ip_output.c revision 119178
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 * $FreeBSD: head/sys/netinet/ip_output.c 119178 2003-08-20 14:46:40Z bms $
35 */
36
37#include "opt_ipfw.h"
38#include "opt_ipdn.h"
39#include "opt_ipdivert.h"
40#include "opt_ipfilter.h"
41#include "opt_ipsec.h"
42#include "opt_mac.h"
43#include "opt_pfil_hooks.h"
44#include "opt_random_ip_id.h"
45#include "opt_mbuf_stress_test.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/kernel.h>
50#include <sys/mac.h>
51#include <sys/malloc.h>
52#include <sys/mbuf.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/sysctl.h>
57
58#include <net/if.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_var.h>
66#include <netinet/ip_var.h>
67
68#include <machine/in_cksum.h>
69
70static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
71
72#ifdef IPSEC
73#include <netinet6/ipsec.h>
74#include <netkey/key.h>
75#ifdef IPSEC_DEBUG
76#include <netkey/key_debug.h>
77#else
78#define	KEYDEBUG(lev,arg)
79#endif
80#endif /*IPSEC*/
81
82#ifdef FAST_IPSEC
83#include <netipsec/ipsec.h>
84#include <netipsec/xform.h>
85#include <netipsec/key.h>
86#endif /*FAST_IPSEC*/
87
88#include <netinet/ip_fw.h>
89#include <netinet/ip_dummynet.h>
90
91#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
92				x, (ntohl(a.s_addr)>>24)&0xFF,\
93				  (ntohl(a.s_addr)>>16)&0xFF,\
94				  (ntohl(a.s_addr)>>8)&0xFF,\
95				  (ntohl(a.s_addr))&0xFF, y);
96
97u_short ip_id;
98
99#ifdef MBUF_STRESS_TEST
100int mbuf_frag_size = 0;
101SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
102	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
103#endif
104
105static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
106static struct ifnet *ip_multicast_if(struct in_addr *, int *);
107static void	ip_mloopback
108	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
109static int	ip_getmoptions
110	(struct sockopt *, struct ip_moptions *);
111static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
112static int	ip_setmoptions
113	(struct sockopt *, struct ip_moptions **);
114
115int	ip_optcopy(struct ip *, struct ip *);
116
117
118extern	struct protosw inetsw[];
119
120/*
121 * IP output.  The packet in mbuf chain m contains a skeletal IP
122 * header (with len, off, ttl, proto, tos, src, dst).
123 * The mbuf chain containing the packet will be freed.
124 * The mbuf opt, if present, will not be freed.
125 */
126int
127ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
128	int flags, struct ip_moptions *imo, struct inpcb *inp)
129{
130	struct ip *ip;
131	struct ifnet *ifp = NULL;	/* keep compiler happy */
132	struct mbuf *m;
133	int hlen = sizeof (struct ip);
134	int len, off, error = 0;
135	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
136	struct in_ifaddr *ia = NULL;
137	int isbroadcast, sw_csum;
138	struct in_addr pkt_dst;
139#ifdef IPSEC
140	struct route iproute;
141	struct secpolicy *sp = NULL;
142#endif
143#ifdef FAST_IPSEC
144	struct route iproute;
145	struct m_tag *mtag;
146	struct secpolicy *sp = NULL;
147	struct tdb_ident *tdbi;
148	int s;
149#endif /* FAST_IPSEC */
150	struct ip_fw_args args;
151	int src_was_INADDR_ANY = 0;	/* as the name says... */
152#ifdef PFIL_HOOKS
153	struct packet_filter_hook *pfh;
154	struct mbuf *m1;
155	int rv;
156#endif /* PFIL_HOOKS */
157
158	args.eh = NULL;
159	args.rule = NULL;
160	args.next_hop = NULL;
161	args.divert_rule = 0;			/* divert cookie */
162
163	/* Grab info from MT_TAG mbufs prepended to the chain. */
164	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
165		switch(m0->_m_tag_id) {
166		default:
167			printf("ip_output: unrecognised MT_TAG tag %d\n",
168			    m0->_m_tag_id);
169			break;
170
171		case PACKET_TAG_DUMMYNET:
172			/*
173			 * the packet was already tagged, so part of the
174			 * processing was already done, and we need to go down.
175			 * Get parameters from the header.
176			 */
177			args.rule = ((struct dn_pkt *)m0)->rule;
178			opt = NULL ;
179			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
180			imo = NULL ;
181			dst = ((struct dn_pkt *)m0)->dn_dst ;
182			ifp = ((struct dn_pkt *)m0)->ifp ;
183			flags = ((struct dn_pkt *)m0)->flags ;
184			break;
185
186		case PACKET_TAG_DIVERT:
187			args.divert_rule = (intptr_t)m0->m_data & 0xffff;
188			break;
189
190		case PACKET_TAG_IPFORWARD:
191			args.next_hop = (struct sockaddr_in *)m0->m_data;
192			break;
193		}
194	}
195	m = m0;
196
197	M_ASSERTPKTHDR(m);
198#ifndef FAST_IPSEC
199	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
200	    mtod(m, struct ip *)->ip_p));
201#endif
202
203	if (args.rule != NULL) {	/* dummynet already saw us */
204		ip = mtod(m, struct ip *);
205		hlen = ip->ip_hl << 2 ;
206		if (ro->ro_rt)
207			ia = ifatoia(ro->ro_rt->rt_ifa);
208		goto sendit;
209	}
210
211	if (opt) {
212		len = 0;
213		m = ip_insertoptions(m, opt, &len);
214		if (len != 0)
215			hlen = len;
216	}
217	ip = mtod(m, struct ip *);
218	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
219
220	/*
221	 * Fill in IP header.  If we are not allowing fragmentation,
222	 * then the ip_id field is meaningless, so send it as zero
223	 * to reduce information leakage.  Otherwise, if we are not
224	 * randomizing ip_id, then don't bother to convert it to network
225	 * byte order -- it's just a nonce.  Note that a 16-bit counter
226	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
227	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
228	 * for Counting NATted Hosts", Proc. IMW'02, available at
229	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
230	 */
231	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
232		ip->ip_v = IPVERSION;
233		ip->ip_hl = hlen >> 2;
234		if ((ip->ip_off & IP_DF) == 0) {
235			ip->ip_off = 0;
236#ifdef RANDOM_IP_ID
237			ip->ip_id = ip_randomid();
238#else
239			ip->ip_id = ip_id++;
240#endif
241		} else {
242			ip->ip_off = IP_DF;
243			ip->ip_id = 0;
244		}
245		ipstat.ips_localout++;
246	} else {
247		hlen = ip->ip_hl << 2;
248	}
249
250#ifdef FAST_IPSEC
251	if (ro == NULL) {
252		ro = &iproute;
253		bzero(ro, sizeof (*ro));
254	}
255#endif /* FAST_IPSEC */
256	dst = (struct sockaddr_in *)&ro->ro_dst;
257	/*
258	 * If there is a cached route,
259	 * check that it is to the same destination
260	 * and is still up.  If not, free it and try again.
261	 * The address family should also be checked in case of sharing the
262	 * cache with IPv6.
263	 */
264	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
265			  dst->sin_family != AF_INET ||
266			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
267		RTFREE(ro->ro_rt);
268		ro->ro_rt = (struct rtentry *)0;
269	}
270	if (ro->ro_rt == 0) {
271		bzero(dst, sizeof(*dst));
272		dst->sin_family = AF_INET;
273		dst->sin_len = sizeof(*dst);
274		dst->sin_addr = pkt_dst;
275	}
276	/*
277	 * If routing to interface only,
278	 * short circuit routing lookup.
279	 */
280	if (flags & IP_ROUTETOIF) {
281		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
282		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
283			ipstat.ips_noroute++;
284			error = ENETUNREACH;
285			goto bad;
286		}
287		ifp = ia->ia_ifp;
288		ip->ip_ttl = 1;
289		isbroadcast = in_broadcast(dst->sin_addr, ifp);
290	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
291	    imo != NULL && imo->imo_multicast_ifp != NULL) {
292		/*
293		 * Bypass the normal routing lookup for multicast
294		 * packets if the interface is specified.
295		 */
296		ifp = imo->imo_multicast_ifp;
297		IFP_TO_IA(ifp, ia);
298		isbroadcast = 0;	/* fool gcc */
299	} else {
300		/*
301		 * If this is the case, we probably don't want to allocate
302		 * a protocol-cloned route since we didn't get one from the
303		 * ULP.  This lets TCP do its thing, while not burdening
304		 * forwarding or ICMP with the overhead of cloning a route.
305		 * Of course, we still want to do any cloning requested by
306		 * the link layer, as this is probably required in all cases
307		 * for correct operation (as it is for ARP).
308		 */
309		if (ro->ro_rt == 0)
310			rtalloc_ign(ro, RTF_PRCLONING);
311		if (ro->ro_rt == 0) {
312			ipstat.ips_noroute++;
313			error = EHOSTUNREACH;
314			goto bad;
315		}
316		ia = ifatoia(ro->ro_rt->rt_ifa);
317		ifp = ro->ro_rt->rt_ifp;
318		ro->ro_rt->rt_use++;
319		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
320			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
321		if (ro->ro_rt->rt_flags & RTF_HOST)
322			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
323		else
324			isbroadcast = in_broadcast(dst->sin_addr, ifp);
325	}
326	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
327		struct in_multi *inm;
328
329		m->m_flags |= M_MCAST;
330		/*
331		 * IP destination address is multicast.  Make sure "dst"
332		 * still points to the address in "ro".  (It may have been
333		 * changed to point to a gateway address, above.)
334		 */
335		dst = (struct sockaddr_in *)&ro->ro_dst;
336		/*
337		 * See if the caller provided any multicast options
338		 */
339		if (imo != NULL) {
340			ip->ip_ttl = imo->imo_multicast_ttl;
341			if (imo->imo_multicast_vif != -1)
342				ip->ip_src.s_addr =
343				    ip_mcast_src ?
344				    ip_mcast_src(imo->imo_multicast_vif) :
345				    INADDR_ANY;
346		} else
347			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
348		/*
349		 * Confirm that the outgoing interface supports multicast.
350		 */
351		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
352			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
353				ipstat.ips_noroute++;
354				error = ENETUNREACH;
355				goto bad;
356			}
357		}
358		/*
359		 * If source address not specified yet, use address
360		 * of outgoing interface.
361		 */
362		if (ip->ip_src.s_addr == INADDR_ANY) {
363			/* Interface may have no addresses. */
364			if (ia != NULL)
365				ip->ip_src = IA_SIN(ia)->sin_addr;
366		}
367
368		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
369			/*
370			 * XXX
371			 * delayed checksums are not currently
372			 * compatible with IP multicast routing
373			 */
374			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
375				in_delayed_cksum(m);
376				m->m_pkthdr.csum_flags &=
377					~CSUM_DELAY_DATA;
378			}
379		}
380		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
381		if (inm != NULL &&
382		   (imo == NULL || imo->imo_multicast_loop)) {
383			/*
384			 * If we belong to the destination multicast group
385			 * on the outgoing interface, and the caller did not
386			 * forbid loopback, loop back a copy.
387			 */
388			ip_mloopback(ifp, m, dst, hlen);
389		}
390		else {
391			/*
392			 * If we are acting as a multicast router, perform
393			 * multicast forwarding as if the packet had just
394			 * arrived on the interface to which we are about
395			 * to send.  The multicast forwarding function
396			 * recursively calls this function, using the
397			 * IP_FORWARDING flag to prevent infinite recursion.
398			 *
399			 * Multicasts that are looped back by ip_mloopback(),
400			 * above, will be forwarded by the ip_input() routine,
401			 * if necessary.
402			 */
403			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
404				/*
405				 * If rsvp daemon is not running, do not
406				 * set ip_moptions. This ensures that the packet
407				 * is multicast and not just sent down one link
408				 * as prescribed by rsvpd.
409				 */
410				if (!rsvp_on)
411					imo = NULL;
412				if (ip_mforward &&
413				    ip_mforward(ip, ifp, m, imo) != 0) {
414					m_freem(m);
415					goto done;
416				}
417			}
418		}
419
420		/*
421		 * Multicasts with a time-to-live of zero may be looped-
422		 * back, above, but must not be transmitted on a network.
423		 * Also, multicasts addressed to the loopback interface
424		 * are not sent -- the above call to ip_mloopback() will
425		 * loop back a copy if this host actually belongs to the
426		 * destination group on the loopback interface.
427		 */
428		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
429			m_freem(m);
430			goto done;
431		}
432
433		goto sendit;
434	}
435#ifndef notdef
436	/*
437	 * If the source address is not specified yet, use the address
438	 * of the outoing interface. In case, keep note we did that, so
439	 * if the the firewall changes the next-hop causing the output
440	 * interface to change, we can fix that.
441	 */
442	if (ip->ip_src.s_addr == INADDR_ANY) {
443		/* Interface may have no addresses. */
444		if (ia != NULL) {
445			ip->ip_src = IA_SIN(ia)->sin_addr;
446			src_was_INADDR_ANY = 1;
447		}
448	}
449#endif /* notdef */
450	/*
451	 * Verify that we have any chance at all of being able to queue
452	 *      the packet or packet fragments
453	 */
454	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
455		ifp->if_snd.ifq_maxlen) {
456			error = ENOBUFS;
457			ipstat.ips_odropped++;
458			goto bad;
459	}
460
461	/*
462	 * Look for broadcast address and
463	 * verify user is allowed to send
464	 * such a packet.
465	 */
466	if (isbroadcast) {
467		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
468			error = EADDRNOTAVAIL;
469			goto bad;
470		}
471		if ((flags & IP_ALLOWBROADCAST) == 0) {
472			error = EACCES;
473			goto bad;
474		}
475		/* don't allow broadcast messages to be fragmented */
476		if (ip->ip_len > ifp->if_mtu) {
477			error = EMSGSIZE;
478			goto bad;
479		}
480		if (flags & IP_SENDONES)
481			ip->ip_dst.s_addr = INADDR_BROADCAST;
482		m->m_flags |= M_BCAST;
483	} else {
484		m->m_flags &= ~M_BCAST;
485	}
486
487sendit:
488#ifdef IPSEC
489	/* get SP for this packet */
490	if (inp == NULL)
491		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
492	else
493		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
494
495	if (sp == NULL) {
496		ipsecstat.out_inval++;
497		goto bad;
498	}
499
500	error = 0;
501
502	/* check policy */
503	switch (sp->policy) {
504	case IPSEC_POLICY_DISCARD:
505		/*
506		 * This packet is just discarded.
507		 */
508		ipsecstat.out_polvio++;
509		goto bad;
510
511	case IPSEC_POLICY_BYPASS:
512	case IPSEC_POLICY_NONE:
513		/* no need to do IPsec. */
514		goto skip_ipsec;
515
516	case IPSEC_POLICY_IPSEC:
517		if (sp->req == NULL) {
518			/* acquire a policy */
519			error = key_spdacquire(sp);
520			goto bad;
521		}
522		break;
523
524	case IPSEC_POLICY_ENTRUST:
525	default:
526		printf("ip_output: Invalid policy found. %d\n", sp->policy);
527	}
528    {
529	struct ipsec_output_state state;
530	bzero(&state, sizeof(state));
531	state.m = m;
532	if (flags & IP_ROUTETOIF) {
533		state.ro = &iproute;
534		bzero(&iproute, sizeof(iproute));
535	} else
536		state.ro = ro;
537	state.dst = (struct sockaddr *)dst;
538
539	ip->ip_sum = 0;
540
541	/*
542	 * XXX
543	 * delayed checksums are not currently compatible with IPsec
544	 */
545	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
546		in_delayed_cksum(m);
547		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
548	}
549
550	ip->ip_len = htons(ip->ip_len);
551	ip->ip_off = htons(ip->ip_off);
552
553	error = ipsec4_output(&state, sp, flags);
554
555	m = state.m;
556	if (flags & IP_ROUTETOIF) {
557		/*
558		 * if we have tunnel mode SA, we may need to ignore
559		 * IP_ROUTETOIF.
560		 */
561		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
562			flags &= ~IP_ROUTETOIF;
563			ro = state.ro;
564		}
565	} else
566		ro = state.ro;
567	dst = (struct sockaddr_in *)state.dst;
568	if (error) {
569		/* mbuf is already reclaimed in ipsec4_output. */
570		m0 = NULL;
571		switch (error) {
572		case EHOSTUNREACH:
573		case ENETUNREACH:
574		case EMSGSIZE:
575		case ENOBUFS:
576		case ENOMEM:
577			break;
578		default:
579			printf("ip4_output (ipsec): error code %d\n", error);
580			/*fall through*/
581		case ENOENT:
582			/* don't show these error codes to the user */
583			error = 0;
584			break;
585		}
586		goto bad;
587	}
588    }
589
590	/* be sure to update variables that are affected by ipsec4_output() */
591	ip = mtod(m, struct ip *);
592	hlen = ip->ip_hl << 2;
593	if (ro->ro_rt == NULL) {
594		if ((flags & IP_ROUTETOIF) == 0) {
595			printf("ip_output: "
596				"can't update route after IPsec processing\n");
597			error = EHOSTUNREACH;	/*XXX*/
598			goto bad;
599		}
600	} else {
601		ia = ifatoia(ro->ro_rt->rt_ifa);
602		ifp = ro->ro_rt->rt_ifp;
603	}
604
605	/* make it flipped, again. */
606	ip->ip_len = ntohs(ip->ip_len);
607	ip->ip_off = ntohs(ip->ip_off);
608skip_ipsec:
609#endif /*IPSEC*/
610#ifdef FAST_IPSEC
611	/*
612	 * Check the security policy (SP) for the packet and, if
613	 * required, do IPsec-related processing.  There are two
614	 * cases here; the first time a packet is sent through
615	 * it will be untagged and handled by ipsec4_checkpolicy.
616	 * If the packet is resubmitted to ip_output (e.g. after
617	 * AH, ESP, etc. processing), there will be a tag to bypass
618	 * the lookup and related policy checking.
619	 */
620	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
621	s = splnet();
622	if (mtag != NULL) {
623		tdbi = (struct tdb_ident *)(mtag + 1);
624		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
625		if (sp == NULL)
626			error = -EINVAL;	/* force silent drop */
627		m_tag_delete(m, mtag);
628	} else {
629		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
630					&error, inp);
631	}
632	/*
633	 * There are four return cases:
634	 *    sp != NULL	 	    apply IPsec policy
635	 *    sp == NULL, error == 0	    no IPsec handling needed
636	 *    sp == NULL, error == -EINVAL  discard packet w/o error
637	 *    sp == NULL, error != 0	    discard packet, report error
638	 */
639	if (sp != NULL) {
640		/* Loop detection, check if ipsec processing already done */
641		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
642		for (mtag = m_tag_first(m); mtag != NULL;
643		     mtag = m_tag_next(m, mtag)) {
644			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
645				continue;
646			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
647			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
648				continue;
649			/*
650			 * Check if policy has an SA associated with it.
651			 * This can happen when an SP has yet to acquire
652			 * an SA; e.g. on first reference.  If it occurs,
653			 * then we let ipsec4_process_packet do its thing.
654			 */
655			if (sp->req->sav == NULL)
656				break;
657			tdbi = (struct tdb_ident *)(mtag + 1);
658			if (tdbi->spi == sp->req->sav->spi &&
659			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
660			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
661				 sizeof (union sockaddr_union)) == 0) {
662				/*
663				 * No IPsec processing is needed, free
664				 * reference to SP.
665				 *
666				 * NB: null pointer to avoid free at
667				 *     done: below.
668				 */
669				KEY_FREESP(&sp), sp = NULL;
670				splx(s);
671				goto spd_done;
672			}
673		}
674
675		/*
676		 * Do delayed checksums now because we send before
677		 * this is done in the normal processing path.
678		 */
679		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
680			in_delayed_cksum(m);
681			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
682		}
683
684		ip->ip_len = htons(ip->ip_len);
685		ip->ip_off = htons(ip->ip_off);
686
687		/* NB: callee frees mbuf */
688		error = ipsec4_process_packet(m, sp->req, flags, 0);
689		/*
690		 * Preserve KAME behaviour: ENOENT can be returned
691		 * when an SA acquire is in progress.  Don't propagate
692		 * this to user-level; it confuses applications.
693		 *
694		 * XXX this will go away when the SADB is redone.
695		 */
696		if (error == ENOENT)
697			error = 0;
698		splx(s);
699		goto done;
700	} else {
701		splx(s);
702
703		if (error != 0) {
704			/*
705			 * Hack: -EINVAL is used to signal that a packet
706			 * should be silently discarded.  This is typically
707			 * because we asked key management for an SA and
708			 * it was delayed (e.g. kicked up to IKE).
709			 */
710			if (error == -EINVAL)
711				error = 0;
712			goto bad;
713		} else {
714			/* No IPsec processing for this packet. */
715		}
716#ifdef notyet
717		/*
718		 * If deferred crypto processing is needed, check that
719		 * the interface supports it.
720		 */
721		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
722		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
723			/* notify IPsec to do its own crypto */
724			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
725			error = EHOSTUNREACH;
726			goto bad;
727		}
728#endif
729	}
730spd_done:
731#endif /* FAST_IPSEC */
732
733	/*
734	 * IpHack's section.
735	 * - Xlate: translate packet's addr/port (NAT).
736	 * - Firewall: deny/allow/etc.
737	 * - Wrap: fake packet's addr/port <unimpl.>
738	 * - Encapsulate: put it in another IP and send out. <unimp.>
739	 */
740#ifdef PFIL_HOOKS
741	/*
742	 * Run through list of hooks for output packets.
743	 */
744	m1 = m;
745	pfh = pfil_hook_get(PFIL_OUT, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
746	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
747		if (pfh->pfil_func) {
748			rv = pfh->pfil_func(ip, hlen, ifp, 1, &m1);
749			if (rv) {
750				error = EHOSTUNREACH;
751				goto done;
752			}
753			m = m1;
754			if (m == NULL)
755				goto done;
756			ip = mtod(m, struct ip *);
757		}
758#endif /* PFIL_HOOKS */
759
760	/*
761	 * Check with the firewall...
762	 * but not if we are already being fwd'd from a firewall.
763	 */
764	if (fw_enable && IPFW_LOADED && !args.next_hop) {
765		struct sockaddr_in *old = dst;
766
767		args.m = m;
768		args.next_hop = dst;
769		args.oif = ifp;
770		off = ip_fw_chk_ptr(&args);
771		m = args.m;
772		dst = args.next_hop;
773
774                /*
775		 * On return we must do the following:
776		 * m == NULL	-> drop the pkt (old interface, deprecated)
777		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
778		 * 1<=off<= 0xffff		-> DIVERT
779		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
780		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
781		 * dst != old			-> IPFIREWALL_FORWARD
782		 * off==0, dst==old		-> accept
783		 * If some of the above modules are not compiled in, then
784		 * we should't have to check the corresponding condition
785		 * (because the ipfw control socket should not accept
786		 * unsupported rules), but better play safe and drop
787		 * packets in case of doubt.
788		 */
789		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
790			if (m)
791				m_freem(m);
792			error = EACCES;
793			goto done;
794		}
795		ip = mtod(m, struct ip *);
796		if (off == 0 && dst == old)		/* common case */
797			goto pass;
798                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
799			/*
800			 * pass the pkt to dummynet. Need to include
801			 * pipe number, m, ifp, ro, dst because these are
802			 * not recomputed in the next pass.
803			 * All other parameters have been already used and
804			 * so they are not needed anymore.
805			 * XXX note: if the ifp or ro entry are deleted
806			 * while a pkt is in dummynet, we are in trouble!
807			 */
808			args.ro = ro;
809			args.dst = dst;
810			args.flags = flags;
811
812			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
813				&args);
814			goto done;
815		}
816#ifdef IPDIVERT
817		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
818			struct mbuf *clone = NULL;
819
820			/* Clone packet if we're doing a 'tee' */
821			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
822				clone = m_dup(m, M_DONTWAIT);
823
824			/*
825			 * XXX
826			 * delayed checksums are not currently compatible
827			 * with divert sockets.
828			 */
829			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
830				in_delayed_cksum(m);
831				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
832			}
833
834			/* Restore packet header fields to original values */
835			ip->ip_len = htons(ip->ip_len);
836			ip->ip_off = htons(ip->ip_off);
837
838			/* Deliver packet to divert input routine */
839			divert_packet(m, 0, off & 0xffff, args.divert_rule);
840
841			/* If 'tee', continue with original packet */
842			if (clone != NULL) {
843				m = clone;
844				ip = mtod(m, struct ip *);
845				goto pass;
846			}
847			goto done;
848		}
849#endif
850
851		/* IPFIREWALL_FORWARD */
852		/*
853		 * Check dst to make sure it is directly reachable on the
854		 * interface we previously thought it was.
855		 * If it isn't (which may be likely in some situations) we have
856		 * to re-route it (ie, find a route for the next-hop and the
857		 * associated interface) and set them here. This is nested
858		 * forwarding which in most cases is undesirable, except where
859		 * such control is nigh impossible. So we do it here.
860		 * And I'm babbling.
861		 */
862		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
863#if 0
864			/*
865			 * XXX To improve readability, this block should be
866			 * changed into a function call as below:
867			 */
868			error = ip_ipforward(&m, &dst, &ifp);
869			if (error)
870				goto bad;
871			if (m == NULL) /* ip_input consumed the mbuf */
872				goto done;
873#else
874			struct in_ifaddr *ia;
875
876			/*
877			 * XXX sro_fwd below is static, and a pointer
878			 * to it gets passed to routines downstream.
879			 * This could have surprisingly bad results in
880			 * practice, because its content is overwritten
881			 * by subsequent packets.
882			 */
883			/* There must be a better way to do this next line... */
884			static struct route sro_fwd;
885			struct route *ro_fwd = &sro_fwd;
886
887#if 0
888			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
889			    dst->sin_addr, "\n");
890#endif
891
892			/*
893			 * We need to figure out if we have been forwarded
894			 * to a local socket. If so, then we should somehow
895			 * "loop back" to ip_input, and get directed to the
896			 * PCB as if we had received this packet. This is
897			 * because it may be dificult to identify the packets
898			 * you want to forward until they are being output
899			 * and have selected an interface. (e.g. locally
900			 * initiated packets) If we used the loopback inteface,
901			 * we would not be able to control what happens
902			 * as the packet runs through ip_input() as
903			 * it is done through an ISR.
904			 */
905			LIST_FOREACH(ia,
906			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
907				/*
908				 * If the addr to forward to is one
909				 * of ours, we pretend to
910				 * be the destination for this packet.
911				 */
912				if (IA_SIN(ia)->sin_addr.s_addr ==
913						 dst->sin_addr.s_addr)
914					break;
915			}
916			if (ia) {	/* tell ip_input "dont filter" */
917				struct m_hdr tag;
918
919				tag.mh_type = MT_TAG;
920				tag.mh_flags = PACKET_TAG_IPFORWARD;
921				tag.mh_data = (caddr_t)args.next_hop;
922				tag.mh_next = m;
923
924				if (m->m_pkthdr.rcvif == NULL)
925					m->m_pkthdr.rcvif = ifunit("lo0");
926				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
927					m->m_pkthdr.csum_flags |=
928					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
929					m0->m_pkthdr.csum_data = 0xffff;
930				}
931				m->m_pkthdr.csum_flags |=
932				    CSUM_IP_CHECKED | CSUM_IP_VALID;
933				ip->ip_len = htons(ip->ip_len);
934				ip->ip_off = htons(ip->ip_off);
935				ip_input((struct mbuf *)&tag);
936				goto done;
937			}
938			/* Some of the logic for this was
939			 * nicked from above.
940			 *
941			 * This rewrites the cached route in a local PCB.
942			 * Is this what we want to do?
943			 */
944			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
945
946			ro_fwd->ro_rt = 0;
947			rtalloc_ign(ro_fwd, RTF_PRCLONING);
948
949			if (ro_fwd->ro_rt == 0) {
950				ipstat.ips_noroute++;
951				error = EHOSTUNREACH;
952				goto bad;
953			}
954
955			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
956			ifp = ro_fwd->ro_rt->rt_ifp;
957			ro_fwd->ro_rt->rt_use++;
958			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
959				dst = (struct sockaddr_in *)
960					ro_fwd->ro_rt->rt_gateway;
961			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
962				isbroadcast =
963				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
964			else
965				isbroadcast = in_broadcast(dst->sin_addr, ifp);
966			if (ro->ro_rt)
967				RTFREE(ro->ro_rt);
968			ro->ro_rt = ro_fwd->ro_rt;
969			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
970
971#endif	/* ... block to be put into a function */
972			/*
973			 * If we added a default src ip earlier,
974			 * which would have been gotten from the-then
975			 * interface, do it again, from the new one.
976			 */
977			if (src_was_INADDR_ANY)
978				ip->ip_src = IA_SIN(ia)->sin_addr;
979			goto pass ;
980		}
981
982                /*
983                 * if we get here, none of the above matches, and
984                 * we have to drop the pkt
985                 */
986		m_freem(m);
987                error = EACCES; /* not sure this is the right error msg */
988                goto done;
989	}
990
991pass:
992	/* 127/8 must not appear on wire - RFC1122. */
993	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
994	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
995		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
996			ipstat.ips_badaddr++;
997			error = EADDRNOTAVAIL;
998			goto bad;
999		}
1000	}
1001
1002	m->m_pkthdr.csum_flags |= CSUM_IP;
1003	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
1004	if (sw_csum & CSUM_DELAY_DATA) {
1005		in_delayed_cksum(m);
1006		sw_csum &= ~CSUM_DELAY_DATA;
1007	}
1008	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
1009
1010	/*
1011	 * If small enough for interface, or the interface will take
1012	 * care of the fragmentation for us, can just send directly.
1013	 */
1014	if (ip->ip_len <= ifp->if_mtu || ifp->if_hwassist & CSUM_FRAGMENT) {
1015		ip->ip_len = htons(ip->ip_len);
1016		ip->ip_off = htons(ip->ip_off);
1017		ip->ip_sum = 0;
1018		if (sw_csum & CSUM_DELAY_IP)
1019			ip->ip_sum = in_cksum(m, hlen);
1020
1021		/* Record statistics for this interface address. */
1022		if (!(flags & IP_FORWARDING) && ia) {
1023			ia->ia_ifa.if_opackets++;
1024			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1025		}
1026
1027#ifdef IPSEC
1028		/* clean ipsec history once it goes out of the node */
1029		ipsec_delaux(m);
1030#endif
1031
1032#ifdef MBUF_STRESS_TEST
1033		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
1034			struct mbuf *m1, *m2;
1035			int length, tmp;
1036
1037			tmp = length = m->m_pkthdr.len;
1038
1039			while ((length -= mbuf_frag_size) >= 1) {
1040				m1 = m_split(m, length, M_DONTWAIT);
1041				if (m1 == NULL)
1042					break;
1043				m1->m_flags &= ~M_PKTHDR;
1044				m2 = m;
1045				while (m2->m_next != NULL)
1046					m2 = m2->m_next;
1047				m2->m_next = m1;
1048				m->m_pkthdr.len = tmp;
1049			}
1050		}
1051#endif
1052		error = (*ifp->if_output)(ifp, m,
1053				(struct sockaddr *)dst, ro->ro_rt);
1054		goto done;
1055	}
1056
1057	if (ip->ip_off & IP_DF) {
1058		error = EMSGSIZE;
1059		/*
1060		 * This case can happen if the user changed the MTU
1061		 * of an interface after enabling IP on it.  Because
1062		 * most netifs don't keep track of routes pointing to
1063		 * them, there is no way for one to update all its
1064		 * routes when the MTU is changed.
1065		 */
1066		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1067		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1068		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1069			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1070		}
1071		ipstat.ips_cantfrag++;
1072		goto bad;
1073	}
1074
1075	/*
1076	 * Too large for interface; fragment if possible. If successful,
1077	 * on return, m will point to a list of packets to be sent.
1078	 */
1079	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1080	if (error)
1081		goto bad;
1082	for (; m; m = m0) {
1083		m0 = m->m_nextpkt;
1084		m->m_nextpkt = 0;
1085#ifdef IPSEC
1086		/* clean ipsec history once it goes out of the node */
1087		ipsec_delaux(m);
1088#endif
1089		if (error == 0) {
1090			/* Record statistics for this interface address. */
1091			if (ia != NULL) {
1092				ia->ia_ifa.if_opackets++;
1093				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1094			}
1095
1096			error = (*ifp->if_output)(ifp, m,
1097			    (struct sockaddr *)dst, ro->ro_rt);
1098		} else
1099			m_freem(m);
1100	}
1101
1102	if (error == 0)
1103		ipstat.ips_fragmented++;
1104
1105done:
1106#ifdef IPSEC
1107	if (ro == &iproute && ro->ro_rt) {
1108		RTFREE(ro->ro_rt);
1109		ro->ro_rt = NULL;
1110	}
1111	if (sp != NULL) {
1112		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1113			printf("DP ip_output call free SP:%p\n", sp));
1114		key_freesp(sp);
1115	}
1116#endif
1117#ifdef FAST_IPSEC
1118	if (ro == &iproute && ro->ro_rt) {
1119		RTFREE(ro->ro_rt);
1120		ro->ro_rt = NULL;
1121	}
1122	if (sp != NULL)
1123		KEY_FREESP(&sp);
1124#endif
1125	return (error);
1126bad:
1127	m_freem(m);
1128	goto done;
1129}
1130
1131/*
1132 * Create a chain of fragments which fit the given mtu. m_frag points to the
1133 * mbuf to be fragmented; on return it points to the chain with the fragments.
1134 * Return 0 if no error. If error, m_frag may contain a partially built
1135 * chain of fragments that should be freed by the caller.
1136 *
1137 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1138 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1139 */
1140int
1141ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1142	    u_long if_hwassist_flags, int sw_csum)
1143{
1144	int error = 0;
1145	int hlen = ip->ip_hl << 2;
1146	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1147	int off;
1148	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1149	int firstlen;
1150	struct mbuf **mnext;
1151	int nfrags;
1152
1153	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1154		ipstat.ips_cantfrag++;
1155		return EMSGSIZE;
1156	}
1157
1158	/*
1159	 * Must be able to put at least 8 bytes per fragment.
1160	 */
1161	if (len < 8)
1162		return EMSGSIZE;
1163
1164	/*
1165	 * If the interface will not calculate checksums on
1166	 * fragmented packets, then do it here.
1167	 */
1168	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1169	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1170		in_delayed_cksum(m0);
1171		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1172	}
1173
1174	if (len > PAGE_SIZE) {
1175		/*
1176		 * Fragment large datagrams such that each segment
1177		 * contains a multiple of PAGE_SIZE amount of data,
1178		 * plus headers. This enables a receiver to perform
1179		 * page-flipping zero-copy optimizations.
1180		 *
1181		 * XXX When does this help given that sender and receiver
1182		 * could have different page sizes, and also mtu could
1183		 * be less than the receiver's page size ?
1184		 */
1185		int newlen;
1186		struct mbuf *m;
1187
1188		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1189			off += m->m_len;
1190
1191		/*
1192		 * firstlen (off - hlen) must be aligned on an
1193		 * 8-byte boundary
1194		 */
1195		if (off < hlen)
1196			goto smart_frag_failure;
1197		off = ((off - hlen) & ~7) + hlen;
1198		newlen = (~PAGE_MASK) & mtu;
1199		if ((newlen + sizeof (struct ip)) > mtu) {
1200			/* we failed, go back the default */
1201smart_frag_failure:
1202			newlen = len;
1203			off = hlen + len;
1204		}
1205		len = newlen;
1206
1207	} else {
1208		off = hlen + len;
1209	}
1210
1211	firstlen = off - hlen;
1212	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1213
1214	/*
1215	 * Loop through length of segment after first fragment,
1216	 * make new header and copy data of each part and link onto chain.
1217	 * Here, m0 is the original packet, m is the fragment being created.
1218	 * The fragments are linked off the m_nextpkt of the original
1219	 * packet, which after processing serves as the first fragment.
1220	 */
1221	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1222		struct ip *mhip;	/* ip header on the fragment */
1223		struct mbuf *m;
1224		int mhlen = sizeof (struct ip);
1225
1226		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1227		if (m == 0) {
1228			error = ENOBUFS;
1229			ipstat.ips_odropped++;
1230			goto done;
1231		}
1232		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1233		/*
1234		 * In the first mbuf, leave room for the link header, then
1235		 * copy the original IP header including options. The payload
1236		 * goes into an additional mbuf chain returned by m_copy().
1237		 */
1238		m->m_data += max_linkhdr;
1239		mhip = mtod(m, struct ip *);
1240		*mhip = *ip;
1241		if (hlen > sizeof (struct ip)) {
1242			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1243			mhip->ip_v = IPVERSION;
1244			mhip->ip_hl = mhlen >> 2;
1245		}
1246		m->m_len = mhlen;
1247		/* XXX do we need to add ip->ip_off below ? */
1248		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1249		if (off + len >= ip->ip_len) {	/* last fragment */
1250			len = ip->ip_len - off;
1251			m->m_flags |= M_LASTFRAG;
1252		} else
1253			mhip->ip_off |= IP_MF;
1254		mhip->ip_len = htons((u_short)(len + mhlen));
1255		m->m_next = m_copy(m0, off, len);
1256		if (m->m_next == 0) {		/* copy failed */
1257			m_free(m);
1258			error = ENOBUFS;	/* ??? */
1259			ipstat.ips_odropped++;
1260			goto done;
1261		}
1262		m->m_pkthdr.len = mhlen + len;
1263		m->m_pkthdr.rcvif = (struct ifnet *)0;
1264#ifdef MAC
1265		mac_create_fragment(m0, m);
1266#endif
1267		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1268		mhip->ip_off = htons(mhip->ip_off);
1269		mhip->ip_sum = 0;
1270		if (sw_csum & CSUM_DELAY_IP)
1271			mhip->ip_sum = in_cksum(m, mhlen);
1272		*mnext = m;
1273		mnext = &m->m_nextpkt;
1274	}
1275	ipstat.ips_ofragments += nfrags;
1276
1277	/* set first marker for fragment chain */
1278	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1279	m0->m_pkthdr.csum_data = nfrags;
1280
1281	/*
1282	 * Update first fragment by trimming what's been copied out
1283	 * and updating header.
1284	 */
1285	m_adj(m0, hlen + firstlen - ip->ip_len);
1286	m0->m_pkthdr.len = hlen + firstlen;
1287	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1288	ip->ip_off |= IP_MF;
1289	ip->ip_off = htons(ip->ip_off);
1290	ip->ip_sum = 0;
1291	if (sw_csum & CSUM_DELAY_IP)
1292		ip->ip_sum = in_cksum(m0, hlen);
1293
1294done:
1295	*m_frag = m0;
1296	return error;
1297}
1298
1299void
1300in_delayed_cksum(struct mbuf *m)
1301{
1302	struct ip *ip;
1303	u_short csum, offset;
1304
1305	ip = mtod(m, struct ip *);
1306	offset = ip->ip_hl << 2 ;
1307	csum = in_cksum_skip(m, ip->ip_len, offset);
1308	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1309		csum = 0xffff;
1310	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1311
1312	if (offset + sizeof(u_short) > m->m_len) {
1313		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1314		    m->m_len, offset, ip->ip_p);
1315		/*
1316		 * XXX
1317		 * this shouldn't happen, but if it does, the
1318		 * correct behavior may be to insert the checksum
1319		 * in the existing chain instead of rearranging it.
1320		 */
1321		m = m_pullup(m, offset + sizeof(u_short));
1322	}
1323	*(u_short *)(m->m_data + offset) = csum;
1324}
1325
1326/*
1327 * Insert IP options into preformed packet.
1328 * Adjust IP destination as required for IP source routing,
1329 * as indicated by a non-zero in_addr at the start of the options.
1330 *
1331 * XXX This routine assumes that the packet has no options in place.
1332 */
1333static struct mbuf *
1334ip_insertoptions(m, opt, phlen)
1335	register struct mbuf *m;
1336	struct mbuf *opt;
1337	int *phlen;
1338{
1339	register struct ipoption *p = mtod(opt, struct ipoption *);
1340	struct mbuf *n;
1341	register struct ip *ip = mtod(m, struct ip *);
1342	unsigned optlen;
1343
1344	optlen = opt->m_len - sizeof(p->ipopt_dst);
1345	if (optlen + ip->ip_len > IP_MAXPACKET) {
1346		*phlen = 0;
1347		return (m);		/* XXX should fail */
1348	}
1349	if (p->ipopt_dst.s_addr)
1350		ip->ip_dst = p->ipopt_dst;
1351	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1352		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1353		if (n == 0) {
1354			*phlen = 0;
1355			return (m);
1356		}
1357		n->m_pkthdr.rcvif = (struct ifnet *)0;
1358#ifdef MAC
1359		mac_create_mbuf_from_mbuf(m, n);
1360#endif
1361		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1362		m->m_len -= sizeof(struct ip);
1363		m->m_data += sizeof(struct ip);
1364		n->m_next = m;
1365		m = n;
1366		m->m_len = optlen + sizeof(struct ip);
1367		m->m_data += max_linkhdr;
1368		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1369	} else {
1370		m->m_data -= optlen;
1371		m->m_len += optlen;
1372		m->m_pkthdr.len += optlen;
1373		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1374	}
1375	ip = mtod(m, struct ip *);
1376	bcopy(p->ipopt_list, ip + 1, optlen);
1377	*phlen = sizeof(struct ip) + optlen;
1378	ip->ip_v = IPVERSION;
1379	ip->ip_hl = *phlen >> 2;
1380	ip->ip_len += optlen;
1381	return (m);
1382}
1383
1384/*
1385 * Copy options from ip to jp,
1386 * omitting those not copied during fragmentation.
1387 */
1388int
1389ip_optcopy(ip, jp)
1390	struct ip *ip, *jp;
1391{
1392	register u_char *cp, *dp;
1393	int opt, optlen, cnt;
1394
1395	cp = (u_char *)(ip + 1);
1396	dp = (u_char *)(jp + 1);
1397	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1398	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1399		opt = cp[0];
1400		if (opt == IPOPT_EOL)
1401			break;
1402		if (opt == IPOPT_NOP) {
1403			/* Preserve for IP mcast tunnel's LSRR alignment. */
1404			*dp++ = IPOPT_NOP;
1405			optlen = 1;
1406			continue;
1407		}
1408
1409		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1410		    ("ip_optcopy: malformed ipv4 option"));
1411		optlen = cp[IPOPT_OLEN];
1412		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1413		    ("ip_optcopy: malformed ipv4 option"));
1414
1415		/* bogus lengths should have been caught by ip_dooptions */
1416		if (optlen > cnt)
1417			optlen = cnt;
1418		if (IPOPT_COPIED(opt)) {
1419			bcopy(cp, dp, optlen);
1420			dp += optlen;
1421		}
1422	}
1423	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1424		*dp++ = IPOPT_EOL;
1425	return (optlen);
1426}
1427
1428/*
1429 * IP socket option processing.
1430 */
1431int
1432ip_ctloutput(so, sopt)
1433	struct socket *so;
1434	struct sockopt *sopt;
1435{
1436	struct	inpcb *inp = sotoinpcb(so);
1437	int	error, optval;
1438
1439	error = optval = 0;
1440	if (sopt->sopt_level != IPPROTO_IP) {
1441		return (EINVAL);
1442	}
1443
1444	switch (sopt->sopt_dir) {
1445	case SOPT_SET:
1446		switch (sopt->sopt_name) {
1447		case IP_OPTIONS:
1448#ifdef notyet
1449		case IP_RETOPTS:
1450#endif
1451		{
1452			struct mbuf *m;
1453			if (sopt->sopt_valsize > MLEN) {
1454				error = EMSGSIZE;
1455				break;
1456			}
1457			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1458			if (m == 0) {
1459				error = ENOBUFS;
1460				break;
1461			}
1462			m->m_len = sopt->sopt_valsize;
1463			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1464					    m->m_len);
1465
1466			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1467					   m));
1468		}
1469
1470		case IP_TOS:
1471		case IP_TTL:
1472		case IP_RECVOPTS:
1473		case IP_RECVRETOPTS:
1474		case IP_RECVDSTADDR:
1475		case IP_RECVTTL:
1476		case IP_RECVIF:
1477		case IP_FAITH:
1478		case IP_ONESBCAST:
1479			error = sooptcopyin(sopt, &optval, sizeof optval,
1480					    sizeof optval);
1481			if (error)
1482				break;
1483
1484			switch (sopt->sopt_name) {
1485			case IP_TOS:
1486				inp->inp_ip_tos = optval;
1487				break;
1488
1489			case IP_TTL:
1490				inp->inp_ip_ttl = optval;
1491				break;
1492#define	OPTSET(bit) \
1493	if (optval) \
1494		inp->inp_flags |= bit; \
1495	else \
1496		inp->inp_flags &= ~bit;
1497
1498			case IP_RECVOPTS:
1499				OPTSET(INP_RECVOPTS);
1500				break;
1501
1502			case IP_RECVRETOPTS:
1503				OPTSET(INP_RECVRETOPTS);
1504				break;
1505
1506			case IP_RECVDSTADDR:
1507				OPTSET(INP_RECVDSTADDR);
1508				break;
1509
1510			case IP_RECVTTL:
1511				OPTSET(INP_RECVTTL);
1512				break;
1513
1514			case IP_RECVIF:
1515				OPTSET(INP_RECVIF);
1516				break;
1517
1518			case IP_FAITH:
1519				OPTSET(INP_FAITH);
1520				break;
1521
1522			case IP_ONESBCAST:
1523				OPTSET(INP_ONESBCAST);
1524				break;
1525			}
1526			break;
1527#undef OPTSET
1528
1529		case IP_MULTICAST_IF:
1530		case IP_MULTICAST_VIF:
1531		case IP_MULTICAST_TTL:
1532		case IP_MULTICAST_LOOP:
1533		case IP_ADD_MEMBERSHIP:
1534		case IP_DROP_MEMBERSHIP:
1535			error = ip_setmoptions(sopt, &inp->inp_moptions);
1536			break;
1537
1538		case IP_PORTRANGE:
1539			error = sooptcopyin(sopt, &optval, sizeof optval,
1540					    sizeof optval);
1541			if (error)
1542				break;
1543
1544			switch (optval) {
1545			case IP_PORTRANGE_DEFAULT:
1546				inp->inp_flags &= ~(INP_LOWPORT);
1547				inp->inp_flags &= ~(INP_HIGHPORT);
1548				break;
1549
1550			case IP_PORTRANGE_HIGH:
1551				inp->inp_flags &= ~(INP_LOWPORT);
1552				inp->inp_flags |= INP_HIGHPORT;
1553				break;
1554
1555			case IP_PORTRANGE_LOW:
1556				inp->inp_flags &= ~(INP_HIGHPORT);
1557				inp->inp_flags |= INP_LOWPORT;
1558				break;
1559
1560			default:
1561				error = EINVAL;
1562				break;
1563			}
1564			break;
1565
1566#if defined(IPSEC) || defined(FAST_IPSEC)
1567		case IP_IPSEC_POLICY:
1568		{
1569			caddr_t req;
1570			size_t len = 0;
1571			int priv;
1572			struct mbuf *m;
1573			int optname;
1574
1575			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1576				break;
1577			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1578				break;
1579			priv = (sopt->sopt_td != NULL &&
1580				suser(sopt->sopt_td) != 0) ? 0 : 1;
1581			req = mtod(m, caddr_t);
1582			len = m->m_len;
1583			optname = sopt->sopt_name;
1584			error = ipsec4_set_policy(inp, optname, req, len, priv);
1585			m_freem(m);
1586			break;
1587		}
1588#endif /*IPSEC*/
1589
1590		default:
1591			error = ENOPROTOOPT;
1592			break;
1593		}
1594		break;
1595
1596	case SOPT_GET:
1597		switch (sopt->sopt_name) {
1598		case IP_OPTIONS:
1599		case IP_RETOPTS:
1600			if (inp->inp_options)
1601				error = sooptcopyout(sopt,
1602						     mtod(inp->inp_options,
1603							  char *),
1604						     inp->inp_options->m_len);
1605			else
1606				sopt->sopt_valsize = 0;
1607			break;
1608
1609		case IP_TOS:
1610		case IP_TTL:
1611		case IP_RECVOPTS:
1612		case IP_RECVRETOPTS:
1613		case IP_RECVDSTADDR:
1614		case IP_RECVTTL:
1615		case IP_RECVIF:
1616		case IP_PORTRANGE:
1617		case IP_FAITH:
1618		case IP_ONESBCAST:
1619			switch (sopt->sopt_name) {
1620
1621			case IP_TOS:
1622				optval = inp->inp_ip_tos;
1623				break;
1624
1625			case IP_TTL:
1626				optval = inp->inp_ip_ttl;
1627				break;
1628
1629#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1630
1631			case IP_RECVOPTS:
1632				optval = OPTBIT(INP_RECVOPTS);
1633				break;
1634
1635			case IP_RECVRETOPTS:
1636				optval = OPTBIT(INP_RECVRETOPTS);
1637				break;
1638
1639			case IP_RECVDSTADDR:
1640				optval = OPTBIT(INP_RECVDSTADDR);
1641				break;
1642
1643			case IP_RECVTTL:
1644				optval = OPTBIT(INP_RECVTTL);
1645				break;
1646
1647			case IP_RECVIF:
1648				optval = OPTBIT(INP_RECVIF);
1649				break;
1650
1651			case IP_PORTRANGE:
1652				if (inp->inp_flags & INP_HIGHPORT)
1653					optval = IP_PORTRANGE_HIGH;
1654				else if (inp->inp_flags & INP_LOWPORT)
1655					optval = IP_PORTRANGE_LOW;
1656				else
1657					optval = 0;
1658				break;
1659
1660			case IP_FAITH:
1661				optval = OPTBIT(INP_FAITH);
1662				break;
1663
1664			case IP_ONESBCAST:
1665				optval = OPTBIT(INP_ONESBCAST);
1666				break;
1667			}
1668			error = sooptcopyout(sopt, &optval, sizeof optval);
1669			break;
1670
1671		case IP_MULTICAST_IF:
1672		case IP_MULTICAST_VIF:
1673		case IP_MULTICAST_TTL:
1674		case IP_MULTICAST_LOOP:
1675		case IP_ADD_MEMBERSHIP:
1676		case IP_DROP_MEMBERSHIP:
1677			error = ip_getmoptions(sopt, inp->inp_moptions);
1678			break;
1679
1680#if defined(IPSEC) || defined(FAST_IPSEC)
1681		case IP_IPSEC_POLICY:
1682		{
1683			struct mbuf *m = NULL;
1684			caddr_t req = NULL;
1685			size_t len = 0;
1686
1687			if (m != 0) {
1688				req = mtod(m, caddr_t);
1689				len = m->m_len;
1690			}
1691			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1692			if (error == 0)
1693				error = soopt_mcopyout(sopt, m); /* XXX */
1694			if (error == 0)
1695				m_freem(m);
1696			break;
1697		}
1698#endif /*IPSEC*/
1699
1700		default:
1701			error = ENOPROTOOPT;
1702			break;
1703		}
1704		break;
1705	}
1706	return (error);
1707}
1708
1709/*
1710 * Set up IP options in pcb for insertion in output packets.
1711 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1712 * with destination address if source routed.
1713 */
1714static int
1715ip_pcbopts(optname, pcbopt, m)
1716	int optname;
1717	struct mbuf **pcbopt;
1718	register struct mbuf *m;
1719{
1720	register int cnt, optlen;
1721	register u_char *cp;
1722	u_char opt;
1723
1724	/* turn off any old options */
1725	if (*pcbopt)
1726		(void)m_free(*pcbopt);
1727	*pcbopt = 0;
1728	if (m == (struct mbuf *)0 || m->m_len == 0) {
1729		/*
1730		 * Only turning off any previous options.
1731		 */
1732		if (m)
1733			(void)m_free(m);
1734		return (0);
1735	}
1736
1737	if (m->m_len % sizeof(int32_t))
1738		goto bad;
1739	/*
1740	 * IP first-hop destination address will be stored before
1741	 * actual options; move other options back
1742	 * and clear it when none present.
1743	 */
1744	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1745		goto bad;
1746	cnt = m->m_len;
1747	m->m_len += sizeof(struct in_addr);
1748	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1749	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1750	bzero(mtod(m, void *), sizeof(struct in_addr));
1751
1752	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1753		opt = cp[IPOPT_OPTVAL];
1754		if (opt == IPOPT_EOL)
1755			break;
1756		if (opt == IPOPT_NOP)
1757			optlen = 1;
1758		else {
1759			if (cnt < IPOPT_OLEN + sizeof(*cp))
1760				goto bad;
1761			optlen = cp[IPOPT_OLEN];
1762			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1763				goto bad;
1764		}
1765		switch (opt) {
1766
1767		default:
1768			break;
1769
1770		case IPOPT_LSRR:
1771		case IPOPT_SSRR:
1772			/*
1773			 * user process specifies route as:
1774			 *	->A->B->C->D
1775			 * D must be our final destination (but we can't
1776			 * check that since we may not have connected yet).
1777			 * A is first hop destination, which doesn't appear in
1778			 * actual IP option, but is stored before the options.
1779			 */
1780			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1781				goto bad;
1782			m->m_len -= sizeof(struct in_addr);
1783			cnt -= sizeof(struct in_addr);
1784			optlen -= sizeof(struct in_addr);
1785			cp[IPOPT_OLEN] = optlen;
1786			/*
1787			 * Move first hop before start of options.
1788			 */
1789			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1790			    sizeof(struct in_addr));
1791			/*
1792			 * Then copy rest of options back
1793			 * to close up the deleted entry.
1794			 */
1795			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1796			    &cp[IPOPT_OFFSET+1],
1797			    (unsigned)cnt + sizeof(struct in_addr));
1798			break;
1799		}
1800	}
1801	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1802		goto bad;
1803	*pcbopt = m;
1804	return (0);
1805
1806bad:
1807	(void)m_free(m);
1808	return (EINVAL);
1809}
1810
1811/*
1812 * XXX
1813 * The whole multicast option thing needs to be re-thought.
1814 * Several of these options are equally applicable to non-multicast
1815 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1816 * standard option (IP_TTL).
1817 */
1818
1819/*
1820 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1821 */
1822static struct ifnet *
1823ip_multicast_if(a, ifindexp)
1824	struct in_addr *a;
1825	int *ifindexp;
1826{
1827	int ifindex;
1828	struct ifnet *ifp;
1829
1830	if (ifindexp)
1831		*ifindexp = 0;
1832	if (ntohl(a->s_addr) >> 24 == 0) {
1833		ifindex = ntohl(a->s_addr) & 0xffffff;
1834		if (ifindex < 0 || if_index < ifindex)
1835			return NULL;
1836		ifp = ifnet_byindex(ifindex);
1837		if (ifindexp)
1838			*ifindexp = ifindex;
1839	} else {
1840		INADDR_TO_IFP(*a, ifp);
1841	}
1842	return ifp;
1843}
1844
1845/*
1846 * Set the IP multicast options in response to user setsockopt().
1847 */
1848static int
1849ip_setmoptions(sopt, imop)
1850	struct sockopt *sopt;
1851	struct ip_moptions **imop;
1852{
1853	int error = 0;
1854	int i;
1855	struct in_addr addr;
1856	struct ip_mreq mreq;
1857	struct ifnet *ifp;
1858	struct ip_moptions *imo = *imop;
1859	struct route ro;
1860	struct sockaddr_in *dst;
1861	int ifindex;
1862	int s;
1863
1864	if (imo == NULL) {
1865		/*
1866		 * No multicast option buffer attached to the pcb;
1867		 * allocate one and initialize to default values.
1868		 */
1869		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1870		    M_WAITOK);
1871
1872		if (imo == NULL)
1873			return (ENOBUFS);
1874		*imop = imo;
1875		imo->imo_multicast_ifp = NULL;
1876		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1877		imo->imo_multicast_vif = -1;
1878		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1879		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1880		imo->imo_num_memberships = 0;
1881	}
1882
1883	switch (sopt->sopt_name) {
1884	/* store an index number for the vif you wanna use in the send */
1885	case IP_MULTICAST_VIF:
1886		if (legal_vif_num == 0) {
1887			error = EOPNOTSUPP;
1888			break;
1889		}
1890		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1891		if (error)
1892			break;
1893		if (!legal_vif_num(i) && (i != -1)) {
1894			error = EINVAL;
1895			break;
1896		}
1897		imo->imo_multicast_vif = i;
1898		break;
1899
1900	case IP_MULTICAST_IF:
1901		/*
1902		 * Select the interface for outgoing multicast packets.
1903		 */
1904		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1905		if (error)
1906			break;
1907		/*
1908		 * INADDR_ANY is used to remove a previous selection.
1909		 * When no interface is selected, a default one is
1910		 * chosen every time a multicast packet is sent.
1911		 */
1912		if (addr.s_addr == INADDR_ANY) {
1913			imo->imo_multicast_ifp = NULL;
1914			break;
1915		}
1916		/*
1917		 * The selected interface is identified by its local
1918		 * IP address.  Find the interface and confirm that
1919		 * it supports multicasting.
1920		 */
1921		s = splimp();
1922		ifp = ip_multicast_if(&addr, &ifindex);
1923		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1924			splx(s);
1925			error = EADDRNOTAVAIL;
1926			break;
1927		}
1928		imo->imo_multicast_ifp = ifp;
1929		if (ifindex)
1930			imo->imo_multicast_addr = addr;
1931		else
1932			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1933		splx(s);
1934		break;
1935
1936	case IP_MULTICAST_TTL:
1937		/*
1938		 * Set the IP time-to-live for outgoing multicast packets.
1939		 * The original multicast API required a char argument,
1940		 * which is inconsistent with the rest of the socket API.
1941		 * We allow either a char or an int.
1942		 */
1943		if (sopt->sopt_valsize == 1) {
1944			u_char ttl;
1945			error = sooptcopyin(sopt, &ttl, 1, 1);
1946			if (error)
1947				break;
1948			imo->imo_multicast_ttl = ttl;
1949		} else {
1950			u_int ttl;
1951			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1952					    sizeof ttl);
1953			if (error)
1954				break;
1955			if (ttl > 255)
1956				error = EINVAL;
1957			else
1958				imo->imo_multicast_ttl = ttl;
1959		}
1960		break;
1961
1962	case IP_MULTICAST_LOOP:
1963		/*
1964		 * Set the loopback flag for outgoing multicast packets.
1965		 * Must be zero or one.  The original multicast API required a
1966		 * char argument, which is inconsistent with the rest
1967		 * of the socket API.  We allow either a char or an int.
1968		 */
1969		if (sopt->sopt_valsize == 1) {
1970			u_char loop;
1971			error = sooptcopyin(sopt, &loop, 1, 1);
1972			if (error)
1973				break;
1974			imo->imo_multicast_loop = !!loop;
1975		} else {
1976			u_int loop;
1977			error = sooptcopyin(sopt, &loop, sizeof loop,
1978					    sizeof loop);
1979			if (error)
1980				break;
1981			imo->imo_multicast_loop = !!loop;
1982		}
1983		break;
1984
1985	case IP_ADD_MEMBERSHIP:
1986		/*
1987		 * Add a multicast group membership.
1988		 * Group must be a valid IP multicast address.
1989		 */
1990		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1991		if (error)
1992			break;
1993
1994		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1995			error = EINVAL;
1996			break;
1997		}
1998		s = splimp();
1999		/*
2000		 * If no interface address was provided, use the interface of
2001		 * the route to the given multicast address.
2002		 */
2003		if (mreq.imr_interface.s_addr == INADDR_ANY) {
2004			bzero((caddr_t)&ro, sizeof(ro));
2005			dst = (struct sockaddr_in *)&ro.ro_dst;
2006			dst->sin_len = sizeof(*dst);
2007			dst->sin_family = AF_INET;
2008			dst->sin_addr = mreq.imr_multiaddr;
2009			rtalloc(&ro);
2010			if (ro.ro_rt == NULL) {
2011				error = EADDRNOTAVAIL;
2012				splx(s);
2013				break;
2014			}
2015			ifp = ro.ro_rt->rt_ifp;
2016			rtfree(ro.ro_rt);
2017		}
2018		else {
2019			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2020		}
2021
2022		/*
2023		 * See if we found an interface, and confirm that it
2024		 * supports multicast.
2025		 */
2026		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2027			error = EADDRNOTAVAIL;
2028			splx(s);
2029			break;
2030		}
2031		/*
2032		 * See if the membership already exists or if all the
2033		 * membership slots are full.
2034		 */
2035		for (i = 0; i < imo->imo_num_memberships; ++i) {
2036			if (imo->imo_membership[i]->inm_ifp == ifp &&
2037			    imo->imo_membership[i]->inm_addr.s_addr
2038						== mreq.imr_multiaddr.s_addr)
2039				break;
2040		}
2041		if (i < imo->imo_num_memberships) {
2042			error = EADDRINUSE;
2043			splx(s);
2044			break;
2045		}
2046		if (i == IP_MAX_MEMBERSHIPS) {
2047			error = ETOOMANYREFS;
2048			splx(s);
2049			break;
2050		}
2051		/*
2052		 * Everything looks good; add a new record to the multicast
2053		 * address list for the given interface.
2054		 */
2055		if ((imo->imo_membership[i] =
2056		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2057			error = ENOBUFS;
2058			splx(s);
2059			break;
2060		}
2061		++imo->imo_num_memberships;
2062		splx(s);
2063		break;
2064
2065	case IP_DROP_MEMBERSHIP:
2066		/*
2067		 * Drop a multicast group membership.
2068		 * Group must be a valid IP multicast address.
2069		 */
2070		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2071		if (error)
2072			break;
2073
2074		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2075			error = EINVAL;
2076			break;
2077		}
2078
2079		s = splimp();
2080		/*
2081		 * If an interface address was specified, get a pointer
2082		 * to its ifnet structure.
2083		 */
2084		if (mreq.imr_interface.s_addr == INADDR_ANY)
2085			ifp = NULL;
2086		else {
2087			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2088			if (ifp == NULL) {
2089				error = EADDRNOTAVAIL;
2090				splx(s);
2091				break;
2092			}
2093		}
2094		/*
2095		 * Find the membership in the membership array.
2096		 */
2097		for (i = 0; i < imo->imo_num_memberships; ++i) {
2098			if ((ifp == NULL ||
2099			     imo->imo_membership[i]->inm_ifp == ifp) &&
2100			     imo->imo_membership[i]->inm_addr.s_addr ==
2101			     mreq.imr_multiaddr.s_addr)
2102				break;
2103		}
2104		if (i == imo->imo_num_memberships) {
2105			error = EADDRNOTAVAIL;
2106			splx(s);
2107			break;
2108		}
2109		/*
2110		 * Give up the multicast address record to which the
2111		 * membership points.
2112		 */
2113		in_delmulti(imo->imo_membership[i]);
2114		/*
2115		 * Remove the gap in the membership array.
2116		 */
2117		for (++i; i < imo->imo_num_memberships; ++i)
2118			imo->imo_membership[i-1] = imo->imo_membership[i];
2119		--imo->imo_num_memberships;
2120		splx(s);
2121		break;
2122
2123	default:
2124		error = EOPNOTSUPP;
2125		break;
2126	}
2127
2128	/*
2129	 * If all options have default values, no need to keep the mbuf.
2130	 */
2131	if (imo->imo_multicast_ifp == NULL &&
2132	    imo->imo_multicast_vif == -1 &&
2133	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2134	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2135	    imo->imo_num_memberships == 0) {
2136		free(*imop, M_IPMOPTS);
2137		*imop = NULL;
2138	}
2139
2140	return (error);
2141}
2142
2143/*
2144 * Return the IP multicast options in response to user getsockopt().
2145 */
2146static int
2147ip_getmoptions(sopt, imo)
2148	struct sockopt *sopt;
2149	register struct ip_moptions *imo;
2150{
2151	struct in_addr addr;
2152	struct in_ifaddr *ia;
2153	int error, optval;
2154	u_char coptval;
2155
2156	error = 0;
2157	switch (sopt->sopt_name) {
2158	case IP_MULTICAST_VIF:
2159		if (imo != NULL)
2160			optval = imo->imo_multicast_vif;
2161		else
2162			optval = -1;
2163		error = sooptcopyout(sopt, &optval, sizeof optval);
2164		break;
2165
2166	case IP_MULTICAST_IF:
2167		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2168			addr.s_addr = INADDR_ANY;
2169		else if (imo->imo_multicast_addr.s_addr) {
2170			/* return the value user has set */
2171			addr = imo->imo_multicast_addr;
2172		} else {
2173			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2174			addr.s_addr = (ia == NULL) ? INADDR_ANY
2175				: IA_SIN(ia)->sin_addr.s_addr;
2176		}
2177		error = sooptcopyout(sopt, &addr, sizeof addr);
2178		break;
2179
2180	case IP_MULTICAST_TTL:
2181		if (imo == 0)
2182			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2183		else
2184			optval = coptval = imo->imo_multicast_ttl;
2185		if (sopt->sopt_valsize == 1)
2186			error = sooptcopyout(sopt, &coptval, 1);
2187		else
2188			error = sooptcopyout(sopt, &optval, sizeof optval);
2189		break;
2190
2191	case IP_MULTICAST_LOOP:
2192		if (imo == 0)
2193			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2194		else
2195			optval = coptval = imo->imo_multicast_loop;
2196		if (sopt->sopt_valsize == 1)
2197			error = sooptcopyout(sopt, &coptval, 1);
2198		else
2199			error = sooptcopyout(sopt, &optval, sizeof optval);
2200		break;
2201
2202	default:
2203		error = ENOPROTOOPT;
2204		break;
2205	}
2206	return (error);
2207}
2208
2209/*
2210 * Discard the IP multicast options.
2211 */
2212void
2213ip_freemoptions(imo)
2214	register struct ip_moptions *imo;
2215{
2216	register int i;
2217
2218	if (imo != NULL) {
2219		for (i = 0; i < imo->imo_num_memberships; ++i)
2220			in_delmulti(imo->imo_membership[i]);
2221		free(imo, M_IPMOPTS);
2222	}
2223}
2224
2225/*
2226 * Routine called from ip_output() to loop back a copy of an IP multicast
2227 * packet to the input queue of a specified interface.  Note that this
2228 * calls the output routine of the loopback "driver", but with an interface
2229 * pointer that might NOT be a loopback interface -- evil, but easier than
2230 * replicating that code here.
2231 */
2232static void
2233ip_mloopback(ifp, m, dst, hlen)
2234	struct ifnet *ifp;
2235	register struct mbuf *m;
2236	register struct sockaddr_in *dst;
2237	int hlen;
2238{
2239	register struct ip *ip;
2240	struct mbuf *copym;
2241
2242	copym = m_copy(m, 0, M_COPYALL);
2243	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2244		copym = m_pullup(copym, hlen);
2245	if (copym != NULL) {
2246		/*
2247		 * We don't bother to fragment if the IP length is greater
2248		 * than the interface's MTU.  Can this possibly matter?
2249		 */
2250		ip = mtod(copym, struct ip *);
2251		ip->ip_len = htons(ip->ip_len);
2252		ip->ip_off = htons(ip->ip_off);
2253		ip->ip_sum = 0;
2254		ip->ip_sum = in_cksum(copym, hlen);
2255		/*
2256		 * NB:
2257		 * It's not clear whether there are any lingering
2258		 * reentrancy problems in other areas which might
2259		 * be exposed by using ip_input directly (in
2260		 * particular, everything which modifies the packet
2261		 * in-place).  Yet another option is using the
2262		 * protosw directly to deliver the looped back
2263		 * packet.  For the moment, we'll err on the side
2264		 * of safety by using if_simloop().
2265		 */
2266#if 1 /* XXX */
2267		if (dst->sin_family != AF_INET) {
2268			printf("ip_mloopback: bad address family %d\n",
2269						dst->sin_family);
2270			dst->sin_family = AF_INET;
2271		}
2272#endif
2273
2274#ifdef notdef
2275		copym->m_pkthdr.rcvif = ifp;
2276		ip_input(copym);
2277#else
2278		/* if the checksum hasn't been computed, mark it as valid */
2279		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2280			copym->m_pkthdr.csum_flags |=
2281			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2282			copym->m_pkthdr.csum_data = 0xffff;
2283		}
2284		if_simloop(ifp, copym, dst->sin_family, 0);
2285#endif
2286	}
2287}
2288