ip_mroute.c revision 267654
1/*-
2 * Copyright (c) 1989 Stephen Deering
3 * Copyright (c) 1992, 1993
4 *      The Regents of the University of California.  All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Stephen Deering of Stanford University.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
34 */
35
36/*
37 * IP multicast forwarding procedures
38 *
39 * Written by David Waitzman, BBN Labs, August 1988.
40 * Modified by Steve Deering, Stanford, February 1989.
41 * Modified by Mark J. Steiglitz, Stanford, May, 1991
42 * Modified by Van Jacobson, LBL, January 1993
43 * Modified by Ajit Thyagarajan, PARC, August 1993
44 * Modified by Bill Fenner, PARC, April 1995
45 * Modified by Ahmed Helmy, SGI, June 1996
46 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
47 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
48 * Modified by Hitoshi Asaeda, WIDE, August 2000
49 * Modified by Pavlin Radoslavov, ICSI, October 2002
50 *
51 * MROUTING Revision: 3.5
52 * and PIM-SMv2 and PIM-DM support, advanced API support,
53 * bandwidth metering and signaling
54 */
55
56/*
57 * TODO: Prefix functions with ipmf_.
58 * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
59 * domain attachment (if_afdata) so we can track consumers of that service.
60 * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
61 * move it to socket options.
62 * TODO: Cleanup LSRR removal further.
63 * TODO: Push RSVP stubs into raw_ip.c.
64 * TODO: Use bitstring.h for vif set.
65 * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
66 * TODO: Sync ip6_mroute.c with this file.
67 */
68
69#include <sys/cdefs.h>
70__FBSDID("$FreeBSD: releng/9.3/sys/netinet/ip_mroute.c 263316 2014-03-18 20:05:55Z delphij $");
71
72#include "opt_inet.h"
73#include "opt_mrouting.h"
74
75#define _PIM_VT 1
76
77#include <sys/param.h>
78#include <sys/kernel.h>
79#include <sys/stddef.h>
80#include <sys/lock.h>
81#include <sys/ktr.h>
82#include <sys/malloc.h>
83#include <sys/mbuf.h>
84#include <sys/module.h>
85#include <sys/priv.h>
86#include <sys/protosw.h>
87#include <sys/signalvar.h>
88#include <sys/socket.h>
89#include <sys/socketvar.h>
90#include <sys/sockio.h>
91#include <sys/sx.h>
92#include <sys/sysctl.h>
93#include <sys/syslog.h>
94#include <sys/systm.h>
95#include <sys/time.h>
96
97#include <net/if.h>
98#include <net/netisr.h>
99#include <net/route.h>
100#include <net/vnet.h>
101
102#include <netinet/in.h>
103#include <netinet/igmp.h>
104#include <netinet/in_systm.h>
105#include <netinet/in_var.h>
106#include <netinet/ip.h>
107#include <netinet/ip_encap.h>
108#include <netinet/ip_mroute.h>
109#include <netinet/ip_var.h>
110#include <netinet/ip_options.h>
111#include <netinet/pim.h>
112#include <netinet/pim_var.h>
113#include <netinet/udp.h>
114
115#include <machine/in_cksum.h>
116
117#ifndef KTR_IPMF
118#define KTR_IPMF KTR_INET
119#endif
120
121#define		VIFI_INVALID	((vifi_t) -1)
122#define		M_HASCL(m)	((m)->m_flags & M_EXT)
123
124static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */
125#define	V_last_tv_sec	VNET(last_tv_sec)
126
127static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
128
129/*
130 * Locking.  We use two locks: one for the virtual interface table and
131 * one for the forwarding table.  These locks may be nested in which case
132 * the VIF lock must always be taken first.  Note that each lock is used
133 * to cover not only the specific data structure but also related data
134 * structures.
135 */
136
137static struct mtx mrouter_mtx;
138#define	MROUTER_LOCK()		mtx_lock(&mrouter_mtx)
139#define	MROUTER_UNLOCK()	mtx_unlock(&mrouter_mtx)
140#define	MROUTER_LOCK_ASSERT()	mtx_assert(&mrouter_mtx, MA_OWNED)
141#define	MROUTER_LOCK_INIT()						\
142	mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
143#define	MROUTER_LOCK_DESTROY()	mtx_destroy(&mrouter_mtx)
144
145static int ip_mrouter_cnt;	/* # of vnets with active mrouters */
146static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
147
148static VNET_DEFINE(struct mrtstat, mrtstat);
149#define	V_mrtstat		VNET(mrtstat)
150SYSCTL_VNET_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
151    &VNET_NAME(mrtstat), mrtstat,
152    "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
153    "netinet/ip_mroute.h)");
154
155static VNET_DEFINE(u_long, mfchash);
156#define	V_mfchash		VNET(mfchash)
157#define	MFCHASH(a, g)							\
158	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
159	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
160#define	MFCHASHSIZE	256
161
162static u_long mfchashsize;			/* Hash size */
163static VNET_DEFINE(u_char *, nexpire);		/* 0..mfchashsize-1 */
164#define	V_nexpire		VNET(nexpire)
165static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
166#define	V_mfchashtbl		VNET(mfchashtbl)
167
168static struct mtx mfc_mtx;
169#define	MFC_LOCK()		mtx_lock(&mfc_mtx)
170#define	MFC_UNLOCK()		mtx_unlock(&mfc_mtx)
171#define	MFC_LOCK_ASSERT()	mtx_assert(&mfc_mtx, MA_OWNED)
172#define	MFC_LOCK_INIT()							\
173	mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
174#define	MFC_LOCK_DESTROY()	mtx_destroy(&mfc_mtx)
175
176static VNET_DEFINE(vifi_t, numvifs);
177#define	V_numvifs		VNET(numvifs)
178static VNET_DEFINE(struct vif, viftable[MAXVIFS]);
179#define	V_viftable		VNET(viftable)
180SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
181    &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]",
182    "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
183
184static struct mtx vif_mtx;
185#define	VIF_LOCK()		mtx_lock(&vif_mtx)
186#define	VIF_UNLOCK()		mtx_unlock(&vif_mtx)
187#define	VIF_LOCK_ASSERT()	mtx_assert(&vif_mtx, MA_OWNED)
188#define	VIF_LOCK_INIT()							\
189	mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
190#define	VIF_LOCK_DESTROY()	mtx_destroy(&vif_mtx)
191
192static eventhandler_tag if_detach_event_tag = NULL;
193
194static VNET_DEFINE(struct callout, expire_upcalls_ch);
195#define	V_expire_upcalls_ch	VNET(expire_upcalls_ch)
196
197#define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second		*/
198#define		UPCALL_EXPIRE	6		/* number of timeouts	*/
199
200/*
201 * Bandwidth meter variables and constants
202 */
203static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
204/*
205 * Pending timeouts are stored in a hash table, the key being the
206 * expiration time. Periodically, the entries are analysed and processed.
207 */
208#define	BW_METER_BUCKETS	1024
209static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]);
210#define	V_bw_meter_timers	VNET(bw_meter_timers)
211static VNET_DEFINE(struct callout, bw_meter_ch);
212#define	V_bw_meter_ch		VNET(bw_meter_ch)
213#define	BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
214
215/*
216 * Pending upcalls are stored in a vector which is flushed when
217 * full, or periodically
218 */
219static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]);
220#define	V_bw_upcalls		VNET(bw_upcalls)
221static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */
222#define	V_bw_upcalls_n    	VNET(bw_upcalls_n)
223static VNET_DEFINE(struct callout, bw_upcalls_ch);
224#define	V_bw_upcalls_ch		VNET(bw_upcalls_ch)
225
226#define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
227
228static VNET_DEFINE(struct pimstat, pimstat);
229#define	V_pimstat		VNET(pimstat)
230
231SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
232SYSCTL_VNET_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
233    &VNET_NAME(pimstat), pimstat,
234    "PIM Statistics (struct pimstat, netinet/pim_var.h)");
235
236static u_long	pim_squelch_wholepkt = 0;
237SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
238    &pim_squelch_wholepkt, 0,
239    "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
240
241extern  struct domain inetdomain;
242static const struct protosw in_pim_protosw = {
243	.pr_type =		SOCK_RAW,
244	.pr_domain =		&inetdomain,
245	.pr_protocol =		IPPROTO_PIM,
246	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_LASTHDR,
247	.pr_input =		pim_input,
248	.pr_output =		(pr_output_t*)rip_output,
249	.pr_ctloutput =		rip_ctloutput,
250	.pr_usrreqs =		&rip_usrreqs
251};
252static const struct encaptab *pim_encap_cookie;
253
254static int pim_encapcheck(const struct mbuf *, int, int, void *);
255
256/*
257 * Note: the PIM Register encapsulation adds the following in front of a
258 * data packet:
259 *
260 * struct pim_encap_hdr {
261 *    struct ip ip;
262 *    struct pim_encap_pimhdr  pim;
263 * }
264 *
265 */
266
267struct pim_encap_pimhdr {
268	struct pim pim;
269	uint32_t   flags;
270};
271#define		PIM_ENCAP_TTL	64
272
273static struct ip pim_encap_iphdr = {
274#if BYTE_ORDER == LITTLE_ENDIAN
275	sizeof(struct ip) >> 2,
276	IPVERSION,
277#else
278	IPVERSION,
279	sizeof(struct ip) >> 2,
280#endif
281	0,			/* tos */
282	sizeof(struct ip),	/* total length */
283	0,			/* id */
284	0,			/* frag offset */
285	PIM_ENCAP_TTL,
286	IPPROTO_PIM,
287	0,			/* checksum */
288};
289
290static struct pim_encap_pimhdr pim_encap_pimhdr = {
291    {
292	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
293	0,			/* reserved */
294	0,			/* checksum */
295    },
296    0				/* flags */
297};
298
299static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID;
300#define	V_reg_vif_num		VNET(reg_vif_num)
301static VNET_DEFINE(struct ifnet, multicast_register_if);
302#define	V_multicast_register_if	VNET(multicast_register_if)
303
304/*
305 * Private variables.
306 */
307
308static u_long	X_ip_mcast_src(int);
309static int	X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
310		    struct ip_moptions *);
311static int	X_ip_mrouter_done(void);
312static int	X_ip_mrouter_get(struct socket *, struct sockopt *);
313static int	X_ip_mrouter_set(struct socket *, struct sockopt *);
314static int	X_legal_vif_num(int);
315static int	X_mrt_ioctl(u_long, caddr_t, int);
316
317static int	add_bw_upcall(struct bw_upcall *);
318static int	add_mfc(struct mfcctl2 *);
319static int	add_vif(struct vifctl *);
320static void	bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
321static void	bw_meter_process(void);
322static void	bw_meter_receive_packet(struct bw_meter *, int,
323		    struct timeval *);
324static void	bw_upcalls_send(void);
325static int	del_bw_upcall(struct bw_upcall *);
326static int	del_mfc(struct mfcctl2 *);
327static int	del_vif(vifi_t);
328static int	del_vif_locked(vifi_t);
329static void	expire_bw_meter_process(void *);
330static void	expire_bw_upcalls_send(void *);
331static void	expire_mfc(struct mfc *);
332static void	expire_upcalls(void *);
333static void	free_bw_list(struct bw_meter *);
334static int	get_sg_cnt(struct sioc_sg_req *);
335static int	get_vif_cnt(struct sioc_vif_req *);
336static void	if_detached_event(void *, struct ifnet *);
337static int	ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
338static int	ip_mrouter_init(struct socket *, int);
339static __inline struct mfc *
340		mfc_find(struct in_addr *, struct in_addr *);
341static void	phyint_send(struct ip *, struct vif *, struct mbuf *);
342static struct mbuf *
343		pim_register_prepare(struct ip *, struct mbuf *);
344static int	pim_register_send(struct ip *, struct vif *,
345		    struct mbuf *, struct mfc *);
346static int	pim_register_send_rp(struct ip *, struct vif *,
347		    struct mbuf *, struct mfc *);
348static int	pim_register_send_upcall(struct ip *, struct vif *,
349		    struct mbuf *, struct mfc *);
350static void	schedule_bw_meter(struct bw_meter *, struct timeval *);
351static void	send_packet(struct vif *, struct mbuf *);
352static int	set_api_config(uint32_t *);
353static int	set_assert(int);
354static int	socket_send(struct socket *, struct mbuf *,
355		    struct sockaddr_in *);
356static void	unschedule_bw_meter(struct bw_meter *);
357
358/*
359 * Kernel multicast forwarding API capabilities and setup.
360 * If more API capabilities are added to the kernel, they should be
361 * recorded in `mrt_api_support'.
362 */
363#define MRT_API_VERSION		0x0305
364
365static const int mrt_api_version = MRT_API_VERSION;
366static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
367					 MRT_MFC_FLAGS_BORDER_VIF |
368					 MRT_MFC_RP |
369					 MRT_MFC_BW_UPCALL);
370static VNET_DEFINE(uint32_t, mrt_api_config);
371#define	V_mrt_api_config	VNET(mrt_api_config)
372static VNET_DEFINE(int, pim_assert_enabled);
373#define	V_pim_assert_enabled	VNET(pim_assert_enabled)
374static struct timeval pim_assert_interval = { 3, 0 };	/* Rate limit */
375
376/*
377 * Find a route for a given origin IP address and multicast group address.
378 * Statistics must be updated by the caller.
379 */
380static __inline struct mfc *
381mfc_find(struct in_addr *o, struct in_addr *g)
382{
383	struct mfc *rt;
384
385	MFC_LOCK_ASSERT();
386
387	LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
388		if (in_hosteq(rt->mfc_origin, *o) &&
389		    in_hosteq(rt->mfc_mcastgrp, *g) &&
390		    TAILQ_EMPTY(&rt->mfc_stall))
391			break;
392	}
393
394	return (rt);
395}
396
397/*
398 * Handle MRT setsockopt commands to modify the multicast forwarding tables.
399 */
400static int
401X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
402{
403    int	error, optval;
404    vifi_t	vifi;
405    struct	vifctl vifc;
406    struct	mfcctl2 mfc;
407    struct	bw_upcall bw_upcall;
408    uint32_t	i;
409
410    if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
411	return EPERM;
412
413    error = 0;
414    switch (sopt->sopt_name) {
415    case MRT_INIT:
416	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
417	if (error)
418	    break;
419	error = ip_mrouter_init(so, optval);
420	break;
421
422    case MRT_DONE:
423	error = ip_mrouter_done();
424	break;
425
426    case MRT_ADD_VIF:
427	error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
428	if (error)
429	    break;
430	error = add_vif(&vifc);
431	break;
432
433    case MRT_DEL_VIF:
434	error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
435	if (error)
436	    break;
437	error = del_vif(vifi);
438	break;
439
440    case MRT_ADD_MFC:
441    case MRT_DEL_MFC:
442	/*
443	 * select data size depending on API version.
444	 */
445	if (sopt->sopt_name == MRT_ADD_MFC &&
446		V_mrt_api_config & MRT_API_FLAGS_ALL) {
447	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
448				sizeof(struct mfcctl2));
449	} else {
450	    error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
451				sizeof(struct mfcctl));
452	    bzero((caddr_t)&mfc + sizeof(struct mfcctl),
453			sizeof(mfc) - sizeof(struct mfcctl));
454	}
455	if (error)
456	    break;
457	if (sopt->sopt_name == MRT_ADD_MFC)
458	    error = add_mfc(&mfc);
459	else
460	    error = del_mfc(&mfc);
461	break;
462
463    case MRT_ASSERT:
464	error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
465	if (error)
466	    break;
467	set_assert(optval);
468	break;
469
470    case MRT_API_CONFIG:
471	error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
472	if (!error)
473	    error = set_api_config(&i);
474	if (!error)
475	    error = sooptcopyout(sopt, &i, sizeof i);
476	break;
477
478    case MRT_ADD_BW_UPCALL:
479    case MRT_DEL_BW_UPCALL:
480	error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
481				sizeof bw_upcall);
482	if (error)
483	    break;
484	if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
485	    error = add_bw_upcall(&bw_upcall);
486	else
487	    error = del_bw_upcall(&bw_upcall);
488	break;
489
490    default:
491	error = EOPNOTSUPP;
492	break;
493    }
494    return error;
495}
496
497/*
498 * Handle MRT getsockopt commands
499 */
500static int
501X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
502{
503    int error;
504
505    switch (sopt->sopt_name) {
506    case MRT_VERSION:
507	error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
508	break;
509
510    case MRT_ASSERT:
511	error = sooptcopyout(sopt, &V_pim_assert_enabled,
512	    sizeof V_pim_assert_enabled);
513	break;
514
515    case MRT_API_SUPPORT:
516	error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
517	break;
518
519    case MRT_API_CONFIG:
520	error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
521	break;
522
523    default:
524	error = EOPNOTSUPP;
525	break;
526    }
527    return error;
528}
529
530/*
531 * Handle ioctl commands to obtain information from the cache
532 */
533static int
534X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
535{
536    int error = 0;
537
538    /*
539     * Currently the only function calling this ioctl routine is rtioctl().
540     * Typically, only root can create the raw socket in order to execute
541     * this ioctl method, however the request might be coming from a prison
542     */
543    error = priv_check(curthread, PRIV_NETINET_MROUTE);
544    if (error)
545	return (error);
546    switch (cmd) {
547    case (SIOCGETVIFCNT):
548	error = get_vif_cnt((struct sioc_vif_req *)data);
549	break;
550
551    case (SIOCGETSGCNT):
552	error = get_sg_cnt((struct sioc_sg_req *)data);
553	break;
554
555    default:
556	error = EINVAL;
557	break;
558    }
559    return error;
560}
561
562/*
563 * returns the packet, byte, rpf-failure count for the source group provided
564 */
565static int
566get_sg_cnt(struct sioc_sg_req *req)
567{
568    struct mfc *rt;
569
570    MFC_LOCK();
571    rt = mfc_find(&req->src, &req->grp);
572    if (rt == NULL) {
573	MFC_UNLOCK();
574	req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
575	return EADDRNOTAVAIL;
576    }
577    req->pktcnt = rt->mfc_pkt_cnt;
578    req->bytecnt = rt->mfc_byte_cnt;
579    req->wrong_if = rt->mfc_wrong_if;
580    MFC_UNLOCK();
581    return 0;
582}
583
584/*
585 * returns the input and output packet and byte counts on the vif provided
586 */
587static int
588get_vif_cnt(struct sioc_vif_req *req)
589{
590    vifi_t vifi = req->vifi;
591
592    VIF_LOCK();
593    if (vifi >= V_numvifs) {
594	VIF_UNLOCK();
595	return EINVAL;
596    }
597
598    req->icount = V_viftable[vifi].v_pkt_in;
599    req->ocount = V_viftable[vifi].v_pkt_out;
600    req->ibytes = V_viftable[vifi].v_bytes_in;
601    req->obytes = V_viftable[vifi].v_bytes_out;
602    VIF_UNLOCK();
603
604    return 0;
605}
606
607static void
608if_detached_event(void *arg __unused, struct ifnet *ifp)
609{
610    vifi_t vifi;
611    u_long i;
612
613    MROUTER_LOCK();
614
615    if (V_ip_mrouter == NULL) {
616	MROUTER_UNLOCK();
617	return;
618    }
619
620    VIF_LOCK();
621    MFC_LOCK();
622
623    /*
624     * Tear down multicast forwarder state associated with this ifnet.
625     * 1. Walk the vif list, matching vifs against this ifnet.
626     * 2. Walk the multicast forwarding cache (mfc) looking for
627     *    inner matches with this vif's index.
628     * 3. Expire any matching multicast forwarding cache entries.
629     * 4. Free vif state. This should disable ALLMULTI on the interface.
630     */
631    for (vifi = 0; vifi < V_numvifs; vifi++) {
632	if (V_viftable[vifi].v_ifp != ifp)
633		continue;
634	for (i = 0; i < mfchashsize; i++) {
635		struct mfc *rt, *nrt;
636		for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
637			nrt = LIST_NEXT(rt, mfc_hash);
638			if (rt->mfc_parent == vifi) {
639				expire_mfc(rt);
640			}
641		}
642	}
643	del_vif_locked(vifi);
644    }
645
646    MFC_UNLOCK();
647    VIF_UNLOCK();
648
649    MROUTER_UNLOCK();
650}
651
652/*
653 * Enable multicast forwarding.
654 */
655static int
656ip_mrouter_init(struct socket *so, int version)
657{
658
659    CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
660        so->so_type, so->so_proto->pr_protocol);
661
662    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
663	return EOPNOTSUPP;
664
665    if (version != 1)
666	return ENOPROTOOPT;
667
668    MROUTER_LOCK();
669
670    if (ip_mrouter_unloading) {
671	MROUTER_UNLOCK();
672	return ENOPROTOOPT;
673    }
674
675    if (V_ip_mrouter != NULL) {
676	MROUTER_UNLOCK();
677	return EADDRINUSE;
678    }
679
680    V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
681	HASH_NOWAIT);
682
683    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
684	curvnet);
685    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
686	curvnet);
687    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
688	curvnet);
689
690    V_ip_mrouter = so;
691    ip_mrouter_cnt++;
692
693    MROUTER_UNLOCK();
694
695    CTR1(KTR_IPMF, "%s: done", __func__);
696
697    return 0;
698}
699
700/*
701 * Disable multicast forwarding.
702 */
703static int
704X_ip_mrouter_done(void)
705{
706    struct ifnet *ifp;
707    u_long i;
708    vifi_t vifi;
709
710    MROUTER_LOCK();
711
712    if (V_ip_mrouter == NULL) {
713	MROUTER_UNLOCK();
714	return EINVAL;
715    }
716
717    /*
718     * Detach/disable hooks to the reset of the system.
719     */
720    V_ip_mrouter = NULL;
721    ip_mrouter_cnt--;
722    V_mrt_api_config = 0;
723
724    VIF_LOCK();
725
726    /*
727     * For each phyint in use, disable promiscuous reception of all IP
728     * multicasts.
729     */
730    for (vifi = 0; vifi < V_numvifs; vifi++) {
731	if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
732		!(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
733	    ifp = V_viftable[vifi].v_ifp;
734	    if_allmulti(ifp, 0);
735	}
736    }
737    bzero((caddr_t)V_viftable, sizeof(V_viftable));
738    V_numvifs = 0;
739    V_pim_assert_enabled = 0;
740
741    VIF_UNLOCK();
742
743    callout_stop(&V_expire_upcalls_ch);
744    callout_stop(&V_bw_upcalls_ch);
745    callout_stop(&V_bw_meter_ch);
746
747    MFC_LOCK();
748
749    /*
750     * Free all multicast forwarding cache entries.
751     * Do not use hashdestroy(), as we must perform other cleanup.
752     */
753    for (i = 0; i < mfchashsize; i++) {
754	struct mfc *rt, *nrt;
755	for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
756		nrt = LIST_NEXT(rt, mfc_hash);
757		expire_mfc(rt);
758	}
759    }
760    free(V_mfchashtbl, M_MRTABLE);
761    V_mfchashtbl = NULL;
762
763    bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
764
765    V_bw_upcalls_n = 0;
766    bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
767
768    MFC_UNLOCK();
769
770    V_reg_vif_num = VIFI_INVALID;
771
772    MROUTER_UNLOCK();
773
774    CTR1(KTR_IPMF, "%s: done", __func__);
775
776    return 0;
777}
778
779/*
780 * Set PIM assert processing global
781 */
782static int
783set_assert(int i)
784{
785    if ((i != 1) && (i != 0))
786	return EINVAL;
787
788    V_pim_assert_enabled = i;
789
790    return 0;
791}
792
793/*
794 * Configure API capabilities
795 */
796int
797set_api_config(uint32_t *apival)
798{
799    u_long i;
800
801    /*
802     * We can set the API capabilities only if it is the first operation
803     * after MRT_INIT. I.e.:
804     *  - there are no vifs installed
805     *  - pim_assert is not enabled
806     *  - the MFC table is empty
807     */
808    if (V_numvifs > 0) {
809	*apival = 0;
810	return EPERM;
811    }
812    if (V_pim_assert_enabled) {
813	*apival = 0;
814	return EPERM;
815    }
816
817    MFC_LOCK();
818
819    for (i = 0; i < mfchashsize; i++) {
820	if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
821	    MFC_UNLOCK();
822	    *apival = 0;
823	    return EPERM;
824	}
825    }
826
827    MFC_UNLOCK();
828
829    V_mrt_api_config = *apival & mrt_api_support;
830    *apival = V_mrt_api_config;
831
832    return 0;
833}
834
835/*
836 * Add a vif to the vif table
837 */
838static int
839add_vif(struct vifctl *vifcp)
840{
841    struct vif *vifp = V_viftable + vifcp->vifc_vifi;
842    struct sockaddr_in sin = {sizeof sin, AF_INET};
843    struct ifaddr *ifa;
844    struct ifnet *ifp;
845    int error;
846
847    VIF_LOCK();
848    if (vifcp->vifc_vifi >= MAXVIFS) {
849	VIF_UNLOCK();
850	return EINVAL;
851    }
852    /* rate limiting is no longer supported by this code */
853    if (vifcp->vifc_rate_limit != 0) {
854	log(LOG_ERR, "rate limiting is no longer supported\n");
855	VIF_UNLOCK();
856	return EINVAL;
857    }
858    if (!in_nullhost(vifp->v_lcl_addr)) {
859	VIF_UNLOCK();
860	return EADDRINUSE;
861    }
862    if (in_nullhost(vifcp->vifc_lcl_addr)) {
863	VIF_UNLOCK();
864	return EADDRNOTAVAIL;
865    }
866
867    /* Find the interface with an address in AF_INET family */
868    if (vifcp->vifc_flags & VIFF_REGISTER) {
869	/*
870	 * XXX: Because VIFF_REGISTER does not really need a valid
871	 * local interface (e.g. it could be 127.0.0.2), we don't
872	 * check its address.
873	 */
874	ifp = NULL;
875    } else {
876	sin.sin_addr = vifcp->vifc_lcl_addr;
877	ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
878	if (ifa == NULL) {
879	    VIF_UNLOCK();
880	    return EADDRNOTAVAIL;
881	}
882	ifp = ifa->ifa_ifp;
883	ifa_free(ifa);
884    }
885
886    if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
887	CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
888	VIF_UNLOCK();
889	return EOPNOTSUPP;
890    } else if (vifcp->vifc_flags & VIFF_REGISTER) {
891	ifp = &V_multicast_register_if;
892	CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
893	if (V_reg_vif_num == VIFI_INVALID) {
894	    if_initname(&V_multicast_register_if, "register_vif", 0);
895	    V_multicast_register_if.if_flags = IFF_LOOPBACK;
896	    V_reg_vif_num = vifcp->vifc_vifi;
897	}
898    } else {		/* Make sure the interface supports multicast */
899	if ((ifp->if_flags & IFF_MULTICAST) == 0) {
900	    VIF_UNLOCK();
901	    return EOPNOTSUPP;
902	}
903
904	/* Enable promiscuous reception of all IP multicasts from the if */
905	error = if_allmulti(ifp, 1);
906	if (error) {
907	    VIF_UNLOCK();
908	    return error;
909	}
910    }
911
912    vifp->v_flags     = vifcp->vifc_flags;
913    vifp->v_threshold = vifcp->vifc_threshold;
914    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
915    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
916    vifp->v_ifp       = ifp;
917    /* initialize per vif pkt counters */
918    vifp->v_pkt_in    = 0;
919    vifp->v_pkt_out   = 0;
920    vifp->v_bytes_in  = 0;
921    vifp->v_bytes_out = 0;
922
923    /* Adjust numvifs up if the vifi is higher than numvifs */
924    if (V_numvifs <= vifcp->vifc_vifi)
925	V_numvifs = vifcp->vifc_vifi + 1;
926
927    VIF_UNLOCK();
928
929    CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
930	(int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
931	(int)vifcp->vifc_threshold);
932
933    return 0;
934}
935
936/*
937 * Delete a vif from the vif table
938 */
939static int
940del_vif_locked(vifi_t vifi)
941{
942    struct vif *vifp;
943
944    VIF_LOCK_ASSERT();
945
946    if (vifi >= V_numvifs) {
947	return EINVAL;
948    }
949    vifp = &V_viftable[vifi];
950    if (in_nullhost(vifp->v_lcl_addr)) {
951	return EADDRNOTAVAIL;
952    }
953
954    if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
955	if_allmulti(vifp->v_ifp, 0);
956
957    if (vifp->v_flags & VIFF_REGISTER)
958	V_reg_vif_num = VIFI_INVALID;
959
960    bzero((caddr_t)vifp, sizeof (*vifp));
961
962    CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
963
964    /* Adjust numvifs down */
965    for (vifi = V_numvifs; vifi > 0; vifi--)
966	if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
967	    break;
968    V_numvifs = vifi;
969
970    return 0;
971}
972
973static int
974del_vif(vifi_t vifi)
975{
976    int cc;
977
978    VIF_LOCK();
979    cc = del_vif_locked(vifi);
980    VIF_UNLOCK();
981
982    return cc;
983}
984
985/*
986 * update an mfc entry without resetting counters and S,G addresses.
987 */
988static void
989update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
990{
991    int i;
992
993    rt->mfc_parent = mfccp->mfcc_parent;
994    for (i = 0; i < V_numvifs; i++) {
995	rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
996	rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
997	    MRT_MFC_FLAGS_ALL;
998    }
999    /* set the RP address */
1000    if (V_mrt_api_config & MRT_MFC_RP)
1001	rt->mfc_rp = mfccp->mfcc_rp;
1002    else
1003	rt->mfc_rp.s_addr = INADDR_ANY;
1004}
1005
1006/*
1007 * fully initialize an mfc entry from the parameter.
1008 */
1009static void
1010init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1011{
1012    rt->mfc_origin     = mfccp->mfcc_origin;
1013    rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1014
1015    update_mfc_params(rt, mfccp);
1016
1017    /* initialize pkt counters per src-grp */
1018    rt->mfc_pkt_cnt    = 0;
1019    rt->mfc_byte_cnt   = 0;
1020    rt->mfc_wrong_if   = 0;
1021    timevalclear(&rt->mfc_last_assert);
1022}
1023
1024static void
1025expire_mfc(struct mfc *rt)
1026{
1027	struct rtdetq *rte, *nrte;
1028
1029	MFC_LOCK_ASSERT();
1030
1031	free_bw_list(rt->mfc_bw_meter);
1032
1033	TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1034		m_freem(rte->m);
1035		TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1036		free(rte, M_MRTABLE);
1037	}
1038
1039	LIST_REMOVE(rt, mfc_hash);
1040	free(rt, M_MRTABLE);
1041}
1042
1043/*
1044 * Add an mfc entry
1045 */
1046static int
1047add_mfc(struct mfcctl2 *mfccp)
1048{
1049    struct mfc *rt;
1050    struct rtdetq *rte, *nrte;
1051    u_long hash = 0;
1052    u_short nstl;
1053
1054    VIF_LOCK();
1055    MFC_LOCK();
1056
1057    rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1058
1059    /* If an entry already exists, just update the fields */
1060    if (rt) {
1061	CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
1062	    __func__, inet_ntoa(mfccp->mfcc_origin),
1063	    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1064	    mfccp->mfcc_parent);
1065	update_mfc_params(rt, mfccp);
1066	MFC_UNLOCK();
1067	VIF_UNLOCK();
1068	return (0);
1069    }
1070
1071    /*
1072     * Find the entry for which the upcall was made and update
1073     */
1074    nstl = 0;
1075    hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1076    LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1077	if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1078	    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1079	    !TAILQ_EMPTY(&rt->mfc_stall)) {
1080		CTR5(KTR_IPMF,
1081		    "%s: add mfc orig %s group %lx parent %x qh %p",
1082		    __func__, inet_ntoa(mfccp->mfcc_origin),
1083		    (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
1084		    mfccp->mfcc_parent,
1085		    TAILQ_FIRST(&rt->mfc_stall));
1086		if (nstl++)
1087			CTR1(KTR_IPMF, "%s: multiple matches", __func__);
1088
1089		init_mfc_params(rt, mfccp);
1090		rt->mfc_expire = 0;	/* Don't clean this guy up */
1091		V_nexpire[hash]--;
1092
1093		/* Free queued packets, but attempt to forward them first. */
1094		TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
1095			if (rte->ifp != NULL)
1096				ip_mdq(rte->m, rte->ifp, rt, -1);
1097			m_freem(rte->m);
1098			TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
1099			rt->mfc_nstall--;
1100			free(rte, M_MRTABLE);
1101		}
1102	}
1103    }
1104
1105    /*
1106     * It is possible that an entry is being inserted without an upcall
1107     */
1108    if (nstl == 0) {
1109	CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
1110	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1111		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1112		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1113			init_mfc_params(rt, mfccp);
1114			if (rt->mfc_expire)
1115			    V_nexpire[hash]--;
1116			rt->mfc_expire = 0;
1117			break; /* XXX */
1118		}
1119	}
1120
1121	if (rt == NULL) {		/* no upcall, so make a new entry */
1122	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1123	    if (rt == NULL) {
1124		MFC_UNLOCK();
1125		VIF_UNLOCK();
1126		return (ENOBUFS);
1127	    }
1128
1129	    init_mfc_params(rt, mfccp);
1130	    TAILQ_INIT(&rt->mfc_stall);
1131	    rt->mfc_nstall = 0;
1132
1133	    rt->mfc_expire     = 0;
1134	    rt->mfc_bw_meter = NULL;
1135
1136	    /* insert new entry at head of hash chain */
1137	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1138	}
1139    }
1140
1141    MFC_UNLOCK();
1142    VIF_UNLOCK();
1143
1144    return (0);
1145}
1146
1147/*
1148 * Delete an mfc entry
1149 */
1150static int
1151del_mfc(struct mfcctl2 *mfccp)
1152{
1153    struct in_addr	origin;
1154    struct in_addr	mcastgrp;
1155    struct mfc		*rt;
1156
1157    origin = mfccp->mfcc_origin;
1158    mcastgrp = mfccp->mfcc_mcastgrp;
1159
1160    CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
1161	inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
1162
1163    MFC_LOCK();
1164
1165    rt = mfc_find(&origin, &mcastgrp);
1166    if (rt == NULL) {
1167	MFC_UNLOCK();
1168	return EADDRNOTAVAIL;
1169    }
1170
1171    /*
1172     * free the bw_meter entries
1173     */
1174    free_bw_list(rt->mfc_bw_meter);
1175    rt->mfc_bw_meter = NULL;
1176
1177    LIST_REMOVE(rt, mfc_hash);
1178    free(rt, M_MRTABLE);
1179
1180    MFC_UNLOCK();
1181
1182    return (0);
1183}
1184
1185/*
1186 * Send a message to the routing daemon on the multicast routing socket.
1187 */
1188static int
1189socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1190{
1191    if (s) {
1192	SOCKBUF_LOCK(&s->so_rcv);
1193	if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
1194	    NULL) != 0) {
1195	    sorwakeup_locked(s);
1196	    return 0;
1197	}
1198	SOCKBUF_UNLOCK(&s->so_rcv);
1199    }
1200    m_freem(mm);
1201    return -1;
1202}
1203
1204/*
1205 * IP multicast forwarding function. This function assumes that the packet
1206 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1207 * pointed to by "ifp", and the packet is to be relayed to other networks
1208 * that have members of the packet's destination IP multicast group.
1209 *
1210 * The packet is returned unscathed to the caller, unless it is
1211 * erroneous, in which case a non-zero return value tells the caller to
1212 * discard it.
1213 */
1214
1215#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1216
1217static int
1218X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1219    struct ip_moptions *imo)
1220{
1221    struct mfc *rt;
1222    int error;
1223    vifi_t vifi;
1224
1225    CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
1226	inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
1227
1228    if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
1229		((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1230	/*
1231	 * Packet arrived via a physical interface or
1232	 * an encapsulated tunnel or a register_vif.
1233	 */
1234    } else {
1235	/*
1236	 * Packet arrived through a source-route tunnel.
1237	 * Source-route tunnels are no longer supported.
1238	 */
1239	return (1);
1240    }
1241
1242    VIF_LOCK();
1243    MFC_LOCK();
1244    if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
1245	if (ip->ip_ttl < MAXTTL)
1246	    ip->ip_ttl++;	/* compensate for -1 in *_send routines */
1247	error = ip_mdq(m, ifp, NULL, vifi);
1248	MFC_UNLOCK();
1249	VIF_UNLOCK();
1250	return error;
1251    }
1252
1253    /*
1254     * Don't forward a packet with time-to-live of zero or one,
1255     * or a packet destined to a local-only group.
1256     */
1257    if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
1258	MFC_UNLOCK();
1259	VIF_UNLOCK();
1260	return 0;
1261    }
1262
1263    /*
1264     * Determine forwarding vifs from the forwarding cache table
1265     */
1266    MRTSTAT_INC(mrts_mfc_lookups);
1267    rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1268
1269    /* Entry exists, so forward if necessary */
1270    if (rt != NULL) {
1271	error = ip_mdq(m, ifp, rt, -1);
1272	MFC_UNLOCK();
1273	VIF_UNLOCK();
1274	return error;
1275    } else {
1276	/*
1277	 * If we don't have a route for packet's origin,
1278	 * Make a copy of the packet & send message to routing daemon
1279	 */
1280
1281	struct mbuf *mb0;
1282	struct rtdetq *rte;
1283	u_long hash;
1284	int hlen = ip->ip_hl << 2;
1285
1286	MRTSTAT_INC(mrts_mfc_misses);
1287	MRTSTAT_INC(mrts_no_route);
1288	CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
1289	    inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
1290
1291	/*
1292	 * Allocate mbufs early so that we don't do extra work if we are
1293	 * just going to fail anyway.  Make sure to pullup the header so
1294	 * that other people can't step on it.
1295	 */
1296	rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
1297	    M_NOWAIT|M_ZERO);
1298	if (rte == NULL) {
1299	    MFC_UNLOCK();
1300	    VIF_UNLOCK();
1301	    return ENOBUFS;
1302	}
1303
1304	mb0 = m_copypacket(m, M_DONTWAIT);
1305	if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1306	    mb0 = m_pullup(mb0, hlen);
1307	if (mb0 == NULL) {
1308	    free(rte, M_MRTABLE);
1309	    MFC_UNLOCK();
1310	    VIF_UNLOCK();
1311	    return ENOBUFS;
1312	}
1313
1314	/* is there an upcall waiting for this flow ? */
1315	hash = MFCHASH(ip->ip_src, ip->ip_dst);
1316	LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
1317		if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1318		    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1319		    !TAILQ_EMPTY(&rt->mfc_stall))
1320			break;
1321	}
1322
1323	if (rt == NULL) {
1324	    int i;
1325	    struct igmpmsg *im;
1326	    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1327	    struct mbuf *mm;
1328
1329	    /*
1330	     * Locate the vifi for the incoming interface for this packet.
1331	     * If none found, drop packet.
1332	     */
1333	    for (vifi = 0; vifi < V_numvifs &&
1334		    V_viftable[vifi].v_ifp != ifp; vifi++)
1335		;
1336	    if (vifi >= V_numvifs)	/* vif not found, drop packet */
1337		goto non_fatal;
1338
1339	    /* no upcall, so make a new entry */
1340	    rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1341	    if (rt == NULL)
1342		goto fail;
1343
1344	    /* Make a copy of the header to send to the user level process */
1345	    mm = m_copy(mb0, 0, hlen);
1346	    if (mm == NULL)
1347		goto fail1;
1348
1349	    /*
1350	     * Send message to routing daemon to install
1351	     * a route into the kernel table
1352	     */
1353
1354	    im = mtod(mm, struct igmpmsg *);
1355	    im->im_msgtype = IGMPMSG_NOCACHE;
1356	    im->im_mbz = 0;
1357	    im->im_vif = vifi;
1358
1359	    MRTSTAT_INC(mrts_upcalls);
1360
1361	    k_igmpsrc.sin_addr = ip->ip_src;
1362	    if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1363		CTR0(KTR_IPMF, "ip_mforward: socket queue full");
1364		MRTSTAT_INC(mrts_upq_sockfull);
1365fail1:
1366		free(rt, M_MRTABLE);
1367fail:
1368		free(rte, M_MRTABLE);
1369		m_freem(mb0);
1370		MFC_UNLOCK();
1371		VIF_UNLOCK();
1372		return ENOBUFS;
1373	    }
1374
1375	    /* insert new entry at head of hash chain */
1376	    rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1377	    rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1378	    rt->mfc_expire	      = UPCALL_EXPIRE;
1379	    V_nexpire[hash]++;
1380	    for (i = 0; i < V_numvifs; i++) {
1381		rt->mfc_ttls[i] = 0;
1382		rt->mfc_flags[i] = 0;
1383	    }
1384	    rt->mfc_parent = -1;
1385
1386	    /* clear the RP address */
1387	    rt->mfc_rp.s_addr = INADDR_ANY;
1388	    rt->mfc_bw_meter = NULL;
1389
1390	    /* initialize pkt counters per src-grp */
1391	    rt->mfc_pkt_cnt = 0;
1392	    rt->mfc_byte_cnt = 0;
1393	    rt->mfc_wrong_if = 0;
1394	    timevalclear(&rt->mfc_last_assert);
1395
1396	    TAILQ_INIT(&rt->mfc_stall);
1397	    rt->mfc_nstall = 0;
1398
1399	    /* link into table */
1400	    LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
1401	    TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
1402	    rt->mfc_nstall++;
1403
1404	} else {
1405	    /* determine if queue has overflowed */
1406	    if (rt->mfc_nstall > MAX_UPQ) {
1407		MRTSTAT_INC(mrts_upq_ovflw);
1408non_fatal:
1409		free(rte, M_MRTABLE);
1410		m_freem(mb0);
1411		MFC_UNLOCK();
1412		VIF_UNLOCK();
1413		return (0);
1414	    }
1415	    TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
1416	    rt->mfc_nstall++;
1417	}
1418
1419	rte->m			= mb0;
1420	rte->ifp		= ifp;
1421
1422	MFC_UNLOCK();
1423	VIF_UNLOCK();
1424
1425	return 0;
1426    }
1427}
1428
1429/*
1430 * Clean up the cache entry if upcall is not serviced
1431 */
1432static void
1433expire_upcalls(void *arg)
1434{
1435    u_long i;
1436
1437    CURVNET_SET((struct vnet *) arg);
1438
1439    MFC_LOCK();
1440
1441    for (i = 0; i < mfchashsize; i++) {
1442	struct mfc *rt, *nrt;
1443
1444	if (V_nexpire[i] == 0)
1445	    continue;
1446
1447	for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
1448		nrt = LIST_NEXT(rt, mfc_hash);
1449
1450		if (TAILQ_EMPTY(&rt->mfc_stall))
1451			continue;
1452
1453		if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1454			continue;
1455
1456		/*
1457		 * free the bw_meter entries
1458		 */
1459		while (rt->mfc_bw_meter != NULL) {
1460		    struct bw_meter *x = rt->mfc_bw_meter;
1461
1462		    rt->mfc_bw_meter = x->bm_mfc_next;
1463		    free(x, M_BWMETER);
1464		}
1465
1466		MRTSTAT_INC(mrts_cache_cleanups);
1467		CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
1468		    (u_long)ntohl(rt->mfc_origin.s_addr),
1469		    (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
1470
1471		expire_mfc(rt);
1472	    }
1473    }
1474
1475    MFC_UNLOCK();
1476
1477    callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
1478	curvnet);
1479
1480    CURVNET_RESTORE();
1481}
1482
1483/*
1484 * Packet forwarding routine once entry in the cache is made
1485 */
1486static int
1487ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1488{
1489    struct ip  *ip = mtod(m, struct ip *);
1490    vifi_t vifi;
1491    int plen = ip->ip_len;
1492
1493    VIF_LOCK_ASSERT();
1494
1495    /*
1496     * If xmt_vif is not -1, send on only the requested vif.
1497     *
1498     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1499     */
1500    if (xmt_vif < V_numvifs) {
1501	if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
1502		pim_register_send(ip, V_viftable + xmt_vif, m, rt);
1503	else
1504		phyint_send(ip, V_viftable + xmt_vif, m);
1505	return 1;
1506    }
1507
1508    /*
1509     * Don't forward if it didn't arrive from the parent vif for its origin.
1510     */
1511    vifi = rt->mfc_parent;
1512    if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
1513	CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
1514	    __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
1515	MRTSTAT_INC(mrts_wrong_if);
1516	++rt->mfc_wrong_if;
1517	/*
1518	 * If we are doing PIM assert processing, send a message
1519	 * to the routing daemon.
1520	 *
1521	 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1522	 * can complete the SPT switch, regardless of the type
1523	 * of the iif (broadcast media, GRE tunnel, etc).
1524	 */
1525	if (V_pim_assert_enabled && (vifi < V_numvifs) &&
1526	    V_viftable[vifi].v_ifp) {
1527
1528	    if (ifp == &V_multicast_register_if)
1529		PIMSTAT_INC(pims_rcv_registers_wrongiif);
1530
1531	    /* Get vifi for the incoming packet */
1532	    for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
1533		vifi++)
1534		;
1535	    if (vifi >= V_numvifs)
1536		return 0;	/* The iif is not found: ignore the packet. */
1537
1538	    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
1539		return 0;	/* WRONGVIF disabled: ignore the packet */
1540
1541	    if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
1542		struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
1543		struct igmpmsg *im;
1544		int hlen = ip->ip_hl << 2;
1545		struct mbuf *mm = m_copy(m, 0, hlen);
1546
1547		if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1548		    mm = m_pullup(mm, hlen);
1549		if (mm == NULL)
1550		    return ENOBUFS;
1551
1552		im = mtod(mm, struct igmpmsg *);
1553		im->im_msgtype	= IGMPMSG_WRONGVIF;
1554		im->im_mbz		= 0;
1555		im->im_vif		= vifi;
1556
1557		MRTSTAT_INC(mrts_upcalls);
1558
1559		k_igmpsrc.sin_addr = im->im_src;
1560		if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
1561		    CTR1(KTR_IPMF, "%s: socket queue full", __func__);
1562		    MRTSTAT_INC(mrts_upq_sockfull);
1563		    return ENOBUFS;
1564		}
1565	    }
1566	}
1567	return 0;
1568    }
1569
1570
1571    /* If I sourced this packet, it counts as output, else it was input. */
1572    if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
1573	V_viftable[vifi].v_pkt_out++;
1574	V_viftable[vifi].v_bytes_out += plen;
1575    } else {
1576	V_viftable[vifi].v_pkt_in++;
1577	V_viftable[vifi].v_bytes_in += plen;
1578    }
1579    rt->mfc_pkt_cnt++;
1580    rt->mfc_byte_cnt += plen;
1581
1582    /*
1583     * For each vif, decide if a copy of the packet should be forwarded.
1584     * Forward if:
1585     *		- the ttl exceeds the vif's threshold
1586     *		- there are group members downstream on interface
1587     */
1588    for (vifi = 0; vifi < V_numvifs; vifi++)
1589	if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1590	    V_viftable[vifi].v_pkt_out++;
1591	    V_viftable[vifi].v_bytes_out += plen;
1592	    if (V_viftable[vifi].v_flags & VIFF_REGISTER)
1593		pim_register_send(ip, V_viftable + vifi, m, rt);
1594	    else
1595		phyint_send(ip, V_viftable + vifi, m);
1596	}
1597
1598    /*
1599     * Perform upcall-related bw measuring.
1600     */
1601    if (rt->mfc_bw_meter != NULL) {
1602	struct bw_meter *x;
1603	struct timeval now;
1604
1605	microtime(&now);
1606	MFC_LOCK_ASSERT();
1607	for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1608	    bw_meter_receive_packet(x, plen, &now);
1609    }
1610
1611    return 0;
1612}
1613
1614/*
1615 * Check if a vif number is legal/ok. This is used by in_mcast.c.
1616 */
1617static int
1618X_legal_vif_num(int vif)
1619{
1620	int ret;
1621
1622	ret = 0;
1623	if (vif < 0)
1624		return (ret);
1625
1626	VIF_LOCK();
1627	if (vif < V_numvifs)
1628		ret = 1;
1629	VIF_UNLOCK();
1630
1631	return (ret);
1632}
1633
1634/*
1635 * Return the local address used by this vif
1636 */
1637static u_long
1638X_ip_mcast_src(int vifi)
1639{
1640	in_addr_t addr;
1641
1642	addr = INADDR_ANY;
1643	if (vifi < 0)
1644		return (addr);
1645
1646	VIF_LOCK();
1647	if (vifi < V_numvifs)
1648		addr = V_viftable[vifi].v_lcl_addr.s_addr;
1649	VIF_UNLOCK();
1650
1651	return (addr);
1652}
1653
1654static void
1655phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1656{
1657    struct mbuf *mb_copy;
1658    int hlen = ip->ip_hl << 2;
1659
1660    VIF_LOCK_ASSERT();
1661
1662    /*
1663     * Make a new reference to the packet; make sure that
1664     * the IP header is actually copied, not just referenced,
1665     * so that ip_output() only scribbles on the copy.
1666     */
1667    mb_copy = m_copypacket(m, M_DONTWAIT);
1668    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1669	mb_copy = m_pullup(mb_copy, hlen);
1670    if (mb_copy == NULL)
1671	return;
1672
1673    send_packet(vifp, mb_copy);
1674}
1675
1676static void
1677send_packet(struct vif *vifp, struct mbuf *m)
1678{
1679	struct ip_moptions imo;
1680	struct in_multi *imm[2];
1681	int error;
1682
1683	VIF_LOCK_ASSERT();
1684
1685	imo.imo_multicast_ifp  = vifp->v_ifp;
1686	imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1687	imo.imo_multicast_loop = 1;
1688	imo.imo_multicast_vif  = -1;
1689	imo.imo_num_memberships = 0;
1690	imo.imo_max_memberships = 2;
1691	imo.imo_membership  = &imm[0];
1692
1693	/*
1694	 * Re-entrancy should not be a problem here, because
1695	 * the packets that we send out and are looped back at us
1696	 * should get rejected because they appear to come from
1697	 * the loopback interface, thus preventing looping.
1698	 */
1699	error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
1700	CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
1701	    (ptrdiff_t)(vifp - V_viftable), error);
1702}
1703
1704/*
1705 * Stubs for old RSVP socket shim implementation.
1706 */
1707
1708static int
1709X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
1710{
1711
1712	return (EOPNOTSUPP);
1713}
1714
1715static void
1716X_ip_rsvp_force_done(struct socket *so __unused)
1717{
1718
1719}
1720
1721static void
1722X_rsvp_input(struct mbuf *m, int off __unused)
1723{
1724
1725	if (!V_rsvp_on)
1726		m_freem(m);
1727}
1728
1729/*
1730 * Code for bandwidth monitors
1731 */
1732
1733/*
1734 * Define common interface for timeval-related methods
1735 */
1736#define	BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
1737#define	BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
1738#define	BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
1739
1740static uint32_t
1741compute_bw_meter_flags(struct bw_upcall *req)
1742{
1743    uint32_t flags = 0;
1744
1745    if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
1746	flags |= BW_METER_UNIT_PACKETS;
1747    if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
1748	flags |= BW_METER_UNIT_BYTES;
1749    if (req->bu_flags & BW_UPCALL_GEQ)
1750	flags |= BW_METER_GEQ;
1751    if (req->bu_flags & BW_UPCALL_LEQ)
1752	flags |= BW_METER_LEQ;
1753
1754    return flags;
1755}
1756
1757/*
1758 * Add a bw_meter entry
1759 */
1760static int
1761add_bw_upcall(struct bw_upcall *req)
1762{
1763    struct mfc *mfc;
1764    struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
1765		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
1766    struct timeval now;
1767    struct bw_meter *x;
1768    uint32_t flags;
1769
1770    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1771	return EOPNOTSUPP;
1772
1773    /* Test if the flags are valid */
1774    if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
1775	return EINVAL;
1776    if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
1777	return EINVAL;
1778    if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1779	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
1780	return EINVAL;
1781
1782    /* Test if the threshold time interval is valid */
1783    if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
1784	return EINVAL;
1785
1786    flags = compute_bw_meter_flags(req);
1787
1788    /*
1789     * Find if we have already same bw_meter entry
1790     */
1791    MFC_LOCK();
1792    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1793    if (mfc == NULL) {
1794	MFC_UNLOCK();
1795	return EADDRNOTAVAIL;
1796    }
1797    for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
1798	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1799			   &req->bu_threshold.b_time, ==)) &&
1800	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1801	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1802	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
1803	    MFC_UNLOCK();
1804	    return 0;		/* XXX Already installed */
1805	}
1806    }
1807
1808    /* Allocate the new bw_meter entry */
1809    x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
1810    if (x == NULL) {
1811	MFC_UNLOCK();
1812	return ENOBUFS;
1813    }
1814
1815    /* Set the new bw_meter entry */
1816    x->bm_threshold.b_time = req->bu_threshold.b_time;
1817    microtime(&now);
1818    x->bm_start_time = now;
1819    x->bm_threshold.b_packets = req->bu_threshold.b_packets;
1820    x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
1821    x->bm_measured.b_packets = 0;
1822    x->bm_measured.b_bytes = 0;
1823    x->bm_flags = flags;
1824    x->bm_time_next = NULL;
1825    x->bm_time_hash = BW_METER_BUCKETS;
1826
1827    /* Add the new bw_meter entry to the front of entries for this MFC */
1828    x->bm_mfc = mfc;
1829    x->bm_mfc_next = mfc->mfc_bw_meter;
1830    mfc->mfc_bw_meter = x;
1831    schedule_bw_meter(x, &now);
1832    MFC_UNLOCK();
1833
1834    return 0;
1835}
1836
1837static void
1838free_bw_list(struct bw_meter *list)
1839{
1840    while (list != NULL) {
1841	struct bw_meter *x = list;
1842
1843	list = list->bm_mfc_next;
1844	unschedule_bw_meter(x);
1845	free(x, M_BWMETER);
1846    }
1847}
1848
1849/*
1850 * Delete one or multiple bw_meter entries
1851 */
1852static int
1853del_bw_upcall(struct bw_upcall *req)
1854{
1855    struct mfc *mfc;
1856    struct bw_meter *x;
1857
1858    if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
1859	return EOPNOTSUPP;
1860
1861    MFC_LOCK();
1862
1863    /* Find the corresponding MFC entry */
1864    mfc = mfc_find(&req->bu_src, &req->bu_dst);
1865    if (mfc == NULL) {
1866	MFC_UNLOCK();
1867	return EADDRNOTAVAIL;
1868    } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
1869	/*
1870	 * Delete all bw_meter entries for this mfc
1871	 */
1872	struct bw_meter *list;
1873
1874	list = mfc->mfc_bw_meter;
1875	mfc->mfc_bw_meter = NULL;
1876	free_bw_list(list);
1877	MFC_UNLOCK();
1878	return 0;
1879    } else {			/* Delete a single bw_meter entry */
1880	struct bw_meter *prev;
1881	uint32_t flags = 0;
1882
1883	flags = compute_bw_meter_flags(req);
1884
1885	/* Find the bw_meter entry to delete */
1886	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
1887	     prev = x, x = x->bm_mfc_next) {
1888	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
1889			       &req->bu_threshold.b_time, ==)) &&
1890		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
1891		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
1892		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
1893		break;
1894	}
1895	if (x != NULL) { /* Delete entry from the list for this MFC */
1896	    if (prev != NULL)
1897		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
1898	    else
1899		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
1900
1901	    unschedule_bw_meter(x);
1902	    MFC_UNLOCK();
1903	    /* Free the bw_meter entry */
1904	    free(x, M_BWMETER);
1905	    return 0;
1906	} else {
1907	    MFC_UNLOCK();
1908	    return EINVAL;
1909	}
1910    }
1911    /* NOTREACHED */
1912}
1913
1914/*
1915 * Perform bandwidth measurement processing that may result in an upcall
1916 */
1917static void
1918bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
1919{
1920    struct timeval delta;
1921
1922    MFC_LOCK_ASSERT();
1923
1924    delta = *nowp;
1925    BW_TIMEVALDECR(&delta, &x->bm_start_time);
1926
1927    if (x->bm_flags & BW_METER_GEQ) {
1928	/*
1929	 * Processing for ">=" type of bw_meter entry
1930	 */
1931	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1932	    /* Reset the bw_meter entry */
1933	    x->bm_start_time = *nowp;
1934	    x->bm_measured.b_packets = 0;
1935	    x->bm_measured.b_bytes = 0;
1936	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
1937	}
1938
1939	/* Record that a packet is received */
1940	x->bm_measured.b_packets++;
1941	x->bm_measured.b_bytes += plen;
1942
1943	/*
1944	 * Test if we should deliver an upcall
1945	 */
1946	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
1947	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1948		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
1949		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1950		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
1951		/* Prepare an upcall for delivery */
1952		bw_meter_prepare_upcall(x, nowp);
1953		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
1954	    }
1955	}
1956    } else if (x->bm_flags & BW_METER_LEQ) {
1957	/*
1958	 * Processing for "<=" type of bw_meter entry
1959	 */
1960	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
1961	    /*
1962	     * We are behind time with the multicast forwarding table
1963	     * scanning for "<=" type of bw_meter entries, so test now
1964	     * if we should deliver an upcall.
1965	     */
1966	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
1967		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
1968		((x->bm_flags & BW_METER_UNIT_BYTES) &&
1969		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
1970		/* Prepare an upcall for delivery */
1971		bw_meter_prepare_upcall(x, nowp);
1972	    }
1973	    /* Reschedule the bw_meter entry */
1974	    unschedule_bw_meter(x);
1975	    schedule_bw_meter(x, nowp);
1976	}
1977
1978	/* Record that a packet is received */
1979	x->bm_measured.b_packets++;
1980	x->bm_measured.b_bytes += plen;
1981
1982	/*
1983	 * Test if we should restart the measuring interval
1984	 */
1985	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
1986	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
1987	    (x->bm_flags & BW_METER_UNIT_BYTES &&
1988	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
1989	    /* Don't restart the measuring interval */
1990	} else {
1991	    /* Do restart the measuring interval */
1992	    /*
1993	     * XXX: note that we don't unschedule and schedule, because this
1994	     * might be too much overhead per packet. Instead, when we process
1995	     * all entries for a given timer hash bin, we check whether it is
1996	     * really a timeout. If not, we reschedule at that time.
1997	     */
1998	    x->bm_start_time = *nowp;
1999	    x->bm_measured.b_packets = 0;
2000	    x->bm_measured.b_bytes = 0;
2001	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2002	}
2003    }
2004}
2005
2006/*
2007 * Prepare a bandwidth-related upcall
2008 */
2009static void
2010bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2011{
2012    struct timeval delta;
2013    struct bw_upcall *u;
2014
2015    MFC_LOCK_ASSERT();
2016
2017    /*
2018     * Compute the measured time interval
2019     */
2020    delta = *nowp;
2021    BW_TIMEVALDECR(&delta, &x->bm_start_time);
2022
2023    /*
2024     * If there are too many pending upcalls, deliver them now
2025     */
2026    if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
2027	bw_upcalls_send();
2028
2029    /*
2030     * Set the bw_upcall entry
2031     */
2032    u = &V_bw_upcalls[V_bw_upcalls_n++];
2033    u->bu_src = x->bm_mfc->mfc_origin;
2034    u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2035    u->bu_threshold.b_time = x->bm_threshold.b_time;
2036    u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2037    u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2038    u->bu_measured.b_time = delta;
2039    u->bu_measured.b_packets = x->bm_measured.b_packets;
2040    u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2041    u->bu_flags = 0;
2042    if (x->bm_flags & BW_METER_UNIT_PACKETS)
2043	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2044    if (x->bm_flags & BW_METER_UNIT_BYTES)
2045	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2046    if (x->bm_flags & BW_METER_GEQ)
2047	u->bu_flags |= BW_UPCALL_GEQ;
2048    if (x->bm_flags & BW_METER_LEQ)
2049	u->bu_flags |= BW_UPCALL_LEQ;
2050}
2051
2052/*
2053 * Send the pending bandwidth-related upcalls
2054 */
2055static void
2056bw_upcalls_send(void)
2057{
2058    struct mbuf *m;
2059    int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
2060    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2061    static struct igmpmsg igmpmsg = { 0,		/* unused1 */
2062				      0,		/* unused2 */
2063				      IGMPMSG_BW_UPCALL,/* im_msgtype */
2064				      0,		/* im_mbz  */
2065				      0,		/* im_vif  */
2066				      0,		/* unused3 */
2067				      { 0 },		/* im_src  */
2068				      { 0 } };		/* im_dst  */
2069
2070    MFC_LOCK_ASSERT();
2071
2072    if (V_bw_upcalls_n == 0)
2073	return;			/* No pending upcalls */
2074
2075    V_bw_upcalls_n = 0;
2076
2077    /*
2078     * Allocate a new mbuf, initialize it with the header and
2079     * the payload for the pending calls.
2080     */
2081    MGETHDR(m, M_DONTWAIT, MT_DATA);
2082    if (m == NULL) {
2083	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2084	return;
2085    }
2086
2087    m->m_len = m->m_pkthdr.len = 0;
2088    m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2089    m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
2090
2091    /*
2092     * Send the upcalls
2093     * XXX do we need to set the address in k_igmpsrc ?
2094     */
2095    MRTSTAT_INC(mrts_upcalls);
2096    if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
2097	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2098	MRTSTAT_INC(mrts_upq_sockfull);
2099    }
2100}
2101
2102/*
2103 * Compute the timeout hash value for the bw_meter entries
2104 */
2105#define	BW_METER_TIMEHASH(bw_meter, hash)				\
2106    do {								\
2107	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2108									\
2109	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2110	(hash) = next_timeval.tv_sec;					\
2111	if (next_timeval.tv_usec)					\
2112	    (hash)++; /* XXX: make sure we don't timeout early */	\
2113	(hash) %= BW_METER_BUCKETS;					\
2114    } while (0)
2115
2116/*
2117 * Schedule a timer to process periodically bw_meter entry of type "<="
2118 * by linking the entry in the proper hash bucket.
2119 */
2120static void
2121schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2122{
2123    int time_hash;
2124
2125    MFC_LOCK_ASSERT();
2126
2127    if (!(x->bm_flags & BW_METER_LEQ))
2128	return;		/* XXX: we schedule timers only for "<=" entries */
2129
2130    /*
2131     * Reset the bw_meter entry
2132     */
2133    x->bm_start_time = *nowp;
2134    x->bm_measured.b_packets = 0;
2135    x->bm_measured.b_bytes = 0;
2136    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2137
2138    /*
2139     * Compute the timeout hash value and insert the entry
2140     */
2141    BW_METER_TIMEHASH(x, time_hash);
2142    x->bm_time_next = V_bw_meter_timers[time_hash];
2143    V_bw_meter_timers[time_hash] = x;
2144    x->bm_time_hash = time_hash;
2145}
2146
2147/*
2148 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2149 * by removing the entry from the proper hash bucket.
2150 */
2151static void
2152unschedule_bw_meter(struct bw_meter *x)
2153{
2154    int time_hash;
2155    struct bw_meter *prev, *tmp;
2156
2157    MFC_LOCK_ASSERT();
2158
2159    if (!(x->bm_flags & BW_METER_LEQ))
2160	return;		/* XXX: we schedule timers only for "<=" entries */
2161
2162    /*
2163     * Compute the timeout hash value and delete the entry
2164     */
2165    time_hash = x->bm_time_hash;
2166    if (time_hash >= BW_METER_BUCKETS)
2167	return;		/* Entry was not scheduled */
2168
2169    for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
2170	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2171	if (tmp == x)
2172	    break;
2173
2174    if (tmp == NULL)
2175	panic("unschedule_bw_meter: bw_meter entry not found");
2176
2177    if (prev != NULL)
2178	prev->bm_time_next = x->bm_time_next;
2179    else
2180	V_bw_meter_timers[time_hash] = x->bm_time_next;
2181
2182    x->bm_time_next = NULL;
2183    x->bm_time_hash = BW_METER_BUCKETS;
2184}
2185
2186
2187/*
2188 * Process all "<=" type of bw_meter that should be processed now,
2189 * and for each entry prepare an upcall if necessary. Each processed
2190 * entry is rescheduled again for the (periodic) processing.
2191 *
2192 * This is run periodically (once per second normally). On each round,
2193 * all the potentially matching entries are in the hash slot that we are
2194 * looking at.
2195 */
2196static void
2197bw_meter_process()
2198{
2199    uint32_t loops;
2200    int i;
2201    struct timeval now, process_endtime;
2202
2203    microtime(&now);
2204    if (V_last_tv_sec == now.tv_sec)
2205	return;		/* nothing to do */
2206
2207    loops = now.tv_sec - V_last_tv_sec;
2208    V_last_tv_sec = now.tv_sec;
2209    if (loops > BW_METER_BUCKETS)
2210	loops = BW_METER_BUCKETS;
2211
2212    MFC_LOCK();
2213    /*
2214     * Process all bins of bw_meter entries from the one after the last
2215     * processed to the current one. On entry, i points to the last bucket
2216     * visited, so we need to increment i at the beginning of the loop.
2217     */
2218    for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2219	struct bw_meter *x, *tmp_list;
2220
2221	if (++i >= BW_METER_BUCKETS)
2222	    i = 0;
2223
2224	/* Disconnect the list of bw_meter entries from the bin */
2225	tmp_list = V_bw_meter_timers[i];
2226	V_bw_meter_timers[i] = NULL;
2227
2228	/* Process the list of bw_meter entries */
2229	while (tmp_list != NULL) {
2230	    x = tmp_list;
2231	    tmp_list = tmp_list->bm_time_next;
2232
2233	    /* Test if the time interval is over */
2234	    process_endtime = x->bm_start_time;
2235	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2236	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2237		/* Not yet: reschedule, but don't reset */
2238		int time_hash;
2239
2240		BW_METER_TIMEHASH(x, time_hash);
2241		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2242		    /*
2243		     * XXX: somehow the bin processing is a bit ahead of time.
2244		     * Put the entry in the next bin.
2245		     */
2246		    if (++time_hash >= BW_METER_BUCKETS)
2247			time_hash = 0;
2248		}
2249		x->bm_time_next = V_bw_meter_timers[time_hash];
2250		V_bw_meter_timers[time_hash] = x;
2251		x->bm_time_hash = time_hash;
2252
2253		continue;
2254	    }
2255
2256	    /*
2257	     * Test if we should deliver an upcall
2258	     */
2259	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2260		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2261		((x->bm_flags & BW_METER_UNIT_BYTES) &&
2262		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2263		/* Prepare an upcall for delivery */
2264		bw_meter_prepare_upcall(x, &now);
2265	    }
2266
2267	    /*
2268	     * Reschedule for next processing
2269	     */
2270	    schedule_bw_meter(x, &now);
2271	}
2272    }
2273
2274    /* Send all upcalls that are pending delivery */
2275    bw_upcalls_send();
2276
2277    MFC_UNLOCK();
2278}
2279
2280/*
2281 * A periodic function for sending all upcalls that are pending delivery
2282 */
2283static void
2284expire_bw_upcalls_send(void *arg)
2285{
2286    CURVNET_SET((struct vnet *) arg);
2287
2288    MFC_LOCK();
2289    bw_upcalls_send();
2290    MFC_UNLOCK();
2291
2292    callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
2293	curvnet);
2294    CURVNET_RESTORE();
2295}
2296
2297/*
2298 * A periodic function for periodic scanning of the multicast forwarding
2299 * table for processing all "<=" bw_meter entries.
2300 */
2301static void
2302expire_bw_meter_process(void *arg)
2303{
2304    CURVNET_SET((struct vnet *) arg);
2305
2306    if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
2307	bw_meter_process();
2308
2309    callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
2310	curvnet);
2311    CURVNET_RESTORE();
2312}
2313
2314/*
2315 * End of bandwidth monitoring code
2316 */
2317
2318/*
2319 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2320 *
2321 */
2322static int
2323pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
2324    struct mfc *rt)
2325{
2326    struct mbuf *mb_copy, *mm;
2327
2328    /*
2329     * Do not send IGMP_WHOLEPKT notifications to userland, if the
2330     * rendezvous point was unspecified, and we were told not to.
2331     */
2332    if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
2333	in_nullhost(rt->mfc_rp))
2334	return 0;
2335
2336    mb_copy = pim_register_prepare(ip, m);
2337    if (mb_copy == NULL)
2338	return ENOBUFS;
2339
2340    /*
2341     * Send all the fragments. Note that the mbuf for each fragment
2342     * is freed by the sending machinery.
2343     */
2344    for (mm = mb_copy; mm; mm = mb_copy) {
2345	mb_copy = mm->m_nextpkt;
2346	mm->m_nextpkt = 0;
2347	mm = m_pullup(mm, sizeof(struct ip));
2348	if (mm != NULL) {
2349	    ip = mtod(mm, struct ip *);
2350	    if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
2351		pim_register_send_rp(ip, vifp, mm, rt);
2352	    } else {
2353		pim_register_send_upcall(ip, vifp, mm, rt);
2354	    }
2355	}
2356    }
2357
2358    return 0;
2359}
2360
2361/*
2362 * Return a copy of the data packet that is ready for PIM Register
2363 * encapsulation.
2364 * XXX: Note that in the returned copy the IP header is a valid one.
2365 */
2366static struct mbuf *
2367pim_register_prepare(struct ip *ip, struct mbuf *m)
2368{
2369    struct mbuf *mb_copy = NULL;
2370    int mtu;
2371
2372    /* Take care of delayed checksums */
2373    if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2374	in_delayed_cksum(m);
2375	m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2376    }
2377
2378    /*
2379     * Copy the old packet & pullup its IP header into the
2380     * new mbuf so we can modify it.
2381     */
2382    mb_copy = m_copypacket(m, M_DONTWAIT);
2383    if (mb_copy == NULL)
2384	return NULL;
2385    mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2386    if (mb_copy == NULL)
2387	return NULL;
2388
2389    /* take care of the TTL */
2390    ip = mtod(mb_copy, struct ip *);
2391    --ip->ip_ttl;
2392
2393    /* Compute the MTU after the PIM Register encapsulation */
2394    mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2395
2396    if (ip->ip_len <= mtu) {
2397	/* Turn the IP header into a valid one */
2398	ip->ip_len = htons(ip->ip_len);
2399	ip->ip_off = htons(ip->ip_off);
2400	ip->ip_sum = 0;
2401	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2402    } else {
2403	/* Fragment the packet */
2404	if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
2405	    m_freem(mb_copy);
2406	    return NULL;
2407	}
2408    }
2409    return mb_copy;
2410}
2411
2412/*
2413 * Send an upcall with the data packet to the user-level process.
2414 */
2415static int
2416pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2417    struct mbuf *mb_copy, struct mfc *rt)
2418{
2419    struct mbuf *mb_first;
2420    int len = ntohs(ip->ip_len);
2421    struct igmpmsg *im;
2422    struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2423
2424    VIF_LOCK_ASSERT();
2425
2426    /*
2427     * Add a new mbuf with an upcall header
2428     */
2429    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2430    if (mb_first == NULL) {
2431	m_freem(mb_copy);
2432	return ENOBUFS;
2433    }
2434    mb_first->m_data += max_linkhdr;
2435    mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2436    mb_first->m_len = sizeof(struct igmpmsg);
2437    mb_first->m_next = mb_copy;
2438
2439    /* Send message to routing daemon */
2440    im = mtod(mb_first, struct igmpmsg *);
2441    im->im_msgtype	= IGMPMSG_WHOLEPKT;
2442    im->im_mbz		= 0;
2443    im->im_vif		= vifp - V_viftable;
2444    im->im_src		= ip->ip_src;
2445    im->im_dst		= ip->ip_dst;
2446
2447    k_igmpsrc.sin_addr	= ip->ip_src;
2448
2449    MRTSTAT_INC(mrts_upcalls);
2450
2451    if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2452	CTR1(KTR_IPMF, "%s: socket queue full", __func__);
2453	MRTSTAT_INC(mrts_upq_sockfull);
2454	return ENOBUFS;
2455    }
2456
2457    /* Keep statistics */
2458    PIMSTAT_INC(pims_snd_registers_msgs);
2459    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2460
2461    return 0;
2462}
2463
2464/*
2465 * Encapsulate the data packet in PIM Register message and send it to the RP.
2466 */
2467static int
2468pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
2469    struct mfc *rt)
2470{
2471    struct mbuf *mb_first;
2472    struct ip *ip_outer;
2473    struct pim_encap_pimhdr *pimhdr;
2474    int len = ntohs(ip->ip_len);
2475    vifi_t vifi = rt->mfc_parent;
2476
2477    VIF_LOCK_ASSERT();
2478
2479    if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
2480	m_freem(mb_copy);
2481	return EADDRNOTAVAIL;		/* The iif vif is invalid */
2482    }
2483
2484    /*
2485     * Add a new mbuf with the encapsulating header
2486     */
2487    MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
2488    if (mb_first == NULL) {
2489	m_freem(mb_copy);
2490	return ENOBUFS;
2491    }
2492    mb_first->m_data += max_linkhdr;
2493    mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2494    mb_first->m_next = mb_copy;
2495
2496    mb_first->m_pkthdr.len = len + mb_first->m_len;
2497
2498    /*
2499     * Fill in the encapsulating IP and PIM header
2500     */
2501    ip_outer = mtod(mb_first, struct ip *);
2502    *ip_outer = pim_encap_iphdr;
2503    ip_outer->ip_id = ip_newid();
2504    ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2505    ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
2506    ip_outer->ip_dst = rt->mfc_rp;
2507    /*
2508     * Copy the inner header TOS to the outer header, and take care of the
2509     * IP_DF bit.
2510     */
2511    ip_outer->ip_tos = ip->ip_tos;
2512    if (ntohs(ip->ip_off) & IP_DF)
2513	ip_outer->ip_off |= IP_DF;
2514    pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2515					 + sizeof(pim_encap_iphdr));
2516    *pimhdr = pim_encap_pimhdr;
2517    /* If the iif crosses a border, set the Border-bit */
2518    if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
2519	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2520
2521    mb_first->m_data += sizeof(pim_encap_iphdr);
2522    pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2523    mb_first->m_data -= sizeof(pim_encap_iphdr);
2524
2525    send_packet(vifp, mb_first);
2526
2527    /* Keep statistics */
2528    PIMSTAT_INC(pims_snd_registers_msgs);
2529    PIMSTAT_ADD(pims_snd_registers_bytes, len);
2530
2531    return 0;
2532}
2533
2534/*
2535 * pim_encapcheck() is called by the encap4_input() path at runtime to
2536 * determine if a packet is for PIM; allowing PIM to be dynamically loaded
2537 * into the kernel.
2538 */
2539static int
2540pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
2541{
2542
2543#ifdef DIAGNOSTIC
2544    KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
2545#endif
2546    if (proto != IPPROTO_PIM)
2547	return 0;	/* not for us; reject the datagram. */
2548
2549    return 64;		/* claim the datagram. */
2550}
2551
2552/*
2553 * PIM-SMv2 and PIM-DM messages processing.
2554 * Receives and verifies the PIM control messages, and passes them
2555 * up to the listening socket, using rip_input().
2556 * The only message with special processing is the PIM_REGISTER message
2557 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2558 * is passed to if_simloop().
2559 */
2560void
2561pim_input(struct mbuf *m, int off)
2562{
2563    struct ip *ip = mtod(m, struct ip *);
2564    struct pim *pim;
2565    int minlen;
2566    int datalen = ip->ip_len;
2567    int ip_tos;
2568    int iphlen = off;
2569
2570    /* Keep statistics */
2571    PIMSTAT_INC(pims_rcv_total_msgs);
2572    PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
2573
2574    /*
2575     * Validate lengths
2576     */
2577    if (datalen < PIM_MINLEN) {
2578	PIMSTAT_INC(pims_rcv_tooshort);
2579	CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
2580	    __func__, datalen, inet_ntoa(ip->ip_src));
2581	m_freem(m);
2582	return;
2583    }
2584
2585    /*
2586     * If the packet is at least as big as a REGISTER, go agead
2587     * and grab the PIM REGISTER header size, to avoid another
2588     * possible m_pullup() later.
2589     *
2590     * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2591     * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2592     */
2593    minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
2594    /*
2595     * Get the IP and PIM headers in contiguous memory, and
2596     * possibly the PIM REGISTER header.
2597     */
2598    if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2599	(m = m_pullup(m, minlen)) == 0) {
2600	CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
2601	return;
2602    }
2603
2604    /* m_pullup() may have given us a new mbuf so reset ip. */
2605    ip = mtod(m, struct ip *);
2606    ip_tos = ip->ip_tos;
2607
2608    /* adjust mbuf to point to the PIM header */
2609    m->m_data += iphlen;
2610    m->m_len  -= iphlen;
2611    pim = mtod(m, struct pim *);
2612
2613    /*
2614     * Validate checksum. If PIM REGISTER, exclude the data packet.
2615     *
2616     * XXX: some older PIMv2 implementations don't make this distinction,
2617     * so for compatibility reason perform the checksum over part of the
2618     * message, and if error, then over the whole message.
2619     */
2620    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
2621	/* do nothing, checksum okay */
2622    } else if (in_cksum(m, datalen)) {
2623	PIMSTAT_INC(pims_rcv_badsum);
2624	CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
2625	m_freem(m);
2626	return;
2627    }
2628
2629    /* PIM version check */
2630    if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2631	PIMSTAT_INC(pims_rcv_badversion);
2632	CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
2633	    (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
2634	m_freem(m);
2635	return;
2636    }
2637
2638    /* restore mbuf back to the outer IP */
2639    m->m_data -= iphlen;
2640    m->m_len  += iphlen;
2641
2642    if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2643	/*
2644	 * Since this is a REGISTER, we'll make a copy of the register
2645	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2646	 * routing daemon.
2647	 */
2648	struct sockaddr_in dst = { sizeof(dst), AF_INET };
2649	struct mbuf *mcp;
2650	struct ip *encap_ip;
2651	u_int32_t *reghdr;
2652	struct ifnet *vifp;
2653
2654	VIF_LOCK();
2655	if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
2656	    VIF_UNLOCK();
2657	    CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
2658		(int)V_reg_vif_num);
2659	    m_freem(m);
2660	    return;
2661	}
2662	/* XXX need refcnt? */
2663	vifp = V_viftable[V_reg_vif_num].v_ifp;
2664	VIF_UNLOCK();
2665
2666	/*
2667	 * Validate length
2668	 */
2669	if (datalen < PIM_REG_MINLEN) {
2670	    PIMSTAT_INC(pims_rcv_tooshort);
2671	    PIMSTAT_INC(pims_rcv_badregisters);
2672	    CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
2673	    m_freem(m);
2674	    return;
2675	}
2676
2677	reghdr = (u_int32_t *)(pim + 1);
2678	encap_ip = (struct ip *)(reghdr + 1);
2679
2680	CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
2681	    __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
2682
2683	/* verify the version number of the inner packet */
2684	if (encap_ip->ip_v != IPVERSION) {
2685	    PIMSTAT_INC(pims_rcv_badregisters);
2686	    CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
2687	    m_freem(m);
2688	    return;
2689	}
2690
2691	/* verify the inner packet is destined to a mcast group */
2692	if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
2693	    PIMSTAT_INC(pims_rcv_badregisters);
2694	    CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
2695		inet_ntoa(encap_ip->ip_dst));
2696	    m_freem(m);
2697	    return;
2698	}
2699
2700	/* If a NULL_REGISTER, pass it to the daemon */
2701	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
2702	    goto pim_input_to_daemon;
2703
2704	/*
2705	 * Copy the TOS from the outer IP header to the inner IP header.
2706	 */
2707	if (encap_ip->ip_tos != ip_tos) {
2708	    /* Outer TOS -> inner TOS */
2709	    encap_ip->ip_tos = ip_tos;
2710	    /* Recompute the inner header checksum. Sigh... */
2711
2712	    /* adjust mbuf to point to the inner IP header */
2713	    m->m_data += (iphlen + PIM_MINLEN);
2714	    m->m_len  -= (iphlen + PIM_MINLEN);
2715
2716	    encap_ip->ip_sum = 0;
2717	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
2718
2719	    /* restore mbuf to point back to the outer IP header */
2720	    m->m_data -= (iphlen + PIM_MINLEN);
2721	    m->m_len  += (iphlen + PIM_MINLEN);
2722	}
2723
2724	/*
2725	 * Decapsulate the inner IP packet and loopback to forward it
2726	 * as a normal multicast packet. Also, make a copy of the
2727	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
2728	 * to pass to the daemon later, so it can take the appropriate
2729	 * actions (e.g., send back PIM_REGISTER_STOP).
2730	 * XXX: here m->m_data points to the outer IP header.
2731	 */
2732	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
2733	if (mcp == NULL) {
2734	    CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
2735	    m_freem(m);
2736	    return;
2737	}
2738
2739	/* Keep statistics */
2740	/* XXX: registers_bytes include only the encap. mcast pkt */
2741	PIMSTAT_INC(pims_rcv_registers_msgs);
2742	PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
2743
2744	/*
2745	 * forward the inner ip packet; point m_data at the inner ip.
2746	 */
2747	m_adj(m, iphlen + PIM_MINLEN);
2748
2749	CTR4(KTR_IPMF,
2750	    "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
2751	    __func__,
2752	    (u_long)ntohl(encap_ip->ip_src.s_addr),
2753	    (u_long)ntohl(encap_ip->ip_dst.s_addr),
2754	    (int)V_reg_vif_num);
2755
2756	/* NB: vifp was collected above; can it change on us? */
2757	if_simloop(vifp, m, dst.sin_family, 0);
2758
2759	/* prepare the register head to send to the mrouting daemon */
2760	m = mcp;
2761    }
2762
2763pim_input_to_daemon:
2764    /*
2765     * Pass the PIM message up to the daemon; if it is a Register message,
2766     * pass the 'head' only up to the daemon. This includes the
2767     * outer IP header, PIM header, PIM-Register header and the
2768     * inner IP header.
2769     * XXX: the outer IP header pkt size of a Register is not adjust to
2770     * reflect the fact that the inner multicast data is truncated.
2771     */
2772    rip_input(m, iphlen);
2773
2774    return;
2775}
2776
2777static int
2778sysctl_mfctable(SYSCTL_HANDLER_ARGS)
2779{
2780	struct mfc	*rt;
2781	int		 error, i;
2782
2783	if (req->newptr)
2784		return (EPERM);
2785	if (V_mfchashtbl == NULL)	/* XXX unlocked */
2786		return (0);
2787	error = sysctl_wire_old_buffer(req, 0);
2788	if (error)
2789		return (error);
2790
2791	MFC_LOCK();
2792	for (i = 0; i < mfchashsize; i++) {
2793		LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
2794			error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
2795			if (error)
2796				goto out_locked;
2797		}
2798	}
2799out_locked:
2800	MFC_UNLOCK();
2801	return (error);
2802}
2803
2804static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
2805    sysctl_mfctable, "IPv4 Multicast Forwarding Table "
2806    "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
2807
2808static void
2809vnet_mroute_init(const void *unused __unused)
2810{
2811
2812	MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
2813	bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
2814	callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE);
2815	callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE);
2816	callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE);
2817}
2818
2819VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init,
2820	NULL);
2821
2822static void
2823vnet_mroute_uninit(const void *unused __unused)
2824{
2825
2826	FREE(V_nexpire, M_MRTABLE);
2827	V_nexpire = NULL;
2828}
2829
2830VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE,
2831	vnet_mroute_uninit, NULL);
2832
2833static int
2834ip_mroute_modevent(module_t mod, int type, void *unused)
2835{
2836
2837    switch (type) {
2838    case MOD_LOAD:
2839	MROUTER_LOCK_INIT();
2840
2841	if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
2842	    if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
2843	if (if_detach_event_tag == NULL) {
2844		printf("ip_mroute: unable to register "
2845		    "ifnet_departure_event handler\n");
2846		MROUTER_LOCK_DESTROY();
2847		return (EINVAL);
2848	}
2849
2850	MFC_LOCK_INIT();
2851	VIF_LOCK_INIT();
2852
2853	mfchashsize = MFCHASHSIZE;
2854	if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
2855	    !powerof2(mfchashsize)) {
2856		printf("WARNING: %s not a power of 2; using default\n",
2857		    "net.inet.ip.mfchashsize");
2858		mfchashsize = MFCHASHSIZE;
2859	}
2860
2861	pim_squelch_wholepkt = 0;
2862	TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
2863	    &pim_squelch_wholepkt);
2864
2865	pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
2866	    pim_encapcheck, &in_pim_protosw, NULL);
2867	if (pim_encap_cookie == NULL) {
2868		printf("ip_mroute: unable to attach pim encap\n");
2869		VIF_LOCK_DESTROY();
2870		MFC_LOCK_DESTROY();
2871		MROUTER_LOCK_DESTROY();
2872		return (EINVAL);
2873	}
2874
2875	ip_mcast_src = X_ip_mcast_src;
2876	ip_mforward = X_ip_mforward;
2877	ip_mrouter_done = X_ip_mrouter_done;
2878	ip_mrouter_get = X_ip_mrouter_get;
2879	ip_mrouter_set = X_ip_mrouter_set;
2880
2881	ip_rsvp_force_done = X_ip_rsvp_force_done;
2882	ip_rsvp_vif = X_ip_rsvp_vif;
2883
2884	legal_vif_num = X_legal_vif_num;
2885	mrt_ioctl = X_mrt_ioctl;
2886	rsvp_input_p = X_rsvp_input;
2887	break;
2888
2889    case MOD_UNLOAD:
2890	/*
2891	 * Typically module unload happens after the user-level
2892	 * process has shutdown the kernel services (the check
2893	 * below insures someone can't just yank the module out
2894	 * from under a running process).  But if the module is
2895	 * just loaded and then unloaded w/o starting up a user
2896	 * process we still need to cleanup.
2897	 */
2898	MROUTER_LOCK();
2899	if (ip_mrouter_cnt != 0) {
2900	    MROUTER_UNLOCK();
2901	    return (EINVAL);
2902	}
2903	ip_mrouter_unloading = 1;
2904	MROUTER_UNLOCK();
2905
2906	EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
2907
2908	if (pim_encap_cookie) {
2909	    encap_detach(pim_encap_cookie);
2910	    pim_encap_cookie = NULL;
2911	}
2912
2913	ip_mcast_src = NULL;
2914	ip_mforward = NULL;
2915	ip_mrouter_done = NULL;
2916	ip_mrouter_get = NULL;
2917	ip_mrouter_set = NULL;
2918
2919	ip_rsvp_force_done = NULL;
2920	ip_rsvp_vif = NULL;
2921
2922	legal_vif_num = NULL;
2923	mrt_ioctl = NULL;
2924	rsvp_input_p = NULL;
2925
2926	VIF_LOCK_DESTROY();
2927	MFC_LOCK_DESTROY();
2928	MROUTER_LOCK_DESTROY();
2929	break;
2930
2931    default:
2932	return EOPNOTSUPP;
2933    }
2934    return 0;
2935}
2936
2937static moduledata_t ip_mroutemod = {
2938    "ip_mroute",
2939    ip_mroute_modevent,
2940    0
2941};
2942
2943DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE);
2944