1390		/* bogus lengths should have been caught by ip_dooptions */
1391		if (optlen > cnt)
1392			optlen = cnt;
1393		if (IPOPT_COPIED(opt)) {
1394			bcopy(cp, dp, optlen);
1395			dp += optlen;
1396		}
1397	}
1398	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1399		*dp++ = IPOPT_EOL;
1400	return (optlen);
1401}
1402
1403/*
1404 * IP socket option processing.
1405 */
1406int
1407ip_ctloutput(so, sopt)
1408	struct socket *so;
1409	struct sockopt *sopt;
1410{
1411	struct	inpcb *inp = sotoinpcb(so);
1412	int	error, optval;
1413
1414	error = optval = 0;
1415	if (sopt->sopt_level != IPPROTO_IP) {
1416		return (EINVAL);
1417	}
1418
1419	switch (sopt->sopt_dir) {
1420	case SOPT_SET:
1421		switch (sopt->sopt_name) {
1422		case IP_OPTIONS:
1423#ifdef notyet
1424		case IP_RETOPTS:
1425#endif
1426		{
1427			struct mbuf *m;
1428			if (sopt->sopt_valsize > MLEN) {
1429				error = EMSGSIZE;
1430				break;
1431			}
1432			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1433			if (m == 0) {
1434				error = ENOBUFS;
1435				break;
1436			}
1437			m->m_len = sopt->sopt_valsize;
1438			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1439					    m->m_len);
1440
1441			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1442					   m));
1443		}
1444
1445		case IP_TOS:
1446		case IP_TTL:
1447		case IP_RECVOPTS:
1448		case IP_RECVRETOPTS:
1449		case IP_RECVDSTADDR:
1450		case IP_RECVTTL:
1451		case IP_RECVIF:
1452		case IP_FAITH:
1453		case IP_ONESBCAST:
1454			error = sooptcopyin(sopt, &optval, sizeof optval,
1455					    sizeof optval);
1456			if (error)
1457				break;
1458
1459			switch (sopt->sopt_name) {
1460			case IP_TOS:
1461				inp->inp_ip_tos = optval;
1462				break;
1463
1464			case IP_TTL:
1465				inp->inp_ip_ttl = optval;
1466				break;
1467#define	OPTSET(bit) \
1468	if (optval) \
1469		inp->inp_flags |= bit; \
1470	else \
1471		inp->inp_flags &= ~bit;
1472
1473			case IP_RECVOPTS:
1474				OPTSET(INP_RECVOPTS);
1475				break;
1476
1477			case IP_RECVRETOPTS:
1478				OPTSET(INP_RECVRETOPTS);
1479				break;
1480
1481			case IP_RECVDSTADDR:
1482				OPTSET(INP_RECVDSTADDR);
1483				break;
1484
1485			case IP_RECVTTL:
1486				OPTSET(INP_RECVTTL);
1487				break;
1488
1489			case IP_RECVIF:
1490				OPTSET(INP_RECVIF);
1491				break;
1492
1493			case IP_FAITH:
1494				OPTSET(INP_FAITH);
1495				break;
1496
1497			case IP_ONESBCAST:
1498				OPTSET(INP_ONESBCAST);
1499				break;
1500			}
1501			break;
1502#undef OPTSET
1503
1504		case IP_MULTICAST_IF:
1505		case IP_MULTICAST_VIF:
1506		case IP_MULTICAST_TTL:
1507		case IP_MULTICAST_LOOP:
1508		case IP_ADD_MEMBERSHIP:
1509		case IP_DROP_MEMBERSHIP:
1510			error = ip_setmoptions(sopt, &inp->inp_moptions);
1511			break;
1512
1513		case IP_PORTRANGE:
1514			error = sooptcopyin(sopt, &optval, sizeof optval,
1515					    sizeof optval);
1516			if (error)
1517				break;
1518
1519			switch (optval) {
1520			case IP_PORTRANGE_DEFAULT:
1521				inp->inp_flags &= ~(INP_LOWPORT);
1522				inp->inp_flags &= ~(INP_HIGHPORT);
1523				break;
1524
1525			case IP_PORTRANGE_HIGH:
1526				inp->inp_flags &= ~(INP_LOWPORT);
1527				inp->inp_flags |= INP_HIGHPORT;
1528				break;
1529
1530			case IP_PORTRANGE_LOW:
1531				inp->inp_flags &= ~(INP_HIGHPORT);
1532				inp->inp_flags |= INP_LOWPORT;
1533				break;
1534
1535			default:
1536				error = EINVAL;
1537				break;
1538			}
1539			break;
1540
1541#if defined(IPSEC) || defined(FAST_IPSEC)
1542		case IP_IPSEC_POLICY:
1543		{
1544			caddr_t req;
1545			size_t len = 0;
1546			int priv;
1547			struct mbuf *m;
1548			int optname;
1549
1550			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1551				break;
1552			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1553				break;
1554			priv = (sopt->sopt_td != NULL &&
1555				suser(sopt->sopt_td) != 0) ? 0 : 1;
1556			req = mtod(m, caddr_t);
1557			len = m->m_len;
1558			optname = sopt->sopt_name;
1559			error = ipsec4_set_policy(inp, optname, req, len, priv);
1560			m_freem(m);
1561			break;
1562		}
1563#endif /*IPSEC*/
1564
1565		default:
1566			error = ENOPROTOOPT;
1567			break;
1568		}
1569		break;
1570
1571	case SOPT_GET:
1572		switch (sopt->sopt_name) {
1573		case IP_OPTIONS:
1574		case IP_RETOPTS:
1575			if (inp->inp_options)
1576				error = sooptcopyout(sopt,
1577						     mtod(inp->inp_options,
1578							  char *),
1579						     inp->inp_options->m_len);
1580			else
1581				sopt->sopt_valsize = 0;
1582			break;
1583
1584		case IP_TOS:
1585		case IP_TTL:
1586		case IP_RECVOPTS:
1587		case IP_RECVRETOPTS:
1588		case IP_RECVDSTADDR:
1589		case IP_RECVTTL:
1590		case IP_RECVIF:
1591		case IP_PORTRANGE:
1592		case IP_FAITH:
1593		case IP_ONESBCAST:
1594			switch (sopt->sopt_name) {
1595
1596			case IP_TOS:
1597				optval = inp->inp_ip_tos;
1598				break;
1599
1600			case IP_TTL:
1601				optval = inp->inp_ip_ttl;
1602				break;
1603
1604#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1605
1606			case IP_RECVOPTS:
1607				optval = OPTBIT(INP_RECVOPTS);
1608				break;
1609
1610			case IP_RECVRETOPTS:
1611				optval = OPTBIT(INP_RECVRETOPTS);
1612				break;
1613
1614			case IP_RECVDSTADDR:
1615				optval = OPTBIT(INP_RECVDSTADDR);
1616				break;
1617
1618			case IP_RECVTTL:
1619				optval = OPTBIT(INP_RECVTTL);
1620				break;
1621
1622			case IP_RECVIF:
1623				optval = OPTBIT(INP_RECVIF);
1624				break;
1625
1626			case IP_PORTRANGE:
1627				if (inp->inp_flags & INP_HIGHPORT)
1628					optval = IP_PORTRANGE_HIGH;
1629				else if (inp->inp_flags & INP_LOWPORT)
1630					optval = IP_PORTRANGE_LOW;
1631				else
1632					optval = 0;
1633				break;
1634
1635			case IP_FAITH:
1636				optval = OPTBIT(INP_FAITH);
1637				break;
1638
1639			case IP_ONESBCAST:
1640				optval = OPTBIT(INP_ONESBCAST);
1641				break;
1642			}
1643			error = sooptcopyout(sopt, &optval, sizeof optval);
1644			break;
1645
1646		case IP_MULTICAST_IF:
1647		case IP_MULTICAST_VIF:
1648		case IP_MULTICAST_TTL:
1649		case IP_MULTICAST_LOOP:
1650		case IP_ADD_MEMBERSHIP:
1651		case IP_DROP_MEMBERSHIP:
1652			error = ip_getmoptions(sopt, inp->inp_moptions);
1653			break;
1654
1655#if defined(IPSEC) || defined(FAST_IPSEC)
1656		case IP_IPSEC_POLICY:
1657		{
1658			struct mbuf *m = NULL;
1659			caddr_t req = NULL;
1660			size_t len = 0;
1661
1662			if (m != 0) {
1663				req = mtod(m, caddr_t);
1664				len = m->m_len;
1665			}
1666			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1667			if (error == 0)
1668				error = soopt_mcopyout(sopt, m); /* XXX */
1669			if (error == 0)
1670				m_freem(m);
1671			break;
1672		}
1673#endif /*IPSEC*/
1674
1675		default:
1676			error = ENOPROTOOPT;
1677			break;
1678		}
1679		break;
1680	}
1681	return (error);
1682}
1683
1684/*
1685 * Set up IP options in pcb for insertion in output packets.
1686 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1687 * with destination address if source routed.
1688 */
1689static int
1690ip_pcbopts(optname, pcbopt, m)
1691	int optname;
1692	struct mbuf **pcbopt;
1693	register struct mbuf *m;
1694{
1695	register int cnt, optlen;
1696	register u_char *cp;
1697	u_char opt;
1698
1699	/* turn off any old options */
1700	if (*pcbopt)
1701		(void)m_free(*pcbopt);
1702	*pcbopt = 0;
1703	if (m == (struct mbuf *)0 || m->m_len == 0) {
1704		/*
1705		 * Only turning off any previous options.
1706		 */
1707		if (m)
1708			(void)m_free(m);
1709		return (0);
1710	}
1711
1712	if (m->m_len % sizeof(int32_t))
1713		goto bad;
1714	/*
1715	 * IP first-hop destination address will be stored before
1716	 * actual options; move other options back
1717	 * and clear it when none present.
1718	 */
1719	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1720		goto bad;
1721	cnt = m->m_len;
1722	m->m_len += sizeof(struct in_addr);
1723	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1724	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1725	bzero(mtod(m, void *), sizeof(struct in_addr));
1726
1727	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1728		opt = cp[IPOPT_OPTVAL];
1729		if (opt == IPOPT_EOL)
1730			break;
1731		if (opt == IPOPT_NOP)
1732			optlen = 1;
1733		else {
1734			if (cnt < IPOPT_OLEN + sizeof(*cp))
1735				goto bad;
1736			optlen = cp[IPOPT_OLEN];
1737			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1738				goto bad;
1739		}
1740		switch (opt) {
1741
1742		default:
1743			break;
1744
1745		case IPOPT_LSRR:
1746		case IPOPT_SSRR:
1747			/*
1748			 * user process specifies route as:
1749			 *	->A->B->C->D
1750			 * D must be our final destination (but we can't
1751			 * check that since we may not have connected yet).
1752			 * A is first hop destination, which doesn't appear in
1753			 * actual IP option, but is stored before the options.
1754			 */
1755			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1756				goto bad;
1757			m->m_len -= sizeof(struct in_addr);
1758			cnt -= sizeof(struct in_addr);
1759			optlen -= sizeof(struct in_addr);
1760			cp[IPOPT_OLEN] = optlen;
1761			/*
1762			 * Move first hop before start of options.
1763			 */
1764			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1765			    sizeof(struct in_addr));
1766			/*
1767			 * Then copy rest of options back
1768			 * to close up the deleted entry.
1769			 */
1770			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1771			    &cp[IPOPT_OFFSET+1],
1772			    (unsigned)cnt + sizeof(struct in_addr));
1773			break;
1774		}
1775	}
1776	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1777		goto bad;
1778	*pcbopt = m;
1779	return (0);
1780
1781bad:
1782	(void)m_free(m);
1783	return (EINVAL);
1784}
1785
1786/*
1787 * XXX
1788 * The whole multicast option thing needs to be re-thought.
1789 * Several of these options are equally applicable to non-multicast
1790 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1791 * standard option (IP_TTL).
1792 */
1793
1794/*
1795 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1796 */
1797static struct ifnet *
1798ip_multicast_if(a, ifindexp)
1799	struct in_addr *a;
1800	int *ifindexp;
1801{
1802	int ifindex;
1803	struct ifnet *ifp;
1804
1805	if (ifindexp)
1806		*ifindexp = 0;
1807	if (ntohl(a->s_addr) >> 24 == 0) {
1808		ifindex = ntohl(a->s_addr) & 0xffffff;
1809		if (ifindex < 0 || if_index < ifindex)
1810			return NULL;
1811		ifp = ifnet_byindex(ifindex);
1812		if (ifindexp)
1813			*ifindexp = ifindex;
1814	} else {
1815		INADDR_TO_IFP(*a, ifp);
1816	}
1817	return ifp;
1818}
1819
1820/*
1821 * Set the IP multicast options in response to user setsockopt().
1822 */
1823static int
1824ip_setmoptions(sopt, imop)
1825	struct sockopt *sopt;
1826	struct ip_moptions **imop;
1827{
1828	int error = 0;
1829	int i;
1830	struct in_addr addr;
1831	struct ip_mreq mreq;
1832	struct ifnet *ifp;
1833	struct ip_moptions *imo = *imop;
1834	struct route ro;
1835	struct sockaddr_in *dst;
1836	int ifindex;
1837	int s;
1838
1839	if (imo == NULL) {
1840		/*
1841		 * No multicast option buffer attached to the pcb;
1842		 * allocate one and initialize to default values.
1843		 */
1844		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1845		    M_WAITOK);
1846
1847		if (imo == NULL)
1848			return (ENOBUFS);
1849		*imop = imo;
1850		imo->imo_multicast_ifp = NULL;
1851		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1852		imo->imo_multicast_vif = -1;
1853		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1854		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1855		imo->imo_num_memberships = 0;
1856	}
1857
1858	switch (sopt->sopt_name) {
1859	/* store an index number for the vif you wanna use in the send */
1860	case IP_MULTICAST_VIF:
1861		if (legal_vif_num == 0) {
1862			error = EOPNOTSUPP;
1863			break;
1864		}
1865		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1866		if (error)
1867			break;
1868		if (!legal_vif_num(i) && (i != -1)) {
1869			error = EINVAL;
1870			break;
1871		}
1872		imo->imo_multicast_vif = i;
1873		break;
1874
1875	case IP_MULTICAST_IF:
1876		/*
1877		 * Select the interface for outgoing multicast packets.
1878		 */
1879		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1880		if (error)
1881			break;
1882		/*
1883		 * INADDR_ANY is used to remove a previous selection.
1884		 * When no interface is selected, a default one is
1885		 * chosen every time a multicast packet is sent.
1886		 */
1887		if (addr.s_addr == INADDR_ANY) {
1888			imo->imo_multicast_ifp = NULL;
1889			break;
1890		}
1891		/*
1892		 * The selected interface is identified by its local
1893		 * IP address.  Find the interface and confirm that
1894		 * it supports multicasting.
1895		 */
1896		s = splimp();
1897		ifp = ip_multicast_if(&addr, &ifindex);
1898		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1899			splx(s);
1900			error = EADDRNOTAVAIL;
1901			break;
1902		}
1903		imo->imo_multicast_ifp = ifp;
1904		if (ifindex)
1905			imo->imo_multicast_addr = addr;
1906		else
1907			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1908		splx(s);
1909		break;
1910
1911	case IP_MULTICAST_TTL:
1912		/*
1913		 * Set the IP time-to-live for outgoing multicast packets.
1914		 * The original multicast API required a char argument,
1915		 * which is inconsistent with the rest of the socket API.
1916		 * We allow either a char or an int.
1917		 */
1918		if (sopt->sopt_valsize == 1) {
1919			u_char ttl;
1920			error = sooptcopyin(sopt, &ttl, 1, 1);
1921			if (error)
1922				break;
1923			imo->imo_multicast_ttl = ttl;
1924		} else {
1925			u_int ttl;
1926			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1927					    sizeof ttl);
1928			if (error)
1929				break;
1930			if (ttl > 255)
1931				error = EINVAL;
1932			else
1933				imo->imo_multicast_ttl = ttl;
1934		}
1935		break;
1936
1937	case IP_MULTICAST_LOOP:
1938		/*
1939		 * Set the loopback flag for outgoing multicast packets.
1940		 * Must be zero or one.  The original multicast API required a
1941		 * char argument, which is inconsistent with the rest
1942		 * of the socket API.  We allow either a char or an int.
1943		 */
1944		if (sopt->sopt_valsize == 1) {
1945			u_char loop;
1946			error = sooptcopyin(sopt, &loop, 1, 1);
1947			if (error)
1948				break;
1949			imo->imo_multicast_loop = !!loop;
1950		} else {
1951			u_int loop;
1952			error = sooptcopyin(sopt, &loop, sizeof loop,
1953					    sizeof loop);
1954			if (error)
1955				break;
1956			imo->imo_multicast_loop = !!loop;
1957		}
1958		break;
1959
1960	case IP_ADD_MEMBERSHIP:
1961		/*
1962		 * Add a multicast group membership.
1963		 * Group must be a valid IP multicast address.
1964		 */
1965		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1966		if (error)
1967			break;
1968
1969		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1970			error = EINVAL;
1971			break;
1972		}
1973		s = splimp();
1974		/*
1975		 * If no interface address was provided, use the interface of
1976		 * the route to the given multicast address.
1977		 */
1978		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1979			bzero((caddr_t)&ro, sizeof(ro));
1980			dst = (struct sockaddr_in *)&ro.ro_dst;
1981			dst->sin_len = sizeof(*dst);
1982			dst->sin_family = AF_INET;
1983			dst->sin_addr = mreq.imr_multiaddr;
1984			rtalloc(&ro);
1985			if (ro.ro_rt == NULL) {
1986				error = EADDRNOTAVAIL;
1987				splx(s);
1988				break;
1989			}
1990			ifp = ro.ro_rt->rt_ifp;
1991			RTFREE(ro.ro_rt);
1992		}
1993		else {
1994			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1995		}
1996
1997		/*
1998		 * See if we found an interface, and confirm that it
1999		 * supports multicast.
2000		 */
2001		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2002			error = EADDRNOTAVAIL;
2003			splx(s);
2004			break;
2005		}
2006		/*
2007		 * See if the membership already exists or if all the
2008		 * membership slots are full.
2009		 */
2010		for (i = 0; i < imo->imo_num_memberships; ++i) {
2011			if (imo->imo_membership[i]->inm_ifp == ifp &&
2012			    imo->imo_membership[i]->inm_addr.s_addr
2013						== mreq.imr_multiaddr.s_addr)
2014				break;
2015		}
2016		if (i < imo->imo_num_memberships) {
2017			error = EADDRINUSE;
2018			splx(s);
2019			break;
2020		}
2021		if (i == IP_MAX_MEMBERSHIPS) {
2022			error = ETOOMANYREFS;
2023			splx(s);
2024			break;
2025		}
2026		/*
2027		 * Everything looks good; add a new record to the multicast
2028		 * address list for the given interface.
2029		 */
2030		if ((imo->imo_membership[i] =
2031		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2032			error = ENOBUFS;
2033			splx(s);
2034			break;
2035		}
2036		++imo->imo_num_memberships;
2037		splx(s);
2038		break;
2039
2040	case IP_DROP_MEMBERSHIP:
2041		/*
2042		 * Drop a multicast group membership.
2043		 * Group must be a valid IP multicast address.
2044		 */
2045		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2046		if (error)
2047			break;
2048
2049		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2050			error = EINVAL;
2051			break;
2052		}
2053
2054		s = splimp();
2055		/*
2056		 * If an interface address was specified, get a pointer
2057		 * to its ifnet structure.
2058		 */
2059		if (mreq.imr_interface.s_addr == INADDR_ANY)
2060			ifp = NULL;
2061		else {
2062			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2063			if (ifp == NULL) {
2064				error = EADDRNOTAVAIL;
2065				splx(s);
2066				break;
2067			}
2068		}
2069		/*
2070		 * Find the membership in the membership array.
2071		 */
2072		for (i = 0; i < imo->imo_num_memberships; ++i) {
2073			if ((ifp == NULL ||
2074			     imo->imo_membership[i]->inm_ifp == ifp) &&
2075			     imo->imo_membership[i]->inm_addr.s_addr ==
2076			     mreq.imr_multiaddr.s_addr)
2077				break;
2078		}
2079		if (i == imo->imo_num_memberships) {
2080			error = EADDRNOTAVAIL;
2081			splx(s);
2082			break;
2083		}
2084		/*
2085		 * Give up the multicast address record to which the
2086		 * membership points.
2087		 */
2088		in_delmulti(imo->imo_membership[i]);
2089		/*
2090		 * Remove the gap in the membership array.
2091		 */
2092		for (++i; i < imo->imo_num_memberships; ++i)
2093			imo->imo_membership[i-1] = imo->imo_membership[i];
2094		--imo->imo_num_memberships;
2095		splx(s);
2096		break;
2097
2098	default:
2099		error = EOPNOTSUPP;
2100		break;
2101	}
2102
2103	/*
2104	 * If all options have default values, no need to keep the mbuf.
2105	 */
2106	if (imo->imo_multicast_ifp == NULL &&
2107	    imo->imo_multicast_vif == -1 &&
2108	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2109	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2110	    imo->imo_num_memberships == 0) {
2111		free(*imop, M_IPMOPTS);
2112		*imop = NULL;
2113	}
2114
2115	return (error);
2116}
2117
2118/*
2119 * Return the IP multicast options in response to user getsockopt().
2120 */
2121static int
2122ip_getmoptions(sopt, imo)
2123	struct sockopt *sopt;
2124	register struct ip_moptions *imo;
2125{
2126	struct in_addr addr;
2127	struct in_ifaddr *ia;
2128	int error, optval;
2129	u_char coptval;
2130
2131	error = 0;
2132	switch (sopt->sopt_name) {
2133	case IP_MULTICAST_VIF:
2134		if (imo != NULL)
2135			optval = imo->imo_multicast_vif;
2136		else
2137			optval = -1;
2138		error = sooptcopyout(sopt, &optval, sizeof optval);
2139		break;
2140
2141	case IP_MULTICAST_IF:
2142		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2143			addr.s_addr = INADDR_ANY;
2144		else if (imo->imo_multicast_addr.s_addr) {
2145			/* return the value user has set */
2146			addr = imo->imo_multicast_addr;
2147		} else {
2148			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2149			addr.s_addr = (ia == NULL) ? INADDR_ANY
2150				: IA_SIN(ia)->sin_addr.s_addr;
2151		}
2152		error = sooptcopyout(sopt, &addr, sizeof addr);
2153		break;
2154
2155	case IP_MULTICAST_TTL:
2156		if (imo == 0)
2157			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2158		else
2159			optval = coptval = imo->imo_multicast_ttl;
2160		if (sopt->sopt_valsize == 1)
2161			error = sooptcopyout(sopt, &coptval, 1);
2162		else
2163			error = sooptcopyout(sopt, &optval, sizeof optval);
2164		break;
2165
2166	case IP_MULTICAST_LOOP:
2167		if (imo == 0)
2168			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2169		else
2170			optval = coptval = imo->imo_multicast_loop;
2171		if (sopt->sopt_valsize == 1)
2172			error = sooptcopyout(sopt, &coptval, 1);
2173		else
2174			error = sooptcopyout(sopt, &optval, sizeof optval);
2175		break;
2176
2177	default:
2178		error = ENOPROTOOPT;
2179		break;
2180	}
2181	return (error);
2182}
2183
2184/*
2185 * Discard the IP multicast options.
2186 */
2187void
2188ip_freemoptions(imo)
2189	register struct ip_moptions *imo;
2190{
2191	register int i;
2192
2193	if (imo != NULL) {
2194		for (i = 0; i < imo->imo_num_memberships; ++i)
2195			in_delmulti(imo->imo_membership[i]);
2196		free(imo, M_IPMOPTS);
2197	}
2198}
2199
2200/*
2201 * Routine called from ip_output() to loop back a copy of an IP multicast
2202 * packet to the input queue of a specified interface.  Note that this
2203 * calls the output routine of the loopback "driver", but with an interface
2204 * pointer that might NOT be a loopback interface -- evil, but easier than
2205 * replicating that code here.
2206 */
2207static void
2208ip_mloopback(ifp, m, dst, hlen)
2209	struct ifnet *ifp;
2210	register struct mbuf *m;
2211	register struct sockaddr_in *dst;
2212	int hlen;
2213{
2214	register struct ip *ip;
2215	struct mbuf *copym;
2216
2217	copym = m_copy(m, 0, M_COPYALL);
2218	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2219		copym = m_pullup(copym, hlen);
2220	if (copym != NULL) {
2221		/*
2222		 * We don't bother to fragment if the IP length is greater
2223		 * than the interface's MTU.  Can this possibly matter?
2224		 */
2225		ip = mtod(copym, struct ip *);
2226		ip->ip_len = htons(ip->ip_len);
2227		ip->ip_off = htons(ip->ip_off);
2228		ip->ip_sum = 0;
2229		ip->ip_sum = in_cksum(copym, hlen);
2230		/*
2231		 * NB:
2232		 * It's not clear whether there are any lingering
2233		 * reentrancy problems in other areas which might
2234		 * be exposed by using ip_input directly (in
2235		 * particular, everything which modifies the packet
2236		 * in-place).  Yet another option is using the
2237		 * protosw directly to deliver the looped back
2238		 * packet.  For the moment, we'll err on the side
2239		 * of safety by using if_simloop().
2240		 */
2241#if 1 /* XXX */
2242		if (dst->sin_family != AF_INET) {
2243			printf("ip_mloopback: bad address family %d\n",
2244						dst->sin_family);
2245			dst->sin_family = AF_INET;
2246		}
2247#endif
2248
2249#ifdef notdef
2250		copym->m_pkthdr.rcvif = ifp;
2251		ip_input(copym);
2252#else
2253		/* if the checksum hasn't been computed, mark it as valid */
2254		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2255			copym->m_pkthdr.csum_flags |=
2256			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2257			copym->m_pkthdr.csum_data = 0xffff;
2258		}
2259		if_simloop(ifp, copym, dst->sin_family, 0);
2260#endif
2261	}
2262}
2263