ip_output.c revision 115471
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 * $FreeBSD: head/sys/netinet/ip_output.c 115471 2003-05-31 17:55:21Z wollman $
35 */
36
37#include "opt_ipfw.h"
38#include "opt_ipdn.h"
39#include "opt_ipdivert.h"
40#include "opt_ipfilter.h"
41#include "opt_ipsec.h"
42#include "opt_mac.h"
43#include "opt_pfil_hooks.h"
44#include "opt_random_ip_id.h"
45#include "opt_mbuf_stress_test.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/kernel.h>
50#include <sys/mac.h>
51#include <sys/malloc.h>
52#include <sys/mbuf.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/sysctl.h>
57
58#include <net/if.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_var.h>
66#include <netinet/ip_var.h>
67
68#include <machine/in_cksum.h>
69
70static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
71
72#ifdef IPSEC
73#include <netinet6/ipsec.h>
74#include <netkey/key.h>
75#ifdef IPSEC_DEBUG
76#include <netkey/key_debug.h>
77#else
78#define	KEYDEBUG(lev,arg)
79#endif
80#endif /*IPSEC*/
81
82#ifdef FAST_IPSEC
83#include <netipsec/ipsec.h>
84#include <netipsec/xform.h>
85#include <netipsec/key.h>
86#endif /*FAST_IPSEC*/
87
88#include <netinet/ip_fw.h>
89#include <netinet/ip_dummynet.h>
90
91#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
92				x, (ntohl(a.s_addr)>>24)&0xFF,\
93				  (ntohl(a.s_addr)>>16)&0xFF,\
94				  (ntohl(a.s_addr)>>8)&0xFF,\
95				  (ntohl(a.s_addr))&0xFF, y);
96
97u_short ip_id;
98
99#ifdef MBUF_STRESS_TEST
100int mbuf_frag_size = 0;
101SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
102	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
103#endif
104
105static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
106static struct ifnet *ip_multicast_if(struct in_addr *, int *);
107static void	ip_mloopback
108	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
109static int	ip_getmoptions
110	(struct sockopt *, struct ip_moptions *);
111static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
112static int	ip_setmoptions
113	(struct sockopt *, struct ip_moptions **);
114
115int	ip_optcopy(struct ip *, struct ip *);
116
117
118extern	struct protosw inetsw[];
119
120/*
121 * IP output.  The packet in mbuf chain m contains a skeletal IP
122 * header (with len, off, ttl, proto, tos, src, dst).
123 * The mbuf chain containing the packet will be freed.
124 * The mbuf opt, if present, will not be freed.
125 */
126int
127ip_output(m0, opt, ro, flags, imo, inp)
128	struct mbuf *m0;
129	struct mbuf *opt;
130	struct route *ro;
131	int flags;
132	struct ip_moptions *imo;
133	struct inpcb *inp;
134{
135	struct ip *ip, *mhip;
136	struct ifnet *ifp = NULL;	/* keep compiler happy */
137	struct mbuf *m;
138	int hlen = sizeof (struct ip);
139	int len, off, error = 0;
140	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
141	struct in_ifaddr *ia = NULL;
142	int isbroadcast, sw_csum;
143	struct in_addr pkt_dst;
144#ifdef IPSEC
145	struct route iproute;
146	struct secpolicy *sp = NULL;
147#endif
148#ifdef FAST_IPSEC
149	struct route iproute;
150	struct m_tag *mtag;
151	struct secpolicy *sp = NULL;
152	struct tdb_ident *tdbi;
153	int s;
154#endif /* FAST_IPSEC */
155	struct ip_fw_args args;
156	int src_was_INADDR_ANY = 0;	/* as the name says... */
157#ifdef PFIL_HOOKS
158	struct packet_filter_hook *pfh;
159	struct mbuf *m1;
160	int rv;
161#endif /* PFIL_HOOKS */
162
163	args.eh = NULL;
164	args.rule = NULL;
165	args.next_hop = NULL;
166	args.divert_rule = 0;			/* divert cookie */
167
168	/* Grab info from MT_TAG mbufs prepended to the chain. */
169	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
170		switch(m0->_m_tag_id) {
171		default:
172			printf("ip_output: unrecognised MT_TAG tag %d\n",
173			    m0->_m_tag_id);
174			break;
175
176		case PACKET_TAG_DUMMYNET:
177			/*
178			 * the packet was already tagged, so part of the
179			 * processing was already done, and we need to go down.
180			 * Get parameters from the header.
181			 */
182			args.rule = ((struct dn_pkt *)m0)->rule;
183			opt = NULL ;
184			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
185			imo = NULL ;
186			dst = ((struct dn_pkt *)m0)->dn_dst ;
187			ifp = ((struct dn_pkt *)m0)->ifp ;
188			flags = ((struct dn_pkt *)m0)->flags ;
189			break;
190
191		case PACKET_TAG_DIVERT:
192			args.divert_rule = (intptr_t)m0->m_data & 0xffff;
193			break;
194
195		case PACKET_TAG_IPFORWARD:
196			args.next_hop = (struct sockaddr_in *)m0->m_data;
197			break;
198		}
199	}
200	m = m0;
201
202	M_ASSERTPKTHDR(m);
203#ifndef FAST_IPSEC
204	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
205	    mtod(m, struct ip *)->ip_p));
206#endif
207
208	if (args.rule != NULL) {	/* dummynet already saw us */
209		ip = mtod(m, struct ip *);
210		hlen = ip->ip_hl << 2 ;
211		if (ro->ro_rt)
212			ia = ifatoia(ro->ro_rt->rt_ifa);
213		goto sendit;
214	}
215
216	if (opt) {
217		len = 0;
218		m = ip_insertoptions(m, opt, &len);
219		if (len != 0)
220			hlen = len;
221	}
222	ip = mtod(m, struct ip *);
223	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
224
225	/*
226	 * Fill in IP header.  If we are not allowing fragmentation,
227	 * then the ip_id field is meaningless, so send it as zero
228	 * to reduce information leakage.  Otherwise, if we are not
229	 * randomizing ip_id, then don't bother to convert it to network
230	 * byte order -- it's just a nonce.  Note that a 16-bit counter
231	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
232	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
233	 * for Counting NATted Hosts", Proc. IMW'02, available at
234	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
235	 */
236	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
237		ip->ip_v = IPVERSION;
238		ip->ip_hl = hlen >> 2;
239		if ((ip->ip_off & IP_DF) == 0) {
240			ip->ip_off = 0;
241#ifdef RANDOM_IP_ID
242			ip->ip_id = ip_randomid();
243#else
244			ip->ip_id = ip_id++;
245#endif
246		} else {
247			ip->ip_off = IP_DF;
248			ip->ip_id = 0;
249		}
250		ipstat.ips_localout++;
251	} else {
252		hlen = ip->ip_hl << 2;
253	}
254
255#ifdef FAST_IPSEC
256	if (ro == NULL) {
257		ro = &iproute;
258		bzero(ro, sizeof (*ro));
259	}
260#endif /* FAST_IPSEC */
261	dst = (struct sockaddr_in *)&ro->ro_dst;
262	/*
263	 * If there is a cached route,
264	 * check that it is to the same destination
265	 * and is still up.  If not, free it and try again.
266	 * The address family should also be checked in case of sharing the
267	 * cache with IPv6.
268	 */
269	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
270			  dst->sin_family != AF_INET ||
271			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
272		RTFREE(ro->ro_rt);
273		ro->ro_rt = (struct rtentry *)0;
274	}
275	if (ro->ro_rt == 0) {
276		bzero(dst, sizeof(*dst));
277		dst->sin_family = AF_INET;
278		dst->sin_len = sizeof(*dst);
279		dst->sin_addr = pkt_dst;
280	}
281	/*
282	 * If routing to interface only,
283	 * short circuit routing lookup.
284	 */
285	if (flags & IP_ROUTETOIF) {
286		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
287		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
288			ipstat.ips_noroute++;
289			error = ENETUNREACH;
290			goto bad;
291		}
292		ifp = ia->ia_ifp;
293		ip->ip_ttl = 1;
294		isbroadcast = in_broadcast(dst->sin_addr, ifp);
295	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
296	    imo != NULL && imo->imo_multicast_ifp != NULL) {
297		/*
298		 * Bypass the normal routing lookup for multicast
299		 * packets if the interface is specified.
300		 */
301		ifp = imo->imo_multicast_ifp;
302		IFP_TO_IA(ifp, ia);
303		isbroadcast = 0;	/* fool gcc */
304	} else {
305		/*
306		 * If this is the case, we probably don't want to allocate
307		 * a protocol-cloned route since we didn't get one from the
308		 * ULP.  This lets TCP do its thing, while not burdening
309		 * forwarding or ICMP with the overhead of cloning a route.
310		 * Of course, we still want to do any cloning requested by
311		 * the link layer, as this is probably required in all cases
312		 * for correct operation (as it is for ARP).
313		 */
314		if (ro->ro_rt == 0)
315			rtalloc_ign(ro, RTF_PRCLONING);
316		if (ro->ro_rt == 0) {
317			ipstat.ips_noroute++;
318			error = EHOSTUNREACH;
319			goto bad;
320		}
321		ia = ifatoia(ro->ro_rt->rt_ifa);
322		ifp = ro->ro_rt->rt_ifp;
323		ro->ro_rt->rt_use++;
324		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
325			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
326		if (ro->ro_rt->rt_flags & RTF_HOST)
327			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
328		else
329			isbroadcast = in_broadcast(dst->sin_addr, ifp);
330	}
331	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
332		struct in_multi *inm;
333
334		m->m_flags |= M_MCAST;
335		/*
336		 * IP destination address is multicast.  Make sure "dst"
337		 * still points to the address in "ro".  (It may have been
338		 * changed to point to a gateway address, above.)
339		 */
340		dst = (struct sockaddr_in *)&ro->ro_dst;
341		/*
342		 * See if the caller provided any multicast options
343		 */
344		if (imo != NULL) {
345			ip->ip_ttl = imo->imo_multicast_ttl;
346			if (imo->imo_multicast_vif != -1)
347				ip->ip_src.s_addr =
348				    ip_mcast_src ?
349				    ip_mcast_src(imo->imo_multicast_vif) :
350				    INADDR_ANY;
351		} else
352			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
353		/*
354		 * Confirm that the outgoing interface supports multicast.
355		 */
356		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
357			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
358				ipstat.ips_noroute++;
359				error = ENETUNREACH;
360				goto bad;
361			}
362		}
363		/*
364		 * If source address not specified yet, use address
365		 * of outgoing interface.
366		 */
367		if (ip->ip_src.s_addr == INADDR_ANY) {
368			/* Interface may have no addresses. */
369			if (ia != NULL)
370				ip->ip_src = IA_SIN(ia)->sin_addr;
371		}
372
373		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
374			/*
375			 * XXX
376			 * delayed checksums are not currently
377			 * compatible with IP multicast routing
378			 */
379			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
380				in_delayed_cksum(m);
381				m->m_pkthdr.csum_flags &=
382					~CSUM_DELAY_DATA;
383			}
384		}
385		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
386		if (inm != NULL &&
387		   (imo == NULL || imo->imo_multicast_loop)) {
388			/*
389			 * If we belong to the destination multicast group
390			 * on the outgoing interface, and the caller did not
391			 * forbid loopback, loop back a copy.
392			 */
393			ip_mloopback(ifp, m, dst, hlen);
394		}
395		else {
396			/*
397			 * If we are acting as a multicast router, perform
398			 * multicast forwarding as if the packet had just
399			 * arrived on the interface to which we are about
400			 * to send.  The multicast forwarding function
401			 * recursively calls this function, using the
402			 * IP_FORWARDING flag to prevent infinite recursion.
403			 *
404			 * Multicasts that are looped back by ip_mloopback(),
405			 * above, will be forwarded by the ip_input() routine,
406			 * if necessary.
407			 */
408			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
409				/*
410				 * If rsvp daemon is not running, do not
411				 * set ip_moptions. This ensures that the packet
412				 * is multicast and not just sent down one link
413				 * as prescribed by rsvpd.
414				 */
415				if (!rsvp_on)
416					imo = NULL;
417				if (ip_mforward &&
418				    ip_mforward(ip, ifp, m, imo) != 0) {
419					m_freem(m);
420					goto done;
421				}
422			}
423		}
424
425		/*
426		 * Multicasts with a time-to-live of zero may be looped-
427		 * back, above, but must not be transmitted on a network.
428		 * Also, multicasts addressed to the loopback interface
429		 * are not sent -- the above call to ip_mloopback() will
430		 * loop back a copy if this host actually belongs to the
431		 * destination group on the loopback interface.
432		 */
433		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
434			m_freem(m);
435			goto done;
436		}
437
438		goto sendit;
439	}
440#ifndef notdef
441	/*
442	 * If the source address is not specified yet, use the address
443	 * of the outoing interface. In case, keep note we did that, so
444	 * if the the firewall changes the next-hop causing the output
445	 * interface to change, we can fix that.
446	 */
447	if (ip->ip_src.s_addr == INADDR_ANY) {
448		/* Interface may have no addresses. */
449		if (ia != NULL) {
450			ip->ip_src = IA_SIN(ia)->sin_addr;
451			src_was_INADDR_ANY = 1;
452		}
453	}
454#endif /* notdef */
455	/*
456	 * Verify that we have any chance at all of being able to queue
457	 *      the packet or packet fragments
458	 */
459	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
460		ifp->if_snd.ifq_maxlen) {
461			error = ENOBUFS;
462			ipstat.ips_odropped++;
463			goto bad;
464	}
465
466	/*
467	 * Look for broadcast address and
468	 * verify user is allowed to send
469	 * such a packet.
470	 */
471	if (isbroadcast) {
472		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
473			error = EADDRNOTAVAIL;
474			goto bad;
475		}
476		if ((flags & IP_ALLOWBROADCAST) == 0) {
477			error = EACCES;
478			goto bad;
479		}
480		/* don't allow broadcast messages to be fragmented */
481		if ((u_short)ip->ip_len > ifp->if_mtu) {
482			error = EMSGSIZE;
483			goto bad;
484		}
485		m->m_flags |= M_BCAST;
486	} else {
487		m->m_flags &= ~M_BCAST;
488	}
489
490sendit:
491#ifdef IPSEC
492	/* get SP for this packet */
493	if (inp == NULL)
494		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
495	else
496		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
497
498	if (sp == NULL) {
499		ipsecstat.out_inval++;
500		goto bad;
501	}
502
503	error = 0;
504
505	/* check policy */
506	switch (sp->policy) {
507	case IPSEC_POLICY_DISCARD:
508		/*
509		 * This packet is just discarded.
510		 */
511		ipsecstat.out_polvio++;
512		goto bad;
513
514	case IPSEC_POLICY_BYPASS:
515	case IPSEC_POLICY_NONE:
516		/* no need to do IPsec. */
517		goto skip_ipsec;
518
519	case IPSEC_POLICY_IPSEC:
520		if (sp->req == NULL) {
521			/* acquire a policy */
522			error = key_spdacquire(sp);
523			goto bad;
524		}
525		break;
526
527	case IPSEC_POLICY_ENTRUST:
528	default:
529		printf("ip_output: Invalid policy found. %d\n", sp->policy);
530	}
531    {
532	struct ipsec_output_state state;
533	bzero(&state, sizeof(state));
534	state.m = m;
535	if (flags & IP_ROUTETOIF) {
536		state.ro = &iproute;
537		bzero(&iproute, sizeof(iproute));
538	} else
539		state.ro = ro;
540	state.dst = (struct sockaddr *)dst;
541
542	ip->ip_sum = 0;
543
544	/*
545	 * XXX
546	 * delayed checksums are not currently compatible with IPsec
547	 */
548	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
549		in_delayed_cksum(m);
550		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
551	}
552
553	ip->ip_len = htons(ip->ip_len);
554	ip->ip_off = htons(ip->ip_off);
555
556	error = ipsec4_output(&state, sp, flags);
557
558	m = state.m;
559	if (flags & IP_ROUTETOIF) {
560		/*
561		 * if we have tunnel mode SA, we may need to ignore
562		 * IP_ROUTETOIF.
563		 */
564		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
565			flags &= ~IP_ROUTETOIF;
566			ro = state.ro;
567		}
568	} else
569		ro = state.ro;
570	dst = (struct sockaddr_in *)state.dst;
571	if (error) {
572		/* mbuf is already reclaimed in ipsec4_output. */
573		m0 = NULL;
574		switch (error) {
575		case EHOSTUNREACH:
576		case ENETUNREACH:
577		case EMSGSIZE:
578		case ENOBUFS:
579		case ENOMEM:
580			break;
581		default:
582			printf("ip4_output (ipsec): error code %d\n", error);
583			/*fall through*/
584		case ENOENT:
585			/* don't show these error codes to the user */
586			error = 0;
587			break;
588		}
589		goto bad;
590	}
591    }
592
593	/* be sure to update variables that are affected by ipsec4_output() */
594	ip = mtod(m, struct ip *);
595	hlen = ip->ip_hl << 2;
596	if (ro->ro_rt == NULL) {
597		if ((flags & IP_ROUTETOIF) == 0) {
598			printf("ip_output: "
599				"can't update route after IPsec processing\n");
600			error = EHOSTUNREACH;	/*XXX*/
601			goto bad;
602		}
603	} else {
604		ia = ifatoia(ro->ro_rt->rt_ifa);
605		ifp = ro->ro_rt->rt_ifp;
606	}
607
608	/* make it flipped, again. */
609	ip->ip_len = ntohs(ip->ip_len);
610	ip->ip_off = ntohs(ip->ip_off);
611skip_ipsec:
612#endif /*IPSEC*/
613#ifdef FAST_IPSEC
614	/*
615	 * Check the security policy (SP) for the packet and, if
616	 * required, do IPsec-related processing.  There are two
617	 * cases here; the first time a packet is sent through
618	 * it will be untagged and handled by ipsec4_checkpolicy.
619	 * If the packet is resubmitted to ip_output (e.g. after
620	 * AH, ESP, etc. processing), there will be a tag to bypass
621	 * the lookup and related policy checking.
622	 */
623	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
624	s = splnet();
625	if (mtag != NULL) {
626		tdbi = (struct tdb_ident *)(mtag + 1);
627		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
628		if (sp == NULL)
629			error = -EINVAL;	/* force silent drop */
630		m_tag_delete(m, mtag);
631	} else {
632		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
633					&error, inp);
634	}
635	/*
636	 * There are four return cases:
637	 *    sp != NULL	 	    apply IPsec policy
638	 *    sp == NULL, error == 0	    no IPsec handling needed
639	 *    sp == NULL, error == -EINVAL  discard packet w/o error
640	 *    sp == NULL, error != 0	    discard packet, report error
641	 */
642	if (sp != NULL) {
643		/* Loop detection, check if ipsec processing already done */
644		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
645		for (mtag = m_tag_first(m); mtag != NULL;
646		     mtag = m_tag_next(m, mtag)) {
647			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
648				continue;
649			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
650			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
651				continue;
652			/*
653			 * Check if policy has an SA associated with it.
654			 * This can happen when an SP has yet to acquire
655			 * an SA; e.g. on first reference.  If it occurs,
656			 * then we let ipsec4_process_packet do its thing.
657			 */
658			if (sp->req->sav == NULL)
659				break;
660			tdbi = (struct tdb_ident *)(mtag + 1);
661			if (tdbi->spi == sp->req->sav->spi &&
662			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
663			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
664				 sizeof (union sockaddr_union)) == 0) {
665				/*
666				 * No IPsec processing is needed, free
667				 * reference to SP.
668				 *
669				 * NB: null pointer to avoid free at
670				 *     done: below.
671				 */
672				KEY_FREESP(&sp), sp = NULL;
673				splx(s);
674				goto spd_done;
675			}
676		}
677
678		/*
679		 * Do delayed checksums now because we send before
680		 * this is done in the normal processing path.
681		 */
682		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
683			in_delayed_cksum(m);
684			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
685		}
686
687		ip->ip_len = htons(ip->ip_len);
688		ip->ip_off = htons(ip->ip_off);
689
690		/* NB: callee frees mbuf */
691		error = ipsec4_process_packet(m, sp->req, flags, 0);
692		/*
693		 * Preserve KAME behaviour: ENOENT can be returned
694		 * when an SA acquire is in progress.  Don't propagate
695		 * this to user-level; it confuses applications.
696		 *
697		 * XXX this will go away when the SADB is redone.
698		 */
699		if (error == ENOENT)
700			error = 0;
701		splx(s);
702		goto done;
703	} else {
704		splx(s);
705
706		if (error != 0) {
707			/*
708			 * Hack: -EINVAL is used to signal that a packet
709			 * should be silently discarded.  This is typically
710			 * because we asked key management for an SA and
711			 * it was delayed (e.g. kicked up to IKE).
712			 */
713			if (error == -EINVAL)
714				error = 0;
715			goto bad;
716		} else {
717			/* No IPsec processing for this packet. */
718		}
719#ifdef notyet
720		/*
721		 * If deferred crypto processing is needed, check that
722		 * the interface supports it.
723		 */
724		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
725		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
726			/* notify IPsec to do its own crypto */
727			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
728			error = EHOSTUNREACH;
729			goto bad;
730		}
731#endif
732	}
733spd_done:
734#endif /* FAST_IPSEC */
735
736	/*
737	 * IpHack's section.
738	 * - Xlate: translate packet's addr/port (NAT).
739	 * - Firewall: deny/allow/etc.
740	 * - Wrap: fake packet's addr/port <unimpl.>
741	 * - Encapsulate: put it in another IP and send out. <unimp.>
742	 */
743#ifdef PFIL_HOOKS
744	/*
745	 * Run through list of hooks for output packets.
746	 */
747	m1 = m;
748	pfh = pfil_hook_get(PFIL_OUT, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
749	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
750		if (pfh->pfil_func) {
751			rv = pfh->pfil_func(ip, hlen, ifp, 1, &m1);
752			if (rv) {
753				error = EHOSTUNREACH;
754				goto done;
755			}
756			m = m1;
757			if (m == NULL)
758				goto done;
759			ip = mtod(m, struct ip *);
760		}
761#endif /* PFIL_HOOKS */
762
763	/*
764	 * Check with the firewall...
765	 * but not if we are already being fwd'd from a firewall.
766	 */
767	if (fw_enable && IPFW_LOADED && !args.next_hop) {
768		struct sockaddr_in *old = dst;
769
770		args.m = m;
771		args.next_hop = dst;
772		args.oif = ifp;
773		off = ip_fw_chk_ptr(&args);
774		m = args.m;
775		dst = args.next_hop;
776
777                /*
778		 * On return we must do the following:
779		 * m == NULL	-> drop the pkt (old interface, deprecated)
780		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
781		 * 1<=off<= 0xffff		-> DIVERT
782		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
783		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
784		 * dst != old			-> IPFIREWALL_FORWARD
785		 * off==0, dst==old		-> accept
786		 * If some of the above modules are not compiled in, then
787		 * we should't have to check the corresponding condition
788		 * (because the ipfw control socket should not accept
789		 * unsupported rules), but better play safe and drop
790		 * packets in case of doubt.
791		 */
792		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
793			if (m)
794				m_freem(m);
795			error = EACCES;
796			goto done;
797		}
798		ip = mtod(m, struct ip *);
799		if (off == 0 && dst == old)		/* common case */
800			goto pass;
801                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
802			/*
803			 * pass the pkt to dummynet. Need to include
804			 * pipe number, m, ifp, ro, dst because these are
805			 * not recomputed in the next pass.
806			 * All other parameters have been already used and
807			 * so they are not needed anymore.
808			 * XXX note: if the ifp or ro entry are deleted
809			 * while a pkt is in dummynet, we are in trouble!
810			 */
811			args.ro = ro;
812			args.dst = dst;
813			args.flags = flags;
814
815			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
816				&args);
817			goto done;
818		}
819#ifdef IPDIVERT
820		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
821			struct mbuf *clone = NULL;
822
823			/* Clone packet if we're doing a 'tee' */
824			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
825				clone = m_dup(m, M_DONTWAIT);
826
827			/*
828			 * XXX
829			 * delayed checksums are not currently compatible
830			 * with divert sockets.
831			 */
832			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
833				in_delayed_cksum(m);
834				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
835			}
836
837			/* Restore packet header fields to original values */
838			ip->ip_len = htons(ip->ip_len);
839			ip->ip_off = htons(ip->ip_off);
840
841			/* Deliver packet to divert input routine */
842			divert_packet(m, 0, off & 0xffff, args.divert_rule);
843
844			/* If 'tee', continue with original packet */
845			if (clone != NULL) {
846				m = clone;
847				ip = mtod(m, struct ip *);
848				goto pass;
849			}
850			goto done;
851		}
852#endif
853
854		/* IPFIREWALL_FORWARD */
855		/*
856		 * Check dst to make sure it is directly reachable on the
857		 * interface we previously thought it was.
858		 * If it isn't (which may be likely in some situations) we have
859		 * to re-route it (ie, find a route for the next-hop and the
860		 * associated interface) and set them here. This is nested
861		 * forwarding which in most cases is undesirable, except where
862		 * such control is nigh impossible. So we do it here.
863		 * And I'm babbling.
864		 */
865		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
866#if 0
867			/*
868			 * XXX To improve readability, this block should be
869			 * changed into a function call as below:
870			 */
871			error = ip_ipforward(&m, &dst, &ifp);
872			if (error)
873				goto bad;
874			if (m == NULL) /* ip_input consumed the mbuf */
875				goto done;
876#else
877			struct in_ifaddr *ia;
878
879			/*
880			 * XXX sro_fwd below is static, and a pointer
881			 * to it gets passed to routines downstream.
882			 * This could have surprisingly bad results in
883			 * practice, because its content is overwritten
884			 * by subsequent packets.
885			 */
886			/* There must be a better way to do this next line... */
887			static struct route sro_fwd;
888			struct route *ro_fwd = &sro_fwd;
889
890#if 0
891			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
892			    dst->sin_addr, "\n");
893#endif
894
895			/*
896			 * We need to figure out if we have been forwarded
897			 * to a local socket. If so, then we should somehow
898			 * "loop back" to ip_input, and get directed to the
899			 * PCB as if we had received this packet. This is
900			 * because it may be dificult to identify the packets
901			 * you want to forward until they are being output
902			 * and have selected an interface. (e.g. locally
903			 * initiated packets) If we used the loopback inteface,
904			 * we would not be able to control what happens
905			 * as the packet runs through ip_input() as
906			 * it is done through an ISR.
907			 */
908			LIST_FOREACH(ia,
909			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
910				/*
911				 * If the addr to forward to is one
912				 * of ours, we pretend to
913				 * be the destination for this packet.
914				 */
915				if (IA_SIN(ia)->sin_addr.s_addr ==
916						 dst->sin_addr.s_addr)
917					break;
918			}
919			if (ia) {	/* tell ip_input "dont filter" */
920				struct m_hdr tag;
921
922				tag.mh_type = MT_TAG;
923				tag.mh_flags = PACKET_TAG_IPFORWARD;
924				tag.mh_data = (caddr_t)args.next_hop;
925				tag.mh_next = m;
926
927				if (m->m_pkthdr.rcvif == NULL)
928					m->m_pkthdr.rcvif = ifunit("lo0");
929				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
930					m->m_pkthdr.csum_flags |=
931					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
932					m0->m_pkthdr.csum_data = 0xffff;
933				}
934				m->m_pkthdr.csum_flags |=
935				    CSUM_IP_CHECKED | CSUM_IP_VALID;
936				ip->ip_len = htons(ip->ip_len);
937				ip->ip_off = htons(ip->ip_off);
938				ip_input((struct mbuf *)&tag);
939				goto done;
940			}
941			/* Some of the logic for this was
942			 * nicked from above.
943			 *
944			 * This rewrites the cached route in a local PCB.
945			 * Is this what we want to do?
946			 */
947			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
948
949			ro_fwd->ro_rt = 0;
950			rtalloc_ign(ro_fwd, RTF_PRCLONING);
951
952			if (ro_fwd->ro_rt == 0) {
953				ipstat.ips_noroute++;
954				error = EHOSTUNREACH;
955				goto bad;
956			}
957
958			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
959			ifp = ro_fwd->ro_rt->rt_ifp;
960			ro_fwd->ro_rt->rt_use++;
961			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
962				dst = (struct sockaddr_in *)
963					ro_fwd->ro_rt->rt_gateway;
964			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
965				isbroadcast =
966				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
967			else
968				isbroadcast = in_broadcast(dst->sin_addr, ifp);
969			if (ro->ro_rt)
970				RTFREE(ro->ro_rt);
971			ro->ro_rt = ro_fwd->ro_rt;
972			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
973
974#endif	/* ... block to be put into a function */
975			/*
976			 * If we added a default src ip earlier,
977			 * which would have been gotten from the-then
978			 * interface, do it again, from the new one.
979			 */
980			if (src_was_INADDR_ANY)
981				ip->ip_src = IA_SIN(ia)->sin_addr;
982			goto pass ;
983		}
984
985                /*
986                 * if we get here, none of the above matches, and
987                 * we have to drop the pkt
988                 */
989		m_freem(m);
990                error = EACCES; /* not sure this is the right error msg */
991                goto done;
992	}
993
994pass:
995	/* 127/8 must not appear on wire - RFC1122. */
996	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
997	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
998		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
999			ipstat.ips_badaddr++;
1000			error = EADDRNOTAVAIL;
1001			goto bad;
1002		}
1003	}
1004
1005	m->m_pkthdr.csum_flags |= CSUM_IP;
1006	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
1007	if (sw_csum & CSUM_DELAY_DATA) {
1008		in_delayed_cksum(m);
1009		sw_csum &= ~CSUM_DELAY_DATA;
1010	}
1011	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
1012
1013	/*
1014	 * If small enough for interface, or the interface will take
1015	 * care of the fragmentation for us, can just send directly.
1016	 */
1017	if ((u_short)ip->ip_len <= ifp->if_mtu ||
1018	    ifp->if_hwassist & CSUM_FRAGMENT) {
1019		ip->ip_len = htons(ip->ip_len);
1020		ip->ip_off = htons(ip->ip_off);
1021		ip->ip_sum = 0;
1022		if (sw_csum & CSUM_DELAY_IP)
1023			ip->ip_sum = in_cksum(m, hlen);
1024
1025		/* Record statistics for this interface address. */
1026		if (!(flags & IP_FORWARDING) && ia) {
1027			ia->ia_ifa.if_opackets++;
1028			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1029		}
1030
1031#ifdef IPSEC
1032		/* clean ipsec history once it goes out of the node */
1033		ipsec_delaux(m);
1034#endif
1035
1036#ifdef MBUF_STRESS_TEST
1037		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) {
1038			struct mbuf *m1, *m2;
1039			int length, tmp;
1040
1041			tmp = length = m->m_pkthdr.len;
1042
1043			while ((length -= mbuf_frag_size) >= 1) {
1044				m1 = m_split(m, length, M_DONTWAIT);
1045				if (m1 == NULL)
1046					break;
1047				m1->m_flags &= ~M_PKTHDR;
1048				m2 = m;
1049				while (m2->m_next != NULL)
1050					m2 = m2->m_next;
1051				m2->m_next = m1;
1052			}
1053			m->m_pkthdr.len = tmp;
1054		}
1055#endif
1056		error = (*ifp->if_output)(ifp, m,
1057				(struct sockaddr *)dst, ro->ro_rt);
1058		goto done;
1059	}
1060	/*
1061	 * Too large for interface; fragment if possible.
1062	 * Must be able to put at least 8 bytes per fragment.
1063	 */
1064	if (ip->ip_off & IP_DF) {
1065		error = EMSGSIZE;
1066		/*
1067		 * This case can happen if the user changed the MTU
1068		 * of an interface after enabling IP on it.  Because
1069		 * most netifs don't keep track of routes pointing to
1070		 * them, there is no way for one to update all its
1071		 * routes when the MTU is changed.
1072		 */
1073		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST))
1074		    && !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU)
1075		    && (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1076			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1077		}
1078		ipstat.ips_cantfrag++;
1079		goto bad;
1080	}
1081	len = (ifp->if_mtu - hlen) &~ 7;
1082	if (len < 8) {
1083		error = EMSGSIZE;
1084		goto bad;
1085	}
1086
1087	/*
1088	 * if the interface will not calculate checksums on
1089	 * fragmented packets, then do it here.
1090	 */
1091	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1092	    (ifp->if_hwassist & CSUM_IP_FRAGS) == 0) {
1093		in_delayed_cksum(m);
1094		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1095	}
1096
1097	if (len > PAGE_SIZE) {
1098		/*
1099		 * Fragement large datagrams such that each segment
1100		 * contains a multiple of PAGE_SIZE amount of data,
1101		 * plus headers. This enables a receiver to perform
1102		 * page-flipping zero-copy optimizations.
1103		 */
1104
1105		int newlen;
1106		struct mbuf *mtmp;
1107
1108		for (mtmp = m, off = 0;
1109		     mtmp && ((off + mtmp->m_len) <= ifp->if_mtu);
1110		     mtmp = mtmp->m_next) {
1111			off += mtmp->m_len;
1112		}
1113		/*
1114		 * firstlen (off - hlen) must be aligned on an
1115		 * 8-byte boundary
1116		 */
1117		if (off < hlen)
1118			goto smart_frag_failure;
1119		off = ((off - hlen) & ~7) + hlen;
1120		newlen = (~PAGE_MASK) & ifp->if_mtu;
1121		if ((newlen + sizeof (struct ip)) > ifp->if_mtu) {
1122			/* we failed, go back the default */
1123smart_frag_failure:
1124			newlen = len;
1125			off = hlen + len;
1126		}
1127
1128/*		printf("ipfrag: len = %d, hlen = %d, mhlen = %d, newlen = %d, off = %d\n",
1129		len, hlen, sizeof (struct ip), newlen, off);*/
1130
1131		len = newlen;
1132
1133	} else {
1134		off = hlen + len;
1135	}
1136
1137
1138
1139    {
1140	int mhlen, firstlen = off - hlen;
1141	struct mbuf **mnext = &m->m_nextpkt;
1142	int nfrags = 1;
1143
1144	/*
1145	 * Loop through length of segment after first fragment,
1146	 * make new header and copy data of each part and link onto chain.
1147	 */
1148	m0 = m;
1149	mhlen = sizeof (struct ip);
1150	for (; off < (u_short)ip->ip_len; off += len) {
1151		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1152		if (m == 0) {
1153			error = ENOBUFS;
1154			ipstat.ips_odropped++;
1155			goto sendorfree;
1156		}
1157		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1158		m->m_data += max_linkhdr;
1159		mhip = mtod(m, struct ip *);
1160		*mhip = *ip;
1161		if (hlen > sizeof (struct ip)) {
1162			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1163			mhip->ip_v = IPVERSION;
1164			mhip->ip_hl = mhlen >> 2;
1165		}
1166		m->m_len = mhlen;
1167		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1168		if (off + len >= (u_short)ip->ip_len)
1169			len = (u_short)ip->ip_len - off;
1170		else
1171			mhip->ip_off |= IP_MF;
1172		mhip->ip_len = htons((u_short)(len + mhlen));
1173		m->m_next = m_copy(m0, off, len);
1174		if (m->m_next == 0) {
1175			(void) m_free(m);
1176			error = ENOBUFS;	/* ??? */
1177			ipstat.ips_odropped++;
1178			goto sendorfree;
1179		}
1180		m->m_pkthdr.len = mhlen + len;
1181		m->m_pkthdr.rcvif = (struct ifnet *)0;
1182#ifdef MAC
1183		mac_create_fragment(m0, m);
1184#endif
1185		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1186		mhip->ip_off = htons(mhip->ip_off);
1187		mhip->ip_sum = 0;
1188		if (sw_csum & CSUM_DELAY_IP)
1189			mhip->ip_sum = in_cksum(m, mhlen);
1190		*mnext = m;
1191		mnext = &m->m_nextpkt;
1192		nfrags++;
1193	}
1194	ipstat.ips_ofragments += nfrags;
1195
1196	/* set first/last markers for fragment chain */
1197	m->m_flags |= M_LASTFRAG;
1198	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1199	m0->m_pkthdr.csum_data = nfrags;
1200
1201	/*
1202	 * Update first fragment by trimming what's been copied out
1203	 * and updating header, then send each fragment (in order).
1204	 */
1205	m = m0;
1206	m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
1207	m->m_pkthdr.len = hlen + firstlen;
1208	ip->ip_len = htons((u_short)m->m_pkthdr.len);
1209	ip->ip_off |= IP_MF;
1210	ip->ip_off = htons(ip->ip_off);
1211	ip->ip_sum = 0;
1212	if (sw_csum & CSUM_DELAY_IP)
1213		ip->ip_sum = in_cksum(m, hlen);
1214sendorfree:
1215	for (m = m0; m; m = m0) {
1216		m0 = m->m_nextpkt;
1217		m->m_nextpkt = 0;
1218#ifdef IPSEC
1219		/* clean ipsec history once it goes out of the node */
1220		ipsec_delaux(m);
1221#endif
1222		if (error == 0) {
1223			/* Record statistics for this interface address. */
1224			if (ia != NULL) {
1225				ia->ia_ifa.if_opackets++;
1226				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1227			}
1228
1229			error = (*ifp->if_output)(ifp, m,
1230			    (struct sockaddr *)dst, ro->ro_rt);
1231		} else
1232			m_freem(m);
1233	}
1234
1235	if (error == 0)
1236		ipstat.ips_fragmented++;
1237    }
1238done:
1239#ifdef IPSEC
1240	if (ro == &iproute && ro->ro_rt) {
1241		RTFREE(ro->ro_rt);
1242		ro->ro_rt = NULL;
1243	}
1244	if (sp != NULL) {
1245		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1246			printf("DP ip_output call free SP:%p\n", sp));
1247		key_freesp(sp);
1248	}
1249#endif /* IPSEC */
1250#ifdef FAST_IPSEC
1251	if (ro == &iproute && ro->ro_rt) {
1252		RTFREE(ro->ro_rt);
1253		ro->ro_rt = NULL;
1254	}
1255	if (sp != NULL)
1256		KEY_FREESP(&sp);
1257#endif /* FAST_IPSEC */
1258	return (error);
1259bad:
1260	m_freem(m);
1261	goto done;
1262}
1263
1264void
1265in_delayed_cksum(struct mbuf *m)
1266{
1267	struct ip *ip;
1268	u_short csum, offset;
1269
1270	ip = mtod(m, struct ip *);
1271	offset = ip->ip_hl << 2 ;
1272	csum = in_cksum_skip(m, ip->ip_len, offset);
1273	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1274		csum = 0xffff;
1275	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1276
1277	if (offset + sizeof(u_short) > m->m_len) {
1278		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1279		    m->m_len, offset, ip->ip_p);
1280		/*
1281		 * XXX
1282		 * this shouldn't happen, but if it does, the
1283		 * correct behavior may be to insert the checksum
1284		 * in the existing chain instead of rearranging it.
1285		 */
1286		m = m_pullup(m, offset + sizeof(u_short));
1287	}
1288	*(u_short *)(m->m_data + offset) = csum;
1289}
1290
1291/*
1292 * Insert IP options into preformed packet.
1293 * Adjust IP destination as required for IP source routing,
1294 * as indicated by a non-zero in_addr at the start of the options.
1295 *
1296 * XXX This routine assumes that the packet has no options in place.
1297 */
1298static struct mbuf *
1299ip_insertoptions(m, opt, phlen)
1300	register struct mbuf *m;
1301	struct mbuf *opt;
1302	int *phlen;
1303{
1304	register struct ipoption *p = mtod(opt, struct ipoption *);
1305	struct mbuf *n;
1306	register struct ip *ip = mtod(m, struct ip *);
1307	unsigned optlen;
1308
1309	optlen = opt->m_len - sizeof(p->ipopt_dst);
1310	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
1311		*phlen = 0;
1312		return (m);		/* XXX should fail */
1313	}
1314	if (p->ipopt_dst.s_addr)
1315		ip->ip_dst = p->ipopt_dst;
1316	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1317		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1318		if (n == 0) {
1319			*phlen = 0;
1320			return (m);
1321		}
1322		n->m_pkthdr.rcvif = (struct ifnet *)0;
1323#ifdef MAC
1324		mac_create_mbuf_from_mbuf(m, n);
1325#endif
1326		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1327		m->m_len -= sizeof(struct ip);
1328		m->m_data += sizeof(struct ip);
1329		n->m_next = m;
1330		m = n;
1331		m->m_len = optlen + sizeof(struct ip);
1332		m->m_data += max_linkhdr;
1333		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1334	} else {
1335		m->m_data -= optlen;
1336		m->m_len += optlen;
1337		m->m_pkthdr.len += optlen;
1338		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1339	}
1340	ip = mtod(m, struct ip *);
1341	bcopy(p->ipopt_list, ip + 1, optlen);
1342	*phlen = sizeof(struct ip) + optlen;
1343	ip->ip_v = IPVERSION;
1344	ip->ip_hl = *phlen >> 2;
1345	ip->ip_len += optlen;
1346	return (m);
1347}
1348
1349/*
1350 * Copy options from ip to jp,
1351 * omitting those not copied during fragmentation.
1352 */
1353int
1354ip_optcopy(ip, jp)
1355	struct ip *ip, *jp;
1356{
1357	register u_char *cp, *dp;
1358	int opt, optlen, cnt;
1359
1360	cp = (u_char *)(ip + 1);
1361	dp = (u_char *)(jp + 1);
1362	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1363	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1364		opt = cp[0];
1365		if (opt == IPOPT_EOL)
1366			break;
1367		if (opt == IPOPT_NOP) {
1368			/* Preserve for IP mcast tunnel's LSRR alignment. */
1369			*dp++ = IPOPT_NOP;
1370			optlen = 1;
1371			continue;
1372		}
1373
1374		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1375		    ("ip_optcopy: malformed ipv4 option"));
1376		optlen = cp[IPOPT_OLEN];
1377		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1378		    ("ip_optcopy: malformed ipv4 option"));
1379
1380		/* bogus lengths should have been caught by ip_dooptions */
1381		if (optlen > cnt)
1382			optlen = cnt;
1383		if (IPOPT_COPIED(opt)) {
1384			bcopy(cp, dp, optlen);
1385			dp += optlen;
1386		}
1387	}
1388	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1389		*dp++ = IPOPT_EOL;
1390	return (optlen);
1391}
1392
1393/*
1394 * IP socket option processing.
1395 */
1396int
1397ip_ctloutput(so, sopt)
1398	struct socket *so;
1399	struct sockopt *sopt;
1400{
1401	struct	inpcb *inp = sotoinpcb(so);
1402	int	error, optval;
1403
1404	error = optval = 0;
1405	if (sopt->sopt_level != IPPROTO_IP) {
1406		return (EINVAL);
1407	}
1408
1409	switch (sopt->sopt_dir) {
1410	case SOPT_SET:
1411		switch (sopt->sopt_name) {
1412		case IP_OPTIONS:
1413#ifdef notyet
1414		case IP_RETOPTS:
1415#endif
1416		{
1417			struct mbuf *m;
1418			if (sopt->sopt_valsize > MLEN) {
1419				error = EMSGSIZE;
1420				break;
1421			}
1422			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1423			if (m == 0) {
1424				error = ENOBUFS;
1425				break;
1426			}
1427			m->m_len = sopt->sopt_valsize;
1428			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1429					    m->m_len);
1430
1431			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1432					   m));
1433		}
1434
1435		case IP_TOS:
1436		case IP_TTL:
1437		case IP_RECVOPTS:
1438		case IP_RECVRETOPTS:
1439		case IP_RECVDSTADDR:
1440		case IP_RECVTTL:
1441		case IP_RECVIF:
1442		case IP_FAITH:
1443			error = sooptcopyin(sopt, &optval, sizeof optval,
1444					    sizeof optval);
1445			if (error)
1446				break;
1447
1448			switch (sopt->sopt_name) {
1449			case IP_TOS:
1450				inp->inp_ip_tos = optval;
1451				break;
1452
1453			case IP_TTL:
1454				inp->inp_ip_ttl = optval;
1455				break;
1456#define	OPTSET(bit) \
1457	if (optval) \
1458		inp->inp_flags |= bit; \
1459	else \
1460		inp->inp_flags &= ~bit;
1461
1462			case IP_RECVOPTS:
1463				OPTSET(INP_RECVOPTS);
1464				break;
1465
1466			case IP_RECVRETOPTS:
1467				OPTSET(INP_RECVRETOPTS);
1468				break;
1469
1470			case IP_RECVDSTADDR:
1471				OPTSET(INP_RECVDSTADDR);
1472				break;
1473
1474			case IP_RECVTTL:
1475				OPTSET(INP_RECVTTL);
1476				break;
1477
1478			case IP_RECVIF:
1479				OPTSET(INP_RECVIF);
1480				break;
1481
1482			case IP_FAITH:
1483				OPTSET(INP_FAITH);
1484				break;
1485			}
1486			break;
1487#undef OPTSET
1488
1489		case IP_MULTICAST_IF:
1490		case IP_MULTICAST_VIF:
1491		case IP_MULTICAST_TTL:
1492		case IP_MULTICAST_LOOP:
1493		case IP_ADD_MEMBERSHIP:
1494		case IP_DROP_MEMBERSHIP:
1495			error = ip_setmoptions(sopt, &inp->inp_moptions);
1496			break;
1497
1498		case IP_PORTRANGE:
1499			error = sooptcopyin(sopt, &optval, sizeof optval,
1500					    sizeof optval);
1501			if (error)
1502				break;
1503
1504			switch (optval) {
1505			case IP_PORTRANGE_DEFAULT:
1506				inp->inp_flags &= ~(INP_LOWPORT);
1507				inp->inp_flags &= ~(INP_HIGHPORT);
1508				break;
1509
1510			case IP_PORTRANGE_HIGH:
1511				inp->inp_flags &= ~(INP_LOWPORT);
1512				inp->inp_flags |= INP_HIGHPORT;
1513				break;
1514
1515			case IP_PORTRANGE_LOW:
1516				inp->inp_flags &= ~(INP_HIGHPORT);
1517				inp->inp_flags |= INP_LOWPORT;
1518				break;
1519
1520			default:
1521				error = EINVAL;
1522				break;
1523			}
1524			break;
1525
1526#if defined(IPSEC) || defined(FAST_IPSEC)
1527		case IP_IPSEC_POLICY:
1528		{
1529			caddr_t req;
1530			size_t len = 0;
1531			int priv;
1532			struct mbuf *m;
1533			int optname;
1534
1535			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1536				break;
1537			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1538				break;
1539			priv = (sopt->sopt_td != NULL &&
1540				suser(sopt->sopt_td) != 0) ? 0 : 1;
1541			req = mtod(m, caddr_t);
1542			len = m->m_len;
1543			optname = sopt->sopt_name;
1544			error = ipsec4_set_policy(inp, optname, req, len, priv);
1545			m_freem(m);
1546			break;
1547		}
1548#endif /*IPSEC*/
1549
1550		default:
1551			error = ENOPROTOOPT;
1552			break;
1553		}
1554		break;
1555
1556	case SOPT_GET:
1557		switch (sopt->sopt_name) {
1558		case IP_OPTIONS:
1559		case IP_RETOPTS:
1560			if (inp->inp_options)
1561				error = sooptcopyout(sopt,
1562						     mtod(inp->inp_options,
1563							  char *),
1564						     inp->inp_options->m_len);
1565			else
1566				sopt->sopt_valsize = 0;
1567			break;
1568
1569		case IP_TOS:
1570		case IP_TTL:
1571		case IP_RECVOPTS:
1572		case IP_RECVRETOPTS:
1573		case IP_RECVDSTADDR:
1574		case IP_RECVTTL:
1575		case IP_RECVIF:
1576		case IP_PORTRANGE:
1577		case IP_FAITH:
1578			switch (sopt->sopt_name) {
1579
1580			case IP_TOS:
1581				optval = inp->inp_ip_tos;
1582				break;
1583
1584			case IP_TTL:
1585				optval = inp->inp_ip_ttl;
1586				break;
1587
1588#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1589
1590			case IP_RECVOPTS:
1591				optval = OPTBIT(INP_RECVOPTS);
1592				break;
1593
1594			case IP_RECVRETOPTS:
1595				optval = OPTBIT(INP_RECVRETOPTS);
1596				break;
1597
1598			case IP_RECVDSTADDR:
1599				optval = OPTBIT(INP_RECVDSTADDR);
1600				break;
1601
1602			case IP_RECVTTL:
1603				optval = OPTBIT(INP_RECVTTL);
1604				break;
1605
1606			case IP_RECVIF:
1607				optval = OPTBIT(INP_RECVIF);
1608				break;
1609
1610			case IP_PORTRANGE:
1611				if (inp->inp_flags & INP_HIGHPORT)
1612					optval = IP_PORTRANGE_HIGH;
1613				else if (inp->inp_flags & INP_LOWPORT)
1614					optval = IP_PORTRANGE_LOW;
1615				else
1616					optval = 0;
1617				break;
1618
1619			case IP_FAITH:
1620				optval = OPTBIT(INP_FAITH);
1621				break;
1622			}
1623			error = sooptcopyout(sopt, &optval, sizeof optval);
1624			break;
1625
1626		case IP_MULTICAST_IF:
1627		case IP_MULTICAST_VIF:
1628		case IP_MULTICAST_TTL:
1629		case IP_MULTICAST_LOOP:
1630		case IP_ADD_MEMBERSHIP:
1631		case IP_DROP_MEMBERSHIP:
1632			error = ip_getmoptions(sopt, inp->inp_moptions);
1633			break;
1634
1635#if defined(IPSEC) || defined(FAST_IPSEC)
1636		case IP_IPSEC_POLICY:
1637		{
1638			struct mbuf *m = NULL;
1639			caddr_t req = NULL;
1640			size_t len = 0;
1641
1642			if (m != 0) {
1643				req = mtod(m, caddr_t);
1644				len = m->m_len;
1645			}
1646			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1647			if (error == 0)
1648				error = soopt_mcopyout(sopt, m); /* XXX */
1649			if (error == 0)
1650				m_freem(m);
1651			break;
1652		}
1653#endif /*IPSEC*/
1654
1655		default:
1656			error = ENOPROTOOPT;
1657			break;
1658		}
1659		break;
1660	}
1661	return (error);
1662}
1663
1664/*
1665 * Set up IP options in pcb for insertion in output packets.
1666 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1667 * with destination address if source routed.
1668 */
1669static int
1670ip_pcbopts(optname, pcbopt, m)
1671	int optname;
1672	struct mbuf **pcbopt;
1673	register struct mbuf *m;
1674{
1675	register int cnt, optlen;
1676	register u_char *cp;
1677	u_char opt;
1678
1679	/* turn off any old options */
1680	if (*pcbopt)
1681		(void)m_free(*pcbopt);
1682	*pcbopt = 0;
1683	if (m == (struct mbuf *)0 || m->m_len == 0) {
1684		/*
1685		 * Only turning off any previous options.
1686		 */
1687		if (m)
1688			(void)m_free(m);
1689		return (0);
1690	}
1691
1692	if (m->m_len % sizeof(int32_t))
1693		goto bad;
1694	/*
1695	 * IP first-hop destination address will be stored before
1696	 * actual options; move other options back
1697	 * and clear it when none present.
1698	 */
1699	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1700		goto bad;
1701	cnt = m->m_len;
1702	m->m_len += sizeof(struct in_addr);
1703	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1704	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1705	bzero(mtod(m, void *), sizeof(struct in_addr));
1706
1707	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1708		opt = cp[IPOPT_OPTVAL];
1709		if (opt == IPOPT_EOL)
1710			break;
1711		if (opt == IPOPT_NOP)
1712			optlen = 1;
1713		else {
1714			if (cnt < IPOPT_OLEN + sizeof(*cp))
1715				goto bad;
1716			optlen = cp[IPOPT_OLEN];
1717			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1718				goto bad;
1719		}
1720		switch (opt) {
1721
1722		default:
1723			break;
1724
1725		case IPOPT_LSRR:
1726		case IPOPT_SSRR:
1727			/*
1728			 * user process specifies route as:
1729			 *	->A->B->C->D
1730			 * D must be our final destination (but we can't
1731			 * check that since we may not have connected yet).
1732			 * A is first hop destination, which doesn't appear in
1733			 * actual IP option, but is stored before the options.
1734			 */
1735			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1736				goto bad;
1737			m->m_len -= sizeof(struct in_addr);
1738			cnt -= sizeof(struct in_addr);
1739			optlen -= sizeof(struct in_addr);
1740			cp[IPOPT_OLEN] = optlen;
1741			/*
1742			 * Move first hop before start of options.
1743			 */
1744			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1745			    sizeof(struct in_addr));
1746			/*
1747			 * Then copy rest of options back
1748			 * to close up the deleted entry.
1749			 */
1750			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1751			    &cp[IPOPT_OFFSET+1],
1752			    (unsigned)cnt + sizeof(struct in_addr));
1753			break;
1754		}
1755	}
1756	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1757		goto bad;
1758	*pcbopt = m;
1759	return (0);
1760
1761bad:
1762	(void)m_free(m);
1763	return (EINVAL);
1764}
1765
1766/*
1767 * XXX
1768 * The whole multicast option thing needs to be re-thought.
1769 * Several of these options are equally applicable to non-multicast
1770 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1771 * standard option (IP_TTL).
1772 */
1773
1774/*
1775 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1776 */
1777static struct ifnet *
1778ip_multicast_if(a, ifindexp)
1779	struct in_addr *a;
1780	int *ifindexp;
1781{
1782	int ifindex;
1783	struct ifnet *ifp;
1784
1785	if (ifindexp)
1786		*ifindexp = 0;
1787	if (ntohl(a->s_addr) >> 24 == 0) {
1788		ifindex = ntohl(a->s_addr) & 0xffffff;
1789		if (ifindex < 0 || if_index < ifindex)
1790			return NULL;
1791		ifp = ifnet_byindex(ifindex);
1792		if (ifindexp)
1793			*ifindexp = ifindex;
1794	} else {
1795		INADDR_TO_IFP(*a, ifp);
1796	}
1797	return ifp;
1798}
1799
1800/*
1801 * Set the IP multicast options in response to user setsockopt().
1802 */
1803static int
1804ip_setmoptions(sopt, imop)
1805	struct sockopt *sopt;
1806	struct ip_moptions **imop;
1807{
1808	int error = 0;
1809	int i;
1810	struct in_addr addr;
1811	struct ip_mreq mreq;
1812	struct ifnet *ifp;
1813	struct ip_moptions *imo = *imop;
1814	struct route ro;
1815	struct sockaddr_in *dst;
1816	int ifindex;
1817	int s;
1818
1819	if (imo == NULL) {
1820		/*
1821		 * No multicast option buffer attached to the pcb;
1822		 * allocate one and initialize to default values.
1823		 */
1824		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1825		    M_WAITOK);
1826
1827		if (imo == NULL)
1828			return (ENOBUFS);
1829		*imop = imo;
1830		imo->imo_multicast_ifp = NULL;
1831		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1832		imo->imo_multicast_vif = -1;
1833		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1834		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1835		imo->imo_num_memberships = 0;
1836	}
1837
1838	switch (sopt->sopt_name) {
1839	/* store an index number for the vif you wanna use in the send */
1840	case IP_MULTICAST_VIF:
1841		if (legal_vif_num == 0) {
1842			error = EOPNOTSUPP;
1843			break;
1844		}
1845		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1846		if (error)
1847			break;
1848		if (!legal_vif_num(i) && (i != -1)) {
1849			error = EINVAL;
1850			break;
1851		}
1852		imo->imo_multicast_vif = i;
1853		break;
1854
1855	case IP_MULTICAST_IF:
1856		/*
1857		 * Select the interface for outgoing multicast packets.
1858		 */
1859		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1860		if (error)
1861			break;
1862		/*
1863		 * INADDR_ANY is used to remove a previous selection.
1864		 * When no interface is selected, a default one is
1865		 * chosen every time a multicast packet is sent.
1866		 */
1867		if (addr.s_addr == INADDR_ANY) {
1868			imo->imo_multicast_ifp = NULL;
1869			break;
1870		}
1871		/*
1872		 * The selected interface is identified by its local
1873		 * IP address.  Find the interface and confirm that
1874		 * it supports multicasting.
1875		 */
1876		s = splimp();
1877		ifp = ip_multicast_if(&addr, &ifindex);
1878		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1879			splx(s);
1880			error = EADDRNOTAVAIL;
1881			break;
1882		}
1883		imo->imo_multicast_ifp = ifp;
1884		if (ifindex)
1885			imo->imo_multicast_addr = addr;
1886		else
1887			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1888		splx(s);
1889		break;
1890
1891	case IP_MULTICAST_TTL:
1892		/*
1893		 * Set the IP time-to-live for outgoing multicast packets.
1894		 * The original multicast API required a char argument,
1895		 * which is inconsistent with the rest of the socket API.
1896		 * We allow either a char or an int.
1897		 */
1898		if (sopt->sopt_valsize == 1) {
1899			u_char ttl;
1900			error = sooptcopyin(sopt, &ttl, 1, 1);
1901			if (error)
1902				break;
1903			imo->imo_multicast_ttl = ttl;
1904		} else {
1905			u_int ttl;
1906			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1907					    sizeof ttl);
1908			if (error)
1909				break;
1910			if (ttl > 255)
1911				error = EINVAL;
1912			else
1913				imo->imo_multicast_ttl = ttl;
1914		}
1915		break;
1916
1917	case IP_MULTICAST_LOOP:
1918		/*
1919		 * Set the loopback flag for outgoing multicast packets.
1920		 * Must be zero or one.  The original multicast API required a
1921		 * char argument, which is inconsistent with the rest
1922		 * of the socket API.  We allow either a char or an int.
1923		 */
1924		if (sopt->sopt_valsize == 1) {
1925			u_char loop;
1926			error = sooptcopyin(sopt, &loop, 1, 1);
1927			if (error)
1928				break;
1929			imo->imo_multicast_loop = !!loop;
1930		} else {
1931			u_int loop;
1932			error = sooptcopyin(sopt, &loop, sizeof loop,
1933					    sizeof loop);
1934			if (error)
1935				break;
1936			imo->imo_multicast_loop = !!loop;
1937		}
1938		break;
1939
1940	case IP_ADD_MEMBERSHIP:
1941		/*
1942		 * Add a multicast group membership.
1943		 * Group must be a valid IP multicast address.
1944		 */
1945		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1946		if (error)
1947			break;
1948
1949		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1950			error = EINVAL;
1951			break;
1952		}
1953		s = splimp();
1954		/*
1955		 * If no interface address was provided, use the interface of
1956		 * the route to the given multicast address.
1957		 */
1958		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1959			bzero((caddr_t)&ro, sizeof(ro));
1960			dst = (struct sockaddr_in *)&ro.ro_dst;
1961			dst->sin_len = sizeof(*dst);
1962			dst->sin_family = AF_INET;
1963			dst->sin_addr = mreq.imr_multiaddr;
1964			rtalloc(&ro);
1965			if (ro.ro_rt == NULL) {
1966				error = EADDRNOTAVAIL;
1967				splx(s);
1968				break;
1969			}
1970			ifp = ro.ro_rt->rt_ifp;
1971			rtfree(ro.ro_rt);
1972		}
1973		else {
1974			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1975		}
1976
1977		/*
1978		 * See if we found an interface, and confirm that it
1979		 * supports multicast.
1980		 */
1981		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1982			error = EADDRNOTAVAIL;
1983			splx(s);
1984			break;
1985		}
1986		/*
1987		 * See if the membership already exists or if all the
1988		 * membership slots are full.
1989		 */
1990		for (i = 0; i < imo->imo_num_memberships; ++i) {
1991			if (imo->imo_membership[i]->inm_ifp == ifp &&
1992			    imo->imo_membership[i]->inm_addr.s_addr
1993						== mreq.imr_multiaddr.s_addr)
1994				break;
1995		}
1996		if (i < imo->imo_num_memberships) {
1997			error = EADDRINUSE;
1998			splx(s);
1999			break;
2000		}
2001		if (i == IP_MAX_MEMBERSHIPS) {
2002			error = ETOOMANYREFS;
2003			splx(s);
2004			break;
2005		}
2006		/*
2007		 * Everything looks good; add a new record to the multicast
2008		 * address list for the given interface.
2009		 */
2010		if ((imo->imo_membership[i] =
2011		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2012			error = ENOBUFS;
2013			splx(s);
2014			break;
2015		}
2016		++imo->imo_num_memberships;
2017		splx(s);
2018		break;
2019
2020	case IP_DROP_MEMBERSHIP:
2021		/*
2022		 * Drop a multicast group membership.
2023		 * Group must be a valid IP multicast address.
2024		 */
2025		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2026		if (error)
2027			break;
2028
2029		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2030			error = EINVAL;
2031			break;
2032		}
2033
2034		s = splimp();
2035		/*
2036		 * If an interface address was specified, get a pointer
2037		 * to its ifnet structure.
2038		 */
2039		if (mreq.imr_interface.s_addr == INADDR_ANY)
2040			ifp = NULL;
2041		else {
2042			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2043			if (ifp == NULL) {
2044				error = EADDRNOTAVAIL;
2045				splx(s);
2046				break;
2047			}
2048		}
2049		/*
2050		 * Find the membership in the membership array.
2051		 */
2052		for (i = 0; i < imo->imo_num_memberships; ++i) {
2053			if ((ifp == NULL ||
2054			     imo->imo_membership[i]->inm_ifp == ifp) &&
2055			     imo->imo_membership[i]->inm_addr.s_addr ==
2056			     mreq.imr_multiaddr.s_addr)
2057				break;
2058		}
2059		if (i == imo->imo_num_memberships) {
2060			error = EADDRNOTAVAIL;
2061			splx(s);
2062			break;
2063		}
2064		/*
2065		 * Give up the multicast address record to which the
2066		 * membership points.
2067		 */
2068		in_delmulti(imo->imo_membership[i]);
2069		/*
2070		 * Remove the gap in the membership array.
2071		 */
2072		for (++i; i < imo->imo_num_memberships; ++i)
2073			imo->imo_membership[i-1] = imo->imo_membership[i];
2074		--imo->imo_num_memberships;
2075		splx(s);
2076		break;
2077
2078	default:
2079		error = EOPNOTSUPP;
2080		break;
2081	}
2082
2083	/*
2084	 * If all options have default values, no need to keep the mbuf.
2085	 */
2086	if (imo->imo_multicast_ifp == NULL &&
2087	    imo->imo_multicast_vif == -1 &&
2088	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2089	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2090	    imo->imo_num_memberships == 0) {
2091		free(*imop, M_IPMOPTS);
2092		*imop = NULL;
2093	}
2094
2095	return (error);
2096}
2097
2098/*
2099 * Return the IP multicast options in response to user getsockopt().
2100 */
2101static int
2102ip_getmoptions(sopt, imo)
2103	struct sockopt *sopt;
2104	register struct ip_moptions *imo;
2105{
2106	struct in_addr addr;
2107	struct in_ifaddr *ia;
2108	int error, optval;
2109	u_char coptval;
2110
2111	error = 0;
2112	switch (sopt->sopt_name) {
2113	case IP_MULTICAST_VIF:
2114		if (imo != NULL)
2115			optval = imo->imo_multicast_vif;
2116		else
2117			optval = -1;
2118		error = sooptcopyout(sopt, &optval, sizeof optval);
2119		break;
2120
2121	case IP_MULTICAST_IF:
2122		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2123			addr.s_addr = INADDR_ANY;
2124		else if (imo->imo_multicast_addr.s_addr) {
2125			/* return the value user has set */
2126			addr = imo->imo_multicast_addr;
2127		} else {
2128			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2129			addr.s_addr = (ia == NULL) ? INADDR_ANY
2130				: IA_SIN(ia)->sin_addr.s_addr;
2131		}
2132		error = sooptcopyout(sopt, &addr, sizeof addr);
2133		break;
2134
2135	case IP_MULTICAST_TTL:
2136		if (imo == 0)
2137			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2138		else
2139			optval = coptval = imo->imo_multicast_ttl;
2140		if (sopt->sopt_valsize == 1)
2141			error = sooptcopyout(sopt, &coptval, 1);
2142		else
2143			error = sooptcopyout(sopt, &optval, sizeof optval);
2144		break;
2145
2146	case IP_MULTICAST_LOOP:
2147		if (imo == 0)
2148			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2149		else
2150			optval = coptval = imo->imo_multicast_loop;
2151		if (sopt->sopt_valsize == 1)
2152			error = sooptcopyout(sopt, &coptval, 1);
2153		else
2154			error = sooptcopyout(sopt, &optval, sizeof optval);
2155		break;
2156
2157	default:
2158		error = ENOPROTOOPT;
2159		break;
2160	}
2161	return (error);
2162}
2163
2164/*
2165 * Discard the IP multicast options.
2166 */
2167void
2168ip_freemoptions(imo)
2169	register struct ip_moptions *imo;
2170{
2171	register int i;
2172
2173	if (imo != NULL) {
2174		for (i = 0; i < imo->imo_num_memberships; ++i)
2175			in_delmulti(imo->imo_membership[i]);
2176		free(imo, M_IPMOPTS);
2177	}
2178}
2179
2180/*
2181 * Routine called from ip_output() to loop back a copy of an IP multicast
2182 * packet to the input queue of a specified interface.  Note that this
2183 * calls the output routine of the loopback "driver", but with an interface
2184 * pointer that might NOT be a loopback interface -- evil, but easier than
2185 * replicating that code here.
2186 */
2187static void
2188ip_mloopback(ifp, m, dst, hlen)
2189	struct ifnet *ifp;
2190	register struct mbuf *m;
2191	register struct sockaddr_in *dst;
2192	int hlen;
2193{
2194	register struct ip *ip;
2195	struct mbuf *copym;
2196
2197	copym = m_copy(m, 0, M_COPYALL);
2198	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2199		copym = m_pullup(copym, hlen);
2200	if (copym != NULL) {
2201		/*
2202		 * We don't bother to fragment if the IP length is greater
2203		 * than the interface's MTU.  Can this possibly matter?
2204		 */
2205		ip = mtod(copym, struct ip *);
2206		ip->ip_len = htons(ip->ip_len);
2207		ip->ip_off = htons(ip->ip_off);
2208		ip->ip_sum = 0;
2209		ip->ip_sum = in_cksum(copym, hlen);
2210		/*
2211		 * NB:
2212		 * It's not clear whether there are any lingering
2213		 * reentrancy problems in other areas which might
2214		 * be exposed by using ip_input directly (in
2215		 * particular, everything which modifies the packet
2216		 * in-place).  Yet another option is using the
2217		 * protosw directly to deliver the looped back
2218		 * packet.  For the moment, we'll err on the side
2219		 * of safety by using if_simloop().
2220		 */
2221#if 1 /* XXX */
2222		if (dst->sin_family != AF_INET) {
2223			printf("ip_mloopback: bad address family %d\n",
2224						dst->sin_family);
2225			dst->sin_family = AF_INET;
2226		}
2227#endif
2228
2229#ifdef notdef
2230		copym->m_pkthdr.rcvif = ifp;
2231		ip_input(copym);
2232#else
2233		/* if the checksum hasn't been computed, mark it as valid */
2234		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2235			copym->m_pkthdr.csum_flags |=
2236			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2237			copym->m_pkthdr.csum_data = 0xffff;
2238		}
2239		if_simloop(ifp, copym, dst->sin_family, 0);
2240#endif
2241	}
2242}
2243