ieee80211_output.c revision 195849
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 195849 2009-07-24 15:37:02Z sam $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/endian.h>
39
40#include <sys/socket.h>
41
42#include <net/bpf.h>
43#include <net/ethernet.h>
44#include <net/if.h>
45#include <net/if_llc.h>
46#include <net/if_media.h>
47#include <net/if_vlan_var.h>
48
49#include <net80211/ieee80211_var.h>
50#include <net80211/ieee80211_regdomain.h>
51#ifdef IEEE80211_SUPPORT_SUPERG
52#include <net80211/ieee80211_superg.h>
53#endif
54#ifdef IEEE80211_SUPPORT_TDMA
55#include <net80211/ieee80211_tdma.h>
56#endif
57#include <net80211/ieee80211_wds.h>
58#include <net80211/ieee80211_mesh.h>
59
60#ifdef INET
61#include <netinet/in.h>
62#include <netinet/if_ether.h>
63#include <netinet/in_systm.h>
64#include <netinet/ip.h>
65#endif
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69
70#include <security/mac/mac_framework.h>
71
72#define	ETHER_HEADER_COPY(dst, src) \
73	memcpy(dst, src, sizeof(struct ether_header))
74
75/* unalligned little endian access */
76#define LE_WRITE_2(p, v) do {				\
77	((uint8_t *)(p))[0] = (v) & 0xff;		\
78	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
79} while (0)
80#define LE_WRITE_4(p, v) do {				\
81	((uint8_t *)(p))[0] = (v) & 0xff;		\
82	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
84	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
85} while (0)
86
87static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
88	u_int hdrsize, u_int ciphdrsize, u_int mtu);
89static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
90
91#ifdef IEEE80211_DEBUG
92/*
93 * Decide if an outbound management frame should be
94 * printed when debugging is enabled.  This filters some
95 * of the less interesting frames that come frequently
96 * (e.g. beacons).
97 */
98static __inline int
99doprint(struct ieee80211vap *vap, int subtype)
100{
101	switch (subtype) {
102	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
103		return (vap->iv_opmode == IEEE80211_M_IBSS);
104	}
105	return 1;
106}
107#endif
108
109/*
110 * Start method for vap's.  All packets from the stack come
111 * through here.  We handle common processing of the packets
112 * before dispatching them to the underlying device.
113 */
114void
115ieee80211_start(struct ifnet *ifp)
116{
117#define	IS_DWDS(vap) \
118	(vap->iv_opmode == IEEE80211_M_WDS && \
119	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
120	struct ieee80211vap *vap = ifp->if_softc;
121	struct ieee80211com *ic = vap->iv_ic;
122	struct ifnet *parent = ic->ic_ifp;
123	struct ieee80211_node *ni;
124	struct mbuf *m;
125	struct ether_header *eh;
126	int error;
127
128	/* NB: parent must be up and running */
129	if (!IFNET_IS_UP_RUNNING(parent)) {
130		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
131		    "%s: ignore queue, parent %s not up+running\n",
132		    __func__, parent->if_xname);
133		/* XXX stat */
134		return;
135	}
136	if (vap->iv_state == IEEE80211_S_SLEEP) {
137		/*
138		 * In power save, wakeup device for transmit.
139		 */
140		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
141		return;
142	}
143	/*
144	 * No data frames go out unless we're running.
145	 * Note in particular this covers CAC and CSA
146	 * states (though maybe we should check muting
147	 * for CSA).
148	 */
149	if (vap->iv_state != IEEE80211_S_RUN) {
150		IEEE80211_LOCK(ic);
151		/* re-check under the com lock to avoid races */
152		if (vap->iv_state != IEEE80211_S_RUN) {
153			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
154			    "%s: ignore queue, in %s state\n",
155			    __func__, ieee80211_state_name[vap->iv_state]);
156			vap->iv_stats.is_tx_badstate++;
157			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
158			IEEE80211_UNLOCK(ic);
159			return;
160		}
161		IEEE80211_UNLOCK(ic);
162	}
163	for (;;) {
164		IFQ_DEQUEUE(&ifp->if_snd, m);
165		if (m == NULL)
166			break;
167		/*
168		 * Sanitize mbuf flags for net80211 use.  We cannot
169		 * clear M_PWR_SAV or M_MORE_DATA because these may
170		 * be set for frames that are re-submitted from the
171		 * power save queue.
172		 *
173		 * NB: This must be done before ieee80211_classify as
174		 *     it marks EAPOL in frames with M_EAPOL.
175		 */
176		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
177		/*
178		 * Cancel any background scan.
179		 */
180		if (ic->ic_flags & IEEE80211_F_SCAN)
181			ieee80211_cancel_anyscan(vap);
182		/*
183		 * Find the node for the destination so we can do
184		 * things like power save and fast frames aggregation.
185		 *
186		 * NB: past this point various code assumes the first
187		 *     mbuf has the 802.3 header present (and contiguous).
188		 */
189		ni = NULL;
190		if (m->m_len < sizeof(struct ether_header) &&
191		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
192			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
193			    "discard frame, %s\n", "m_pullup failed");
194			vap->iv_stats.is_tx_nobuf++;	/* XXX */
195			ifp->if_oerrors++;
196			continue;
197		}
198		eh = mtod(m, struct ether_header *);
199		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
200			if (IS_DWDS(vap)) {
201				/*
202				 * Only unicast frames from the above go out
203				 * DWDS vaps; multicast frames are handled by
204				 * dispatching the frame as it comes through
205				 * the AP vap (see below).
206				 */
207				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
208				    eh->ether_dhost, "mcast", "%s", "on DWDS");
209				vap->iv_stats.is_dwds_mcast++;
210				m_freem(m);
211				continue;
212			}
213			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
214				/*
215				 * Spam DWDS vap's w/ multicast traffic.
216				 */
217				/* XXX only if dwds in use? */
218				ieee80211_dwds_mcast(vap, m);
219			}
220		}
221#ifdef IEEE80211_SUPPORT_MESH
222		if (vap->iv_opmode != IEEE80211_M_MBSS) {
223#endif
224			ni = ieee80211_find_txnode(vap, eh->ether_dhost);
225			if (ni == NULL) {
226				/* NB: ieee80211_find_txnode does stat+msg */
227				ifp->if_oerrors++;
228				m_freem(m);
229				continue;
230			}
231			if (ni->ni_associd == 0 &&
232			    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
233				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
234				    eh->ether_dhost, NULL,
235				    "sta not associated (type 0x%04x)",
236				    htons(eh->ether_type));
237				vap->iv_stats.is_tx_notassoc++;
238				ifp->if_oerrors++;
239				m_freem(m);
240				ieee80211_free_node(ni);
241				continue;
242			}
243#ifdef IEEE80211_SUPPORT_MESH
244		} else {
245			if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
246				/*
247				 * Proxy station only if configured.
248				 */
249				if (!ieee80211_mesh_isproxyena(vap)) {
250					IEEE80211_DISCARD_MAC(vap,
251					    IEEE80211_MSG_OUTPUT |
252						IEEE80211_MSG_MESH,
253					    eh->ether_dhost, NULL,
254					    "%s", "proxy not enabled");
255					vap->iv_stats.is_mesh_notproxy++;
256					ifp->if_oerrors++;
257					m_freem(m);
258					continue;
259				}
260				ieee80211_mesh_proxy_check(vap, eh->ether_shost);
261			}
262			ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
263			if (ni == NULL) {
264				/*
265				 * NB: ieee80211_mesh_discover holds/disposes
266				 * frame (e.g. queueing on path discovery).
267				 */
268				ifp->if_oerrors++;
269				continue;
270			}
271		}
272#endif
273		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
274		    (m->m_flags & M_PWR_SAV) == 0) {
275			/*
276			 * Station in power save mode; pass the frame
277			 * to the 802.11 layer and continue.  We'll get
278			 * the frame back when the time is right.
279			 * XXX lose WDS vap linkage?
280			 */
281			(void) ieee80211_pwrsave(ni, m);
282			ieee80211_free_node(ni);
283			continue;
284		}
285		/* calculate priority so drivers can find the tx queue */
286		if (ieee80211_classify(ni, m)) {
287			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
288			    eh->ether_dhost, NULL,
289			    "%s", "classification failure");
290			vap->iv_stats.is_tx_classify++;
291			ifp->if_oerrors++;
292			m_freem(m);
293			ieee80211_free_node(ni);
294			continue;
295		}
296		/*
297		 * Stash the node pointer.  Note that we do this after
298		 * any call to ieee80211_dwds_mcast because that code
299		 * uses any existing value for rcvif to identify the
300		 * interface it (might have been) received on.
301		 */
302		m->m_pkthdr.rcvif = (void *)ni;
303
304		BPF_MTAP(ifp, m);		/* 802.3 tx */
305
306		/*
307		 * Check if A-MPDU tx aggregation is setup or if we
308		 * should try to enable it.  The sta must be associated
309		 * with HT and A-MPDU enabled for use.  When the policy
310		 * routine decides we should enable A-MPDU we issue an
311		 * ADDBA request and wait for a reply.  The frame being
312		 * encapsulated will go out w/o using A-MPDU, or possibly
313		 * it might be collected by the driver and held/retransmit.
314		 * The default ic_ampdu_enable routine handles staggering
315		 * ADDBA requests in case the receiver NAK's us or we are
316		 * otherwise unable to establish a BA stream.
317		 */
318		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
319		    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
320		    (m->m_flags & M_EAPOL) == 0) {
321			const int ac = M_WME_GETAC(m);
322			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
323
324			ieee80211_txampdu_count_packet(tap);
325			if (IEEE80211_AMPDU_RUNNING(tap)) {
326				/*
327				 * Operational, mark frame for aggregation.
328				 *
329				 * XXX do tx aggregation here
330				 */
331				m->m_flags |= M_AMPDU_MPDU;
332			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
333			    ic->ic_ampdu_enable(ni, tap)) {
334				/*
335				 * Not negotiated yet, request service.
336				 */
337				ieee80211_ampdu_request(ni, tap);
338				/* XXX hold frame for reply? */
339			}
340		}
341#ifdef IEEE80211_SUPPORT_SUPERG
342		else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
343			m = ieee80211_ff_check(ni, m);
344			if (m == NULL) {
345				/* NB: any ni ref held on stageq */
346				continue;
347			}
348		}
349#endif /* IEEE80211_SUPPORT_SUPERG */
350		if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
351			/*
352			 * Encapsulate the packet in prep for transmission.
353			 */
354			m = ieee80211_encap(vap, ni, m);
355			if (m == NULL) {
356				/* NB: stat+msg handled in ieee80211_encap */
357				ieee80211_free_node(ni);
358				continue;
359			}
360		}
361
362		error = parent->if_transmit(parent, m);
363		if (error != 0) {
364			/* NB: IFQ_HANDOFF reclaims mbuf */
365			ieee80211_free_node(ni);
366		} else {
367			ifp->if_opackets++;
368		}
369		ic->ic_lastdata = ticks;
370	}
371#undef IS_DWDS
372}
373
374/*
375 * 802.11 output routine. This is (currently) used only to
376 * connect bpf write calls to the 802.11 layer for injecting
377 * raw 802.11 frames.
378 */
379int
380ieee80211_output(struct ifnet *ifp, struct mbuf *m,
381	struct sockaddr *dst, struct route *ro)
382{
383#define senderr(e) do { error = (e); goto bad;} while (0)
384	struct ieee80211_node *ni = NULL;
385	struct ieee80211vap *vap;
386	struct ieee80211_frame *wh;
387	int error;
388
389	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
390		/*
391		 * Short-circuit requests if the vap is marked OACTIVE
392		 * as this can happen because a packet came down through
393		 * ieee80211_start before the vap entered RUN state in
394		 * which case it's ok to just drop the frame.  This
395		 * should not be necessary but callers of if_output don't
396		 * check OACTIVE.
397		 */
398		senderr(ENETDOWN);
399	}
400	vap = ifp->if_softc;
401	/*
402	 * Hand to the 802.3 code if not tagged as
403	 * a raw 802.11 frame.
404	 */
405	if (dst->sa_family != AF_IEEE80211)
406		return vap->iv_output(ifp, m, dst, ro);
407#ifdef MAC
408	error = mac_ifnet_check_transmit(ifp, m);
409	if (error)
410		senderr(error);
411#endif
412	if (ifp->if_flags & IFF_MONITOR)
413		senderr(ENETDOWN);
414	if (!IFNET_IS_UP_RUNNING(ifp))
415		senderr(ENETDOWN);
416	if (vap->iv_state == IEEE80211_S_CAC) {
417		IEEE80211_DPRINTF(vap,
418		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
419		    "block %s frame in CAC state\n", "raw data");
420		vap->iv_stats.is_tx_badstate++;
421		senderr(EIO);		/* XXX */
422	}
423	/* XXX bypass bridge, pfil, carp, etc. */
424
425	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
426		senderr(EIO);	/* XXX */
427	wh = mtod(m, struct ieee80211_frame *);
428	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
429	    IEEE80211_FC0_VERSION_0)
430		senderr(EIO);	/* XXX */
431
432	/* locate destination node */
433	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
434	case IEEE80211_FC1_DIR_NODS:
435	case IEEE80211_FC1_DIR_FROMDS:
436		ni = ieee80211_find_txnode(vap, wh->i_addr1);
437		break;
438	case IEEE80211_FC1_DIR_TODS:
439	case IEEE80211_FC1_DIR_DSTODS:
440		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
441			senderr(EIO);	/* XXX */
442		ni = ieee80211_find_txnode(vap, wh->i_addr3);
443		break;
444	default:
445		senderr(EIO);	/* XXX */
446	}
447	if (ni == NULL) {
448		/*
449		 * Permit packets w/ bpf params through regardless
450		 * (see below about sa_len).
451		 */
452		if (dst->sa_len == 0)
453			senderr(EHOSTUNREACH);
454		ni = ieee80211_ref_node(vap->iv_bss);
455	}
456
457	/*
458	 * Sanitize mbuf for net80211 flags leaked from above.
459	 *
460	 * NB: This must be done before ieee80211_classify as
461	 *     it marks EAPOL in frames with M_EAPOL.
462	 */
463	m->m_flags &= ~M_80211_TX;
464
465	/* calculate priority so drivers can find the tx queue */
466	/* XXX assumes an 802.3 frame */
467	if (ieee80211_classify(ni, m))
468		senderr(EIO);		/* XXX */
469
470	ifp->if_opackets++;
471	IEEE80211_NODE_STAT(ni, tx_data);
472	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
473		IEEE80211_NODE_STAT(ni, tx_mcast);
474		m->m_flags |= M_MCAST;
475	} else
476		IEEE80211_NODE_STAT(ni, tx_ucast);
477	/* NB: ieee80211_encap does not include 802.11 header */
478	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
479
480	/*
481	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
482	 * present by setting the sa_len field of the sockaddr (yes,
483	 * this is a hack).
484	 * NB: we assume sa_data is suitably aligned to cast.
485	 */
486	return vap->iv_ic->ic_raw_xmit(ni, m,
487	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
488		dst->sa_data : NULL));
489bad:
490	if (m != NULL)
491		m_freem(m);
492	if (ni != NULL)
493		ieee80211_free_node(ni);
494	ifp->if_oerrors++;
495	return error;
496#undef senderr
497}
498
499/*
500 * Set the direction field and address fields of an outgoing
501 * frame.  Note this should be called early on in constructing
502 * a frame as it sets i_fc[1]; other bits can then be or'd in.
503 */
504void
505ieee80211_send_setup(
506	struct ieee80211_node *ni,
507	struct mbuf *m,
508	int type, int tid,
509	const uint8_t sa[IEEE80211_ADDR_LEN],
510	const uint8_t da[IEEE80211_ADDR_LEN],
511	const uint8_t bssid[IEEE80211_ADDR_LEN])
512{
513#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
514	struct ieee80211vap *vap = ni->ni_vap;
515	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
516	ieee80211_seq seqno;
517
518	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
519	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
520		switch (vap->iv_opmode) {
521		case IEEE80211_M_STA:
522			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
523			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
524			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
525			IEEE80211_ADDR_COPY(wh->i_addr3, da);
526			break;
527		case IEEE80211_M_IBSS:
528		case IEEE80211_M_AHDEMO:
529			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
530			IEEE80211_ADDR_COPY(wh->i_addr1, da);
531			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
532			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
533			break;
534		case IEEE80211_M_HOSTAP:
535			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
536			IEEE80211_ADDR_COPY(wh->i_addr1, da);
537			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
538			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
539			break;
540		case IEEE80211_M_WDS:
541			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
542			IEEE80211_ADDR_COPY(wh->i_addr1, da);
543			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
544			IEEE80211_ADDR_COPY(wh->i_addr3, da);
545			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
546			break;
547		case IEEE80211_M_MBSS:
548#ifdef IEEE80211_SUPPORT_MESH
549			/* XXX add support for proxied addresses */
550			if (IEEE80211_IS_MULTICAST(da)) {
551				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
552				/* XXX next hop */
553				IEEE80211_ADDR_COPY(wh->i_addr1, da);
554				IEEE80211_ADDR_COPY(wh->i_addr2,
555				    vap->iv_myaddr);
556			} else {
557				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
558				IEEE80211_ADDR_COPY(wh->i_addr1, da);
559				IEEE80211_ADDR_COPY(wh->i_addr2,
560				    vap->iv_myaddr);
561				IEEE80211_ADDR_COPY(wh->i_addr3, da);
562				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
563			}
564#endif
565			break;
566		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
567			break;
568		}
569	} else {
570		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
571		IEEE80211_ADDR_COPY(wh->i_addr1, da);
572		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
573#ifdef IEEE80211_SUPPORT_MESH
574		if (vap->iv_opmode == IEEE80211_M_MBSS)
575			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
576		else
577#endif
578			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
579	}
580	*(uint16_t *)&wh->i_dur[0] = 0;
581
582	seqno = ni->ni_txseqs[tid]++;
583	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
584	M_SEQNO_SET(m, seqno);
585
586	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
587		m->m_flags |= M_MCAST;
588#undef WH4
589}
590
591/*
592 * Send a management frame to the specified node.  The node pointer
593 * must have a reference as the pointer will be passed to the driver
594 * and potentially held for a long time.  If the frame is successfully
595 * dispatched to the driver, then it is responsible for freeing the
596 * reference (and potentially free'ing up any associated storage);
597 * otherwise deal with reclaiming any reference (on error).
598 */
599int
600ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
601	struct ieee80211_bpf_params *params)
602{
603	struct ieee80211vap *vap = ni->ni_vap;
604	struct ieee80211com *ic = ni->ni_ic;
605	struct ieee80211_frame *wh;
606
607	KASSERT(ni != NULL, ("null node"));
608
609	if (vap->iv_state == IEEE80211_S_CAC) {
610		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
611		    ni, "block %s frame in CAC state",
612			ieee80211_mgt_subtype_name[
613			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
614				IEEE80211_FC0_SUBTYPE_SHIFT]);
615		vap->iv_stats.is_tx_badstate++;
616		ieee80211_free_node(ni);
617		m_freem(m);
618		return EIO;		/* XXX */
619	}
620
621	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
622	if (m == NULL) {
623		ieee80211_free_node(ni);
624		return ENOMEM;
625	}
626
627	wh = mtod(m, struct ieee80211_frame *);
628	ieee80211_send_setup(ni, m,
629	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
630	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
631	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
632		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
633		    "encrypting frame (%s)", __func__);
634		wh->i_fc[1] |= IEEE80211_FC1_WEP;
635	}
636	m->m_flags |= M_ENCAP;		/* mark encapsulated */
637
638	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
639	M_WME_SETAC(m, params->ibp_pri);
640
641#ifdef IEEE80211_DEBUG
642	/* avoid printing too many frames */
643	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
644	    ieee80211_msg_dumppkts(vap)) {
645		printf("[%s] send %s on channel %u\n",
646		    ether_sprintf(wh->i_addr1),
647		    ieee80211_mgt_subtype_name[
648			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
649				IEEE80211_FC0_SUBTYPE_SHIFT],
650		    ieee80211_chan2ieee(ic, ic->ic_curchan));
651	}
652#endif
653	IEEE80211_NODE_STAT(ni, tx_mgmt);
654
655	return ic->ic_raw_xmit(ni, m, params);
656}
657
658/*
659 * Send a null data frame to the specified node.  If the station
660 * is setup for QoS then a QoS Null Data frame is constructed.
661 * If this is a WDS station then a 4-address frame is constructed.
662 *
663 * NB: the caller is assumed to have setup a node reference
664 *     for use; this is necessary to deal with a race condition
665 *     when probing for inactive stations.  Like ieee80211_mgmt_output
666 *     we must cleanup any node reference on error;  however we
667 *     can safely just unref it as we know it will never be the
668 *     last reference to the node.
669 */
670int
671ieee80211_send_nulldata(struct ieee80211_node *ni)
672{
673	struct ieee80211vap *vap = ni->ni_vap;
674	struct ieee80211com *ic = ni->ni_ic;
675	struct mbuf *m;
676	struct ieee80211_frame *wh;
677	int hdrlen;
678	uint8_t *frm;
679
680	if (vap->iv_state == IEEE80211_S_CAC) {
681		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
682		    ni, "block %s frame in CAC state", "null data");
683		ieee80211_unref_node(&ni);
684		vap->iv_stats.is_tx_badstate++;
685		return EIO;		/* XXX */
686	}
687
688	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
689		hdrlen = sizeof(struct ieee80211_qosframe);
690	else
691		hdrlen = sizeof(struct ieee80211_frame);
692	/* NB: only WDS vap's get 4-address frames */
693	if (vap->iv_opmode == IEEE80211_M_WDS)
694		hdrlen += IEEE80211_ADDR_LEN;
695	if (ic->ic_flags & IEEE80211_F_DATAPAD)
696		hdrlen = roundup(hdrlen, sizeof(uint32_t));
697
698	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
699	if (m == NULL) {
700		/* XXX debug msg */
701		ieee80211_unref_node(&ni);
702		vap->iv_stats.is_tx_nobuf++;
703		return ENOMEM;
704	}
705	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
706	    ("leading space %zd", M_LEADINGSPACE(m)));
707	M_PREPEND(m, hdrlen, M_DONTWAIT);
708	if (m == NULL) {
709		/* NB: cannot happen */
710		ieee80211_free_node(ni);
711		return ENOMEM;
712	}
713
714	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
715	if (ni->ni_flags & IEEE80211_NODE_QOS) {
716		const int tid = WME_AC_TO_TID(WME_AC_BE);
717		uint8_t *qos;
718
719		ieee80211_send_setup(ni, m,
720		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
721		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
722
723		if (vap->iv_opmode == IEEE80211_M_WDS)
724			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
725		else
726			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
727		qos[0] = tid & IEEE80211_QOS_TID;
728		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
729			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
730		qos[1] = 0;
731	} else {
732		ieee80211_send_setup(ni, m,
733		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
734		    IEEE80211_NONQOS_TID,
735		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
736	}
737	if (vap->iv_opmode != IEEE80211_M_WDS) {
738		/* NB: power management bit is never sent by an AP */
739		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
740		    vap->iv_opmode != IEEE80211_M_HOSTAP)
741			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
742	}
743	m->m_len = m->m_pkthdr.len = hdrlen;
744	m->m_flags |= M_ENCAP;		/* mark encapsulated */
745
746	M_WME_SETAC(m, WME_AC_BE);
747
748	IEEE80211_NODE_STAT(ni, tx_data);
749
750	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
751	    "send %snull data frame on channel %u, pwr mgt %s",
752	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
753	    ieee80211_chan2ieee(ic, ic->ic_curchan),
754	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
755
756	return ic->ic_raw_xmit(ni, m, NULL);
757}
758
759/*
760 * Assign priority to a frame based on any vlan tag assigned
761 * to the station and/or any Diffserv setting in an IP header.
762 * Finally, if an ACM policy is setup (in station mode) it's
763 * applied.
764 */
765int
766ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
767{
768	const struct ether_header *eh = mtod(m, struct ether_header *);
769	int v_wme_ac, d_wme_ac, ac;
770
771	/*
772	 * Always promote PAE/EAPOL frames to high priority.
773	 */
774	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
775		/* NB: mark so others don't need to check header */
776		m->m_flags |= M_EAPOL;
777		ac = WME_AC_VO;
778		goto done;
779	}
780	/*
781	 * Non-qos traffic goes to BE.
782	 */
783	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
784		ac = WME_AC_BE;
785		goto done;
786	}
787
788	/*
789	 * If node has a vlan tag then all traffic
790	 * to it must have a matching tag.
791	 */
792	v_wme_ac = 0;
793	if (ni->ni_vlan != 0) {
794		 if ((m->m_flags & M_VLANTAG) == 0) {
795			IEEE80211_NODE_STAT(ni, tx_novlantag);
796			return 1;
797		}
798		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
799		    EVL_VLANOFTAG(ni->ni_vlan)) {
800			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
801			return 1;
802		}
803		/* map vlan priority to AC */
804		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
805	}
806
807	/* XXX m_copydata may be too slow for fast path */
808#ifdef INET
809	if (eh->ether_type == htons(ETHERTYPE_IP)) {
810		uint8_t tos;
811		/*
812		 * IP frame, map the DSCP bits from the TOS field.
813		 */
814		/* NB: ip header may not be in first mbuf */
815		m_copydata(m, sizeof(struct ether_header) +
816		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
817		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
818		d_wme_ac = TID_TO_WME_AC(tos);
819	} else {
820#endif /* INET */
821#ifdef INET6
822	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
823		uint32_t flow;
824		uint8_t tos;
825		/*
826		 * IPv6 frame, map the DSCP bits from the TOS field.
827		 */
828		m_copydata(m, sizeof(struct ether_header) +
829		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
830		    (caddr_t) &flow);
831		tos = (uint8_t)(ntohl(flow) >> 20);
832		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
833		d_wme_ac = TID_TO_WME_AC(tos);
834	} else {
835#endif /* INET6 */
836		d_wme_ac = WME_AC_BE;
837#ifdef INET6
838	}
839#endif
840#ifdef INET
841	}
842#endif
843	/*
844	 * Use highest priority AC.
845	 */
846	if (v_wme_ac > d_wme_ac)
847		ac = v_wme_ac;
848	else
849		ac = d_wme_ac;
850
851	/*
852	 * Apply ACM policy.
853	 */
854	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
855		static const int acmap[4] = {
856			WME_AC_BK,	/* WME_AC_BE */
857			WME_AC_BK,	/* WME_AC_BK */
858			WME_AC_BE,	/* WME_AC_VI */
859			WME_AC_VI,	/* WME_AC_VO */
860		};
861		struct ieee80211com *ic = ni->ni_ic;
862
863		while (ac != WME_AC_BK &&
864		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
865			ac = acmap[ac];
866	}
867done:
868	M_WME_SETAC(m, ac);
869	return 0;
870}
871
872/*
873 * Insure there is sufficient contiguous space to encapsulate the
874 * 802.11 data frame.  If room isn't already there, arrange for it.
875 * Drivers and cipher modules assume we have done the necessary work
876 * and fail rudely if they don't find the space they need.
877 */
878struct mbuf *
879ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
880	struct ieee80211_key *key, struct mbuf *m)
881{
882#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
883	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
884
885	if (key != NULL) {
886		/* XXX belongs in crypto code? */
887		needed_space += key->wk_cipher->ic_header;
888		/* XXX frags */
889		/*
890		 * When crypto is being done in the host we must insure
891		 * the data are writable for the cipher routines; clone
892		 * a writable mbuf chain.
893		 * XXX handle SWMIC specially
894		 */
895		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
896			m = m_unshare(m, M_NOWAIT);
897			if (m == NULL) {
898				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
899				    "%s: cannot get writable mbuf\n", __func__);
900				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
901				return NULL;
902			}
903		}
904	}
905	/*
906	 * We know we are called just before stripping an Ethernet
907	 * header and prepending an LLC header.  This means we know
908	 * there will be
909	 *	sizeof(struct ether_header) - sizeof(struct llc)
910	 * bytes recovered to which we need additional space for the
911	 * 802.11 header and any crypto header.
912	 */
913	/* XXX check trailing space and copy instead? */
914	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
915		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
916		if (n == NULL) {
917			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
918			    "%s: cannot expand storage\n", __func__);
919			vap->iv_stats.is_tx_nobuf++;
920			m_freem(m);
921			return NULL;
922		}
923		KASSERT(needed_space <= MHLEN,
924		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
925		/*
926		 * Setup new mbuf to have leading space to prepend the
927		 * 802.11 header and any crypto header bits that are
928		 * required (the latter are added when the driver calls
929		 * back to ieee80211_crypto_encap to do crypto encapsulation).
930		 */
931		/* NB: must be first 'cuz it clobbers m_data */
932		m_move_pkthdr(n, m);
933		n->m_len = 0;			/* NB: m_gethdr does not set */
934		n->m_data += needed_space;
935		/*
936		 * Pull up Ethernet header to create the expected layout.
937		 * We could use m_pullup but that's overkill (i.e. we don't
938		 * need the actual data) and it cannot fail so do it inline
939		 * for speed.
940		 */
941		/* NB: struct ether_header is known to be contiguous */
942		n->m_len += sizeof(struct ether_header);
943		m->m_len -= sizeof(struct ether_header);
944		m->m_data += sizeof(struct ether_header);
945		/*
946		 * Replace the head of the chain.
947		 */
948		n->m_next = m;
949		m = n;
950	}
951	return m;
952#undef TO_BE_RECLAIMED
953}
954
955/*
956 * Return the transmit key to use in sending a unicast frame.
957 * If a unicast key is set we use that.  When no unicast key is set
958 * we fall back to the default transmit key.
959 */
960static __inline struct ieee80211_key *
961ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
962	struct ieee80211_node *ni)
963{
964	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
965		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
966		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
967			return NULL;
968		return &vap->iv_nw_keys[vap->iv_def_txkey];
969	} else {
970		return &ni->ni_ucastkey;
971	}
972}
973
974/*
975 * Return the transmit key to use in sending a multicast frame.
976 * Multicast traffic always uses the group key which is installed as
977 * the default tx key.
978 */
979static __inline struct ieee80211_key *
980ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
981	struct ieee80211_node *ni)
982{
983	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
984	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
985		return NULL;
986	return &vap->iv_nw_keys[vap->iv_def_txkey];
987}
988
989/*
990 * Encapsulate an outbound data frame.  The mbuf chain is updated.
991 * If an error is encountered NULL is returned.  The caller is required
992 * to provide a node reference and pullup the ethernet header in the
993 * first mbuf.
994 *
995 * NB: Packet is assumed to be processed by ieee80211_classify which
996 *     marked EAPOL frames w/ M_EAPOL.
997 */
998struct mbuf *
999ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1000    struct mbuf *m)
1001{
1002#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1003	struct ieee80211com *ic = ni->ni_ic;
1004#ifdef IEEE80211_SUPPORT_MESH
1005	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1006	struct ieee80211_meshcntl_ae10 *mc;
1007#endif
1008	struct ether_header eh;
1009	struct ieee80211_frame *wh;
1010	struct ieee80211_key *key;
1011	struct llc *llc;
1012	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1013	ieee80211_seq seqno;
1014	int meshhdrsize, meshae;
1015	uint8_t *qos;
1016
1017	/*
1018	 * Copy existing Ethernet header to a safe place.  The
1019	 * rest of the code assumes it's ok to strip it when
1020	 * reorganizing state for the final encapsulation.
1021	 */
1022	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1023	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1024
1025	/*
1026	 * Insure space for additional headers.  First identify
1027	 * transmit key to use in calculating any buffer adjustments
1028	 * required.  This is also used below to do privacy
1029	 * encapsulation work.  Then calculate the 802.11 header
1030	 * size and any padding required by the driver.
1031	 *
1032	 * Note key may be NULL if we fall back to the default
1033	 * transmit key and that is not set.  In that case the
1034	 * buffer may not be expanded as needed by the cipher
1035	 * routines, but they will/should discard it.
1036	 */
1037	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1038		if (vap->iv_opmode == IEEE80211_M_STA ||
1039		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1040		    (vap->iv_opmode == IEEE80211_M_WDS &&
1041		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1042			key = ieee80211_crypto_getucastkey(vap, ni);
1043		else
1044			key = ieee80211_crypto_getmcastkey(vap, ni);
1045		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1046			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1047			    eh.ether_dhost,
1048			    "no default transmit key (%s) deftxkey %u",
1049			    __func__, vap->iv_def_txkey);
1050			vap->iv_stats.is_tx_nodefkey++;
1051			goto bad;
1052		}
1053	} else
1054		key = NULL;
1055	/*
1056	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1057	 * frames so suppress use.  This may be an issue if other
1058	 * ap's require all data frames to be QoS-encapsulated
1059	 * once negotiated in which case we'll need to make this
1060	 * configurable.
1061	 */
1062	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
1063		 (m->m_flags & M_EAPOL) == 0;
1064	if (addqos)
1065		hdrsize = sizeof(struct ieee80211_qosframe);
1066	else
1067		hdrsize = sizeof(struct ieee80211_frame);
1068#ifdef IEEE80211_SUPPORT_MESH
1069	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1070		/*
1071		 * Mesh data frames are encapsulated according to the
1072		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1073		 * o Group Addressed data (aka multicast) originating
1074		 *   at the local sta are sent w/ 3-address format and
1075		 *   address extension mode 00
1076		 * o Individually Addressed data (aka unicast) originating
1077		 *   at the local sta are sent w/ 4-address format and
1078		 *   address extension mode 00
1079		 * o Group Addressed data forwarded from a non-mesh sta are
1080		 *   sent w/ 3-address format and address extension mode 01
1081		 * o Individually Address data from another sta are sent
1082		 *   w/ 4-address format and address extension mode 10
1083		 */
1084		is4addr = 0;		/* NB: don't use, disable */
1085		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1086			hdrsize += IEEE80211_ADDR_LEN;	/* unicast are 4-addr */
1087		meshhdrsize = sizeof(struct ieee80211_meshcntl);
1088		/* XXX defines for AE modes */
1089		if (IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1090			if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1091				meshae = 0;
1092			else
1093				meshae = 4;		/* NB: pseudo */
1094		} else if (IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1095			meshae = 1;
1096			meshhdrsize += 1*IEEE80211_ADDR_LEN;
1097		} else {
1098			meshae = 2;
1099			meshhdrsize += 2*IEEE80211_ADDR_LEN;
1100		}
1101	} else {
1102#endif
1103		/*
1104		 * 4-address frames need to be generated for:
1105		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1106		 * o packets sent through a vap marked for relaying
1107		 *   (e.g. a station operating with dynamic WDS)
1108		 */
1109		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1110		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1111		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1112		if (is4addr)
1113			hdrsize += IEEE80211_ADDR_LEN;
1114		meshhdrsize = meshae = 0;
1115#ifdef IEEE80211_SUPPORT_MESH
1116	}
1117#endif
1118	/*
1119	 * Honor driver DATAPAD requirement.
1120	 */
1121	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1122		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1123	else
1124		hdrspace = hdrsize;
1125
1126	if (__predict_true((m->m_flags & M_FF) == 0)) {
1127		/*
1128		 * Normal frame.
1129		 */
1130		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1131		if (m == NULL) {
1132			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1133			goto bad;
1134		}
1135		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1136		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1137		llc = mtod(m, struct llc *);
1138		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1139		llc->llc_control = LLC_UI;
1140		llc->llc_snap.org_code[0] = 0;
1141		llc->llc_snap.org_code[1] = 0;
1142		llc->llc_snap.org_code[2] = 0;
1143		llc->llc_snap.ether_type = eh.ether_type;
1144	} else {
1145#ifdef IEEE80211_SUPPORT_SUPERG
1146		/*
1147		 * Aggregated frame.
1148		 */
1149		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1150		if (m == NULL)
1151#endif
1152			goto bad;
1153	}
1154	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1155
1156	M_PREPEND(m, hdrspace + meshhdrsize, M_DONTWAIT);
1157	if (m == NULL) {
1158		vap->iv_stats.is_tx_nobuf++;
1159		goto bad;
1160	}
1161	wh = mtod(m, struct ieee80211_frame *);
1162	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1163	*(uint16_t *)wh->i_dur = 0;
1164	qos = NULL;	/* NB: quiet compiler */
1165	if (is4addr) {
1166		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1167		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1168		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1169		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1170		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1171	} else switch (vap->iv_opmode) {
1172	case IEEE80211_M_STA:
1173		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1174		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1175		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1176		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1177		break;
1178	case IEEE80211_M_IBSS:
1179	case IEEE80211_M_AHDEMO:
1180		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1181		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1182		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1183		/*
1184		 * NB: always use the bssid from iv_bss as the
1185		 *     neighbor's may be stale after an ibss merge
1186		 */
1187		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1188		break;
1189	case IEEE80211_M_HOSTAP:
1190		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1191		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1192		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1193		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1194		break;
1195#ifdef IEEE80211_SUPPORT_MESH
1196	case IEEE80211_M_MBSS:
1197		/* NB: offset by hdrspace to deal with DATAPAD */
1198		mc = (struct ieee80211_meshcntl_ae10 *)
1199		     (mtod(m, uint8_t *) + hdrspace);
1200		switch (meshae) {
1201		case 0:			/* ucast, no proxy */
1202			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1203			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1204			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1205			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1206			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1207			mc->mc_flags = 0;
1208			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1209			break;
1210		case 4:			/* mcast, no proxy */
1211			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1212			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1213			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1214			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1215			mc->mc_flags = 0;		/* NB: AE is really 0 */
1216			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1217			break;
1218		case 1:			/* mcast, proxy */
1219			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1220			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1221			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1222			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1223			mc->mc_flags = 1;
1224			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_shost);
1225			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1226			break;
1227		case 2:			/* ucast, proxy */
1228			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1229			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1230			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1231			/* XXX not right, need MeshDA */
1232			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1233			/* XXX assume are MeshSA */
1234			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1235			mc->mc_flags = 2;
1236			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_dhost);
1237			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_shost);
1238			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1239			break;
1240		default:
1241			KASSERT(0, ("meshae %d", meshae));
1242			break;
1243		}
1244		mc->mc_ttl = ms->ms_ttl;
1245		ms->ms_seq++;
1246		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1247		break;
1248#endif
1249	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1250	default:
1251		goto bad;
1252	}
1253	if (m->m_flags & M_MORE_DATA)
1254		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1255	if (addqos) {
1256		int ac, tid;
1257
1258		if (is4addr) {
1259			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1260		/* NB: mesh case handled earlier */
1261		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1262			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1263		ac = M_WME_GETAC(m);
1264		/* map from access class/queue to 11e header priorty value */
1265		tid = WME_AC_TO_TID(ac);
1266		qos[0] = tid & IEEE80211_QOS_TID;
1267		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1268			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1269		qos[1] = 0;
1270		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1271
1272		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1273			/*
1274			 * NB: don't assign a sequence # to potential
1275			 * aggregates; we expect this happens at the
1276			 * point the frame comes off any aggregation q
1277			 * as otherwise we may introduce holes in the
1278			 * BA sequence space and/or make window accouting
1279			 * more difficult.
1280			 *
1281			 * XXX may want to control this with a driver
1282			 * capability; this may also change when we pull
1283			 * aggregation up into net80211
1284			 */
1285			seqno = ni->ni_txseqs[tid]++;
1286			*(uint16_t *)wh->i_seq =
1287			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1288			M_SEQNO_SET(m, seqno);
1289		}
1290	} else {
1291		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1292		*(uint16_t *)wh->i_seq =
1293		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1294		M_SEQNO_SET(m, seqno);
1295	}
1296
1297
1298	/* check if xmit fragmentation is required */
1299	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1300	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1301	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1302	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1303	if (key != NULL) {
1304		/*
1305		 * IEEE 802.1X: send EAPOL frames always in the clear.
1306		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1307		 */
1308		if ((m->m_flags & M_EAPOL) == 0 ||
1309		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1310		     (vap->iv_opmode == IEEE80211_M_STA ?
1311		      !IEEE80211_KEY_UNDEFINED(key) :
1312		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1313			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1314			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1315				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1316				    eh.ether_dhost,
1317				    "%s", "enmic failed, discard frame");
1318				vap->iv_stats.is_crypto_enmicfail++;
1319				goto bad;
1320			}
1321		}
1322	}
1323	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1324	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1325		goto bad;
1326
1327	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1328
1329	IEEE80211_NODE_STAT(ni, tx_data);
1330	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1331		IEEE80211_NODE_STAT(ni, tx_mcast);
1332		m->m_flags |= M_MCAST;
1333	} else
1334		IEEE80211_NODE_STAT(ni, tx_ucast);
1335	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1336
1337	return m;
1338bad:
1339	if (m != NULL)
1340		m_freem(m);
1341	return NULL;
1342#undef WH4
1343}
1344
1345/*
1346 * Fragment the frame according to the specified mtu.
1347 * The size of the 802.11 header (w/o padding) is provided
1348 * so we don't need to recalculate it.  We create a new
1349 * mbuf for each fragment and chain it through m_nextpkt;
1350 * we might be able to optimize this by reusing the original
1351 * packet's mbufs but that is significantly more complicated.
1352 */
1353static int
1354ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1355	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1356{
1357	struct ieee80211_frame *wh, *whf;
1358	struct mbuf *m, *prev, *next;
1359	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1360
1361	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1362	KASSERT(m0->m_pkthdr.len > mtu,
1363		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1364
1365	wh = mtod(m0, struct ieee80211_frame *);
1366	/* NB: mark the first frag; it will be propagated below */
1367	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1368	totalhdrsize = hdrsize + ciphdrsize;
1369	fragno = 1;
1370	off = mtu - ciphdrsize;
1371	remainder = m0->m_pkthdr.len - off;
1372	prev = m0;
1373	do {
1374		fragsize = totalhdrsize + remainder;
1375		if (fragsize > mtu)
1376			fragsize = mtu;
1377		/* XXX fragsize can be >2048! */
1378		KASSERT(fragsize < MCLBYTES,
1379			("fragment size %u too big!", fragsize));
1380		if (fragsize > MHLEN)
1381			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1382		else
1383			m = m_gethdr(M_DONTWAIT, MT_DATA);
1384		if (m == NULL)
1385			goto bad;
1386		/* leave room to prepend any cipher header */
1387		m_align(m, fragsize - ciphdrsize);
1388
1389		/*
1390		 * Form the header in the fragment.  Note that since
1391		 * we mark the first fragment with the MORE_FRAG bit
1392		 * it automatically is propagated to each fragment; we
1393		 * need only clear it on the last fragment (done below).
1394		 */
1395		whf = mtod(m, struct ieee80211_frame *);
1396		memcpy(whf, wh, hdrsize);
1397		*(uint16_t *)&whf->i_seq[0] |= htole16(
1398			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1399				IEEE80211_SEQ_FRAG_SHIFT);
1400		fragno++;
1401
1402		payload = fragsize - totalhdrsize;
1403		/* NB: destination is known to be contiguous */
1404		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1405		m->m_len = hdrsize + payload;
1406		m->m_pkthdr.len = hdrsize + payload;
1407		m->m_flags |= M_FRAG;
1408
1409		/* chain up the fragment */
1410		prev->m_nextpkt = m;
1411		prev = m;
1412
1413		/* deduct fragment just formed */
1414		remainder -= payload;
1415		off += payload;
1416	} while (remainder != 0);
1417
1418	/* set the last fragment */
1419	m->m_flags |= M_LASTFRAG;
1420	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1421
1422	/* strip first mbuf now that everything has been copied */
1423	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1424	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1425
1426	vap->iv_stats.is_tx_fragframes++;
1427	vap->iv_stats.is_tx_frags += fragno-1;
1428
1429	return 1;
1430bad:
1431	/* reclaim fragments but leave original frame for caller to free */
1432	for (m = m0->m_nextpkt; m != NULL; m = next) {
1433		next = m->m_nextpkt;
1434		m->m_nextpkt = NULL;		/* XXX paranoid */
1435		m_freem(m);
1436	}
1437	m0->m_nextpkt = NULL;
1438	return 0;
1439}
1440
1441/*
1442 * Add a supported rates element id to a frame.
1443 */
1444uint8_t *
1445ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1446{
1447	int nrates;
1448
1449	*frm++ = IEEE80211_ELEMID_RATES;
1450	nrates = rs->rs_nrates;
1451	if (nrates > IEEE80211_RATE_SIZE)
1452		nrates = IEEE80211_RATE_SIZE;
1453	*frm++ = nrates;
1454	memcpy(frm, rs->rs_rates, nrates);
1455	return frm + nrates;
1456}
1457
1458/*
1459 * Add an extended supported rates element id to a frame.
1460 */
1461uint8_t *
1462ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1463{
1464	/*
1465	 * Add an extended supported rates element if operating in 11g mode.
1466	 */
1467	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1468		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1469		*frm++ = IEEE80211_ELEMID_XRATES;
1470		*frm++ = nrates;
1471		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1472		frm += nrates;
1473	}
1474	return frm;
1475}
1476
1477/*
1478 * Add an ssid element to a frame.
1479 */
1480static uint8_t *
1481ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1482{
1483	*frm++ = IEEE80211_ELEMID_SSID;
1484	*frm++ = len;
1485	memcpy(frm, ssid, len);
1486	return frm + len;
1487}
1488
1489/*
1490 * Add an erp element to a frame.
1491 */
1492static uint8_t *
1493ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1494{
1495	uint8_t erp;
1496
1497	*frm++ = IEEE80211_ELEMID_ERP;
1498	*frm++ = 1;
1499	erp = 0;
1500	if (ic->ic_nonerpsta != 0)
1501		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1502	if (ic->ic_flags & IEEE80211_F_USEPROT)
1503		erp |= IEEE80211_ERP_USE_PROTECTION;
1504	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1505		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1506	*frm++ = erp;
1507	return frm;
1508}
1509
1510/*
1511 * Add a CFParams element to a frame.
1512 */
1513static uint8_t *
1514ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1515{
1516#define	ADDSHORT(frm, v) do {	\
1517	LE_WRITE_2(frm, v);	\
1518	frm += 2;		\
1519} while (0)
1520	*frm++ = IEEE80211_ELEMID_CFPARMS;
1521	*frm++ = 6;
1522	*frm++ = 0;		/* CFP count */
1523	*frm++ = 2;		/* CFP period */
1524	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1525	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1526	return frm;
1527#undef ADDSHORT
1528}
1529
1530static __inline uint8_t *
1531add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1532{
1533	memcpy(frm, ie->ie_data, ie->ie_len);
1534	return frm + ie->ie_len;
1535}
1536
1537static __inline uint8_t *
1538add_ie(uint8_t *frm, const uint8_t *ie)
1539{
1540	memcpy(frm, ie, 2 + ie[1]);
1541	return frm + 2 + ie[1];
1542}
1543
1544#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1545/*
1546 * Add a WME information element to a frame.
1547 */
1548static uint8_t *
1549ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1550{
1551	static const struct ieee80211_wme_info info = {
1552		.wme_id		= IEEE80211_ELEMID_VENDOR,
1553		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1554		.wme_oui	= { WME_OUI_BYTES },
1555		.wme_type	= WME_OUI_TYPE,
1556		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1557		.wme_version	= WME_VERSION,
1558		.wme_info	= 0,
1559	};
1560	memcpy(frm, &info, sizeof(info));
1561	return frm + sizeof(info);
1562}
1563
1564/*
1565 * Add a WME parameters element to a frame.
1566 */
1567static uint8_t *
1568ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1569{
1570#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1571#define	ADDSHORT(frm, v) do {	\
1572	LE_WRITE_2(frm, v);	\
1573	frm += 2;		\
1574} while (0)
1575	/* NB: this works 'cuz a param has an info at the front */
1576	static const struct ieee80211_wme_info param = {
1577		.wme_id		= IEEE80211_ELEMID_VENDOR,
1578		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1579		.wme_oui	= { WME_OUI_BYTES },
1580		.wme_type	= WME_OUI_TYPE,
1581		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1582		.wme_version	= WME_VERSION,
1583	};
1584	int i;
1585
1586	memcpy(frm, &param, sizeof(param));
1587	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1588	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1589	*frm++ = 0;					/* reserved field */
1590	for (i = 0; i < WME_NUM_AC; i++) {
1591		const struct wmeParams *ac =
1592		       &wme->wme_bssChanParams.cap_wmeParams[i];
1593		*frm++ = SM(i, WME_PARAM_ACI)
1594		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1595		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1596		       ;
1597		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1598		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1599		       ;
1600		ADDSHORT(frm, ac->wmep_txopLimit);
1601	}
1602	return frm;
1603#undef SM
1604#undef ADDSHORT
1605}
1606#undef WME_OUI_BYTES
1607
1608/*
1609 * Add an 11h Power Constraint element to a frame.
1610 */
1611static uint8_t *
1612ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1613{
1614	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1615	/* XXX per-vap tx power limit? */
1616	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1617
1618	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1619	frm[1] = 1;
1620	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1621	return frm + 3;
1622}
1623
1624/*
1625 * Add an 11h Power Capability element to a frame.
1626 */
1627static uint8_t *
1628ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1629{
1630	frm[0] = IEEE80211_ELEMID_PWRCAP;
1631	frm[1] = 2;
1632	frm[2] = c->ic_minpower;
1633	frm[3] = c->ic_maxpower;
1634	return frm + 4;
1635}
1636
1637/*
1638 * Add an 11h Supported Channels element to a frame.
1639 */
1640static uint8_t *
1641ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1642{
1643	static const int ielen = 26;
1644
1645	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1646	frm[1] = ielen;
1647	/* XXX not correct */
1648	memcpy(frm+2, ic->ic_chan_avail, ielen);
1649	return frm + 2 + ielen;
1650}
1651
1652/*
1653 * Add an 11h Channel Switch Announcement element to a frame.
1654 * Note that we use the per-vap CSA count to adjust the global
1655 * counter so we can use this routine to form probe response
1656 * frames and get the current count.
1657 */
1658static uint8_t *
1659ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1660{
1661	struct ieee80211com *ic = vap->iv_ic;
1662	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1663
1664	csa->csa_ie = IEEE80211_ELEMID_CSA;
1665	csa->csa_len = 3;
1666	csa->csa_mode = 1;		/* XXX force quiet on channel */
1667	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1668	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1669	return frm + sizeof(*csa);
1670}
1671
1672/*
1673 * Add an 11h country information element to a frame.
1674 */
1675static uint8_t *
1676ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1677{
1678
1679	if (ic->ic_countryie == NULL ||
1680	    ic->ic_countryie_chan != ic->ic_bsschan) {
1681		/*
1682		 * Handle lazy construction of ie.  This is done on
1683		 * first use and after a channel change that requires
1684		 * re-calculation.
1685		 */
1686		if (ic->ic_countryie != NULL)
1687			free(ic->ic_countryie, M_80211_NODE_IE);
1688		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1689		if (ic->ic_countryie == NULL)
1690			return frm;
1691		ic->ic_countryie_chan = ic->ic_bsschan;
1692	}
1693	return add_appie(frm, ic->ic_countryie);
1694}
1695
1696/*
1697 * Send a probe request frame with the specified ssid
1698 * and any optional information element data.
1699 */
1700int
1701ieee80211_send_probereq(struct ieee80211_node *ni,
1702	const uint8_t sa[IEEE80211_ADDR_LEN],
1703	const uint8_t da[IEEE80211_ADDR_LEN],
1704	const uint8_t bssid[IEEE80211_ADDR_LEN],
1705	const uint8_t *ssid, size_t ssidlen)
1706{
1707	struct ieee80211vap *vap = ni->ni_vap;
1708	struct ieee80211com *ic = ni->ni_ic;
1709	const struct ieee80211_txparam *tp;
1710	struct ieee80211_bpf_params params;
1711	struct ieee80211_frame *wh;
1712	const struct ieee80211_rateset *rs;
1713	struct mbuf *m;
1714	uint8_t *frm;
1715
1716	if (vap->iv_state == IEEE80211_S_CAC) {
1717		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1718		    "block %s frame in CAC state", "probe request");
1719		vap->iv_stats.is_tx_badstate++;
1720		return EIO;		/* XXX */
1721	}
1722
1723	/*
1724	 * Hold a reference on the node so it doesn't go away until after
1725	 * the xmit is complete all the way in the driver.  On error we
1726	 * will remove our reference.
1727	 */
1728	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1729		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1730		__func__, __LINE__,
1731		ni, ether_sprintf(ni->ni_macaddr),
1732		ieee80211_node_refcnt(ni)+1);
1733	ieee80211_ref_node(ni);
1734
1735	/*
1736	 * prreq frame format
1737	 *	[tlv] ssid
1738	 *	[tlv] supported rates
1739	 *	[tlv] RSN (optional)
1740	 *	[tlv] extended supported rates
1741	 *	[tlv] WPA (optional)
1742	 *	[tlv] user-specified ie's
1743	 */
1744	m = ieee80211_getmgtframe(&frm,
1745		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1746	       	 2 + IEEE80211_NWID_LEN
1747	       + 2 + IEEE80211_RATE_SIZE
1748	       + sizeof(struct ieee80211_ie_wpa)
1749	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1750	       + sizeof(struct ieee80211_ie_wpa)
1751	       + (vap->iv_appie_probereq != NULL ?
1752		   vap->iv_appie_probereq->ie_len : 0)
1753	);
1754	if (m == NULL) {
1755		vap->iv_stats.is_tx_nobuf++;
1756		ieee80211_free_node(ni);
1757		return ENOMEM;
1758	}
1759
1760	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1761	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1762	frm = ieee80211_add_rates(frm, rs);
1763	if (vap->iv_flags & IEEE80211_F_WPA2) {
1764		if (vap->iv_rsn_ie != NULL)
1765			frm = add_ie(frm, vap->iv_rsn_ie);
1766		/* XXX else complain? */
1767	}
1768	frm = ieee80211_add_xrates(frm, rs);
1769	if (vap->iv_flags & IEEE80211_F_WPA1) {
1770		if (vap->iv_wpa_ie != NULL)
1771			frm = add_ie(frm, vap->iv_wpa_ie);
1772		/* XXX else complain? */
1773	}
1774	if (vap->iv_appie_probereq != NULL)
1775		frm = add_appie(frm, vap->iv_appie_probereq);
1776	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1777
1778	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1779	    ("leading space %zd", M_LEADINGSPACE(m)));
1780	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1781	if (m == NULL) {
1782		/* NB: cannot happen */
1783		ieee80211_free_node(ni);
1784		return ENOMEM;
1785	}
1786
1787	wh = mtod(m, struct ieee80211_frame *);
1788	ieee80211_send_setup(ni, m,
1789	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1790	     IEEE80211_NONQOS_TID, sa, da, bssid);
1791	/* XXX power management? */
1792	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1793
1794	M_WME_SETAC(m, WME_AC_BE);
1795
1796	IEEE80211_NODE_STAT(ni, tx_probereq);
1797	IEEE80211_NODE_STAT(ni, tx_mgmt);
1798
1799	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1800	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1801	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1802	    ssidlen, ssid);
1803
1804	memset(&params, 0, sizeof(params));
1805	params.ibp_pri = M_WME_GETAC(m);
1806	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1807	params.ibp_rate0 = tp->mgmtrate;
1808	if (IEEE80211_IS_MULTICAST(da)) {
1809		params.ibp_flags |= IEEE80211_BPF_NOACK;
1810		params.ibp_try0 = 1;
1811	} else
1812		params.ibp_try0 = tp->maxretry;
1813	params.ibp_power = ni->ni_txpower;
1814	return ic->ic_raw_xmit(ni, m, &params);
1815}
1816
1817/*
1818 * Calculate capability information for mgt frames.
1819 */
1820uint16_t
1821ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1822{
1823	struct ieee80211com *ic = vap->iv_ic;
1824	uint16_t capinfo;
1825
1826	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1827
1828	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1829		capinfo = IEEE80211_CAPINFO_ESS;
1830	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1831		capinfo = IEEE80211_CAPINFO_IBSS;
1832	else
1833		capinfo = 0;
1834	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1835		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1836	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1837	    IEEE80211_IS_CHAN_2GHZ(chan))
1838		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1839	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1840		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1841	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1842		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1843	return capinfo;
1844}
1845
1846/*
1847 * Send a management frame.  The node is for the destination (or ic_bss
1848 * when in station mode).  Nodes other than ic_bss have their reference
1849 * count bumped to reflect our use for an indeterminant time.
1850 */
1851int
1852ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1853{
1854#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1855#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1856	struct ieee80211vap *vap = ni->ni_vap;
1857	struct ieee80211com *ic = ni->ni_ic;
1858	struct ieee80211_node *bss = vap->iv_bss;
1859	struct ieee80211_bpf_params params;
1860	struct mbuf *m;
1861	uint8_t *frm;
1862	uint16_t capinfo;
1863	int has_challenge, is_shared_key, ret, status;
1864
1865	KASSERT(ni != NULL, ("null node"));
1866
1867	/*
1868	 * Hold a reference on the node so it doesn't go away until after
1869	 * the xmit is complete all the way in the driver.  On error we
1870	 * will remove our reference.
1871	 */
1872	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1873		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1874		__func__, __LINE__,
1875		ni, ether_sprintf(ni->ni_macaddr),
1876		ieee80211_node_refcnt(ni)+1);
1877	ieee80211_ref_node(ni);
1878
1879	memset(&params, 0, sizeof(params));
1880	switch (type) {
1881
1882	case IEEE80211_FC0_SUBTYPE_AUTH:
1883		status = arg >> 16;
1884		arg &= 0xffff;
1885		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1886		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1887		    ni->ni_challenge != NULL);
1888
1889		/*
1890		 * Deduce whether we're doing open authentication or
1891		 * shared key authentication.  We do the latter if
1892		 * we're in the middle of a shared key authentication
1893		 * handshake or if we're initiating an authentication
1894		 * request and configured to use shared key.
1895		 */
1896		is_shared_key = has_challenge ||
1897		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1898		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1899		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1900
1901		m = ieee80211_getmgtframe(&frm,
1902			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1903			  3 * sizeof(uint16_t)
1904			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1905				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1906		);
1907		if (m == NULL)
1908			senderr(ENOMEM, is_tx_nobuf);
1909
1910		((uint16_t *)frm)[0] =
1911		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1912		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1913		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1914		((uint16_t *)frm)[2] = htole16(status);/* status */
1915
1916		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1917			((uint16_t *)frm)[3] =
1918			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1919			    IEEE80211_ELEMID_CHALLENGE);
1920			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1921			    IEEE80211_CHALLENGE_LEN);
1922			m->m_pkthdr.len = m->m_len =
1923				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1924			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1925				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1926				    "request encrypt frame (%s)", __func__);
1927				/* mark frame for encryption */
1928				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1929			}
1930		} else
1931			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1932
1933		/* XXX not right for shared key */
1934		if (status == IEEE80211_STATUS_SUCCESS)
1935			IEEE80211_NODE_STAT(ni, tx_auth);
1936		else
1937			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1938
1939		if (vap->iv_opmode == IEEE80211_M_STA)
1940			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1941				(void *) vap->iv_state);
1942		break;
1943
1944	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1945		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1946		    "send station deauthenticate (reason %d)", arg);
1947		m = ieee80211_getmgtframe(&frm,
1948			ic->ic_headroom + sizeof(struct ieee80211_frame),
1949			sizeof(uint16_t));
1950		if (m == NULL)
1951			senderr(ENOMEM, is_tx_nobuf);
1952		*(uint16_t *)frm = htole16(arg);	/* reason */
1953		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1954
1955		IEEE80211_NODE_STAT(ni, tx_deauth);
1956		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1957
1958		ieee80211_node_unauthorize(ni);		/* port closed */
1959		break;
1960
1961	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1962	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1963		/*
1964		 * asreq frame format
1965		 *	[2] capability information
1966		 *	[2] listen interval
1967		 *	[6*] current AP address (reassoc only)
1968		 *	[tlv] ssid
1969		 *	[tlv] supported rates
1970		 *	[tlv] extended supported rates
1971		 *	[4] power capability (optional)
1972		 *	[28] supported channels (optional)
1973		 *	[tlv] HT capabilities
1974		 *	[tlv] WME (optional)
1975		 *	[tlv] Vendor OUI HT capabilities (optional)
1976		 *	[tlv] Atheros capabilities (if negotiated)
1977		 *	[tlv] AppIE's (optional)
1978		 */
1979		m = ieee80211_getmgtframe(&frm,
1980			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1981			 sizeof(uint16_t)
1982		       + sizeof(uint16_t)
1983		       + IEEE80211_ADDR_LEN
1984		       + 2 + IEEE80211_NWID_LEN
1985		       + 2 + IEEE80211_RATE_SIZE
1986		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1987		       + 4
1988		       + 2 + 26
1989		       + sizeof(struct ieee80211_wme_info)
1990		       + sizeof(struct ieee80211_ie_htcap)
1991		       + 4 + sizeof(struct ieee80211_ie_htcap)
1992#ifdef IEEE80211_SUPPORT_SUPERG
1993		       + sizeof(struct ieee80211_ath_ie)
1994#endif
1995		       + (vap->iv_appie_wpa != NULL ?
1996				vap->iv_appie_wpa->ie_len : 0)
1997		       + (vap->iv_appie_assocreq != NULL ?
1998				vap->iv_appie_assocreq->ie_len : 0)
1999		);
2000		if (m == NULL)
2001			senderr(ENOMEM, is_tx_nobuf);
2002
2003		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2004		    ("wrong mode %u", vap->iv_opmode));
2005		capinfo = IEEE80211_CAPINFO_ESS;
2006		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2007			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2008		/*
2009		 * NB: Some 11a AP's reject the request when
2010		 *     short premable is set.
2011		 */
2012		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2013		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2014			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2015		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2016		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2017			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2018		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2019		    (vap->iv_flags & IEEE80211_F_DOTH))
2020			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2021		*(uint16_t *)frm = htole16(capinfo);
2022		frm += 2;
2023
2024		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2025		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2026						    bss->ni_intval));
2027		frm += 2;
2028
2029		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2030			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2031			frm += IEEE80211_ADDR_LEN;
2032		}
2033
2034		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2035		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2036		if (vap->iv_flags & IEEE80211_F_WPA2) {
2037			if (vap->iv_rsn_ie != NULL)
2038				frm = add_ie(frm, vap->iv_rsn_ie);
2039			/* XXX else complain? */
2040		}
2041		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2042		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2043			frm = ieee80211_add_powercapability(frm,
2044			    ic->ic_curchan);
2045			frm = ieee80211_add_supportedchannels(frm, ic);
2046		}
2047		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2048		    ni->ni_ies.htcap_ie != NULL &&
2049		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2050			frm = ieee80211_add_htcap(frm, ni);
2051		if (vap->iv_flags & IEEE80211_F_WPA1) {
2052			if (vap->iv_wpa_ie != NULL)
2053				frm = add_ie(frm, vap->iv_wpa_ie);
2054			/* XXX else complain */
2055		}
2056		if ((ic->ic_flags & IEEE80211_F_WME) &&
2057		    ni->ni_ies.wme_ie != NULL)
2058			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2059		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2060		    ni->ni_ies.htcap_ie != NULL &&
2061		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2062			frm = ieee80211_add_htcap_vendor(frm, ni);
2063#ifdef IEEE80211_SUPPORT_SUPERG
2064		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2065			frm = ieee80211_add_ath(frm,
2066				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2067				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2068				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2069				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2070		}
2071#endif /* IEEE80211_SUPPORT_SUPERG */
2072		if (vap->iv_appie_assocreq != NULL)
2073			frm = add_appie(frm, vap->iv_appie_assocreq);
2074		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2075
2076		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2077			(void *) vap->iv_state);
2078		break;
2079
2080	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2081	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2082		/*
2083		 * asresp frame format
2084		 *	[2] capability information
2085		 *	[2] status
2086		 *	[2] association ID
2087		 *	[tlv] supported rates
2088		 *	[tlv] extended supported rates
2089		 *	[tlv] HT capabilities (standard, if STA enabled)
2090		 *	[tlv] HT information (standard, if STA enabled)
2091		 *	[tlv] WME (if configured and STA enabled)
2092		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2093		 *	[tlv] HT information (vendor OUI, if STA enabled)
2094		 *	[tlv] Atheros capabilities (if STA enabled)
2095		 *	[tlv] AppIE's (optional)
2096		 */
2097		m = ieee80211_getmgtframe(&frm,
2098			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2099			 sizeof(uint16_t)
2100		       + sizeof(uint16_t)
2101		       + sizeof(uint16_t)
2102		       + 2 + IEEE80211_RATE_SIZE
2103		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2104		       + sizeof(struct ieee80211_ie_htcap) + 4
2105		       + sizeof(struct ieee80211_ie_htinfo) + 4
2106		       + sizeof(struct ieee80211_wme_param)
2107#ifdef IEEE80211_SUPPORT_SUPERG
2108		       + sizeof(struct ieee80211_ath_ie)
2109#endif
2110		       + (vap->iv_appie_assocresp != NULL ?
2111				vap->iv_appie_assocresp->ie_len : 0)
2112		);
2113		if (m == NULL)
2114			senderr(ENOMEM, is_tx_nobuf);
2115
2116		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2117		*(uint16_t *)frm = htole16(capinfo);
2118		frm += 2;
2119
2120		*(uint16_t *)frm = htole16(arg);	/* status */
2121		frm += 2;
2122
2123		if (arg == IEEE80211_STATUS_SUCCESS) {
2124			*(uint16_t *)frm = htole16(ni->ni_associd);
2125			IEEE80211_NODE_STAT(ni, tx_assoc);
2126		} else
2127			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2128		frm += 2;
2129
2130		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2131		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2132		/* NB: respond according to what we received */
2133		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2134			frm = ieee80211_add_htcap(frm, ni);
2135			frm = ieee80211_add_htinfo(frm, ni);
2136		}
2137		if ((vap->iv_flags & IEEE80211_F_WME) &&
2138		    ni->ni_ies.wme_ie != NULL)
2139			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2140		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2141			frm = ieee80211_add_htcap_vendor(frm, ni);
2142			frm = ieee80211_add_htinfo_vendor(frm, ni);
2143		}
2144#ifdef IEEE80211_SUPPORT_SUPERG
2145		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2146			frm = ieee80211_add_ath(frm,
2147				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2148				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2149				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2150				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2151#endif /* IEEE80211_SUPPORT_SUPERG */
2152		if (vap->iv_appie_assocresp != NULL)
2153			frm = add_appie(frm, vap->iv_appie_assocresp);
2154		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2155		break;
2156
2157	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2158		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2159		    "send station disassociate (reason %d)", arg);
2160		m = ieee80211_getmgtframe(&frm,
2161			ic->ic_headroom + sizeof(struct ieee80211_frame),
2162			sizeof(uint16_t));
2163		if (m == NULL)
2164			senderr(ENOMEM, is_tx_nobuf);
2165		*(uint16_t *)frm = htole16(arg);	/* reason */
2166		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2167
2168		IEEE80211_NODE_STAT(ni, tx_disassoc);
2169		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2170		break;
2171
2172	default:
2173		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2174		    "invalid mgmt frame type %u", type);
2175		senderr(EINVAL, is_tx_unknownmgt);
2176		/* NOTREACHED */
2177	}
2178
2179	/* NB: force non-ProbeResp frames to the highest queue */
2180	params.ibp_pri = WME_AC_VO;
2181	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2182	/* NB: we know all frames are unicast */
2183	params.ibp_try0 = bss->ni_txparms->maxretry;
2184	params.ibp_power = bss->ni_txpower;
2185	return ieee80211_mgmt_output(ni, m, type, &params);
2186bad:
2187	ieee80211_free_node(ni);
2188	return ret;
2189#undef senderr
2190#undef HTFLAGS
2191}
2192
2193/*
2194 * Return an mbuf with a probe response frame in it.
2195 * Space is left to prepend and 802.11 header at the
2196 * front but it's left to the caller to fill in.
2197 */
2198struct mbuf *
2199ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2200{
2201	struct ieee80211vap *vap = bss->ni_vap;
2202	struct ieee80211com *ic = bss->ni_ic;
2203	const struct ieee80211_rateset *rs;
2204	struct mbuf *m;
2205	uint16_t capinfo;
2206	uint8_t *frm;
2207
2208	/*
2209	 * probe response frame format
2210	 *	[8] time stamp
2211	 *	[2] beacon interval
2212	 *	[2] cabability information
2213	 *	[tlv] ssid
2214	 *	[tlv] supported rates
2215	 *	[tlv] parameter set (FH/DS)
2216	 *	[tlv] parameter set (IBSS)
2217	 *	[tlv] country (optional)
2218	 *	[3] power control (optional)
2219	 *	[5] channel switch announcement (CSA) (optional)
2220	 *	[tlv] extended rate phy (ERP)
2221	 *	[tlv] extended supported rates
2222	 *	[tlv] RSN (optional)
2223	 *	[tlv] HT capabilities
2224	 *	[tlv] HT information
2225	 *	[tlv] WPA (optional)
2226	 *	[tlv] WME (optional)
2227	 *	[tlv] Vendor OUI HT capabilities (optional)
2228	 *	[tlv] Vendor OUI HT information (optional)
2229	 *	[tlv] Atheros capabilities
2230	 *	[tlv] AppIE's (optional)
2231	 *	[tlv] Mesh ID (MBSS)
2232	 *	[tlv] Mesh Conf (MBSS)
2233	 */
2234	m = ieee80211_getmgtframe(&frm,
2235		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2236		 8
2237	       + sizeof(uint16_t)
2238	       + sizeof(uint16_t)
2239	       + 2 + IEEE80211_NWID_LEN
2240	       + 2 + IEEE80211_RATE_SIZE
2241	       + 7	/* max(7,3) */
2242	       + IEEE80211_COUNTRY_MAX_SIZE
2243	       + 3
2244	       + sizeof(struct ieee80211_csa_ie)
2245	       + 3
2246	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2247	       + sizeof(struct ieee80211_ie_wpa)
2248	       + sizeof(struct ieee80211_ie_htcap)
2249	       + sizeof(struct ieee80211_ie_htinfo)
2250	       + sizeof(struct ieee80211_ie_wpa)
2251	       + sizeof(struct ieee80211_wme_param)
2252	       + 4 + sizeof(struct ieee80211_ie_htcap)
2253	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2254#ifdef IEEE80211_SUPPORT_SUPERG
2255	       + sizeof(struct ieee80211_ath_ie)
2256#endif
2257#ifdef IEEE80211_SUPPORT_MESH
2258	       + 2 + IEEE80211_MESHID_LEN
2259	       + sizeof(struct ieee80211_meshconf_ie)
2260#endif
2261	       + (vap->iv_appie_proberesp != NULL ?
2262			vap->iv_appie_proberesp->ie_len : 0)
2263	);
2264	if (m == NULL) {
2265		vap->iv_stats.is_tx_nobuf++;
2266		return NULL;
2267	}
2268
2269	memset(frm, 0, 8);	/* timestamp should be filled later */
2270	frm += 8;
2271	*(uint16_t *)frm = htole16(bss->ni_intval);
2272	frm += 2;
2273	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2274	*(uint16_t *)frm = htole16(capinfo);
2275	frm += 2;
2276
2277	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2278	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2279	frm = ieee80211_add_rates(frm, rs);
2280
2281	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2282		*frm++ = IEEE80211_ELEMID_FHPARMS;
2283		*frm++ = 5;
2284		*frm++ = bss->ni_fhdwell & 0x00ff;
2285		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2286		*frm++ = IEEE80211_FH_CHANSET(
2287		    ieee80211_chan2ieee(ic, bss->ni_chan));
2288		*frm++ = IEEE80211_FH_CHANPAT(
2289		    ieee80211_chan2ieee(ic, bss->ni_chan));
2290		*frm++ = bss->ni_fhindex;
2291	} else {
2292		*frm++ = IEEE80211_ELEMID_DSPARMS;
2293		*frm++ = 1;
2294		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2295	}
2296
2297	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2298		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2299		*frm++ = 2;
2300		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2301	}
2302	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2303	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2304		frm = ieee80211_add_countryie(frm, ic);
2305	if (vap->iv_flags & IEEE80211_F_DOTH) {
2306		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2307			frm = ieee80211_add_powerconstraint(frm, vap);
2308		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2309			frm = ieee80211_add_csa(frm, vap);
2310	}
2311	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2312		frm = ieee80211_add_erp(frm, ic);
2313	frm = ieee80211_add_xrates(frm, rs);
2314	if (vap->iv_flags & IEEE80211_F_WPA2) {
2315		if (vap->iv_rsn_ie != NULL)
2316			frm = add_ie(frm, vap->iv_rsn_ie);
2317		/* XXX else complain? */
2318	}
2319	/*
2320	 * NB: legacy 11b clients do not get certain ie's.
2321	 *     The caller identifies such clients by passing
2322	 *     a token in legacy to us.  Could expand this to be
2323	 *     any legacy client for stuff like HT ie's.
2324	 */
2325	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2326	    legacy != IEEE80211_SEND_LEGACY_11B) {
2327		frm = ieee80211_add_htcap(frm, bss);
2328		frm = ieee80211_add_htinfo(frm, bss);
2329	}
2330	if (vap->iv_flags & IEEE80211_F_WPA1) {
2331		if (vap->iv_wpa_ie != NULL)
2332			frm = add_ie(frm, vap->iv_wpa_ie);
2333		/* XXX else complain? */
2334	}
2335	if (vap->iv_flags & IEEE80211_F_WME)
2336		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2337	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2338	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2339	    legacy != IEEE80211_SEND_LEGACY_11B) {
2340		frm = ieee80211_add_htcap_vendor(frm, bss);
2341		frm = ieee80211_add_htinfo_vendor(frm, bss);
2342	}
2343#ifdef IEEE80211_SUPPORT_SUPERG
2344	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2345	    legacy != IEEE80211_SEND_LEGACY_11B)
2346		frm = ieee80211_add_athcaps(frm, bss);
2347#endif
2348	if (vap->iv_appie_proberesp != NULL)
2349		frm = add_appie(frm, vap->iv_appie_proberesp);
2350#ifdef IEEE80211_SUPPORT_MESH
2351	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2352		frm = ieee80211_add_meshid(frm, vap);
2353		frm = ieee80211_add_meshconf(frm, vap);
2354	}
2355#endif
2356	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2357
2358	return m;
2359}
2360
2361/*
2362 * Send a probe response frame to the specified mac address.
2363 * This does not go through the normal mgt frame api so we
2364 * can specify the destination address and re-use the bss node
2365 * for the sta reference.
2366 */
2367int
2368ieee80211_send_proberesp(struct ieee80211vap *vap,
2369	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2370{
2371	struct ieee80211_node *bss = vap->iv_bss;
2372	struct ieee80211com *ic = vap->iv_ic;
2373	struct ieee80211_frame *wh;
2374	struct mbuf *m;
2375
2376	if (vap->iv_state == IEEE80211_S_CAC) {
2377		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2378		    "block %s frame in CAC state", "probe response");
2379		vap->iv_stats.is_tx_badstate++;
2380		return EIO;		/* XXX */
2381	}
2382
2383	/*
2384	 * Hold a reference on the node so it doesn't go away until after
2385	 * the xmit is complete all the way in the driver.  On error we
2386	 * will remove our reference.
2387	 */
2388	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2389	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2390	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2391	    ieee80211_node_refcnt(bss)+1);
2392	ieee80211_ref_node(bss);
2393
2394	m = ieee80211_alloc_proberesp(bss, legacy);
2395	if (m == NULL) {
2396		ieee80211_free_node(bss);
2397		return ENOMEM;
2398	}
2399
2400	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2401	KASSERT(m != NULL, ("no room for header"));
2402
2403	wh = mtod(m, struct ieee80211_frame *);
2404	ieee80211_send_setup(bss, m,
2405	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2406	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2407	/* XXX power management? */
2408	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2409
2410	M_WME_SETAC(m, WME_AC_BE);
2411
2412	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2413	    "send probe resp on channel %u to %s%s\n",
2414	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2415	    legacy ? " <legacy>" : "");
2416	IEEE80211_NODE_STAT(bss, tx_mgmt);
2417
2418	return ic->ic_raw_xmit(bss, m, NULL);
2419}
2420
2421/*
2422 * Allocate and build a RTS (Request To Send) control frame.
2423 */
2424struct mbuf *
2425ieee80211_alloc_rts(struct ieee80211com *ic,
2426	const uint8_t ra[IEEE80211_ADDR_LEN],
2427	const uint8_t ta[IEEE80211_ADDR_LEN],
2428	uint16_t dur)
2429{
2430	struct ieee80211_frame_rts *rts;
2431	struct mbuf *m;
2432
2433	/* XXX honor ic_headroom */
2434	m = m_gethdr(M_DONTWAIT, MT_DATA);
2435	if (m != NULL) {
2436		rts = mtod(m, struct ieee80211_frame_rts *);
2437		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2438			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2439		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2440		*(u_int16_t *)rts->i_dur = htole16(dur);
2441		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2442		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2443
2444		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2445	}
2446	return m;
2447}
2448
2449/*
2450 * Allocate and build a CTS (Clear To Send) control frame.
2451 */
2452struct mbuf *
2453ieee80211_alloc_cts(struct ieee80211com *ic,
2454	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2455{
2456	struct ieee80211_frame_cts *cts;
2457	struct mbuf *m;
2458
2459	/* XXX honor ic_headroom */
2460	m = m_gethdr(M_DONTWAIT, MT_DATA);
2461	if (m != NULL) {
2462		cts = mtod(m, struct ieee80211_frame_cts *);
2463		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2464			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2465		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2466		*(u_int16_t *)cts->i_dur = htole16(dur);
2467		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2468
2469		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2470	}
2471	return m;
2472}
2473
2474static void
2475ieee80211_tx_mgt_timeout(void *arg)
2476{
2477	struct ieee80211_node *ni = arg;
2478	struct ieee80211vap *vap = ni->ni_vap;
2479
2480	if (vap->iv_state != IEEE80211_S_INIT &&
2481	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2482		/*
2483		 * NB: it's safe to specify a timeout as the reason here;
2484		 *     it'll only be used in the right state.
2485		 */
2486		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2487			IEEE80211_SCAN_FAIL_TIMEOUT);
2488	}
2489}
2490
2491static void
2492ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2493{
2494	struct ieee80211vap *vap = ni->ni_vap;
2495	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2496
2497	/*
2498	 * Frame transmit completed; arrange timer callback.  If
2499	 * transmit was successfuly we wait for response.  Otherwise
2500	 * we arrange an immediate callback instead of doing the
2501	 * callback directly since we don't know what state the driver
2502	 * is in (e.g. what locks it is holding).  This work should
2503	 * not be too time-critical and not happen too often so the
2504	 * added overhead is acceptable.
2505	 *
2506	 * XXX what happens if !acked but response shows up before callback?
2507	 */
2508	if (vap->iv_state == ostate)
2509		callout_reset(&vap->iv_mgtsend,
2510			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2511			ieee80211_tx_mgt_timeout, ni);
2512}
2513
2514static void
2515ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2516	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2517{
2518	struct ieee80211vap *vap = ni->ni_vap;
2519	struct ieee80211com *ic = ni->ni_ic;
2520	struct ieee80211_rateset *rs = &ni->ni_rates;
2521	uint16_t capinfo;
2522
2523	/*
2524	 * beacon frame format
2525	 *	[8] time stamp
2526	 *	[2] beacon interval
2527	 *	[2] cabability information
2528	 *	[tlv] ssid
2529	 *	[tlv] supported rates
2530	 *	[3] parameter set (DS)
2531	 *	[8] CF parameter set (optional)
2532	 *	[tlv] parameter set (IBSS/TIM)
2533	 *	[tlv] country (optional)
2534	 *	[3] power control (optional)
2535	 *	[5] channel switch announcement (CSA) (optional)
2536	 *	[tlv] extended rate phy (ERP)
2537	 *	[tlv] extended supported rates
2538	 *	[tlv] RSN parameters
2539	 *	[tlv] HT capabilities
2540	 *	[tlv] HT information
2541	 * XXX Vendor-specific OIDs (e.g. Atheros)
2542	 *	[tlv] WPA parameters
2543	 *	[tlv] WME parameters
2544	 *	[tlv] Vendor OUI HT capabilities (optional)
2545	 *	[tlv] Vendor OUI HT information (optional)
2546	 *	[tlv] Atheros capabilities (optional)
2547	 *	[tlv] TDMA parameters (optional)
2548	 *	[tlv] Mesh ID (MBSS)
2549	 *	[tlv] Mesh Conf (MBSS)
2550	 *	[tlv] application data (optional)
2551	 */
2552
2553	memset(bo, 0, sizeof(*bo));
2554
2555	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2556	frm += 8;
2557	*(uint16_t *)frm = htole16(ni->ni_intval);
2558	frm += 2;
2559	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2560	bo->bo_caps = (uint16_t *)frm;
2561	*(uint16_t *)frm = htole16(capinfo);
2562	frm += 2;
2563	*frm++ = IEEE80211_ELEMID_SSID;
2564	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2565		*frm++ = ni->ni_esslen;
2566		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2567		frm += ni->ni_esslen;
2568	} else
2569		*frm++ = 0;
2570	frm = ieee80211_add_rates(frm, rs);
2571	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2572		*frm++ = IEEE80211_ELEMID_DSPARMS;
2573		*frm++ = 1;
2574		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2575	}
2576	if (ic->ic_flags & IEEE80211_F_PCF) {
2577		bo->bo_cfp = frm;
2578		frm = ieee80211_add_cfparms(frm, ic);
2579	}
2580	bo->bo_tim = frm;
2581	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2582		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2583		*frm++ = 2;
2584		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2585		bo->bo_tim_len = 0;
2586	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2587	    vap->iv_opmode == IEEE80211_M_MBSS) {
2588		/* TIM IE is the same for Mesh and Hostap */
2589		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2590
2591		tie->tim_ie = IEEE80211_ELEMID_TIM;
2592		tie->tim_len = 4;	/* length */
2593		tie->tim_count = 0;	/* DTIM count */
2594		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2595		tie->tim_bitctl = 0;	/* bitmap control */
2596		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2597		frm += sizeof(struct ieee80211_tim_ie);
2598		bo->bo_tim_len = 1;
2599	}
2600	bo->bo_tim_trailer = frm;
2601	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2602	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2603		frm = ieee80211_add_countryie(frm, ic);
2604	if (vap->iv_flags & IEEE80211_F_DOTH) {
2605		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2606			frm = ieee80211_add_powerconstraint(frm, vap);
2607		bo->bo_csa = frm;
2608		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2609			frm = ieee80211_add_csa(frm, vap);
2610	} else
2611		bo->bo_csa = frm;
2612	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2613		bo->bo_erp = frm;
2614		frm = ieee80211_add_erp(frm, ic);
2615	}
2616	frm = ieee80211_add_xrates(frm, rs);
2617	if (vap->iv_flags & IEEE80211_F_WPA2) {
2618		if (vap->iv_rsn_ie != NULL)
2619			frm = add_ie(frm, vap->iv_rsn_ie);
2620		/* XXX else complain */
2621	}
2622	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2623		frm = ieee80211_add_htcap(frm, ni);
2624		bo->bo_htinfo = frm;
2625		frm = ieee80211_add_htinfo(frm, ni);
2626	}
2627	if (vap->iv_flags & IEEE80211_F_WPA1) {
2628		if (vap->iv_wpa_ie != NULL)
2629			frm = add_ie(frm, vap->iv_wpa_ie);
2630		/* XXX else complain */
2631	}
2632	if (vap->iv_flags & IEEE80211_F_WME) {
2633		bo->bo_wme = frm;
2634		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2635	}
2636	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2637	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2638		frm = ieee80211_add_htcap_vendor(frm, ni);
2639		frm = ieee80211_add_htinfo_vendor(frm, ni);
2640	}
2641#ifdef IEEE80211_SUPPORT_SUPERG
2642	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2643		bo->bo_ath = frm;
2644		frm = ieee80211_add_athcaps(frm, ni);
2645	}
2646#endif
2647#ifdef IEEE80211_SUPPORT_TDMA
2648	if (vap->iv_caps & IEEE80211_C_TDMA) {
2649		bo->bo_tdma = frm;
2650		frm = ieee80211_add_tdma(frm, vap);
2651	}
2652#endif
2653	if (vap->iv_appie_beacon != NULL) {
2654		bo->bo_appie = frm;
2655		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2656		frm = add_appie(frm, vap->iv_appie_beacon);
2657	}
2658#ifdef IEEE80211_SUPPORT_MESH
2659	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2660		frm = ieee80211_add_meshid(frm, vap);
2661		frm = ieee80211_add_meshconf(frm, vap);
2662	}
2663#endif
2664	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2665	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2666	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2667}
2668
2669/*
2670 * Allocate a beacon frame and fillin the appropriate bits.
2671 */
2672struct mbuf *
2673ieee80211_beacon_alloc(struct ieee80211_node *ni,
2674	struct ieee80211_beacon_offsets *bo)
2675{
2676	struct ieee80211vap *vap = ni->ni_vap;
2677	struct ieee80211com *ic = ni->ni_ic;
2678	struct ifnet *ifp = vap->iv_ifp;
2679	struct ieee80211_frame *wh;
2680	struct mbuf *m;
2681	int pktlen;
2682	uint8_t *frm;
2683
2684	/*
2685	 * beacon frame format
2686	 *	[8] time stamp
2687	 *	[2] beacon interval
2688	 *	[2] cabability information
2689	 *	[tlv] ssid
2690	 *	[tlv] supported rates
2691	 *	[3] parameter set (DS)
2692	 *	[8] CF parameter set (optional)
2693	 *	[tlv] parameter set (IBSS/TIM)
2694	 *	[tlv] country (optional)
2695	 *	[3] power control (optional)
2696	 *	[5] channel switch announcement (CSA) (optional)
2697	 *	[tlv] extended rate phy (ERP)
2698	 *	[tlv] extended supported rates
2699	 *	[tlv] RSN parameters
2700	 *	[tlv] HT capabilities
2701	 *	[tlv] HT information
2702	 *	[tlv] Vendor OUI HT capabilities (optional)
2703	 *	[tlv] Vendor OUI HT information (optional)
2704	 * XXX Vendor-specific OIDs (e.g. Atheros)
2705	 *	[tlv] WPA parameters
2706	 *	[tlv] WME parameters
2707	 *	[tlv] TDMA parameters (optional)
2708	 *	[tlv] Mesh ID (MBSS)
2709	 *	[tlv] Mesh Conf (MBSS)
2710	 *	[tlv] application data (optional)
2711	 * NB: we allocate the max space required for the TIM bitmap.
2712	 * XXX how big is this?
2713	 */
2714	pktlen =   8					/* time stamp */
2715		 + sizeof(uint16_t)			/* beacon interval */
2716		 + sizeof(uint16_t)			/* capabilities */
2717		 + 2 + ni->ni_esslen			/* ssid */
2718	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2719	         + 2 + 1				/* DS parameters */
2720		 + 2 + 6				/* CF parameters */
2721		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2722		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2723		 + 2 + 1				/* power control */
2724	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2725		 + 2 + 1				/* ERP */
2726	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2727		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2728			2*sizeof(struct ieee80211_ie_wpa) : 0)
2729		 /* XXX conditional? */
2730		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2731		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2732		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2733			sizeof(struct ieee80211_wme_param) : 0)
2734#ifdef IEEE80211_SUPPORT_SUPERG
2735		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2736#endif
2737#ifdef IEEE80211_SUPPORT_TDMA
2738		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2739			sizeof(struct ieee80211_tdma_param) : 0)
2740#endif
2741#ifdef IEEE80211_SUPPORT_MESH
2742		 + 2 + ni->ni_meshidlen
2743		 + sizeof(struct ieee80211_meshconf_ie)
2744#endif
2745		 + IEEE80211_MAX_APPIE
2746		 ;
2747	m = ieee80211_getmgtframe(&frm,
2748		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2749	if (m == NULL) {
2750		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2751			"%s: cannot get buf; size %u\n", __func__, pktlen);
2752		vap->iv_stats.is_tx_nobuf++;
2753		return NULL;
2754	}
2755	ieee80211_beacon_construct(m, frm, bo, ni);
2756
2757	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2758	KASSERT(m != NULL, ("no space for 802.11 header?"));
2759	wh = mtod(m, struct ieee80211_frame *);
2760	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2761	    IEEE80211_FC0_SUBTYPE_BEACON;
2762	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2763	*(uint16_t *)wh->i_dur = 0;
2764	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2765	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2766#ifdef IEEE80211_SUPPORT_MESH
2767	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2768		static const uint8_t zerobssid[IEEE80211_ADDR_LEN];
2769		IEEE80211_ADDR_COPY(wh->i_addr3, zerobssid);
2770	} else
2771#endif
2772		IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2773	*(uint16_t *)wh->i_seq = 0;
2774
2775	return m;
2776}
2777
2778/*
2779 * Update the dynamic parts of a beacon frame based on the current state.
2780 */
2781int
2782ieee80211_beacon_update(struct ieee80211_node *ni,
2783	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2784{
2785	struct ieee80211vap *vap = ni->ni_vap;
2786	struct ieee80211com *ic = ni->ni_ic;
2787	int len_changed = 0;
2788	uint16_t capinfo;
2789
2790	IEEE80211_LOCK(ic);
2791	/*
2792	 * Handle 11h channel change when we've reached the count.
2793	 * We must recalculate the beacon frame contents to account
2794	 * for the new channel.  Note we do this only for the first
2795	 * vap that reaches this point; subsequent vaps just update
2796	 * their beacon state to reflect the recalculated channel.
2797	 */
2798	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2799	    vap->iv_csa_count == ic->ic_csa_count) {
2800		vap->iv_csa_count = 0;
2801		/*
2802		 * Effect channel change before reconstructing the beacon
2803		 * frame contents as many places reference ni_chan.
2804		 */
2805		if (ic->ic_csa_newchan != NULL)
2806			ieee80211_csa_completeswitch(ic);
2807		/*
2808		 * NB: ieee80211_beacon_construct clears all pending
2809		 * updates in bo_flags so we don't need to explicitly
2810		 * clear IEEE80211_BEACON_CSA.
2811		 */
2812		ieee80211_beacon_construct(m,
2813		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2814
2815		/* XXX do WME aggressive mode processing? */
2816		IEEE80211_UNLOCK(ic);
2817		return 1;		/* just assume length changed */
2818	}
2819
2820	/* XXX faster to recalculate entirely or just changes? */
2821	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2822	*bo->bo_caps = htole16(capinfo);
2823
2824	if (vap->iv_flags & IEEE80211_F_WME) {
2825		struct ieee80211_wme_state *wme = &ic->ic_wme;
2826
2827		/*
2828		 * Check for agressive mode change.  When there is
2829		 * significant high priority traffic in the BSS
2830		 * throttle back BE traffic by using conservative
2831		 * parameters.  Otherwise BE uses agressive params
2832		 * to optimize performance of legacy/non-QoS traffic.
2833		 */
2834		if (wme->wme_flags & WME_F_AGGRMODE) {
2835			if (wme->wme_hipri_traffic >
2836			    wme->wme_hipri_switch_thresh) {
2837				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2838				    "%s: traffic %u, disable aggressive mode\n",
2839				    __func__, wme->wme_hipri_traffic);
2840				wme->wme_flags &= ~WME_F_AGGRMODE;
2841				ieee80211_wme_updateparams_locked(vap);
2842				wme->wme_hipri_traffic =
2843					wme->wme_hipri_switch_hysteresis;
2844			} else
2845				wme->wme_hipri_traffic = 0;
2846		} else {
2847			if (wme->wme_hipri_traffic <=
2848			    wme->wme_hipri_switch_thresh) {
2849				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2850				    "%s: traffic %u, enable aggressive mode\n",
2851				    __func__, wme->wme_hipri_traffic);
2852				wme->wme_flags |= WME_F_AGGRMODE;
2853				ieee80211_wme_updateparams_locked(vap);
2854				wme->wme_hipri_traffic = 0;
2855			} else
2856				wme->wme_hipri_traffic =
2857					wme->wme_hipri_switch_hysteresis;
2858		}
2859		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2860			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2861			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2862		}
2863	}
2864
2865	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2866		ieee80211_ht_update_beacon(vap, bo);
2867		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2868	}
2869#ifdef IEEE80211_SUPPORT_TDMA
2870	if (vap->iv_caps & IEEE80211_C_TDMA) {
2871		/*
2872		 * NB: the beacon is potentially updated every TBTT.
2873		 */
2874		ieee80211_tdma_update_beacon(vap, bo);
2875	}
2876#endif
2877	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2878	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
2879		struct ieee80211_tim_ie *tie =
2880			(struct ieee80211_tim_ie *) bo->bo_tim;
2881		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2882			u_int timlen, timoff, i;
2883			/*
2884			 * ATIM/DTIM needs updating.  If it fits in the
2885			 * current space allocated then just copy in the
2886			 * new bits.  Otherwise we need to move any trailing
2887			 * data to make room.  Note that we know there is
2888			 * contiguous space because ieee80211_beacon_allocate
2889			 * insures there is space in the mbuf to write a
2890			 * maximal-size virtual bitmap (based on iv_max_aid).
2891			 */
2892			/*
2893			 * Calculate the bitmap size and offset, copy any
2894			 * trailer out of the way, and then copy in the
2895			 * new bitmap and update the information element.
2896			 * Note that the tim bitmap must contain at least
2897			 * one byte and any offset must be even.
2898			 */
2899			if (vap->iv_ps_pending != 0) {
2900				timoff = 128;		/* impossibly large */
2901				for (i = 0; i < vap->iv_tim_len; i++)
2902					if (vap->iv_tim_bitmap[i]) {
2903						timoff = i &~ 1;
2904						break;
2905					}
2906				KASSERT(timoff != 128, ("tim bitmap empty!"));
2907				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2908					if (vap->iv_tim_bitmap[i])
2909						break;
2910				timlen = 1 + (i - timoff);
2911			} else {
2912				timoff = 0;
2913				timlen = 1;
2914			}
2915			if (timlen != bo->bo_tim_len) {
2916				/* copy up/down trailer */
2917				int adjust = tie->tim_bitmap+timlen
2918					   - bo->bo_tim_trailer;
2919				ovbcopy(bo->bo_tim_trailer,
2920				    bo->bo_tim_trailer+adjust,
2921				    bo->bo_tim_trailer_len);
2922				bo->bo_tim_trailer += adjust;
2923				bo->bo_erp += adjust;
2924				bo->bo_htinfo += adjust;
2925#ifdef IEEE80211_SUPERG_SUPPORT
2926				bo->bo_ath += adjust;
2927#endif
2928#ifdef IEEE80211_TDMA_SUPPORT
2929				bo->bo_tdma += adjust;
2930#endif
2931				bo->bo_appie += adjust;
2932				bo->bo_wme += adjust;
2933				bo->bo_csa += adjust;
2934				bo->bo_tim_len = timlen;
2935
2936				/* update information element */
2937				tie->tim_len = 3 + timlen;
2938				tie->tim_bitctl = timoff;
2939				len_changed = 1;
2940			}
2941			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2942				bo->bo_tim_len);
2943
2944			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2945
2946			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2947				"%s: TIM updated, pending %u, off %u, len %u\n",
2948				__func__, vap->iv_ps_pending, timoff, timlen);
2949		}
2950		/* count down DTIM period */
2951		if (tie->tim_count == 0)
2952			tie->tim_count = tie->tim_period - 1;
2953		else
2954			tie->tim_count--;
2955		/* update state for buffered multicast frames on DTIM */
2956		if (mcast && tie->tim_count == 0)
2957			tie->tim_bitctl |= 1;
2958		else
2959			tie->tim_bitctl &= ~1;
2960		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2961			struct ieee80211_csa_ie *csa =
2962			    (struct ieee80211_csa_ie *) bo->bo_csa;
2963
2964			/*
2965			 * Insert or update CSA ie.  If we're just starting
2966			 * to count down to the channel switch then we need
2967			 * to insert the CSA ie.  Otherwise we just need to
2968			 * drop the count.  The actual change happens above
2969			 * when the vap's count reaches the target count.
2970			 */
2971			if (vap->iv_csa_count == 0) {
2972				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2973				bo->bo_erp += sizeof(*csa);
2974				bo->bo_htinfo += sizeof(*csa);
2975				bo->bo_wme += sizeof(*csa);
2976#ifdef IEEE80211_SUPERG_SUPPORT
2977				bo->bo_ath += sizeof(*csa);
2978#endif
2979#ifdef IEEE80211_TDMA_SUPPORT
2980				bo->bo_tdma += sizeof(*csa);
2981#endif
2982				bo->bo_appie += sizeof(*csa);
2983				bo->bo_csa_trailer_len += sizeof(*csa);
2984				bo->bo_tim_trailer_len += sizeof(*csa);
2985				m->m_len += sizeof(*csa);
2986				m->m_pkthdr.len += sizeof(*csa);
2987
2988				ieee80211_add_csa(bo->bo_csa, vap);
2989			} else
2990				csa->csa_count--;
2991			vap->iv_csa_count++;
2992			/* NB: don't clear IEEE80211_BEACON_CSA */
2993		}
2994		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2995			/*
2996			 * ERP element needs updating.
2997			 */
2998			(void) ieee80211_add_erp(bo->bo_erp, ic);
2999			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3000		}
3001#ifdef IEEE80211_SUPPORT_SUPERG
3002		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3003			ieee80211_add_athcaps(bo->bo_ath, ni);
3004			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3005		}
3006#endif
3007	}
3008	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3009		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3010		int aielen;
3011		uint8_t *frm;
3012
3013		aielen = 0;
3014		if (aie != NULL)
3015			aielen += aie->ie_len;
3016		if (aielen != bo->bo_appie_len) {
3017			/* copy up/down trailer */
3018			int adjust = aielen - bo->bo_appie_len;
3019			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3020				bo->bo_tim_trailer_len);
3021			bo->bo_tim_trailer += adjust;
3022			bo->bo_appie += adjust;
3023			bo->bo_appie_len = aielen;
3024
3025			len_changed = 1;
3026		}
3027		frm = bo->bo_appie;
3028		if (aie != NULL)
3029			frm  = add_appie(frm, aie);
3030		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3031	}
3032	IEEE80211_UNLOCK(ic);
3033
3034	return len_changed;
3035}
3036