ip_output.c revision 11537
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 *	$Id: ip_output.c,v 1.23 1995/07/26 18:05:13 wollman Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/errno.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/socketvar.h>
45#include <sys/queue.h>
46
47#include <net/if.h>
48#include <net/route.h>
49
50#include <netinet/in.h>
51#include <netinet/in_systm.h>
52#include <netinet/ip.h>
53#include <netinet/in_pcb.h>
54#include <netinet/in_var.h>
55#include <netinet/ip_var.h>
56
57#include <netinet/ip_fw.h>
58
59#ifdef vax
60#include <machine/mtpr.h>
61#endif
62
63u_short ip_id;
64
65static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
66static void ip_mloopback
67	__P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
68
69/*
70 * IP output.  The packet in mbuf chain m contains a skeletal IP
71 * header (with len, off, ttl, proto, tos, src, dst).
72 * The mbuf chain containing the packet will be freed.
73 * The mbuf opt, if present, will not be freed.
74 */
75int
76ip_output(m0, opt, ro, flags, imo)
77	struct mbuf *m0;
78	struct mbuf *opt;
79	struct route *ro;
80	int flags;
81	struct ip_moptions *imo;
82{
83	register struct ip *ip, *mhip;
84	register struct ifnet *ifp;
85	register struct mbuf *m = m0;
86	register int hlen = sizeof (struct ip);
87	int len, off, error = 0;
88	struct route iproute;
89	struct sockaddr_in *dst;
90	struct in_ifaddr *ia;
91
92#ifdef	DIAGNOSTIC
93	if ((m->m_flags & M_PKTHDR) == 0)
94		panic("ip_output no HDR");
95#endif
96	if (opt) {
97		m = ip_insertoptions(m, opt, &len);
98		hlen = len;
99	}
100	ip = mtod(m, struct ip *);
101	/*
102	 * Fill in IP header.
103	 */
104	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
105		ip->ip_v = IPVERSION;
106		ip->ip_off &= IP_DF;
107		ip->ip_id = htons(ip_id++);
108		ip->ip_hl = hlen >> 2;
109		ipstat.ips_localout++;
110	} else {
111		hlen = ip->ip_hl << 2;
112	}
113	/*
114	 * Route packet.
115	 */
116	if (ro == 0) {
117		ro = &iproute;
118		bzero((caddr_t)ro, sizeof (*ro));
119	}
120	dst = (struct sockaddr_in *)&ro->ro_dst;
121	/*
122	 * If there is a cached route,
123	 * check that it is to the same destination
124	 * and is still up.  If not, free it and try again.
125	 */
126	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
127	   dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
128		RTFREE(ro->ro_rt);
129		ro->ro_rt = (struct rtentry *)0;
130	}
131	if (ro->ro_rt == 0) {
132		dst->sin_family = AF_INET;
133		dst->sin_len = sizeof(*dst);
134		dst->sin_addr = ip->ip_dst;
135	}
136	/*
137	 * If routing to interface only,
138	 * short circuit routing lookup.
139	 */
140#define ifatoia(ifa)	((struct in_ifaddr *)(ifa))
141#define sintosa(sin)	((struct sockaddr *)(sin))
142	if (flags & IP_ROUTETOIF) {
143		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
144		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
145			ipstat.ips_noroute++;
146			error = ENETUNREACH;
147			goto bad;
148		}
149		ifp = ia->ia_ifp;
150		ip->ip_ttl = 1;
151	} else {
152		/*
153		 * If this is the case, we probably don't want to allocate
154		 * a protocol-cloned route since we didn't get one from the
155		 * ULP.  This lets TCP do its thing, while not burdening
156		 * forwarding or ICMP with the overhead of cloning a route.
157		 * Of course, we still want to do any cloning requested by
158		 * the link layer, as this is probably required in all cases
159		 * for correct operation (as it is for ARP).
160		 */
161		if (ro->ro_rt == 0)
162			rtalloc_ign(ro, RTF_PRCLONING);
163		if (ro->ro_rt == 0) {
164			ipstat.ips_noroute++;
165			error = EHOSTUNREACH;
166			goto bad;
167		}
168		ia = ifatoia(ro->ro_rt->rt_ifa);
169		ifp = ro->ro_rt->rt_ifp;
170		ro->ro_rt->rt_use++;
171		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
172			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
173	}
174	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
175		struct in_multi *inm;
176
177		m->m_flags |= M_MCAST;
178		/*
179		 * IP destination address is multicast.  Make sure "dst"
180		 * still points to the address in "ro".  (It may have been
181		 * changed to point to a gateway address, above.)
182		 */
183		dst = (struct sockaddr_in *)&ro->ro_dst;
184		/*
185		 * See if the caller provided any multicast options
186		 */
187		if (imo != NULL) {
188			ip->ip_ttl = imo->imo_multicast_ttl;
189			if (imo->imo_multicast_ifp != NULL)
190				ifp = imo->imo_multicast_ifp;
191			if (imo->imo_multicast_vif != -1)
192				ip->ip_src.s_addr =
193				    ip_mcast_src(imo->imo_multicast_vif);
194		} else
195			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
196		/*
197		 * Confirm that the outgoing interface supports multicast.
198		 */
199		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
200			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
201				ipstat.ips_noroute++;
202				error = ENETUNREACH;
203				goto bad;
204			}
205		}
206		/*
207		 * If source address not specified yet, use address
208		 * of outgoing interface.
209		 */
210		if (ip->ip_src.s_addr == INADDR_ANY) {
211			register struct in_ifaddr *ia;
212
213			for (ia = in_ifaddr; ia; ia = ia->ia_next)
214				if (ia->ia_ifp == ifp) {
215					ip->ip_src = IA_SIN(ia)->sin_addr;
216					break;
217				}
218		}
219
220		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
221		if (inm != NULL &&
222		   (imo == NULL || imo->imo_multicast_loop)) {
223			/*
224			 * If we belong to the destination multicast group
225			 * on the outgoing interface, and the caller did not
226			 * forbid loopback, loop back a copy.
227			 */
228			ip_mloopback(ifp, m, dst);
229		}
230		else {
231			/*
232			 * If we are acting as a multicast router, perform
233			 * multicast forwarding as if the packet had just
234			 * arrived on the interface to which we are about
235			 * to send.  The multicast forwarding function
236			 * recursively calls this function, using the
237			 * IP_FORWARDING flag to prevent infinite recursion.
238			 *
239			 * Multicasts that are looped back by ip_mloopback(),
240			 * above, will be forwarded by the ip_input() routine,
241			 * if necessary.
242			 */
243			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
244				/*
245				 * Check if rsvp daemon is running. If not, don't
246				 * set ip_moptions. This ensures that the packet
247				 * is multicast and not just sent down one link
248				 * as prescribed by rsvpd.
249				 */
250				if (!rsvp_on)
251				  imo = NULL;
252				if (ip_mforward(ip, ifp, m, imo) != 0) {
253					m_freem(m);
254					goto done;
255				}
256			}
257		}
258
259		/*
260		 * Multicasts with a time-to-live of zero may be looped-
261		 * back, above, but must not be transmitted on a network.
262		 * Also, multicasts addressed to the loopback interface
263		 * are not sent -- the above call to ip_mloopback() will
264		 * loop back a copy if this host actually belongs to the
265		 * destination group on the loopback interface.
266		 */
267		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
268			m_freem(m);
269			goto done;
270		}
271
272		goto sendit;
273	}
274#ifndef notdef
275	/*
276	 * If source address not specified yet, use address
277	 * of outgoing interface.
278	 */
279	if (ip->ip_src.s_addr == INADDR_ANY)
280		ip->ip_src = IA_SIN(ia)->sin_addr;
281#endif
282	/*
283	 * Verify that we have any chance at all of being able to queue
284	 *      the packet or packet fragments
285	 */
286	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
287		ifp->if_snd.ifq_maxlen) {
288			error = ENOBUFS;
289			goto bad;
290	}
291
292	/*
293	 * Look for broadcast address and
294	 * and verify user is allowed to send
295	 * such a packet.
296	 */
297	if (in_broadcast(dst->sin_addr, ifp)) {
298		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
299			error = EADDRNOTAVAIL;
300			goto bad;
301		}
302		if ((flags & IP_ALLOWBROADCAST) == 0) {
303			error = EACCES;
304			goto bad;
305		}
306		/* don't allow broadcast messages to be fragmented */
307		if ((u_short)ip->ip_len > ifp->if_mtu) {
308			error = EMSGSIZE;
309			goto bad;
310		}
311		m->m_flags |= M_BCAST;
312	} else
313		m->m_flags &= ~M_BCAST;
314
315sendit:
316	/*
317	 * If small enough for interface, can just send directly.
318	 */
319	if ((u_short)ip->ip_len <= ifp->if_mtu) {
320		ip->ip_len = htons((u_short)ip->ip_len);
321		ip->ip_off = htons((u_short)ip->ip_off);
322		ip->ip_sum = 0;
323		ip->ip_sum = in_cksum(m, hlen);
324		error = (*ifp->if_output)(ifp, m,
325				(struct sockaddr *)dst, ro->ro_rt);
326		goto done;
327	}
328	/*
329	 * Too large for interface; fragment if possible.
330	 * Must be able to put at least 8 bytes per fragment.
331	 */
332	if (ip->ip_off & IP_DF) {
333		error = EMSGSIZE;
334#ifdef MTUDISC
335		/*
336		 * This case can happen if the user changed the MTU
337		 * of an interface after enabling IP on it.  Because
338		 * most netifs don't keep track of routes pointing to
339		 * them, there is no way for one to update all its
340		 * routes when the MTU is changed.
341		 */
342		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST))
343		    && !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU)
344		    && (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
345			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
346		}
347#endif /* MTUDISC */
348		ipstat.ips_cantfrag++;
349		goto bad;
350	}
351	len = (ifp->if_mtu - hlen) &~ 7;
352	if (len < 8) {
353		error = EMSGSIZE;
354		goto bad;
355	}
356
357    {
358	int mhlen, firstlen = len;
359	struct mbuf **mnext = &m->m_nextpkt;
360
361	/*
362	 * Loop through length of segment after first fragment,
363	 * make new header and copy data of each part and link onto chain.
364	 */
365	m0 = m;
366	mhlen = sizeof (struct ip);
367	for (off = hlen + len; off < (u_short)ip->ip_len; off += len) {
368		MGETHDR(m, M_DONTWAIT, MT_HEADER);
369		if (m == 0) {
370			error = ENOBUFS;
371			ipstat.ips_odropped++;
372			goto sendorfree;
373		}
374		m->m_data += max_linkhdr;
375		mhip = mtod(m, struct ip *);
376		*mhip = *ip;
377		if (hlen > sizeof (struct ip)) {
378			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
379			mhip->ip_hl = mhlen >> 2;
380		}
381		m->m_len = mhlen;
382		mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & ~IP_MF);
383		if (ip->ip_off & IP_MF)
384			mhip->ip_off |= IP_MF;
385		if (off + len >= (u_short)ip->ip_len)
386			len = (u_short)ip->ip_len - off;
387		else
388			mhip->ip_off |= IP_MF;
389		mhip->ip_len = htons((u_short)(len + mhlen));
390		m->m_next = m_copy(m0, off, len);
391		if (m->m_next == 0) {
392			(void) m_free(m);
393			error = ENOBUFS;	/* ??? */
394			ipstat.ips_odropped++;
395			goto sendorfree;
396		}
397		m->m_pkthdr.len = mhlen + len;
398		m->m_pkthdr.rcvif = (struct ifnet *)0;
399		mhip->ip_off = htons((u_short)mhip->ip_off);
400		mhip->ip_sum = 0;
401		mhip->ip_sum = in_cksum(m, mhlen);
402		*mnext = m;
403		mnext = &m->m_nextpkt;
404		ipstat.ips_ofragments++;
405	}
406	/*
407	 * Update first fragment by trimming what's been copied out
408	 * and updating header, then send each fragment (in order).
409	 */
410	m = m0;
411	m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
412	m->m_pkthdr.len = hlen + firstlen;
413	ip->ip_len = htons((u_short)m->m_pkthdr.len);
414	ip->ip_off = htons((u_short)(ip->ip_off | IP_MF));
415	ip->ip_sum = 0;
416	ip->ip_sum = in_cksum(m, hlen);
417sendorfree:
418	for (m = m0; m; m = m0) {
419		m0 = m->m_nextpkt;
420		m->m_nextpkt = 0;
421		if (error == 0)
422			error = (*ifp->if_output)(ifp, m,
423			    (struct sockaddr *)dst, ro->ro_rt);
424		else
425			m_freem(m);
426	}
427
428	if (error == 0)
429		ipstat.ips_fragmented++;
430    }
431done:
432	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt)
433		RTFREE(ro->ro_rt);
434	/*
435	 * Count outgoing packet,here we count both our packets and
436	 * those we forward.
437	 * Here we want to convert ip_len to host byte order when counting
438	 * so we set 3rd arg to 1.
439	 * This is locally generated packet so it has not
440	 * incoming interface.
441	 */
442	if (ip_acct_cnt_ptr!=NULL)
443		(*ip_acct_cnt_ptr)(ip,NULL,ip_acct_chain,1);
444
445	return (error);
446bad:
447	m_freem(m0);
448	goto done;
449}
450
451/*
452 * Insert IP options into preformed packet.
453 * Adjust IP destination as required for IP source routing,
454 * as indicated by a non-zero in_addr at the start of the options.
455 */
456static struct mbuf *
457ip_insertoptions(m, opt, phlen)
458	register struct mbuf *m;
459	struct mbuf *opt;
460	int *phlen;
461{
462	register struct ipoption *p = mtod(opt, struct ipoption *);
463	struct mbuf *n;
464	register struct ip *ip = mtod(m, struct ip *);
465	unsigned optlen;
466
467	optlen = opt->m_len - sizeof(p->ipopt_dst);
468	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET)
469		return (m);		/* XXX should fail */
470	if (p->ipopt_dst.s_addr)
471		ip->ip_dst = p->ipopt_dst;
472	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
473		MGETHDR(n, M_DONTWAIT, MT_HEADER);
474		if (n == 0)
475			return (m);
476		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
477		m->m_len -= sizeof(struct ip);
478		m->m_data += sizeof(struct ip);
479		n->m_next = m;
480		m = n;
481		m->m_len = optlen + sizeof(struct ip);
482		m->m_data += max_linkhdr;
483		(void)memcpy(mtod(m, void *), ip, sizeof(struct ip));
484	} else {
485		m->m_data -= optlen;
486		m->m_len += optlen;
487		m->m_pkthdr.len += optlen;
488		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
489	}
490	ip = mtod(m, struct ip *);
491	(void)memcpy(ip + 1, p->ipopt_list, (unsigned)optlen);
492	*phlen = sizeof(struct ip) + optlen;
493	ip->ip_len += optlen;
494	return (m);
495}
496
497/*
498 * Copy options from ip to jp,
499 * omitting those not copied during fragmentation.
500 */
501int
502ip_optcopy(ip, jp)
503	struct ip *ip, *jp;
504{
505	register u_char *cp, *dp;
506	int opt, optlen, cnt;
507
508	cp = (u_char *)(ip + 1);
509	dp = (u_char *)(jp + 1);
510	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
511	for (; cnt > 0; cnt -= optlen, cp += optlen) {
512		opt = cp[0];
513		if (opt == IPOPT_EOL)
514			break;
515		if (opt == IPOPT_NOP) {
516			/* Preserve for IP mcast tunnel's LSRR alignment. */
517			*dp++ = IPOPT_NOP;
518			optlen = 1;
519			continue;
520		} else
521			optlen = cp[IPOPT_OLEN];
522		/* bogus lengths should have been caught by ip_dooptions */
523		if (optlen > cnt)
524			optlen = cnt;
525		if (IPOPT_COPIED(opt)) {
526			(void)memcpy(dp, cp, (unsigned)optlen);
527			dp += optlen;
528		}
529	}
530	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
531		*dp++ = IPOPT_EOL;
532	return (optlen);
533}
534
535/*
536 * IP socket option processing.
537 */
538int
539ip_ctloutput(op, so, level, optname, mp)
540	int op;
541	struct socket *so;
542	int level, optname;
543	struct mbuf **mp;
544{
545	register struct inpcb *inp = sotoinpcb(so);
546	register struct mbuf *m = *mp;
547	register int optval = 0;
548	int error = 0;
549
550	if (level != IPPROTO_IP) {
551		error = EINVAL;
552		if (op == PRCO_SETOPT && *mp)
553			(void) m_free(*mp);
554	} else switch (op) {
555
556	case PRCO_SETOPT:
557		switch (optname) {
558		case IP_OPTIONS:
559#ifdef notyet
560		case IP_RETOPTS:
561			return (ip_pcbopts(optname, &inp->inp_options, m));
562#else
563			return (ip_pcbopts(&inp->inp_options, m));
564#endif
565
566		case IP_TOS:
567		case IP_TTL:
568		case IP_RECVOPTS:
569		case IP_RECVRETOPTS:
570		case IP_RECVDSTADDR:
571			if (m == 0 || m->m_len != sizeof(int))
572				error = EINVAL;
573			else {
574				optval = *mtod(m, int *);
575				switch (optname) {
576
577				case IP_TOS:
578					inp->inp_ip.ip_tos = optval;
579					break;
580
581				case IP_TTL:
582					inp->inp_ip.ip_ttl = optval;
583					break;
584#define	OPTSET(bit) \
585	if (optval) \
586		inp->inp_flags |= bit; \
587	else \
588		inp->inp_flags &= ~bit;
589
590				case IP_RECVOPTS:
591					OPTSET(INP_RECVOPTS);
592					break;
593
594				case IP_RECVRETOPTS:
595					OPTSET(INP_RECVRETOPTS);
596					break;
597
598				case IP_RECVDSTADDR:
599					OPTSET(INP_RECVDSTADDR);
600					break;
601				}
602			}
603			break;
604#undef OPTSET
605
606		case IP_MULTICAST_IF:
607		case IP_MULTICAST_VIF:
608		case IP_MULTICAST_TTL:
609		case IP_MULTICAST_LOOP:
610		case IP_ADD_MEMBERSHIP:
611		case IP_DROP_MEMBERSHIP:
612			error = ip_setmoptions(optname, &inp->inp_moptions, m);
613			break;
614
615		default:
616			error = ENOPROTOOPT;
617			break;
618		}
619		if (m)
620			(void)m_free(m);
621		break;
622
623	case PRCO_GETOPT:
624		switch (optname) {
625		case IP_OPTIONS:
626		case IP_RETOPTS:
627			*mp = m = m_get(M_WAIT, MT_SOOPTS);
628			if (inp->inp_options) {
629				m->m_len = inp->inp_options->m_len;
630				(void)memcpy(mtod(m, void *),
631				    mtod(inp->inp_options, void *), (unsigned)m->m_len);
632			} else
633				m->m_len = 0;
634			break;
635
636		case IP_TOS:
637		case IP_TTL:
638		case IP_RECVOPTS:
639		case IP_RECVRETOPTS:
640		case IP_RECVDSTADDR:
641			*mp = m = m_get(M_WAIT, MT_SOOPTS);
642			m->m_len = sizeof(int);
643			switch (optname) {
644
645			case IP_TOS:
646				optval = inp->inp_ip.ip_tos;
647				break;
648
649			case IP_TTL:
650				optval = inp->inp_ip.ip_ttl;
651				break;
652
653#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
654
655			case IP_RECVOPTS:
656				optval = OPTBIT(INP_RECVOPTS);
657				break;
658
659			case IP_RECVRETOPTS:
660				optval = OPTBIT(INP_RECVRETOPTS);
661				break;
662
663			case IP_RECVDSTADDR:
664				optval = OPTBIT(INP_RECVDSTADDR);
665				break;
666			}
667			*mtod(m, int *) = optval;
668			break;
669
670		case IP_MULTICAST_IF:
671		case IP_MULTICAST_VIF:
672		case IP_MULTICAST_TTL:
673		case IP_MULTICAST_LOOP:
674		case IP_ADD_MEMBERSHIP:
675		case IP_DROP_MEMBERSHIP:
676			error = ip_getmoptions(optname, inp->inp_moptions, mp);
677			break;
678
679		default:
680			error = ENOPROTOOPT;
681			break;
682		}
683		break;
684	}
685	return (error);
686}
687
688/*
689 * Set up IP options in pcb for insertion in output packets.
690 * Store in mbuf with pointer in pcbopt, adding pseudo-option
691 * with destination address if source routed.
692 */
693int
694#ifdef notyet
695ip_pcbopts(optname, pcbopt, m)
696	int optname;
697#else
698ip_pcbopts(pcbopt, m)
699#endif
700	struct mbuf **pcbopt;
701	register struct mbuf *m;
702{
703	register cnt, optlen;
704	register u_char *cp;
705	u_char opt;
706
707	/* turn off any old options */
708	if (*pcbopt)
709		(void)m_free(*pcbopt);
710	*pcbopt = 0;
711	if (m == (struct mbuf *)0 || m->m_len == 0) {
712		/*
713		 * Only turning off any previous options.
714		 */
715		if (m)
716			(void)m_free(m);
717		return (0);
718	}
719
720#ifndef	vax
721	if (m->m_len % sizeof(long))
722		goto bad;
723#endif
724	/*
725	 * IP first-hop destination address will be stored before
726	 * actual options; move other options back
727	 * and clear it when none present.
728	 */
729	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
730		goto bad;
731	cnt = m->m_len;
732	m->m_len += sizeof(struct in_addr);
733	cp = mtod(m, u_char *) + sizeof(struct in_addr);
734	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
735	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
736
737	for (; cnt > 0; cnt -= optlen, cp += optlen) {
738		opt = cp[IPOPT_OPTVAL];
739		if (opt == IPOPT_EOL)
740			break;
741		if (opt == IPOPT_NOP)
742			optlen = 1;
743		else {
744			optlen = cp[IPOPT_OLEN];
745			if (optlen <= IPOPT_OLEN || optlen > cnt)
746				goto bad;
747		}
748		switch (opt) {
749
750		default:
751			break;
752
753		case IPOPT_LSRR:
754		case IPOPT_SSRR:
755			/*
756			 * user process specifies route as:
757			 *	->A->B->C->D
758			 * D must be our final destination (but we can't
759			 * check that since we may not have connected yet).
760			 * A is first hop destination, which doesn't appear in
761			 * actual IP option, but is stored before the options.
762			 */
763			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
764				goto bad;
765			m->m_len -= sizeof(struct in_addr);
766			cnt -= sizeof(struct in_addr);
767			optlen -= sizeof(struct in_addr);
768			cp[IPOPT_OLEN] = optlen;
769			/*
770			 * Move first hop before start of options.
771			 */
772			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
773			    sizeof(struct in_addr));
774			/*
775			 * Then copy rest of options back
776			 * to close up the deleted entry.
777			 */
778			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
779			    sizeof(struct in_addr)),
780			    (caddr_t)&cp[IPOPT_OFFSET+1],
781			    (unsigned)cnt + sizeof(struct in_addr));
782			break;
783		}
784	}
785	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
786		goto bad;
787	*pcbopt = m;
788	return (0);
789
790bad:
791	(void)m_free(m);
792	return (EINVAL);
793}
794
795/*
796 * Set the IP multicast options in response to user setsockopt().
797 */
798int
799ip_setmoptions(optname, imop, m)
800	int optname;
801	struct ip_moptions **imop;
802	struct mbuf *m;
803{
804	register int error = 0;
805	u_char loop;
806	register int i;
807	struct in_addr addr;
808	register struct ip_mreq *mreq;
809	register struct ifnet *ifp;
810	register struct ip_moptions *imo = *imop;
811	struct route ro;
812	register struct sockaddr_in *dst;
813	int s;
814
815	if (imo == NULL) {
816		/*
817		 * No multicast option buffer attached to the pcb;
818		 * allocate one and initialize to default values.
819		 */
820		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
821		    M_WAITOK);
822
823		if (imo == NULL)
824			return (ENOBUFS);
825		*imop = imo;
826		imo->imo_multicast_ifp = NULL;
827		imo->imo_multicast_vif = -1;
828		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
829		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
830		imo->imo_num_memberships = 0;
831	}
832
833	switch (optname) {
834	/* store an index number for the vif you wanna use in the send */
835	case IP_MULTICAST_VIF:
836		if (!legal_vif_num) {
837			error = EOPNOTSUPP;
838			break;
839		}
840		if (m == NULL || m->m_len != sizeof(int)) {
841			error = EINVAL;
842			break;
843		}
844		i = *(mtod(m, int *));
845		if (!legal_vif_num(i) && (i != -1)) {
846			error = EINVAL;
847			break;
848		}
849		imo->imo_multicast_vif = i;
850		break;
851
852	case IP_MULTICAST_IF:
853		/*
854		 * Select the interface for outgoing multicast packets.
855		 */
856		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
857			error = EINVAL;
858			break;
859		}
860		addr = *(mtod(m, struct in_addr *));
861		/*
862		 * INADDR_ANY is used to remove a previous selection.
863		 * When no interface is selected, a default one is
864		 * chosen every time a multicast packet is sent.
865		 */
866		if (addr.s_addr == INADDR_ANY) {
867			imo->imo_multicast_ifp = NULL;
868			break;
869		}
870		/*
871		 * The selected interface is identified by its local
872		 * IP address.  Find the interface and confirm that
873		 * it supports multicasting.
874		 */
875		s = splimp();
876		INADDR_TO_IFP(addr, ifp);
877		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
878			error = EADDRNOTAVAIL;
879			break;
880		}
881		imo->imo_multicast_ifp = ifp;
882		splx(s);
883		break;
884
885	case IP_MULTICAST_TTL:
886		/*
887		 * Set the IP time-to-live for outgoing multicast packets.
888		 */
889		if (m == NULL || m->m_len != 1) {
890			error = EINVAL;
891			break;
892		}
893		imo->imo_multicast_ttl = *(mtod(m, u_char *));
894		break;
895
896	case IP_MULTICAST_LOOP:
897		/*
898		 * Set the loopback flag for outgoing multicast packets.
899		 * Must be zero or one.
900		 */
901		if (m == NULL || m->m_len != 1 ||
902		   (loop = *(mtod(m, u_char *))) > 1) {
903			error = EINVAL;
904			break;
905		}
906		imo->imo_multicast_loop = loop;
907		break;
908
909	case IP_ADD_MEMBERSHIP:
910		/*
911		 * Add a multicast group membership.
912		 * Group must be a valid IP multicast address.
913		 */
914		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
915			error = EINVAL;
916			break;
917		}
918		mreq = mtod(m, struct ip_mreq *);
919		if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {
920			error = EINVAL;
921			break;
922		}
923		s = splimp();
924		/*
925		 * If no interface address was provided, use the interface of
926		 * the route to the given multicast address.
927		 */
928		if (mreq->imr_interface.s_addr == INADDR_ANY) {
929			bzero((caddr_t)&ro, sizeof(ro));
930			dst = (struct sockaddr_in *)&ro.ro_dst;
931			dst->sin_len = sizeof(*dst);
932			dst->sin_family = AF_INET;
933			dst->sin_addr = mreq->imr_multiaddr;
934			rtalloc(&ro);
935			if (ro.ro_rt == NULL) {
936				error = EADDRNOTAVAIL;
937				splx(s);
938				break;
939			}
940			ifp = ro.ro_rt->rt_ifp;
941			rtfree(ro.ro_rt);
942		}
943		else {
944			INADDR_TO_IFP(mreq->imr_interface, ifp);
945		}
946
947		/*
948		 * See if we found an interface, and confirm that it
949		 * supports multicast.
950		 */
951		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
952			error = EADDRNOTAVAIL;
953			splx(s);
954			break;
955		}
956		/*
957		 * See if the membership already exists or if all the
958		 * membership slots are full.
959		 */
960		for (i = 0; i < imo->imo_num_memberships; ++i) {
961			if (imo->imo_membership[i]->inm_ifp == ifp &&
962			    imo->imo_membership[i]->inm_addr.s_addr
963						== mreq->imr_multiaddr.s_addr)
964				break;
965		}
966		if (i < imo->imo_num_memberships) {
967			error = EADDRINUSE;
968			splx(s);
969			break;
970		}
971		if (i == IP_MAX_MEMBERSHIPS) {
972			error = ETOOMANYREFS;
973			splx(s);
974			break;
975		}
976		/*
977		 * Everything looks good; add a new record to the multicast
978		 * address list for the given interface.
979		 */
980		if ((imo->imo_membership[i] =
981		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
982			error = ENOBUFS;
983			splx(s);
984			break;
985		}
986		++imo->imo_num_memberships;
987		splx(s);
988		break;
989
990	case IP_DROP_MEMBERSHIP:
991		/*
992		 * Drop a multicast group membership.
993		 * Group must be a valid IP multicast address.
994		 */
995		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
996			error = EINVAL;
997			break;
998		}
999		mreq = mtod(m, struct ip_mreq *);
1000		if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {
1001			error = EINVAL;
1002			break;
1003		}
1004
1005		s = splimp();
1006		/*
1007		 * If an interface address was specified, get a pointer
1008		 * to its ifnet structure.
1009		 */
1010		if (mreq->imr_interface.s_addr == INADDR_ANY)
1011			ifp = NULL;
1012		else {
1013			INADDR_TO_IFP(mreq->imr_interface, ifp);
1014			if (ifp == NULL) {
1015				error = EADDRNOTAVAIL;
1016				splx(s);
1017				break;
1018			}
1019		}
1020		/*
1021		 * Find the membership in the membership array.
1022		 */
1023		for (i = 0; i < imo->imo_num_memberships; ++i) {
1024			if ((ifp == NULL ||
1025			     imo->imo_membership[i]->inm_ifp == ifp) &&
1026			     imo->imo_membership[i]->inm_addr.s_addr ==
1027			     mreq->imr_multiaddr.s_addr)
1028				break;
1029		}
1030		if (i == imo->imo_num_memberships) {
1031			error = EADDRNOTAVAIL;
1032			splx(s);
1033			break;
1034		}
1035		/*
1036		 * Give up the multicast address record to which the
1037		 * membership points.
1038		 */
1039		in_delmulti(imo->imo_membership[i]);
1040		/*
1041		 * Remove the gap in the membership array.
1042		 */
1043		for (++i; i < imo->imo_num_memberships; ++i)
1044			imo->imo_membership[i-1] = imo->imo_membership[i];
1045		--imo->imo_num_memberships;
1046		splx(s);
1047		break;
1048
1049	default:
1050		error = EOPNOTSUPP;
1051		break;
1052	}
1053
1054	/*
1055	 * If all options have default values, no need to keep the mbuf.
1056	 */
1057	if (imo->imo_multicast_ifp == NULL &&
1058	    imo->imo_multicast_vif == -1 &&
1059	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1060	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1061	    imo->imo_num_memberships == 0) {
1062		free(*imop, M_IPMOPTS);
1063		*imop = NULL;
1064	}
1065
1066	return (error);
1067}
1068
1069/*
1070 * Return the IP multicast options in response to user getsockopt().
1071 */
1072int
1073ip_getmoptions(optname, imo, mp)
1074	int optname;
1075	register struct ip_moptions *imo;
1076	register struct mbuf **mp;
1077{
1078	u_char *ttl;
1079	u_char *loop;
1080	struct in_addr *addr;
1081	struct in_ifaddr *ia;
1082
1083	*mp = m_get(M_WAIT, MT_SOOPTS);
1084
1085	switch (optname) {
1086
1087	case IP_MULTICAST_VIF:
1088		if (imo != NULL)
1089			*(mtod(*mp, int *)) = imo->imo_multicast_vif;
1090		else
1091			*(mtod(*mp, int *)) = -1;
1092		(*mp)->m_len = sizeof(int);
1093		return(0);
1094
1095	case IP_MULTICAST_IF:
1096		addr = mtod(*mp, struct in_addr *);
1097		(*mp)->m_len = sizeof(struct in_addr);
1098		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1099			addr->s_addr = INADDR_ANY;
1100		else {
1101			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1102			addr->s_addr = (ia == NULL) ? INADDR_ANY
1103					: IA_SIN(ia)->sin_addr.s_addr;
1104		}
1105		return (0);
1106
1107	case IP_MULTICAST_TTL:
1108		ttl = mtod(*mp, u_char *);
1109		(*mp)->m_len = 1;
1110		*ttl = (imo == NULL) ? IP_DEFAULT_MULTICAST_TTL
1111				     : imo->imo_multicast_ttl;
1112		return (0);
1113
1114	case IP_MULTICAST_LOOP:
1115		loop = mtod(*mp, u_char *);
1116		(*mp)->m_len = 1;
1117		*loop = (imo == NULL) ? IP_DEFAULT_MULTICAST_LOOP
1118				      : imo->imo_multicast_loop;
1119		return (0);
1120
1121	default:
1122		return (EOPNOTSUPP);
1123	}
1124}
1125
1126/*
1127 * Discard the IP multicast options.
1128 */
1129void
1130ip_freemoptions(imo)
1131	register struct ip_moptions *imo;
1132{
1133	register int i;
1134
1135	if (imo != NULL) {
1136		for (i = 0; i < imo->imo_num_memberships; ++i)
1137			in_delmulti(imo->imo_membership[i]);
1138		free(imo, M_IPMOPTS);
1139	}
1140}
1141
1142/*
1143 * Routine called from ip_output() to loop back a copy of an IP multicast
1144 * packet to the input queue of a specified interface.  Note that this
1145 * calls the output routine of the loopback "driver", but with an interface
1146 * pointer that might NOT be a loopback interface -- evil, but easier than
1147 * replicating that code here.
1148 */
1149static void
1150ip_mloopback(ifp, m, dst)
1151	struct ifnet *ifp;
1152	register struct mbuf *m;
1153	register struct sockaddr_in *dst;
1154{
1155	register struct ip *ip;
1156	struct mbuf *copym;
1157
1158	copym = m_copy(m, 0, M_COPYALL);
1159	if (copym != NULL) {
1160		/*
1161		 * We don't bother to fragment if the IP length is greater
1162		 * than the interface's MTU.  Can this possibly matter?
1163		 */
1164		ip = mtod(copym, struct ip *);
1165		ip->ip_len = htons((u_short)ip->ip_len);
1166		ip->ip_off = htons((u_short)ip->ip_off);
1167		ip->ip_sum = 0;
1168		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1169		(void) looutput(ifp, copym, (struct sockaddr *)dst, NULL);
1170	}
1171}
1172