ip_input.c revision 220879
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_input.c 220879 2011-04-20 08:00:29Z bz $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_route.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/mbuf.h>
44#include <sys/malloc.h>
45#include <sys/domain.h>
46#include <sys/protosw.h>
47#include <sys/socket.h>
48#include <sys/time.h>
49#include <sys/kernel.h>
50#include <sys/lock.h>
51#include <sys/rwlock.h>
52#include <sys/syslog.h>
53#include <sys/sysctl.h>
54
55#include <net/pfil.h>
56#include <net/if.h>
57#include <net/if_types.h>
58#include <net/if_var.h>
59#include <net/if_dl.h>
60#include <net/route.h>
61#include <net/netisr.h>
62#include <net/vnet.h>
63#include <net/flowtable.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/in_var.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/ip_var.h>
71#include <netinet/ip_fw.h>
72#include <netinet/ip_icmp.h>
73#include <netinet/ip_options.h>
74#include <machine/in_cksum.h>
75#include <netinet/ip_carp.h>
76#ifdef IPSEC
77#include <netinet/ip_ipsec.h>
78#endif /* IPSEC */
79
80#include <sys/socketvar.h>
81
82#include <security/mac/mac_framework.h>
83
84#ifdef CTASSERT
85CTASSERT(sizeof(struct ip) == 20);
86#endif
87
88struct	rwlock in_ifaddr_lock;
89RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
90
91VNET_DEFINE(int, rsvp_on);
92
93VNET_DEFINE(int, ipforwarding);
94SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
95    &VNET_NAME(ipforwarding), 0,
96    "Enable IP forwarding between interfaces");
97
98static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
99#define	V_ipsendredirects	VNET(ipsendredirects)
100SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
101    &VNET_NAME(ipsendredirects), 0,
102    "Enable sending IP redirects");
103
104VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
105SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
106    &VNET_NAME(ip_defttl), 0,
107    "Maximum TTL on IP packets");
108
109static VNET_DEFINE(int, ip_keepfaith);
110#define	V_ip_keepfaith		VNET(ip_keepfaith)
111SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
112    &VNET_NAME(ip_keepfaith), 0,
113    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
114
115static VNET_DEFINE(int, ip_sendsourcequench);
116#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
117SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
118    &VNET_NAME(ip_sendsourcequench), 0,
119    "Enable the transmission of source quench packets");
120
121VNET_DEFINE(int, ip_do_randomid);
122SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
123    &VNET_NAME(ip_do_randomid), 0,
124    "Assign random ip_id values");
125
126/*
127 * XXX - Setting ip_checkinterface mostly implements the receive side of
128 * the Strong ES model described in RFC 1122, but since the routing table
129 * and transmit implementation do not implement the Strong ES model,
130 * setting this to 1 results in an odd hybrid.
131 *
132 * XXX - ip_checkinterface currently must be disabled if you use ipnat
133 * to translate the destination address to another local interface.
134 *
135 * XXX - ip_checkinterface must be disabled if you add IP aliases
136 * to the loopback interface instead of the interface where the
137 * packets for those addresses are received.
138 */
139static VNET_DEFINE(int, ip_checkinterface);
140#define	V_ip_checkinterface	VNET(ip_checkinterface)
141SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
142    &VNET_NAME(ip_checkinterface), 0,
143    "Verify packet arrives on correct interface");
144
145VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
146
147static struct netisr_handler ip_nh = {
148	.nh_name = "ip",
149	.nh_handler = ip_input,
150	.nh_proto = NETISR_IP,
151	.nh_policy = NETISR_POLICY_FLOW,
152};
153
154extern	struct domain inetdomain;
155extern	struct protosw inetsw[];
156u_char	ip_protox[IPPROTO_MAX];
157VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
158VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
159VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
160
161VNET_DEFINE(struct ipstat, ipstat);
162SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
163    &VNET_NAME(ipstat), ipstat,
164    "IP statistics (struct ipstat, netinet/ip_var.h)");
165
166static VNET_DEFINE(uma_zone_t, ipq_zone);
167static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
168static struct mtx ipqlock;
169
170#define	V_ipq_zone		VNET(ipq_zone)
171#define	V_ipq			VNET(ipq)
172
173#define	IPQ_LOCK()	mtx_lock(&ipqlock)
174#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
175#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
176#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
177
178static void	maxnipq_update(void);
179static void	ipq_zone_change(void *);
180static void	ip_drain_locked(void);
181
182static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
183static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
184#define	V_maxnipq		VNET(maxnipq)
185#define	V_nipq			VNET(nipq)
186SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
187    &VNET_NAME(nipq), 0,
188    "Current number of IPv4 fragment reassembly queue entries");
189
190static VNET_DEFINE(int, maxfragsperpacket);
191#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
192SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
193    &VNET_NAME(maxfragsperpacket), 0,
194    "Maximum number of IPv4 fragments allowed per packet");
195
196#ifdef IPCTL_DEFMTU
197SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
198    &ip_mtu, 0, "Default MTU");
199#endif
200
201#ifdef IPSTEALTH
202VNET_DEFINE(int, ipstealth);
203SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
204    &VNET_NAME(ipstealth), 0,
205    "IP stealth mode, no TTL decrementation on forwarding");
206#endif
207
208#ifdef FLOWTABLE
209static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
210VNET_DEFINE(struct flowtable *, ip_ft);
211#define	V_ip_output_flowtable_size	VNET(ip_output_flowtable_size)
212
213SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
214    &VNET_NAME(ip_output_flowtable_size), 2048,
215    "number of entries in the per-cpu output flow caches");
216#endif
217
218static void	ip_freef(struct ipqhead *, struct ipq *);
219
220/*
221 * Kernel module interface for updating ipstat.  The argument is an index
222 * into ipstat treated as an array of u_long.  While this encodes the general
223 * layout of ipstat into the caller, it doesn't encode its location, so that
224 * future changes to add, for example, per-CPU stats support won't cause
225 * binary compatibility problems for kernel modules.
226 */
227void
228kmod_ipstat_inc(int statnum)
229{
230
231	(*((u_long *)&V_ipstat + statnum))++;
232}
233
234void
235kmod_ipstat_dec(int statnum)
236{
237
238	(*((u_long *)&V_ipstat + statnum))--;
239}
240
241static int
242sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
243{
244	int error, qlimit;
245
246	netisr_getqlimit(&ip_nh, &qlimit);
247	error = sysctl_handle_int(oidp, &qlimit, 0, req);
248	if (error || !req->newptr)
249		return (error);
250	if (qlimit < 1)
251		return (EINVAL);
252	return (netisr_setqlimit(&ip_nh, qlimit));
253}
254SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
255    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
256    "Maximum size of the IP input queue");
257
258static int
259sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
260{
261	u_int64_t qdrops_long;
262	int error, qdrops;
263
264	netisr_getqdrops(&ip_nh, &qdrops_long);
265	qdrops = qdrops_long;
266	error = sysctl_handle_int(oidp, &qdrops, 0, req);
267	if (error || !req->newptr)
268		return (error);
269	if (qdrops != 0)
270		return (EINVAL);
271	netisr_clearqdrops(&ip_nh);
272	return (0);
273}
274
275SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
276    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
277    "Number of packets dropped from the IP input queue");
278
279/*
280 * IP initialization: fill in IP protocol switch table.
281 * All protocols not implemented in kernel go to raw IP protocol handler.
282 */
283void
284ip_init(void)
285{
286	struct protosw *pr;
287	int i;
288
289	V_ip_id = time_second & 0xffff;
290
291	TAILQ_INIT(&V_in_ifaddrhead);
292	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
293
294	/* Initialize IP reassembly queue. */
295	for (i = 0; i < IPREASS_NHASH; i++)
296		TAILQ_INIT(&V_ipq[i]);
297	V_maxnipq = nmbclusters / 32;
298	V_maxfragsperpacket = 16;
299	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
300	    NULL, UMA_ALIGN_PTR, 0);
301	maxnipq_update();
302
303	/* Initialize packet filter hooks. */
304	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
305	V_inet_pfil_hook.ph_af = AF_INET;
306	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
307		printf("%s: WARNING: unable to register pfil hook, "
308			"error %d\n", __func__, i);
309
310#ifdef FLOWTABLE
311	if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
312		&V_ip_output_flowtable_size)) {
313		if (V_ip_output_flowtable_size < 256)
314			V_ip_output_flowtable_size = 256;
315		if (!powerof2(V_ip_output_flowtable_size)) {
316			printf("flowtable must be power of 2 size\n");
317			V_ip_output_flowtable_size = 2048;
318		}
319	} else {
320		/*
321		 * round up to the next power of 2
322		 */
323		V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
324	}
325	V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
326#endif
327
328	/* Skip initialization of globals for non-default instances. */
329	if (!IS_DEFAULT_VNET(curvnet))
330		return;
331
332	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
333	if (pr == NULL)
334		panic("ip_init: PF_INET not found");
335
336	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
337	for (i = 0; i < IPPROTO_MAX; i++)
338		ip_protox[i] = pr - inetsw;
339	/*
340	 * Cycle through IP protocols and put them into the appropriate place
341	 * in ip_protox[].
342	 */
343	for (pr = inetdomain.dom_protosw;
344	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
345		if (pr->pr_domain->dom_family == PF_INET &&
346		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
347			/* Be careful to only index valid IP protocols. */
348			if (pr->pr_protocol < IPPROTO_MAX)
349				ip_protox[pr->pr_protocol] = pr - inetsw;
350		}
351
352	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
353		NULL, EVENTHANDLER_PRI_ANY);
354
355	/* Initialize various other remaining things. */
356	IPQ_LOCK_INIT();
357	netisr_register(&ip_nh);
358}
359
360#ifdef VIMAGE
361void
362ip_destroy(void)
363{
364
365	/* Cleanup in_ifaddr hash table; should be empty. */
366	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
367
368	IPQ_LOCK();
369	ip_drain_locked();
370	IPQ_UNLOCK();
371
372	uma_zdestroy(V_ipq_zone);
373}
374#endif
375
376/*
377 * Ip input routine.  Checksum and byte swap header.  If fragmented
378 * try to reassemble.  Process options.  Pass to next level.
379 */
380void
381ip_input(struct mbuf *m)
382{
383	struct ip *ip = NULL;
384	struct in_ifaddr *ia = NULL;
385	struct ifaddr *ifa;
386	struct ifnet *ifp;
387	int    checkif, hlen = 0;
388	u_short sum;
389	int dchg = 0;				/* dest changed after fw */
390	struct in_addr odst;			/* original dst address */
391
392	M_ASSERTPKTHDR(m);
393
394	if (m->m_flags & M_FASTFWD_OURS) {
395		/*
396		 * Firewall or NAT changed destination to local.
397		 * We expect ip_len and ip_off to be in host byte order.
398		 */
399		m->m_flags &= ~M_FASTFWD_OURS;
400		/* Set up some basics that will be used later. */
401		ip = mtod(m, struct ip *);
402		hlen = ip->ip_hl << 2;
403		goto ours;
404	}
405
406	IPSTAT_INC(ips_total);
407
408	if (m->m_pkthdr.len < sizeof(struct ip))
409		goto tooshort;
410
411	if (m->m_len < sizeof (struct ip) &&
412	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
413		IPSTAT_INC(ips_toosmall);
414		return;
415	}
416	ip = mtod(m, struct ip *);
417
418	if (ip->ip_v != IPVERSION) {
419		IPSTAT_INC(ips_badvers);
420		goto bad;
421	}
422
423	hlen = ip->ip_hl << 2;
424	if (hlen < sizeof(struct ip)) {	/* minimum header length */
425		IPSTAT_INC(ips_badhlen);
426		goto bad;
427	}
428	if (hlen > m->m_len) {
429		if ((m = m_pullup(m, hlen)) == NULL) {
430			IPSTAT_INC(ips_badhlen);
431			return;
432		}
433		ip = mtod(m, struct ip *);
434	}
435
436	/* 127/8 must not appear on wire - RFC1122 */
437	ifp = m->m_pkthdr.rcvif;
438	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
439	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
440		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
441			IPSTAT_INC(ips_badaddr);
442			goto bad;
443		}
444	}
445
446	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
447		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
448	} else {
449		if (hlen == sizeof(struct ip)) {
450			sum = in_cksum_hdr(ip);
451		} else {
452			sum = in_cksum(m, hlen);
453		}
454	}
455	if (sum) {
456		IPSTAT_INC(ips_badsum);
457		goto bad;
458	}
459
460#ifdef ALTQ
461	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
462		/* packet is dropped by traffic conditioner */
463		return;
464#endif
465
466	/*
467	 * Convert fields to host representation.
468	 */
469	ip->ip_len = ntohs(ip->ip_len);
470	if (ip->ip_len < hlen) {
471		IPSTAT_INC(ips_badlen);
472		goto bad;
473	}
474	ip->ip_off = ntohs(ip->ip_off);
475
476	/*
477	 * Check that the amount of data in the buffers
478	 * is as at least much as the IP header would have us expect.
479	 * Trim mbufs if longer than we expect.
480	 * Drop packet if shorter than we expect.
481	 */
482	if (m->m_pkthdr.len < ip->ip_len) {
483tooshort:
484		IPSTAT_INC(ips_tooshort);
485		goto bad;
486	}
487	if (m->m_pkthdr.len > ip->ip_len) {
488		if (m->m_len == m->m_pkthdr.len) {
489			m->m_len = ip->ip_len;
490			m->m_pkthdr.len = ip->ip_len;
491		} else
492			m_adj(m, ip->ip_len - m->m_pkthdr.len);
493	}
494#ifdef IPSEC
495	/*
496	 * Bypass packet filtering for packets from a tunnel (gif).
497	 */
498	if (ip_ipsec_filtertunnel(m))
499		goto passin;
500#endif /* IPSEC */
501
502	/*
503	 * Run through list of hooks for input packets.
504	 *
505	 * NB: Beware of the destination address changing (e.g.
506	 *     by NAT rewriting).  When this happens, tell
507	 *     ip_forward to do the right thing.
508	 */
509
510	/* Jump over all PFIL processing if hooks are not active. */
511	if (!PFIL_HOOKED(&V_inet_pfil_hook))
512		goto passin;
513
514	odst = ip->ip_dst;
515	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
516		return;
517	if (m == NULL)			/* consumed by filter */
518		return;
519
520	ip = mtod(m, struct ip *);
521	dchg = (odst.s_addr != ip->ip_dst.s_addr);
522	ifp = m->m_pkthdr.rcvif;
523
524#ifdef IPFIREWALL_FORWARD
525	if (m->m_flags & M_FASTFWD_OURS) {
526		m->m_flags &= ~M_FASTFWD_OURS;
527		goto ours;
528	}
529	if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
530		/*
531		 * Directly ship the packet on.  This allows forwarding
532		 * packets originally destined to us to some other directly
533		 * connected host.
534		 */
535		ip_forward(m, dchg);
536		return;
537	}
538#endif /* IPFIREWALL_FORWARD */
539
540passin:
541	/*
542	 * Process options and, if not destined for us,
543	 * ship it on.  ip_dooptions returns 1 when an
544	 * error was detected (causing an icmp message
545	 * to be sent and the original packet to be freed).
546	 */
547	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
548		return;
549
550        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
551         * matter if it is destined to another node, or whether it is
552         * a multicast one, RSVP wants it! and prevents it from being forwarded
553         * anywhere else. Also checks if the rsvp daemon is running before
554	 * grabbing the packet.
555         */
556	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
557		goto ours;
558
559	/*
560	 * Check our list of addresses, to see if the packet is for us.
561	 * If we don't have any addresses, assume any unicast packet
562	 * we receive might be for us (and let the upper layers deal
563	 * with it).
564	 */
565	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
566	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
567		goto ours;
568
569	/*
570	 * Enable a consistency check between the destination address
571	 * and the arrival interface for a unicast packet (the RFC 1122
572	 * strong ES model) if IP forwarding is disabled and the packet
573	 * is not locally generated and the packet is not subject to
574	 * 'ipfw fwd'.
575	 *
576	 * XXX - Checking also should be disabled if the destination
577	 * address is ipnat'ed to a different interface.
578	 *
579	 * XXX - Checking is incompatible with IP aliases added
580	 * to the loopback interface instead of the interface where
581	 * the packets are received.
582	 *
583	 * XXX - This is the case for carp vhost IPs as well so we
584	 * insert a workaround. If the packet got here, we already
585	 * checked with carp_iamatch() and carp_forus().
586	 */
587	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
588	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
589	    ifp->if_carp == NULL && (dchg == 0);
590
591	/*
592	 * Check for exact addresses in the hash bucket.
593	 */
594	/* IN_IFADDR_RLOCK(); */
595	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
596		/*
597		 * If the address matches, verify that the packet
598		 * arrived via the correct interface if checking is
599		 * enabled.
600		 */
601		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
602		    (!checkif || ia->ia_ifp == ifp)) {
603			ifa_ref(&ia->ia_ifa);
604			/* IN_IFADDR_RUNLOCK(); */
605			goto ours;
606		}
607	}
608	/* IN_IFADDR_RUNLOCK(); */
609
610	/*
611	 * Check for broadcast addresses.
612	 *
613	 * Only accept broadcast packets that arrive via the matching
614	 * interface.  Reception of forwarded directed broadcasts would
615	 * be handled via ip_forward() and ether_output() with the loopback
616	 * into the stack for SIMPLEX interfaces handled by ether_output().
617	 */
618	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
619		IF_ADDR_LOCK(ifp);
620	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
621			if (ifa->ifa_addr->sa_family != AF_INET)
622				continue;
623			ia = ifatoia(ifa);
624			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
625			    ip->ip_dst.s_addr) {
626				ifa_ref(ifa);
627				IF_ADDR_UNLOCK(ifp);
628				goto ours;
629			}
630			if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
631				ifa_ref(ifa);
632				IF_ADDR_UNLOCK(ifp);
633				goto ours;
634			}
635#ifdef BOOTP_COMPAT
636			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
637				ifa_ref(ifa);
638				IF_ADDR_UNLOCK(ifp);
639				goto ours;
640			}
641#endif
642		}
643		IF_ADDR_UNLOCK(ifp);
644		ia = NULL;
645	}
646	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
647	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
648		IPSTAT_INC(ips_cantforward);
649		m_freem(m);
650		return;
651	}
652	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
653		if (V_ip_mrouter) {
654			/*
655			 * If we are acting as a multicast router, all
656			 * incoming multicast packets are passed to the
657			 * kernel-level multicast forwarding function.
658			 * The packet is returned (relatively) intact; if
659			 * ip_mforward() returns a non-zero value, the packet
660			 * must be discarded, else it may be accepted below.
661			 */
662			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
663				IPSTAT_INC(ips_cantforward);
664				m_freem(m);
665				return;
666			}
667
668			/*
669			 * The process-level routing daemon needs to receive
670			 * all multicast IGMP packets, whether or not this
671			 * host belongs to their destination groups.
672			 */
673			if (ip->ip_p == IPPROTO_IGMP)
674				goto ours;
675			IPSTAT_INC(ips_forward);
676		}
677		/*
678		 * Assume the packet is for us, to avoid prematurely taking
679		 * a lock on the in_multi hash. Protocols must perform
680		 * their own filtering and update statistics accordingly.
681		 */
682		goto ours;
683	}
684	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
685		goto ours;
686	if (ip->ip_dst.s_addr == INADDR_ANY)
687		goto ours;
688
689	/*
690	 * FAITH(Firewall Aided Internet Translator)
691	 */
692	if (ifp && ifp->if_type == IFT_FAITH) {
693		if (V_ip_keepfaith) {
694			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
695				goto ours;
696		}
697		m_freem(m);
698		return;
699	}
700
701	/*
702	 * Not for us; forward if possible and desirable.
703	 */
704	if (V_ipforwarding == 0) {
705		IPSTAT_INC(ips_cantforward);
706		m_freem(m);
707	} else {
708#ifdef IPSEC
709		if (ip_ipsec_fwd(m))
710			goto bad;
711#endif /* IPSEC */
712		ip_forward(m, dchg);
713	}
714	return;
715
716ours:
717#ifdef IPSTEALTH
718	/*
719	 * IPSTEALTH: Process non-routing options only
720	 * if the packet is destined for us.
721	 */
722	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
723		if (ia != NULL)
724			ifa_free(&ia->ia_ifa);
725		return;
726	}
727#endif /* IPSTEALTH */
728
729	/* Count the packet in the ip address stats */
730	if (ia != NULL) {
731		ia->ia_ifa.if_ipackets++;
732		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
733		ifa_free(&ia->ia_ifa);
734	}
735
736	/*
737	 * Attempt reassembly; if it succeeds, proceed.
738	 * ip_reass() will return a different mbuf.
739	 */
740	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
741		m = ip_reass(m);
742		if (m == NULL)
743			return;
744		ip = mtod(m, struct ip *);
745		/* Get the header length of the reassembled packet */
746		hlen = ip->ip_hl << 2;
747	}
748
749	/*
750	 * Further protocols expect the packet length to be w/o the
751	 * IP header.
752	 */
753	ip->ip_len -= hlen;
754
755#ifdef IPSEC
756	/*
757	 * enforce IPsec policy checking if we are seeing last header.
758	 * note that we do not visit this with protocols with pcb layer
759	 * code - like udp/tcp/raw ip.
760	 */
761	if (ip_ipsec_input(m))
762		goto bad;
763#endif /* IPSEC */
764
765	/*
766	 * Switch out to protocol's input routine.
767	 */
768	IPSTAT_INC(ips_delivered);
769
770	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
771	return;
772bad:
773	m_freem(m);
774}
775
776/*
777 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
778 * max has slightly different semantics than the sysctl, for historical
779 * reasons.
780 */
781static void
782maxnipq_update(void)
783{
784
785	/*
786	 * -1 for unlimited allocation.
787	 */
788	if (V_maxnipq < 0)
789		uma_zone_set_max(V_ipq_zone, 0);
790	/*
791	 * Positive number for specific bound.
792	 */
793	if (V_maxnipq > 0)
794		uma_zone_set_max(V_ipq_zone, V_maxnipq);
795	/*
796	 * Zero specifies no further fragment queue allocation -- set the
797	 * bound very low, but rely on implementation elsewhere to actually
798	 * prevent allocation and reclaim current queues.
799	 */
800	if (V_maxnipq == 0)
801		uma_zone_set_max(V_ipq_zone, 1);
802}
803
804static void
805ipq_zone_change(void *tag)
806{
807
808	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
809		V_maxnipq = nmbclusters / 32;
810		maxnipq_update();
811	}
812}
813
814static int
815sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
816{
817	int error, i;
818
819	i = V_maxnipq;
820	error = sysctl_handle_int(oidp, &i, 0, req);
821	if (error || !req->newptr)
822		return (error);
823
824	/*
825	 * XXXRW: Might be a good idea to sanity check the argument and place
826	 * an extreme upper bound.
827	 */
828	if (i < -1)
829		return (EINVAL);
830	V_maxnipq = i;
831	maxnipq_update();
832	return (0);
833}
834
835SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
836    NULL, 0, sysctl_maxnipq, "I",
837    "Maximum number of IPv4 fragment reassembly queue entries");
838
839/*
840 * Take incoming datagram fragment and try to reassemble it into
841 * whole datagram.  If the argument is the first fragment or one
842 * in between the function will return NULL and store the mbuf
843 * in the fragment chain.  If the argument is the last fragment
844 * the packet will be reassembled and the pointer to the new
845 * mbuf returned for further processing.  Only m_tags attached
846 * to the first packet/fragment are preserved.
847 * The IP header is *NOT* adjusted out of iplen.
848 */
849struct mbuf *
850ip_reass(struct mbuf *m)
851{
852	struct ip *ip;
853	struct mbuf *p, *q, *nq, *t;
854	struct ipq *fp = NULL;
855	struct ipqhead *head;
856	int i, hlen, next;
857	u_int8_t ecn, ecn0;
858	u_short hash;
859
860	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
861	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
862		IPSTAT_INC(ips_fragments);
863		IPSTAT_INC(ips_fragdropped);
864		m_freem(m);
865		return (NULL);
866	}
867
868	ip = mtod(m, struct ip *);
869	hlen = ip->ip_hl << 2;
870
871	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
872	head = &V_ipq[hash];
873	IPQ_LOCK();
874
875	/*
876	 * Look for queue of fragments
877	 * of this datagram.
878	 */
879	TAILQ_FOREACH(fp, head, ipq_list)
880		if (ip->ip_id == fp->ipq_id &&
881		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
882		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
883#ifdef MAC
884		    mac_ipq_match(m, fp) &&
885#endif
886		    ip->ip_p == fp->ipq_p)
887			goto found;
888
889	fp = NULL;
890
891	/*
892	 * Attempt to trim the number of allocated fragment queues if it
893	 * exceeds the administrative limit.
894	 */
895	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
896		/*
897		 * drop something from the tail of the current queue
898		 * before proceeding further
899		 */
900		struct ipq *q = TAILQ_LAST(head, ipqhead);
901		if (q == NULL) {   /* gak */
902			for (i = 0; i < IPREASS_NHASH; i++) {
903				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
904				if (r) {
905					IPSTAT_ADD(ips_fragtimeout,
906					    r->ipq_nfrags);
907					ip_freef(&V_ipq[i], r);
908					break;
909				}
910			}
911		} else {
912			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
913			ip_freef(head, q);
914		}
915	}
916
917found:
918	/*
919	 * Adjust ip_len to not reflect header,
920	 * convert offset of this to bytes.
921	 */
922	ip->ip_len -= hlen;
923	if (ip->ip_off & IP_MF) {
924		/*
925		 * Make sure that fragments have a data length
926		 * that's a non-zero multiple of 8 bytes.
927		 */
928		if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
929			IPSTAT_INC(ips_toosmall); /* XXX */
930			goto dropfrag;
931		}
932		m->m_flags |= M_FRAG;
933	} else
934		m->m_flags &= ~M_FRAG;
935	ip->ip_off <<= 3;
936
937
938	/*
939	 * Attempt reassembly; if it succeeds, proceed.
940	 * ip_reass() will return a different mbuf.
941	 */
942	IPSTAT_INC(ips_fragments);
943	m->m_pkthdr.header = ip;
944
945	/* Previous ip_reass() started here. */
946	/*
947	 * Presence of header sizes in mbufs
948	 * would confuse code below.
949	 */
950	m->m_data += hlen;
951	m->m_len -= hlen;
952
953	/*
954	 * If first fragment to arrive, create a reassembly queue.
955	 */
956	if (fp == NULL) {
957		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
958		if (fp == NULL)
959			goto dropfrag;
960#ifdef MAC
961		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
962			uma_zfree(V_ipq_zone, fp);
963			fp = NULL;
964			goto dropfrag;
965		}
966		mac_ipq_create(m, fp);
967#endif
968		TAILQ_INSERT_HEAD(head, fp, ipq_list);
969		V_nipq++;
970		fp->ipq_nfrags = 1;
971		fp->ipq_ttl = IPFRAGTTL;
972		fp->ipq_p = ip->ip_p;
973		fp->ipq_id = ip->ip_id;
974		fp->ipq_src = ip->ip_src;
975		fp->ipq_dst = ip->ip_dst;
976		fp->ipq_frags = m;
977		m->m_nextpkt = NULL;
978		goto done;
979	} else {
980		fp->ipq_nfrags++;
981#ifdef MAC
982		mac_ipq_update(m, fp);
983#endif
984	}
985
986#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
987
988	/*
989	 * Handle ECN by comparing this segment with the first one;
990	 * if CE is set, do not lose CE.
991	 * drop if CE and not-ECT are mixed for the same packet.
992	 */
993	ecn = ip->ip_tos & IPTOS_ECN_MASK;
994	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
995	if (ecn == IPTOS_ECN_CE) {
996		if (ecn0 == IPTOS_ECN_NOTECT)
997			goto dropfrag;
998		if (ecn0 != IPTOS_ECN_CE)
999			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
1000	}
1001	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
1002		goto dropfrag;
1003
1004	/*
1005	 * Find a segment which begins after this one does.
1006	 */
1007	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1008		if (GETIP(q)->ip_off > ip->ip_off)
1009			break;
1010
1011	/*
1012	 * If there is a preceding segment, it may provide some of
1013	 * our data already.  If so, drop the data from the incoming
1014	 * segment.  If it provides all of our data, drop us, otherwise
1015	 * stick new segment in the proper place.
1016	 *
1017	 * If some of the data is dropped from the preceding
1018	 * segment, then it's checksum is invalidated.
1019	 */
1020	if (p) {
1021		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1022		if (i > 0) {
1023			if (i >= ip->ip_len)
1024				goto dropfrag;
1025			m_adj(m, i);
1026			m->m_pkthdr.csum_flags = 0;
1027			ip->ip_off += i;
1028			ip->ip_len -= i;
1029		}
1030		m->m_nextpkt = p->m_nextpkt;
1031		p->m_nextpkt = m;
1032	} else {
1033		m->m_nextpkt = fp->ipq_frags;
1034		fp->ipq_frags = m;
1035	}
1036
1037	/*
1038	 * While we overlap succeeding segments trim them or,
1039	 * if they are completely covered, dequeue them.
1040	 */
1041	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1042	     q = nq) {
1043		i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1044		if (i < GETIP(q)->ip_len) {
1045			GETIP(q)->ip_len -= i;
1046			GETIP(q)->ip_off += i;
1047			m_adj(q, i);
1048			q->m_pkthdr.csum_flags = 0;
1049			break;
1050		}
1051		nq = q->m_nextpkt;
1052		m->m_nextpkt = nq;
1053		IPSTAT_INC(ips_fragdropped);
1054		fp->ipq_nfrags--;
1055		m_freem(q);
1056	}
1057
1058	/*
1059	 * Check for complete reassembly and perform frag per packet
1060	 * limiting.
1061	 *
1062	 * Frag limiting is performed here so that the nth frag has
1063	 * a chance to complete the packet before we drop the packet.
1064	 * As a result, n+1 frags are actually allowed per packet, but
1065	 * only n will ever be stored. (n = maxfragsperpacket.)
1066	 *
1067	 */
1068	next = 0;
1069	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1070		if (GETIP(q)->ip_off != next) {
1071			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1072				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1073				ip_freef(head, fp);
1074			}
1075			goto done;
1076		}
1077		next += GETIP(q)->ip_len;
1078	}
1079	/* Make sure the last packet didn't have the IP_MF flag */
1080	if (p->m_flags & M_FRAG) {
1081		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1082			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1083			ip_freef(head, fp);
1084		}
1085		goto done;
1086	}
1087
1088	/*
1089	 * Reassembly is complete.  Make sure the packet is a sane size.
1090	 */
1091	q = fp->ipq_frags;
1092	ip = GETIP(q);
1093	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1094		IPSTAT_INC(ips_toolong);
1095		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1096		ip_freef(head, fp);
1097		goto done;
1098	}
1099
1100	/*
1101	 * Concatenate fragments.
1102	 */
1103	m = q;
1104	t = m->m_next;
1105	m->m_next = NULL;
1106	m_cat(m, t);
1107	nq = q->m_nextpkt;
1108	q->m_nextpkt = NULL;
1109	for (q = nq; q != NULL; q = nq) {
1110		nq = q->m_nextpkt;
1111		q->m_nextpkt = NULL;
1112		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1113		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1114		m_cat(m, q);
1115	}
1116	/*
1117	 * In order to do checksumming faster we do 'end-around carry' here
1118	 * (and not in for{} loop), though it implies we are not going to
1119	 * reassemble more than 64k fragments.
1120	 */
1121	m->m_pkthdr.csum_data =
1122	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1123#ifdef MAC
1124	mac_ipq_reassemble(fp, m);
1125	mac_ipq_destroy(fp);
1126#endif
1127
1128	/*
1129	 * Create header for new ip packet by modifying header of first
1130	 * packet;  dequeue and discard fragment reassembly header.
1131	 * Make header visible.
1132	 */
1133	ip->ip_len = (ip->ip_hl << 2) + next;
1134	ip->ip_src = fp->ipq_src;
1135	ip->ip_dst = fp->ipq_dst;
1136	TAILQ_REMOVE(head, fp, ipq_list);
1137	V_nipq--;
1138	uma_zfree(V_ipq_zone, fp);
1139	m->m_len += (ip->ip_hl << 2);
1140	m->m_data -= (ip->ip_hl << 2);
1141	/* some debugging cruft by sklower, below, will go away soon */
1142	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1143		m_fixhdr(m);
1144	IPSTAT_INC(ips_reassembled);
1145	IPQ_UNLOCK();
1146	return (m);
1147
1148dropfrag:
1149	IPSTAT_INC(ips_fragdropped);
1150	if (fp != NULL)
1151		fp->ipq_nfrags--;
1152	m_freem(m);
1153done:
1154	IPQ_UNLOCK();
1155	return (NULL);
1156
1157#undef GETIP
1158}
1159
1160/*
1161 * Free a fragment reassembly header and all
1162 * associated datagrams.
1163 */
1164static void
1165ip_freef(struct ipqhead *fhp, struct ipq *fp)
1166{
1167	struct mbuf *q;
1168
1169	IPQ_LOCK_ASSERT();
1170
1171	while (fp->ipq_frags) {
1172		q = fp->ipq_frags;
1173		fp->ipq_frags = q->m_nextpkt;
1174		m_freem(q);
1175	}
1176	TAILQ_REMOVE(fhp, fp, ipq_list);
1177	uma_zfree(V_ipq_zone, fp);
1178	V_nipq--;
1179}
1180
1181/*
1182 * IP timer processing;
1183 * if a timer expires on a reassembly
1184 * queue, discard it.
1185 */
1186void
1187ip_slowtimo(void)
1188{
1189	VNET_ITERATOR_DECL(vnet_iter);
1190	struct ipq *fp;
1191	int i;
1192
1193	VNET_LIST_RLOCK_NOSLEEP();
1194	IPQ_LOCK();
1195	VNET_FOREACH(vnet_iter) {
1196		CURVNET_SET(vnet_iter);
1197		for (i = 0; i < IPREASS_NHASH; i++) {
1198			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1199				struct ipq *fpp;
1200
1201				fpp = fp;
1202				fp = TAILQ_NEXT(fp, ipq_list);
1203				if(--fpp->ipq_ttl == 0) {
1204					IPSTAT_ADD(ips_fragtimeout,
1205					    fpp->ipq_nfrags);
1206					ip_freef(&V_ipq[i], fpp);
1207				}
1208			}
1209		}
1210		/*
1211		 * If we are over the maximum number of fragments
1212		 * (due to the limit being lowered), drain off
1213		 * enough to get down to the new limit.
1214		 */
1215		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1216			for (i = 0; i < IPREASS_NHASH; i++) {
1217				while (V_nipq > V_maxnipq &&
1218				    !TAILQ_EMPTY(&V_ipq[i])) {
1219					IPSTAT_ADD(ips_fragdropped,
1220					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1221					ip_freef(&V_ipq[i],
1222					    TAILQ_FIRST(&V_ipq[i]));
1223				}
1224			}
1225		}
1226		CURVNET_RESTORE();
1227	}
1228	IPQ_UNLOCK();
1229	VNET_LIST_RUNLOCK_NOSLEEP();
1230}
1231
1232/*
1233 * Drain off all datagram fragments.
1234 */
1235static void
1236ip_drain_locked(void)
1237{
1238	int     i;
1239
1240	IPQ_LOCK_ASSERT();
1241
1242	for (i = 0; i < IPREASS_NHASH; i++) {
1243		while(!TAILQ_EMPTY(&V_ipq[i])) {
1244			IPSTAT_ADD(ips_fragdropped,
1245			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1246			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1247		}
1248	}
1249}
1250
1251void
1252ip_drain(void)
1253{
1254	VNET_ITERATOR_DECL(vnet_iter);
1255
1256	VNET_LIST_RLOCK_NOSLEEP();
1257	IPQ_LOCK();
1258	VNET_FOREACH(vnet_iter) {
1259		CURVNET_SET(vnet_iter);
1260		ip_drain_locked();
1261		CURVNET_RESTORE();
1262	}
1263	IPQ_UNLOCK();
1264	VNET_LIST_RUNLOCK_NOSLEEP();
1265	in_rtqdrain();
1266}
1267
1268/*
1269 * The protocol to be inserted into ip_protox[] must be already registered
1270 * in inetsw[], either statically or through pf_proto_register().
1271 */
1272int
1273ipproto_register(short ipproto)
1274{
1275	struct protosw *pr;
1276
1277	/* Sanity checks. */
1278	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1279		return (EPROTONOSUPPORT);
1280
1281	/*
1282	 * The protocol slot must not be occupied by another protocol
1283	 * already.  An index pointing to IPPROTO_RAW is unused.
1284	 */
1285	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1286	if (pr == NULL)
1287		return (EPFNOSUPPORT);
1288	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1289		return (EEXIST);
1290
1291	/* Find the protocol position in inetsw[] and set the index. */
1292	for (pr = inetdomain.dom_protosw;
1293	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1294		if (pr->pr_domain->dom_family == PF_INET &&
1295		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1296			ip_protox[pr->pr_protocol] = pr - inetsw;
1297			return (0);
1298		}
1299	}
1300	return (EPROTONOSUPPORT);
1301}
1302
1303int
1304ipproto_unregister(short ipproto)
1305{
1306	struct protosw *pr;
1307
1308	/* Sanity checks. */
1309	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1310		return (EPROTONOSUPPORT);
1311
1312	/* Check if the protocol was indeed registered. */
1313	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1314	if (pr == NULL)
1315		return (EPFNOSUPPORT);
1316	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1317		return (ENOENT);
1318
1319	/* Reset the protocol slot to IPPROTO_RAW. */
1320	ip_protox[ipproto] = pr - inetsw;
1321	return (0);
1322}
1323
1324/*
1325 * Given address of next destination (final or next hop), return (referenced)
1326 * internet address info of interface to be used to get there.
1327 */
1328struct in_ifaddr *
1329ip_rtaddr(struct in_addr dst, u_int fibnum)
1330{
1331	struct route sro;
1332	struct sockaddr_in *sin;
1333	struct in_ifaddr *ia;
1334
1335	bzero(&sro, sizeof(sro));
1336	sin = (struct sockaddr_in *)&sro.ro_dst;
1337	sin->sin_family = AF_INET;
1338	sin->sin_len = sizeof(*sin);
1339	sin->sin_addr = dst;
1340	in_rtalloc_ign(&sro, 0, fibnum);
1341
1342	if (sro.ro_rt == NULL)
1343		return (NULL);
1344
1345	ia = ifatoia(sro.ro_rt->rt_ifa);
1346	ifa_ref(&ia->ia_ifa);
1347	RTFREE(sro.ro_rt);
1348	return (ia);
1349}
1350
1351u_char inetctlerrmap[PRC_NCMDS] = {
1352	0,		0,		0,		0,
1353	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1354	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1355	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1356	0,		0,		EHOSTUNREACH,	0,
1357	ENOPROTOOPT,	ECONNREFUSED
1358};
1359
1360/*
1361 * Forward a packet.  If some error occurs return the sender
1362 * an icmp packet.  Note we can't always generate a meaningful
1363 * icmp message because icmp doesn't have a large enough repertoire
1364 * of codes and types.
1365 *
1366 * If not forwarding, just drop the packet.  This could be confusing
1367 * if ipforwarding was zero but some routing protocol was advancing
1368 * us as a gateway to somewhere.  However, we must let the routing
1369 * protocol deal with that.
1370 *
1371 * The srcrt parameter indicates whether the packet is being forwarded
1372 * via a source route.
1373 */
1374void
1375ip_forward(struct mbuf *m, int srcrt)
1376{
1377	struct ip *ip = mtod(m, struct ip *);
1378	struct in_ifaddr *ia;
1379	struct mbuf *mcopy;
1380	struct in_addr dest;
1381	struct route ro;
1382	int error, type = 0, code = 0, mtu = 0;
1383
1384	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1385		IPSTAT_INC(ips_cantforward);
1386		m_freem(m);
1387		return;
1388	}
1389#ifdef IPSTEALTH
1390	if (!V_ipstealth) {
1391#endif
1392		if (ip->ip_ttl <= IPTTLDEC) {
1393			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1394			    0, 0);
1395			return;
1396		}
1397#ifdef IPSTEALTH
1398	}
1399#endif
1400
1401	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1402#ifndef IPSEC
1403	/*
1404	 * 'ia' may be NULL if there is no route for this destination.
1405	 * In case of IPsec, Don't discard it just yet, but pass it to
1406	 * ip_output in case of outgoing IPsec policy.
1407	 */
1408	if (!srcrt && ia == NULL) {
1409		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1410		return;
1411	}
1412#endif
1413
1414	/*
1415	 * Save the IP header and at most 8 bytes of the payload,
1416	 * in case we need to generate an ICMP message to the src.
1417	 *
1418	 * XXX this can be optimized a lot by saving the data in a local
1419	 * buffer on the stack (72 bytes at most), and only allocating the
1420	 * mbuf if really necessary. The vast majority of the packets
1421	 * are forwarded without having to send an ICMP back (either
1422	 * because unnecessary, or because rate limited), so we are
1423	 * really we are wasting a lot of work here.
1424	 *
1425	 * We don't use m_copy() because it might return a reference
1426	 * to a shared cluster. Both this function and ip_output()
1427	 * assume exclusive access to the IP header in `m', so any
1428	 * data in a cluster may change before we reach icmp_error().
1429	 */
1430	MGETHDR(mcopy, M_DONTWAIT, m->m_type);
1431	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
1432		/*
1433		 * It's probably ok if the pkthdr dup fails (because
1434		 * the deep copy of the tag chain failed), but for now
1435		 * be conservative and just discard the copy since
1436		 * code below may some day want the tags.
1437		 */
1438		m_free(mcopy);
1439		mcopy = NULL;
1440	}
1441	if (mcopy != NULL) {
1442		mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
1443		mcopy->m_pkthdr.len = mcopy->m_len;
1444		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1445	}
1446
1447#ifdef IPSTEALTH
1448	if (!V_ipstealth) {
1449#endif
1450		ip->ip_ttl -= IPTTLDEC;
1451#ifdef IPSTEALTH
1452	}
1453#endif
1454
1455	/*
1456	 * If forwarding packet using same interface that it came in on,
1457	 * perhaps should send a redirect to sender to shortcut a hop.
1458	 * Only send redirect if source is sending directly to us,
1459	 * and if packet was not source routed (or has any options).
1460	 * Also, don't send redirect if forwarding using a default route
1461	 * or a route modified by a redirect.
1462	 */
1463	dest.s_addr = 0;
1464	if (!srcrt && V_ipsendredirects &&
1465	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1466		struct sockaddr_in *sin;
1467		struct rtentry *rt;
1468
1469		bzero(&ro, sizeof(ro));
1470		sin = (struct sockaddr_in *)&ro.ro_dst;
1471		sin->sin_family = AF_INET;
1472		sin->sin_len = sizeof(*sin);
1473		sin->sin_addr = ip->ip_dst;
1474		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1475
1476		rt = ro.ro_rt;
1477
1478		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1479		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1480#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1481			u_long src = ntohl(ip->ip_src.s_addr);
1482
1483			if (RTA(rt) &&
1484			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1485				if (rt->rt_flags & RTF_GATEWAY)
1486					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1487				else
1488					dest.s_addr = ip->ip_dst.s_addr;
1489				/* Router requirements says to only send host redirects */
1490				type = ICMP_REDIRECT;
1491				code = ICMP_REDIRECT_HOST;
1492			}
1493		}
1494		if (rt)
1495			RTFREE(rt);
1496	}
1497
1498	/*
1499	 * Try to cache the route MTU from ip_output so we can consider it for
1500	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1501	 */
1502	bzero(&ro, sizeof(ro));
1503
1504	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1505
1506	if (error == EMSGSIZE && ro.ro_rt)
1507		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1508	if (ro.ro_rt)
1509		RTFREE(ro.ro_rt);
1510
1511	if (error)
1512		IPSTAT_INC(ips_cantforward);
1513	else {
1514		IPSTAT_INC(ips_forward);
1515		if (type)
1516			IPSTAT_INC(ips_redirectsent);
1517		else {
1518			if (mcopy)
1519				m_freem(mcopy);
1520			if (ia != NULL)
1521				ifa_free(&ia->ia_ifa);
1522			return;
1523		}
1524	}
1525	if (mcopy == NULL) {
1526		if (ia != NULL)
1527			ifa_free(&ia->ia_ifa);
1528		return;
1529	}
1530
1531	switch (error) {
1532
1533	case 0:				/* forwarded, but need redirect */
1534		/* type, code set above */
1535		break;
1536
1537	case ENETUNREACH:
1538	case EHOSTUNREACH:
1539	case ENETDOWN:
1540	case EHOSTDOWN:
1541	default:
1542		type = ICMP_UNREACH;
1543		code = ICMP_UNREACH_HOST;
1544		break;
1545
1546	case EMSGSIZE:
1547		type = ICMP_UNREACH;
1548		code = ICMP_UNREACH_NEEDFRAG;
1549
1550#ifdef IPSEC
1551		/*
1552		 * If IPsec is configured for this path,
1553		 * override any possibly mtu value set by ip_output.
1554		 */
1555		mtu = ip_ipsec_mtu(mcopy, mtu);
1556#endif /* IPSEC */
1557		/*
1558		 * If the MTU was set before make sure we are below the
1559		 * interface MTU.
1560		 * If the MTU wasn't set before use the interface mtu or
1561		 * fall back to the next smaller mtu step compared to the
1562		 * current packet size.
1563		 */
1564		if (mtu != 0) {
1565			if (ia != NULL)
1566				mtu = min(mtu, ia->ia_ifp->if_mtu);
1567		} else {
1568			if (ia != NULL)
1569				mtu = ia->ia_ifp->if_mtu;
1570			else
1571				mtu = ip_next_mtu(ip->ip_len, 0);
1572		}
1573		IPSTAT_INC(ips_cantfrag);
1574		break;
1575
1576	case ENOBUFS:
1577		/*
1578		 * A router should not generate ICMP_SOURCEQUENCH as
1579		 * required in RFC1812 Requirements for IP Version 4 Routers.
1580		 * Source quench could be a big problem under DoS attacks,
1581		 * or if the underlying interface is rate-limited.
1582		 * Those who need source quench packets may re-enable them
1583		 * via the net.inet.ip.sendsourcequench sysctl.
1584		 */
1585		if (V_ip_sendsourcequench == 0) {
1586			m_freem(mcopy);
1587			if (ia != NULL)
1588				ifa_free(&ia->ia_ifa);
1589			return;
1590		} else {
1591			type = ICMP_SOURCEQUENCH;
1592			code = 0;
1593		}
1594		break;
1595
1596	case EACCES:			/* ipfw denied packet */
1597		m_freem(mcopy);
1598		if (ia != NULL)
1599			ifa_free(&ia->ia_ifa);
1600		return;
1601	}
1602	if (ia != NULL)
1603		ifa_free(&ia->ia_ifa);
1604	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1605}
1606
1607void
1608ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1609    struct mbuf *m)
1610{
1611
1612	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1613		struct bintime bt;
1614
1615		bintime(&bt);
1616		if (inp->inp_socket->so_options & SO_BINTIME) {
1617			*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
1618			SCM_BINTIME, SOL_SOCKET);
1619			if (*mp)
1620				mp = &(*mp)->m_next;
1621		}
1622		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1623			struct timeval tv;
1624
1625			bintime2timeval(&bt, &tv);
1626			*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1627				SCM_TIMESTAMP, SOL_SOCKET);
1628			if (*mp)
1629				mp = &(*mp)->m_next;
1630		}
1631	}
1632	if (inp->inp_flags & INP_RECVDSTADDR) {
1633		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1634		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1635		if (*mp)
1636			mp = &(*mp)->m_next;
1637	}
1638	if (inp->inp_flags & INP_RECVTTL) {
1639		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1640		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1641		if (*mp)
1642			mp = &(*mp)->m_next;
1643	}
1644#ifdef notyet
1645	/* XXX
1646	 * Moving these out of udp_input() made them even more broken
1647	 * than they already were.
1648	 */
1649	/* options were tossed already */
1650	if (inp->inp_flags & INP_RECVOPTS) {
1651		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1652		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1653		if (*mp)
1654			mp = &(*mp)->m_next;
1655	}
1656	/* ip_srcroute doesn't do what we want here, need to fix */
1657	if (inp->inp_flags & INP_RECVRETOPTS) {
1658		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1659		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1660		if (*mp)
1661			mp = &(*mp)->m_next;
1662	}
1663#endif
1664	if (inp->inp_flags & INP_RECVIF) {
1665		struct ifnet *ifp;
1666		struct sdlbuf {
1667			struct sockaddr_dl sdl;
1668			u_char	pad[32];
1669		} sdlbuf;
1670		struct sockaddr_dl *sdp;
1671		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1672
1673		if (((ifp = m->m_pkthdr.rcvif))
1674		&& ( ifp->if_index && (ifp->if_index <= V_if_index))) {
1675			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1676			/*
1677			 * Change our mind and don't try copy.
1678			 */
1679			if ((sdp->sdl_family != AF_LINK)
1680			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1681				goto makedummy;
1682			}
1683			bcopy(sdp, sdl2, sdp->sdl_len);
1684		} else {
1685makedummy:
1686			sdl2->sdl_len
1687				= offsetof(struct sockaddr_dl, sdl_data[0]);
1688			sdl2->sdl_family = AF_LINK;
1689			sdl2->sdl_index = 0;
1690			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1691		}
1692		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1693			IP_RECVIF, IPPROTO_IP);
1694		if (*mp)
1695			mp = &(*mp)->m_next;
1696	}
1697}
1698
1699/*
1700 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1701 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1702 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1703 * compiled.
1704 */
1705static VNET_DEFINE(int, ip_rsvp_on);
1706VNET_DEFINE(struct socket *, ip_rsvpd);
1707
1708#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1709
1710int
1711ip_rsvp_init(struct socket *so)
1712{
1713
1714	if (so->so_type != SOCK_RAW ||
1715	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1716		return EOPNOTSUPP;
1717
1718	if (V_ip_rsvpd != NULL)
1719		return EADDRINUSE;
1720
1721	V_ip_rsvpd = so;
1722	/*
1723	 * This may seem silly, but we need to be sure we don't over-increment
1724	 * the RSVP counter, in case something slips up.
1725	 */
1726	if (!V_ip_rsvp_on) {
1727		V_ip_rsvp_on = 1;
1728		V_rsvp_on++;
1729	}
1730
1731	return 0;
1732}
1733
1734int
1735ip_rsvp_done(void)
1736{
1737
1738	V_ip_rsvpd = NULL;
1739	/*
1740	 * This may seem silly, but we need to be sure we don't over-decrement
1741	 * the RSVP counter, in case something slips up.
1742	 */
1743	if (V_ip_rsvp_on) {
1744		V_ip_rsvp_on = 0;
1745		V_rsvp_on--;
1746	}
1747	return 0;
1748}
1749
1750void
1751rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1752{
1753
1754	if (rsvp_input_p) { /* call the real one if loaded */
1755		rsvp_input_p(m, off);
1756		return;
1757	}
1758
1759	/* Can still get packets with rsvp_on = 0 if there is a local member
1760	 * of the group to which the RSVP packet is addressed.  But in this
1761	 * case we want to throw the packet away.
1762	 */
1763
1764	if (!V_rsvp_on) {
1765		m_freem(m);
1766		return;
1767	}
1768
1769	if (V_ip_rsvpd != NULL) {
1770		rip_input(m, off);
1771		return;
1772	}
1773	/* Drop the packet */
1774	m_freem(m);
1775}
1776