ieee80211_output.c revision 186904
1169695Skan/*-
2169695Skan * Copyright (c) 2001 Atsushi Onoe
3169695Skan * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4169695Skan * All rights reserved.
5169695Skan *
6169695Skan * Redistribution and use in source and binary forms, with or without
7169695Skan * modification, are permitted provided that the following conditions
8169695Skan * are met:
9169695Skan * 1. Redistributions of source code must retain the above copyright
10169695Skan *    notice, this list of conditions and the following disclaimer.
11169695Skan * 2. Redistributions in binary form must reproduce the above copyright
12169695Skan *    notice, this list of conditions and the following disclaimer in the
13169695Skan *    documentation and/or other materials provided with the distribution.
14169695Skan *
15169695Skan * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16169695Skan * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17169695Skan * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18169695Skan * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19169695Skan * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20169695Skan * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21169695Skan * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22169695Skan * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23169695Skan * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24169695Skan * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25169695Skan */
26169695Skan
27169695Skan#include <sys/cdefs.h>
28169695Skan__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 186904 2009-01-08 17:12:47Z sam $");
29169695Skan
30169695Skan#include "opt_inet.h"
31169695Skan#include "opt_wlan.h"
32169695Skan
33169695Skan#include <sys/param.h>
34169695Skan#include <sys/systm.h>
35169695Skan#include <sys/mbuf.h>
36169695Skan#include <sys/kernel.h>
37169695Skan#include <sys/endian.h>
38169695Skan
39169695Skan#include <sys/socket.h>
40169695Skan
41169695Skan#include <net/bpf.h>
42169695Skan#include <net/ethernet.h>
43169695Skan#include <net/if.h>
44169695Skan#include <net/if_llc.h>
45169695Skan#include <net/if_media.h>
46169695Skan#include <net/if_vlan_var.h>
47169695Skan
48169695Skan#include <net80211/ieee80211_var.h>
49169695Skan#include <net80211/ieee80211_regdomain.h>
50169695Skan#ifdef IEEE80211_SUPPORT_TDMA
51169695Skan#include <net80211/ieee80211_tdma.h>
52169695Skan#endif
53169695Skan#include <net80211/ieee80211_wds.h>
54169695Skan
55169695Skan#ifdef INET
56169695Skan#include <netinet/in.h>
57169695Skan#include <netinet/if_ether.h>
58169695Skan#include <netinet/in_systm.h>
59169695Skan#include <netinet/ip.h>
60169695Skan#endif
61169695Skan
62169695Skan#define	ETHER_HEADER_COPY(dst, src) \
63169695Skan	memcpy(dst, src, sizeof(struct ether_header))
64169695Skan
65169695Skanstatic struct mbuf *ieee80211_encap_fastframe(struct ieee80211vap *,
66169695Skan	struct mbuf *m1, const struct ether_header *eh1,
67169695Skan	struct mbuf *m2, const struct ether_header *eh2);
68169695Skanstatic int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
69169695Skan	u_int hdrsize, u_int ciphdrsize, u_int mtu);
70169695Skanstatic	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
71169695Skan
72169695Skan#ifdef IEEE80211_DEBUG
73169695Skan/*
74169695Skan * Decide if an outbound management frame should be
75169695Skan * printed when debugging is enabled.  This filters some
76169695Skan * of the less interesting frames that come frequently
77169695Skan * (e.g. beacons).
78169695Skan */
79169695Skanstatic __inline int
80169695Skandoprint(struct ieee80211vap *vap, int subtype)
81169695Skan{
82169695Skan	switch (subtype) {
83169695Skan	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
84169695Skan		return (vap->iv_opmode == IEEE80211_M_IBSS);
85169695Skan	}
86169695Skan	return 1;
87169695Skan}
88169695Skan#endif
89169695Skan
90169695Skan/*
91169695Skan * Start method for vap's.  All packets from the stack come
92169695Skan * through here.  We handle common processing of the packets
93169695Skan * before dispatching them to the underlying device.
94169695Skan */
95169695Skanvoid
96169695Skanieee80211_start(struct ifnet *ifp)
97169695Skan{
98169695Skan#define	IS_DWDS(vap) \
99169695Skan	(vap->iv_opmode == IEEE80211_M_WDS && \
100169695Skan	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
101169695Skan	struct ieee80211vap *vap = ifp->if_softc;
102169695Skan	struct ieee80211com *ic = vap->iv_ic;
103169695Skan	struct ifnet *parent = ic->ic_ifp;
104169695Skan	struct ieee80211_node *ni;
105169695Skan	struct mbuf *m;
106169695Skan	struct ether_header *eh;
107169695Skan	int error;
108169695Skan
109169695Skan	/* NB: parent must be up and running */
110169695Skan	if (!IFNET_IS_UP_RUNNING(parent)) {
111169695Skan		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
112169695Skan		    "%s: ignore queue, parent %s not up+running\n",
113169695Skan		    __func__, parent->if_xname);
114169695Skan		/* XXX stat */
115169695Skan		return;
116169695Skan	}
117169695Skan	if (vap->iv_state == IEEE80211_S_SLEEP) {
118169695Skan		/*
119169695Skan		 * In power save, wakeup device for transmit.
120169695Skan		 */
121169695Skan		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
122169695Skan		return;
123169695Skan	}
124169695Skan	/*
125169695Skan	 * No data frames go out unless we're running.
126169695Skan	 * Note in particular this covers CAC and CSA
127169695Skan	 * states (though maybe we should check muting
128169695Skan	 * for CSA).
129169695Skan	 */
130169695Skan	if (vap->iv_state != IEEE80211_S_RUN) {
131169695Skan		IEEE80211_LOCK(ic);
132169695Skan		/* re-check under the com lock to avoid races */
133169695Skan		if (vap->iv_state != IEEE80211_S_RUN) {
134169695Skan			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
135169695Skan			    "%s: ignore queue, in %s state\n",
136169695Skan			    __func__, ieee80211_state_name[vap->iv_state]);
137169695Skan			vap->iv_stats.is_tx_badstate++;
138169695Skan			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
139169695Skan			IEEE80211_UNLOCK(ic);
140169695Skan			return;
141169695Skan		}
142169695Skan		IEEE80211_UNLOCK(ic);
143169695Skan	}
144169695Skan	for (;;) {
145169695Skan		IFQ_DEQUEUE(&ifp->if_snd, m);
146169695Skan		if (m == NULL)
147169695Skan			break;
148169695Skan		/*
149169695Skan		 * Sanitize mbuf flags for net80211 use.  We cannot
150169695Skan		 * clear M_PWR_SAV because this may be set for frames
151169695Skan		 * that are re-submitted from the power save queue.
152169695Skan		 *
153169695Skan		 * NB: This must be done before ieee80211_classify as
154169695Skan		 *     it marks EAPOL in frames with M_EAPOL.
155169695Skan		 */
156169695Skan		m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
157169695Skan		/*
158169695Skan		 * Cancel any background scan.
159169695Skan		 */
160169695Skan		if (ic->ic_flags & IEEE80211_F_SCAN)
161169695Skan			ieee80211_cancel_anyscan(vap);
162169695Skan		/*
163169695Skan		 * Find the node for the destination so we can do
164169695Skan		 * things like power save and fast frames aggregation.
165169695Skan		 *
166169695Skan		 * NB: past this point various code assumes the first
167169695Skan		 *     mbuf has the 802.3 header present (and contiguous).
168169695Skan		 */
169169695Skan		ni = NULL;
170169695Skan		if (m->m_len < sizeof(struct ether_header) &&
171169695Skan		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
172169695Skan			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
173169695Skan			    "discard frame, %s\n", "m_pullup failed");
174169695Skan			vap->iv_stats.is_tx_nobuf++;	/* XXX */
175169695Skan			ifp->if_oerrors++;
176169695Skan			continue;
177169695Skan		}
178169695Skan		eh = mtod(m, struct ether_header *);
179169695Skan		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
180169695Skan			if (IS_DWDS(vap)) {
181169695Skan				/*
182169695Skan				 * Only unicast frames from the above go out
183169695Skan				 * DWDS vaps; multicast frames are handled by
184169695Skan				 * dispatching the frame as it comes through
185169695Skan				 * the AP vap (see below).
186169695Skan				 */
187169695Skan				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
188169695Skan				    eh->ether_dhost, "mcast", "%s", "on DWDS");
189169695Skan				vap->iv_stats.is_dwds_mcast++;
190169695Skan				m_freem(m);
191169695Skan				continue;
192169695Skan			}
193169695Skan			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
194169695Skan				/*
195169695Skan				 * Spam DWDS vap's w/ multicast traffic.
196169695Skan				 */
197169695Skan				/* XXX only if dwds in use? */
198169695Skan				ieee80211_dwds_mcast(vap, m);
199169695Skan			}
200169695Skan		}
201169695Skan		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
202169695Skan		if (ni == NULL) {
203169695Skan			/* NB: ieee80211_find_txnode does stat+msg */
204169695Skan			ifp->if_oerrors++;
205169695Skan			m_freem(m);
206169695Skan			continue;
207169695Skan		}
208169695Skan		/* XXX AUTH'd */
209169695Skan		if (ni->ni_associd == 0 &&
210169695Skan		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
211169695Skan			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
212169695Skan			    eh->ether_dhost, NULL,
213169695Skan			    "sta not associated (type 0x%04x)",
214169695Skan			    htons(eh->ether_type));
215169695Skan			vap->iv_stats.is_tx_notassoc++;
216169695Skan			ifp->if_oerrors++;
217169695Skan			m_freem(m);
218169695Skan			ieee80211_free_node(ni);
219169695Skan			continue;
220169695Skan		}
221169695Skan		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
222169695Skan		    (m->m_flags & M_PWR_SAV) == 0) {
223169695Skan			/*
224169695Skan			 * Station in power save mode; pass the frame
225169695Skan			 * to the 802.11 layer and continue.  We'll get
226169695Skan			 * the frame back when the time is right.
227169695Skan			 * XXX lose WDS vap linkage?
228169695Skan			 */
229169695Skan			(void) ieee80211_pwrsave(ni, m);
230169695Skan			ieee80211_free_node(ni);
231169695Skan			continue;
232169695Skan		}
233169695Skan		/* calculate priority so drivers can find the tx queue */
234169695Skan		if (ieee80211_classify(ni, m)) {
235169695Skan			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
236169695Skan			    eh->ether_dhost, NULL,
237169695Skan			    "%s", "classification failure");
238169695Skan			vap->iv_stats.is_tx_classify++;
239169695Skan			ifp->if_oerrors++;
240169695Skan			m_freem(m);
241169695Skan			ieee80211_free_node(ni);
242169695Skan			continue;
243169695Skan		}
244169695Skan
245169695Skan		BPF_MTAP(ifp, m);		/* 802.11 tx path */
246169695Skan
247169695Skan		/*
248169695Skan		 * XXX When ni is associated with a WDS link then
249169695Skan		 * the vap will be the WDS vap but ni_vap will point
250169695Skan		 * to the ap vap the station associated to.  Once
251169695Skan		 * we handoff the packet to the driver the callback
252169695Skan		 * to ieee80211_encap won't be able to tell if the
253169695Skan		 * packet should be encapsulated for WDS or not (e.g.
254169695Skan		 * multicast frames will not be handled correctly).
255169695Skan		 * We hack this by marking the mbuf so ieee80211_encap
256169695Skan		 * can do the right thing.
257169695Skan		 */
258169695Skan		if (vap->iv_opmode == IEEE80211_M_WDS)
259169695Skan			m->m_flags |= M_WDS;
260169695Skan		else
261169695Skan			m->m_flags &= ~M_WDS;
262169695Skan
263169695Skan		/*
264169695Skan		 * Stash the node pointer and hand the frame off to
265169695Skan		 * the underlying device.  Note that we do this after
266169695Skan		 * any call to ieee80211_dwds_mcast because that code
267169695Skan		 * uses any existing value for rcvif.
268169695Skan		 */
269169695Skan		m->m_pkthdr.rcvif = (void *)ni;
270169695Skan
271169695Skan		/* XXX defer if_start calls? */
272169695Skan		error = parent->if_transmit(parent, m);
273169695Skan		if (error != 0) {
274169695Skan			/* NB: IFQ_HANDOFF reclaims mbuf */
275169695Skan			ieee80211_free_node(ni);
276169695Skan		} else {
277169695Skan			ifp->if_opackets++;
278169695Skan		}
279169695Skan		ic->ic_lastdata = ticks;
280169695Skan	}
281169695Skan#undef IS_DWDS
282169695Skan}
283169695Skan
284169695Skan/*
285169695Skan * 802.11 output routine. This is (currently) used only to
286169695Skan * connect bpf write calls to the 802.11 layer for injecting
287169695Skan * raw 802.11 frames.  Note we locate the ieee80211com from
288169695Skan * the ifnet using a spare field setup at attach time.  This
289169695Skan * will go away when the virtual ap support comes in.
290169695Skan */
291169695Skanint
292169695Skanieee80211_output(struct ifnet *ifp, struct mbuf *m,
293169695Skan	struct sockaddr *dst, struct rtentry *rt0)
294169695Skan{
295169695Skan#define senderr(e) do { error = (e); goto bad;} while (0)
296169695Skan	struct ieee80211_node *ni = NULL;
297169695Skan	struct ieee80211vap *vap;
298169695Skan	struct ieee80211_frame *wh;
299169695Skan	int error;
300169695Skan
301169695Skan	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
302169695Skan		/*
303169695Skan		 * Short-circuit requests if the vap is marked OACTIVE
304169695Skan		 * as this is used when tearing down state to indicate
305169695Skan		 * the vap may be gone.  This can also happen because a
306169695Skan		 * packet came down through ieee80211_start before the
307169695Skan		 * vap entered RUN state in which case it's also ok to
308169695Skan		 * just drop the frame.  This should not be necessary
309169695Skan		 * but callers of if_output don't check OACTIVE.
310169695Skan		 */
311169695Skan		senderr(ENETDOWN);
312169695Skan	}
313169695Skan	vap = ifp->if_softc;
314169695Skan	/*
315169695Skan	 * Hand to the 802.3 code if not tagged as
316169695Skan	 * a raw 802.11 frame.
317169695Skan	 */
318169695Skan	if (dst->sa_family != AF_IEEE80211)
319169695Skan		return vap->iv_output(ifp, m, dst, rt0);
320169695Skan#ifdef MAC
321169695Skan	error = mac_check_ifnet_transmit(ifp, m);
322169695Skan	if (error)
323169695Skan		senderr(error);
324169695Skan#endif
325169695Skan	if (ifp->if_flags & IFF_MONITOR)
326169695Skan		senderr(ENETDOWN);
327169695Skan	if (!IFNET_IS_UP_RUNNING(ifp))
328169695Skan		senderr(ENETDOWN);
329169695Skan	if (vap->iv_state == IEEE80211_S_CAC) {
330169695Skan		IEEE80211_DPRINTF(vap,
331169695Skan		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
332169695Skan		    "block %s frame in CAC state\n", "raw data");
333169695Skan		vap->iv_stats.is_tx_badstate++;
334169695Skan		senderr(EIO);		/* XXX */
335169695Skan	}
336169695Skan	/* XXX bypass bridge, pfil, carp, etc. */
337169695Skan
338169695Skan	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
339169695Skan		senderr(EIO);	/* XXX */
340169695Skan	wh = mtod(m, struct ieee80211_frame *);
341169695Skan	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
342169695Skan	    IEEE80211_FC0_VERSION_0)
343169695Skan		senderr(EIO);	/* XXX */
344169695Skan
345169695Skan	/* locate destination node */
346169695Skan	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
347169695Skan	case IEEE80211_FC1_DIR_NODS:
348169695Skan	case IEEE80211_FC1_DIR_FROMDS:
349169695Skan		ni = ieee80211_find_txnode(vap, wh->i_addr1);
350169695Skan		break;
351169695Skan	case IEEE80211_FC1_DIR_TODS:
352169695Skan	case IEEE80211_FC1_DIR_DSTODS:
353169695Skan		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
354169695Skan			senderr(EIO);	/* XXX */
355169695Skan		ni = ieee80211_find_txnode(vap, wh->i_addr3);
356169695Skan		break;
357169695Skan	default:
358169695Skan		senderr(EIO);	/* XXX */
359169695Skan	}
360169695Skan	if (ni == NULL) {
361169695Skan		/*
362169695Skan		 * Permit packets w/ bpf params through regardless
363169695Skan		 * (see below about sa_len).
364169695Skan		 */
365169695Skan		if (dst->sa_len == 0)
366169695Skan			senderr(EHOSTUNREACH);
367169695Skan		ni = ieee80211_ref_node(vap->iv_bss);
368169695Skan	}
369169695Skan
370169695Skan	/*
371169695Skan	 * Sanitize mbuf for net80211 flags leaked from above.
372169695Skan	 *
373169695Skan	 * NB: This must be done before ieee80211_classify as
374169695Skan	 *     it marks EAPOL in frames with M_EAPOL.
375169695Skan	 */
376169695Skan	m->m_flags &= ~M_80211_TX;
377169695Skan
378169695Skan	/* calculate priority so drivers can find the tx queue */
379169695Skan	/* XXX assumes an 802.3 frame */
380169695Skan	if (ieee80211_classify(ni, m))
381169695Skan		senderr(EIO);		/* XXX */
382169695Skan
383169695Skan	BPF_MTAP(ifp, m);
384169695Skan
385169695Skan	/*
386169695Skan	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
387169695Skan	 * present by setting the sa_len field of the sockaddr (yes,
388169695Skan	 * this is a hack).
389169695Skan	 * NB: we assume sa_data is suitably aligned to cast.
390169695Skan	 */
391169695Skan	return vap->iv_ic->ic_raw_xmit(ni, m,
392169695Skan	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
393169695Skan		dst->sa_data : NULL));
394169695Skanbad:
395169695Skan	if (m != NULL)
396169695Skan		m_freem(m);
397169695Skan	if (ni != NULL)
398169695Skan		ieee80211_free_node(ni);
399169695Skan	return error;
400169695Skan#undef senderr
401169695Skan}
402169695Skan
403169695Skan/*
404169695Skan * Set the direction field and address fields of an outgoing
405169695Skan * frame.  Note this should be called early on in constructing
406169695Skan * a frame as it sets i_fc[1]; other bits can then be or'd in.
407169695Skan */
408169695Skanstatic void
409169695Skanieee80211_send_setup(
410169695Skan	struct ieee80211_node *ni,
411169695Skan	struct ieee80211_frame *wh,
412169695Skan	int type, int tid,
413169695Skan	const uint8_t sa[IEEE80211_ADDR_LEN],
414169695Skan	const uint8_t da[IEEE80211_ADDR_LEN],
415169695Skan	const uint8_t bssid[IEEE80211_ADDR_LEN])
416169695Skan{
417169695Skan#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
418169695Skan
419169695Skan	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
420169695Skan	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
421169695Skan		struct ieee80211vap *vap = ni->ni_vap;
422169695Skan
423169695Skan		switch (vap->iv_opmode) {
424169695Skan		case IEEE80211_M_STA:
425169695Skan			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
426169695Skan			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
427169695Skan			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
428169695Skan			IEEE80211_ADDR_COPY(wh->i_addr3, da);
429169695Skan			break;
430169695Skan		case IEEE80211_M_IBSS:
431169695Skan		case IEEE80211_M_AHDEMO:
432169695Skan			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
433169695Skan			IEEE80211_ADDR_COPY(wh->i_addr1, da);
434169695Skan			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
435169695Skan			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
436169695Skan			break;
437169695Skan		case IEEE80211_M_HOSTAP:
438169695Skan			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
439169695Skan			IEEE80211_ADDR_COPY(wh->i_addr1, da);
440169695Skan			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
441169695Skan			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
442169695Skan			break;
443169695Skan		case IEEE80211_M_WDS:
444169695Skan			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
445169695Skan			IEEE80211_ADDR_COPY(wh->i_addr1, da);
446169695Skan			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
447169695Skan			IEEE80211_ADDR_COPY(wh->i_addr3, da);
448169695Skan			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
449169695Skan			break;
450169695Skan		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
451169695Skan			break;
452169695Skan		}
453169695Skan	} else {
454169695Skan		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
455169695Skan		IEEE80211_ADDR_COPY(wh->i_addr1, da);
456169695Skan		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
457169695Skan		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
458169695Skan	}
459169695Skan	*(uint16_t *)&wh->i_dur[0] = 0;
460169695Skan	*(uint16_t *)&wh->i_seq[0] =
461169695Skan	    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
462169695Skan	ni->ni_txseqs[tid]++;
463169695Skan#undef WH4
464169695Skan}
465169695Skan
466169695Skan/*
467169695Skan * Send a management frame to the specified node.  The node pointer
468169695Skan * must have a reference as the pointer will be passed to the driver
469169695Skan * and potentially held for a long time.  If the frame is successfully
470169695Skan * dispatched to the driver, then it is responsible for freeing the
471169695Skan * reference (and potentially free'ing up any associated storage);
472169695Skan * otherwise deal with reclaiming any reference (on error).
473169695Skan */
474169695Skanint
475169695Skanieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
476169695Skan	struct ieee80211_bpf_params *params)
477169695Skan{
478169695Skan	struct ieee80211vap *vap = ni->ni_vap;
479169695Skan	struct ieee80211com *ic = ni->ni_ic;
480169695Skan	struct ieee80211_frame *wh;
481169695Skan
482169695Skan	KASSERT(ni != NULL, ("null node"));
483169695Skan
484169695Skan	if (vap->iv_state == IEEE80211_S_CAC) {
485169695Skan		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
486169695Skan		    ni, "block %s frame in CAC state",
487169695Skan			ieee80211_mgt_subtype_name[
488169695Skan			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
489169695Skan				IEEE80211_FC0_SUBTYPE_SHIFT]);
490169695Skan		vap->iv_stats.is_tx_badstate++;
491169695Skan		ieee80211_free_node(ni);
492169695Skan		m_freem(m);
493169695Skan		return EIO;		/* XXX */
494169695Skan	}
495169695Skan
496169695Skan	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
497169695Skan	if (m == NULL) {
498169695Skan		ieee80211_free_node(ni);
499169695Skan		return ENOMEM;
500169695Skan	}
501169695Skan
502169695Skan	wh = mtod(m, struct ieee80211_frame *);
503169695Skan	ieee80211_send_setup(ni, wh,
504169695Skan	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
505169695Skan	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
506169695Skan	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
507169695Skan		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
508169695Skan		    "encrypting frame (%s)", __func__);
509169695Skan		wh->i_fc[1] |= IEEE80211_FC1_WEP;
510169695Skan	}
511169695Skan	m->m_flags |= M_ENCAP;		/* mark encapsulated */
512169695Skan
513169695Skan	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
514169695Skan	M_WME_SETAC(m, params->ibp_pri);
515169695Skan
516169695Skan#ifdef IEEE80211_DEBUG
517169695Skan	/* avoid printing too many frames */
518169695Skan	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
519169695Skan	    ieee80211_msg_dumppkts(vap)) {
520169695Skan		printf("[%s] send %s on channel %u\n",
521169695Skan		    ether_sprintf(wh->i_addr1),
522169695Skan		    ieee80211_mgt_subtype_name[
523169695Skan			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
524169695Skan				IEEE80211_FC0_SUBTYPE_SHIFT],
525169695Skan		    ieee80211_chan2ieee(ic, ic->ic_curchan));
526169695Skan	}
527169695Skan#endif
528169695Skan	IEEE80211_NODE_STAT(ni, tx_mgmt);
529169695Skan
530169695Skan	return ic->ic_raw_xmit(ni, m, params);
531169695Skan}
532169695Skan
533169695Skan/*
534169695Skan * Send a null data frame to the specified node.  If the station
535169695Skan * is setup for QoS then a QoS Null Data frame is constructed.
536169695Skan * If this is a WDS station then a 4-address frame is constructed.
537169695Skan *
538169695Skan * NB: the caller is assumed to have setup a node reference
539169695Skan *     for use; this is necessary to deal with a race condition
540169695Skan *     when probing for inactive stations.  Like ieee80211_mgmt_output
541169695Skan *     we must cleanup any node reference on error;  however we
542169695Skan *     can safely just unref it as we know it will never be the
543169695Skan *     last reference to the node.
544169695Skan */
545169695Skanint
546169695Skanieee80211_send_nulldata(struct ieee80211_node *ni)
547169695Skan{
548169695Skan	struct ieee80211vap *vap = ni->ni_vap;
549169695Skan	struct ieee80211com *ic = ni->ni_ic;
550169695Skan	struct mbuf *m;
551169695Skan	struct ieee80211_frame *wh;
552169695Skan	int hdrlen;
553169695Skan	uint8_t *frm;
554169695Skan
555169695Skan	if (vap->iv_state == IEEE80211_S_CAC) {
556169695Skan		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
557169695Skan		    ni, "block %s frame in CAC state", "null data");
558169695Skan		ieee80211_unref_node(&ni);
559169695Skan		vap->iv_stats.is_tx_badstate++;
560169695Skan		return EIO;		/* XXX */
561169695Skan	}
562169695Skan
563169695Skan	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
564169695Skan		hdrlen = sizeof(struct ieee80211_qosframe);
565169695Skan	else
566		hdrlen = sizeof(struct ieee80211_frame);
567	/* NB: only WDS vap's get 4-address frames */
568	if (vap->iv_opmode == IEEE80211_M_WDS)
569		hdrlen += IEEE80211_ADDR_LEN;
570	if (ic->ic_flags & IEEE80211_F_DATAPAD)
571		hdrlen = roundup(hdrlen, sizeof(uint32_t));
572
573	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
574	if (m == NULL) {
575		/* XXX debug msg */
576		ieee80211_unref_node(&ni);
577		vap->iv_stats.is_tx_nobuf++;
578		return ENOMEM;
579	}
580	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
581	    ("leading space %zd", M_LEADINGSPACE(m)));
582	M_PREPEND(m, hdrlen, M_DONTWAIT);
583	if (m == NULL) {
584		/* NB: cannot happen */
585		ieee80211_free_node(ni);
586		return ENOMEM;
587	}
588
589	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
590	if (ni->ni_flags & IEEE80211_NODE_QOS) {
591		const int tid = WME_AC_TO_TID(WME_AC_BE);
592		uint8_t *qos;
593
594		ieee80211_send_setup(ni, wh,
595		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
596		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
597
598		if (vap->iv_opmode == IEEE80211_M_WDS)
599			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
600		else
601			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
602		qos[0] = tid & IEEE80211_QOS_TID;
603		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
604			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
605		qos[1] = 0;
606	} else {
607		ieee80211_send_setup(ni, wh,
608		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
609		    IEEE80211_NONQOS_TID,
610		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
611	}
612	if (vap->iv_opmode != IEEE80211_M_WDS) {
613		/* NB: power management bit is never sent by an AP */
614		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
615		    vap->iv_opmode != IEEE80211_M_HOSTAP)
616			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
617	}
618	m->m_len = m->m_pkthdr.len = hdrlen;
619	m->m_flags |= M_ENCAP;		/* mark encapsulated */
620
621	M_WME_SETAC(m, WME_AC_BE);
622
623	IEEE80211_NODE_STAT(ni, tx_data);
624
625	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
626	    "send %snull data frame on channel %u, pwr mgt %s",
627	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
628	    ieee80211_chan2ieee(ic, ic->ic_curchan),
629	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
630
631	return ic->ic_raw_xmit(ni, m, NULL);
632}
633
634/*
635 * Assign priority to a frame based on any vlan tag assigned
636 * to the station and/or any Diffserv setting in an IP header.
637 * Finally, if an ACM policy is setup (in station mode) it's
638 * applied.
639 */
640int
641ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
642{
643	const struct ether_header *eh = mtod(m, struct ether_header *);
644	int v_wme_ac, d_wme_ac, ac;
645
646	/*
647	 * Always promote PAE/EAPOL frames to high priority.
648	 */
649	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
650		/* NB: mark so others don't need to check header */
651		m->m_flags |= M_EAPOL;
652		ac = WME_AC_VO;
653		goto done;
654	}
655	/*
656	 * Non-qos traffic goes to BE.
657	 */
658	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
659		ac = WME_AC_BE;
660		goto done;
661	}
662
663	/*
664	 * If node has a vlan tag then all traffic
665	 * to it must have a matching tag.
666	 */
667	v_wme_ac = 0;
668	if (ni->ni_vlan != 0) {
669		 if ((m->m_flags & M_VLANTAG) == 0) {
670			IEEE80211_NODE_STAT(ni, tx_novlantag);
671			return 1;
672		}
673		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
674		    EVL_VLANOFTAG(ni->ni_vlan)) {
675			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
676			return 1;
677		}
678		/* map vlan priority to AC */
679		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
680	}
681
682#ifdef INET
683	if (eh->ether_type == htons(ETHERTYPE_IP)) {
684		uint8_t tos;
685		/*
686		 * IP frame, map the DSCP bits from the TOS field.
687		 */
688		/* XXX m_copydata may be too slow for fast path */
689		/* NB: ip header may not be in first mbuf */
690		m_copydata(m, sizeof(struct ether_header) +
691		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
692		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
693		d_wme_ac = TID_TO_WME_AC(tos);
694	} else {
695#endif /* INET */
696		d_wme_ac = WME_AC_BE;
697#ifdef INET
698	}
699#endif
700	/*
701	 * Use highest priority AC.
702	 */
703	if (v_wme_ac > d_wme_ac)
704		ac = v_wme_ac;
705	else
706		ac = d_wme_ac;
707
708	/*
709	 * Apply ACM policy.
710	 */
711	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
712		static const int acmap[4] = {
713			WME_AC_BK,	/* WME_AC_BE */
714			WME_AC_BK,	/* WME_AC_BK */
715			WME_AC_BE,	/* WME_AC_VI */
716			WME_AC_VI,	/* WME_AC_VO */
717		};
718		struct ieee80211com *ic = ni->ni_ic;
719
720		while (ac != WME_AC_BK &&
721		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
722			ac = acmap[ac];
723	}
724done:
725	M_WME_SETAC(m, ac);
726	return 0;
727}
728
729/*
730 * Insure there is sufficient contiguous space to encapsulate the
731 * 802.11 data frame.  If room isn't already there, arrange for it.
732 * Drivers and cipher modules assume we have done the necessary work
733 * and fail rudely if they don't find the space they need.
734 */
735static struct mbuf *
736ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
737	struct ieee80211_key *key, struct mbuf *m)
738{
739#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
740	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
741
742	if (key != NULL) {
743		/* XXX belongs in crypto code? */
744		needed_space += key->wk_cipher->ic_header;
745		/* XXX frags */
746		/*
747		 * When crypto is being done in the host we must insure
748		 * the data are writable for the cipher routines; clone
749		 * a writable mbuf chain.
750		 * XXX handle SWMIC specially
751		 */
752		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
753			m = m_unshare(m, M_NOWAIT);
754			if (m == NULL) {
755				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
756				    "%s: cannot get writable mbuf\n", __func__);
757				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
758				return NULL;
759			}
760		}
761	}
762	/*
763	 * We know we are called just before stripping an Ethernet
764	 * header and prepending an LLC header.  This means we know
765	 * there will be
766	 *	sizeof(struct ether_header) - sizeof(struct llc)
767	 * bytes recovered to which we need additional space for the
768	 * 802.11 header and any crypto header.
769	 */
770	/* XXX check trailing space and copy instead? */
771	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
772		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
773		if (n == NULL) {
774			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
775			    "%s: cannot expand storage\n", __func__);
776			vap->iv_stats.is_tx_nobuf++;
777			m_freem(m);
778			return NULL;
779		}
780		KASSERT(needed_space <= MHLEN,
781		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
782		/*
783		 * Setup new mbuf to have leading space to prepend the
784		 * 802.11 header and any crypto header bits that are
785		 * required (the latter are added when the driver calls
786		 * back to ieee80211_crypto_encap to do crypto encapsulation).
787		 */
788		/* NB: must be first 'cuz it clobbers m_data */
789		m_move_pkthdr(n, m);
790		n->m_len = 0;			/* NB: m_gethdr does not set */
791		n->m_data += needed_space;
792		/*
793		 * Pull up Ethernet header to create the expected layout.
794		 * We could use m_pullup but that's overkill (i.e. we don't
795		 * need the actual data) and it cannot fail so do it inline
796		 * for speed.
797		 */
798		/* NB: struct ether_header is known to be contiguous */
799		n->m_len += sizeof(struct ether_header);
800		m->m_len -= sizeof(struct ether_header);
801		m->m_data += sizeof(struct ether_header);
802		/*
803		 * Replace the head of the chain.
804		 */
805		n->m_next = m;
806		m = n;
807	}
808	return m;
809#undef TO_BE_RECLAIMED
810}
811
812/*
813 * Return the transmit key to use in sending a unicast frame.
814 * If a unicast key is set we use that.  When no unicast key is set
815 * we fall back to the default transmit key.
816 */
817static __inline struct ieee80211_key *
818ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
819	struct ieee80211_node *ni)
820{
821	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
822		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
823		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
824			return NULL;
825		return &vap->iv_nw_keys[vap->iv_def_txkey];
826	} else {
827		return &ni->ni_ucastkey;
828	}
829}
830
831/*
832 * Return the transmit key to use in sending a multicast frame.
833 * Multicast traffic always uses the group key which is installed as
834 * the default tx key.
835 */
836static __inline struct ieee80211_key *
837ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
838	struct ieee80211_node *ni)
839{
840	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
841	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
842		return NULL;
843	return &vap->iv_nw_keys[vap->iv_def_txkey];
844}
845
846/*
847 * Encapsulate an outbound data frame.  The mbuf chain is updated.
848 * If an error is encountered NULL is returned.  The caller is required
849 * to provide a node reference and pullup the ethernet header in the
850 * first mbuf.
851 *
852 * NB: Packet is assumed to be processed by ieee80211_classify which
853 *     marked EAPOL frames w/ M_EAPOL.
854 */
855struct mbuf *
856ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m)
857{
858#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
859	struct ieee80211vap *vap = ni->ni_vap;
860	struct ieee80211com *ic = ni->ni_ic;
861	struct ether_header eh;
862	struct ieee80211_frame *wh;
863	struct ieee80211_key *key;
864	struct llc *llc;
865	int hdrsize, hdrspace, datalen, addqos, txfrag, isff, is4addr;
866
867	/*
868	 * Copy existing Ethernet header to a safe place.  The
869	 * rest of the code assumes it's ok to strip it when
870	 * reorganizing state for the final encapsulation.
871	 */
872	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
873	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
874
875	/*
876	 * Insure space for additional headers.  First identify
877	 * transmit key to use in calculating any buffer adjustments
878	 * required.  This is also used below to do privacy
879	 * encapsulation work.  Then calculate the 802.11 header
880	 * size and any padding required by the driver.
881	 *
882	 * Note key may be NULL if we fall back to the default
883	 * transmit key and that is not set.  In that case the
884	 * buffer may not be expanded as needed by the cipher
885	 * routines, but they will/should discard it.
886	 */
887	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
888		if (vap->iv_opmode == IEEE80211_M_STA ||
889		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
890		    (vap->iv_opmode == IEEE80211_M_WDS &&
891		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
892			key = ieee80211_crypto_getucastkey(vap, ni);
893		else
894			key = ieee80211_crypto_getmcastkey(vap, ni);
895		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
896			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
897			    eh.ether_dhost,
898			    "no default transmit key (%s) deftxkey %u",
899			    __func__, vap->iv_def_txkey);
900			vap->iv_stats.is_tx_nodefkey++;
901			goto bad;
902		}
903	} else
904		key = NULL;
905	/*
906	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
907	 * frames so suppress use.  This may be an issue if other
908	 * ap's require all data frames to be QoS-encapsulated
909	 * once negotiated in which case we'll need to make this
910	 * configurable.
911	 */
912	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
913		 (m->m_flags & M_EAPOL) == 0;
914	if (addqos)
915		hdrsize = sizeof(struct ieee80211_qosframe);
916	else
917		hdrsize = sizeof(struct ieee80211_frame);
918	/*
919	 * 4-address frames need to be generated for:
920	 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS)
921	 * o packets relayed by a station operating with dynamic WDS
922	 *   (IEEE80211_M_STA+IEEE80211_F_DWDS and src address)
923	 */
924	is4addr = (m->m_flags & M_WDS) ||
925	    vap->iv_opmode == IEEE80211_M_WDS ||	/* XXX redundant? */
926	    (vap->iv_opmode == IEEE80211_M_STA &&
927	     (vap->iv_flags & IEEE80211_F_DWDS) &&
928	     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
929	if (is4addr)
930		hdrsize += IEEE80211_ADDR_LEN;
931	/*
932	 * Honor driver DATAPAD requirement.
933	 */
934	if (ic->ic_flags & IEEE80211_F_DATAPAD)
935		hdrspace = roundup(hdrsize, sizeof(uint32_t));
936	else
937		hdrspace = hdrsize;
938
939	if ((isff = m->m_flags & M_FF) != 0) {
940		struct mbuf *m2;
941		struct ether_header eh2;
942
943		/*
944		 * Fast frame encapsulation.  There must be two packets
945		 * chained with m_nextpkt.  We do header adjustment for
946		 * each, add the tunnel encapsulation, and then concatenate
947		 * the mbuf chains to form a single frame for transmission.
948		 */
949		m2 = m->m_nextpkt;
950		if (m2 == NULL) {
951			IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
952				"%s: only one frame\n", __func__);
953			goto bad;
954		}
955		m->m_nextpkt = NULL;
956		/*
957		 * Include fast frame headers in adjusting header
958		 * layout; this allocates space according to what
959		 * ieee80211_encap_fastframe will do.
960		 */
961		m = ieee80211_mbuf_adjust(vap,
962			hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 +
963			    sizeof(struct ether_header),
964			key, m);
965		if (m == NULL) {
966			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
967			m_freem(m2);
968			goto bad;
969		}
970		/*
971		 * Copy second frame's Ethernet header out of line
972		 * and adjust for encapsulation headers.  Note that
973		 * we make room for padding in case there isn't room
974		 * at the end of first frame.
975		 */
976		KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
977		ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
978		m2 = ieee80211_mbuf_adjust(vap,
979			ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
980			NULL, m2);
981		if (m2 == NULL) {
982			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
983			goto bad;
984		}
985		m = ieee80211_encap_fastframe(vap, m, &eh, m2, &eh2);
986		if (m == NULL)
987			goto bad;
988	} else {
989		/*
990		 * Normal frame.
991		 */
992		m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
993		if (m == NULL) {
994			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
995			goto bad;
996		}
997		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
998		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
999		llc = mtod(m, struct llc *);
1000		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1001		llc->llc_control = LLC_UI;
1002		llc->llc_snap.org_code[0] = 0;
1003		llc->llc_snap.org_code[1] = 0;
1004		llc->llc_snap.org_code[2] = 0;
1005		llc->llc_snap.ether_type = eh.ether_type;
1006	}
1007	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1008
1009	M_PREPEND(m, hdrspace, M_DONTWAIT);
1010	if (m == NULL) {
1011		vap->iv_stats.is_tx_nobuf++;
1012		goto bad;
1013	}
1014	wh = mtod(m, struct ieee80211_frame *);
1015	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1016	*(uint16_t *)wh->i_dur = 0;
1017	if (is4addr) {
1018		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1019		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1020		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1021		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1022		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1023	} else switch (vap->iv_opmode) {
1024	case IEEE80211_M_STA:
1025		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1026		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1027		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1028		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1029		break;
1030	case IEEE80211_M_IBSS:
1031	case IEEE80211_M_AHDEMO:
1032		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1033		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1034		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1035		/*
1036		 * NB: always use the bssid from iv_bss as the
1037		 *     neighbor's may be stale after an ibss merge
1038		 */
1039		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1040		break;
1041	case IEEE80211_M_HOSTAP:
1042		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1043		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1044		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1045		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1046		break;
1047	case IEEE80211_M_MONITOR:
1048	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1049		goto bad;
1050	}
1051	if (m->m_flags & M_MORE_DATA)
1052		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1053	if (addqos) {
1054		uint8_t *qos;
1055		int ac, tid;
1056
1057		if (is4addr) {
1058			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1059		} else
1060			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1061		ac = M_WME_GETAC(m);
1062		/* map from access class/queue to 11e header priorty value */
1063		tid = WME_AC_TO_TID(ac);
1064		qos[0] = tid & IEEE80211_QOS_TID;
1065		/*
1066		 * Check if A-MPDU tx aggregation is setup or if we
1067		 * should try to enable it.  The sta must be associated
1068		 * with HT and A-MPDU enabled for use.  When the policy
1069		 * routine decides we should enable A-MPDU we issue an
1070		 * ADDBA request and wait for a reply.  The frame being
1071		 * encapsulated will go out w/o using A-MPDU, or possibly
1072		 * it might be collected by the driver and held/retransmit.
1073		 * The default ic_ampdu_enable routine handles staggering
1074		 * ADDBA requests in case the receiver NAK's us or we are
1075		 * otherwise unable to establish a BA stream.
1076		 */
1077		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
1078		    (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
1079			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
1080
1081			ieee80211_txampdu_count_packet(tap);
1082			if (IEEE80211_AMPDU_RUNNING(tap)) {
1083				/*
1084				 * Operational, mark frame for aggregation.
1085				 *
1086				 * NB: We support only immediate BA's for
1087				 * AMPDU which means we set the QoS control
1088				 * field to "normal ack" (0) to get "implicit
1089				 * block ack" behaviour.
1090				 */
1091				m->m_flags |= M_AMPDU_MPDU;
1092			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
1093			    ic->ic_ampdu_enable(ni, tap)) {
1094				/*
1095				 * Not negotiated yet, request service.
1096				 */
1097				ieee80211_ampdu_request(ni, tap);
1098			}
1099		}
1100		/* XXX works even when BA marked above */
1101		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1102			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1103		qos[1] = 0;
1104		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1105
1106		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1107			/*
1108			 * NB: don't assign a sequence # to potential
1109			 * aggregates; we expect this happens at the
1110			 * point the frame comes off any aggregation q
1111			 * as otherwise we may introduce holes in the
1112			 * BA sequence space and/or make window accouting
1113			 * more difficult.
1114			 *
1115			 * XXX may want to control this with a driver
1116			 * capability; this may also change when we pull
1117			 * aggregation up into net80211
1118			 */
1119			*(uint16_t *)wh->i_seq =
1120			    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
1121			ni->ni_txseqs[tid]++;
1122		}
1123	} else {
1124		*(uint16_t *)wh->i_seq =
1125		    htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
1126		ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1127	}
1128	/* check if xmit fragmentation is required */
1129	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1130	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1131	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1132	    !isff);		/* NB: don't fragment ff's */
1133	if (key != NULL) {
1134		/*
1135		 * IEEE 802.1X: send EAPOL frames always in the clear.
1136		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1137		 */
1138		if ((m->m_flags & M_EAPOL) == 0 ||
1139		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1140		     (vap->iv_opmode == IEEE80211_M_STA ?
1141		      !IEEE80211_KEY_UNDEFINED(key) :
1142		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1143			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1144			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1145				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1146				    eh.ether_dhost,
1147				    "%s", "enmic failed, discard frame");
1148				vap->iv_stats.is_crypto_enmicfail++;
1149				goto bad;
1150			}
1151		}
1152	}
1153	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1154	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1155		goto bad;
1156
1157	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1158
1159	IEEE80211_NODE_STAT(ni, tx_data);
1160	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1161		IEEE80211_NODE_STAT(ni, tx_mcast);
1162	else
1163		IEEE80211_NODE_STAT(ni, tx_ucast);
1164	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1165
1166	/* XXX fragmented frames not handled */
1167	if (bpf_peers_present(vap->iv_rawbpf))
1168		bpf_mtap(vap->iv_rawbpf, m);
1169
1170	return m;
1171bad:
1172	if (m != NULL)
1173		m_freem(m);
1174	return NULL;
1175#undef WH4
1176}
1177
1178/*
1179 * Do Ethernet-LLC encapsulation for each payload in a fast frame
1180 * tunnel encapsulation.  The frame is assumed to have an Ethernet
1181 * header at the front that must be stripped before prepending the
1182 * LLC followed by the Ethernet header passed in (with an Ethernet
1183 * type that specifies the payload size).
1184 */
1185static struct mbuf *
1186ieee80211_encap1(struct ieee80211vap *vap, struct mbuf *m,
1187	const struct ether_header *eh)
1188{
1189	struct llc *llc;
1190	uint16_t payload;
1191
1192	/* XXX optimize by combining m_adj+M_PREPEND */
1193	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1194	llc = mtod(m, struct llc *);
1195	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1196	llc->llc_control = LLC_UI;
1197	llc->llc_snap.org_code[0] = 0;
1198	llc->llc_snap.org_code[1] = 0;
1199	llc->llc_snap.org_code[2] = 0;
1200	llc->llc_snap.ether_type = eh->ether_type;
1201	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
1202
1203	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
1204	if (m == NULL) {		/* XXX cannot happen */
1205		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1206			"%s: no space for ether_header\n", __func__);
1207		vap->iv_stats.is_tx_nobuf++;
1208		return NULL;
1209	}
1210	ETHER_HEADER_COPY(mtod(m, void *), eh);
1211	mtod(m, struct ether_header *)->ether_type = htons(payload);
1212	return m;
1213}
1214
1215/*
1216 * Do fast frame tunnel encapsulation.  The two frames and
1217 * Ethernet headers are supplied.  The caller is assumed to
1218 * have arrange for space in the mbuf chains for encapsulating
1219 * headers (to avoid major mbuf fragmentation).
1220 *
1221 * The encapsulated frame is returned or NULL if there is a
1222 * problem (should not happen).
1223 */
1224static struct mbuf *
1225ieee80211_encap_fastframe(struct ieee80211vap *vap,
1226	struct mbuf *m1, const struct ether_header *eh1,
1227	struct mbuf *m2, const struct ether_header *eh2)
1228{
1229	struct llc *llc;
1230	struct mbuf *m;
1231	int pad;
1232
1233	/*
1234	 * First, each frame gets a standard encapsulation.
1235	 */
1236	m1 = ieee80211_encap1(vap, m1, eh1);
1237	if (m1 == NULL) {
1238		m_freem(m2);
1239		return NULL;
1240	}
1241	m2 = ieee80211_encap1(vap, m2, eh2);
1242	if (m2 == NULL) {
1243		m_freem(m1);
1244		return NULL;
1245	}
1246
1247	/*
1248	 * Pad leading frame to a 4-byte boundary.  If there
1249	 * is space at the end of the first frame, put it
1250	 * there; otherwise prepend to the front of the second
1251	 * frame.  We know doing the second will always work
1252	 * because we reserve space above.  We prefer appending
1253	 * as this typically has better DMA alignment properties.
1254	 */
1255	for (m = m1; m->m_next != NULL; m = m->m_next)
1256		;
1257	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
1258	if (pad) {
1259		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
1260			m2->m_data -= pad;
1261			m2->m_len += pad;
1262			m2->m_pkthdr.len += pad;
1263		} else {				/* append to first */
1264			m->m_len += pad;
1265			m1->m_pkthdr.len += pad;
1266		}
1267	}
1268
1269	/*
1270	 * Now, stick 'em together and prepend the tunnel headers;
1271	 * first the Atheros tunnel header (all zero for now) and
1272	 * then a special fast frame LLC.
1273	 *
1274	 * XXX optimize by prepending together
1275	 */
1276	m->m_next = m2;			/* NB: last mbuf from above */
1277	m1->m_pkthdr.len += m2->m_pkthdr.len;
1278	M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
1279	if (m1 == NULL) {		/* XXX cannot happen */
1280		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1281			"%s: no space for tunnel header\n", __func__);
1282		vap->iv_stats.is_tx_nobuf++;
1283		return NULL;
1284	}
1285	memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
1286
1287	M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
1288	if (m1 == NULL) {		/* XXX cannot happen */
1289		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1290			"%s: no space for llc header\n", __func__);
1291		vap->iv_stats.is_tx_nobuf++;
1292		return NULL;
1293	}
1294	llc = mtod(m1, struct llc *);
1295	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1296	llc->llc_control = LLC_UI;
1297	llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
1298	llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
1299	llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
1300	llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
1301
1302	vap->iv_stats.is_ff_encap++;
1303
1304	return m1;
1305}
1306
1307/*
1308 * Fragment the frame according to the specified mtu.
1309 * The size of the 802.11 header (w/o padding) is provided
1310 * so we don't need to recalculate it.  We create a new
1311 * mbuf for each fragment and chain it through m_nextpkt;
1312 * we might be able to optimize this by reusing the original
1313 * packet's mbufs but that is significantly more complicated.
1314 */
1315static int
1316ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1317	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1318{
1319	struct ieee80211_frame *wh, *whf;
1320	struct mbuf *m, *prev, *next;
1321	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1322
1323	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1324	KASSERT(m0->m_pkthdr.len > mtu,
1325		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1326
1327	wh = mtod(m0, struct ieee80211_frame *);
1328	/* NB: mark the first frag; it will be propagated below */
1329	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1330	totalhdrsize = hdrsize + ciphdrsize;
1331	fragno = 1;
1332	off = mtu - ciphdrsize;
1333	remainder = m0->m_pkthdr.len - off;
1334	prev = m0;
1335	do {
1336		fragsize = totalhdrsize + remainder;
1337		if (fragsize > mtu)
1338			fragsize = mtu;
1339		/* XXX fragsize can be >2048! */
1340		KASSERT(fragsize < MCLBYTES,
1341			("fragment size %u too big!", fragsize));
1342		if (fragsize > MHLEN)
1343			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1344		else
1345			m = m_gethdr(M_DONTWAIT, MT_DATA);
1346		if (m == NULL)
1347			goto bad;
1348		/* leave room to prepend any cipher header */
1349		m_align(m, fragsize - ciphdrsize);
1350
1351		/*
1352		 * Form the header in the fragment.  Note that since
1353		 * we mark the first fragment with the MORE_FRAG bit
1354		 * it automatically is propagated to each fragment; we
1355		 * need only clear it on the last fragment (done below).
1356		 */
1357		whf = mtod(m, struct ieee80211_frame *);
1358		memcpy(whf, wh, hdrsize);
1359		*(uint16_t *)&whf->i_seq[0] |= htole16(
1360			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1361				IEEE80211_SEQ_FRAG_SHIFT);
1362		fragno++;
1363
1364		payload = fragsize - totalhdrsize;
1365		/* NB: destination is known to be contiguous */
1366		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1367		m->m_len = hdrsize + payload;
1368		m->m_pkthdr.len = hdrsize + payload;
1369		m->m_flags |= M_FRAG;
1370
1371		/* chain up the fragment */
1372		prev->m_nextpkt = m;
1373		prev = m;
1374
1375		/* deduct fragment just formed */
1376		remainder -= payload;
1377		off += payload;
1378	} while (remainder != 0);
1379	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1380
1381	/* strip first mbuf now that everything has been copied */
1382	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1383	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1384
1385	vap->iv_stats.is_tx_fragframes++;
1386	vap->iv_stats.is_tx_frags += fragno-1;
1387
1388	return 1;
1389bad:
1390	/* reclaim fragments but leave original frame for caller to free */
1391	for (m = m0->m_nextpkt; m != NULL; m = next) {
1392		next = m->m_nextpkt;
1393		m->m_nextpkt = NULL;		/* XXX paranoid */
1394		m_freem(m);
1395	}
1396	m0->m_nextpkt = NULL;
1397	return 0;
1398}
1399
1400/*
1401 * Add a supported rates element id to a frame.
1402 */
1403static uint8_t *
1404ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1405{
1406	int nrates;
1407
1408	*frm++ = IEEE80211_ELEMID_RATES;
1409	nrates = rs->rs_nrates;
1410	if (nrates > IEEE80211_RATE_SIZE)
1411		nrates = IEEE80211_RATE_SIZE;
1412	*frm++ = nrates;
1413	memcpy(frm, rs->rs_rates, nrates);
1414	return frm + nrates;
1415}
1416
1417/*
1418 * Add an extended supported rates element id to a frame.
1419 */
1420static uint8_t *
1421ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1422{
1423	/*
1424	 * Add an extended supported rates element if operating in 11g mode.
1425	 */
1426	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1427		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1428		*frm++ = IEEE80211_ELEMID_XRATES;
1429		*frm++ = nrates;
1430		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1431		frm += nrates;
1432	}
1433	return frm;
1434}
1435
1436/*
1437 * Add an ssid element to a frame.
1438 */
1439static uint8_t *
1440ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1441{
1442	*frm++ = IEEE80211_ELEMID_SSID;
1443	*frm++ = len;
1444	memcpy(frm, ssid, len);
1445	return frm + len;
1446}
1447
1448/*
1449 * Add an erp element to a frame.
1450 */
1451static uint8_t *
1452ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1453{
1454	uint8_t erp;
1455
1456	*frm++ = IEEE80211_ELEMID_ERP;
1457	*frm++ = 1;
1458	erp = 0;
1459	if (ic->ic_nonerpsta != 0)
1460		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1461	if (ic->ic_flags & IEEE80211_F_USEPROT)
1462		erp |= IEEE80211_ERP_USE_PROTECTION;
1463	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1464		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1465	*frm++ = erp;
1466	return frm;
1467}
1468
1469/*
1470 * Add a CFParams element to a frame.
1471 */
1472static uint8_t *
1473ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1474{
1475#define	ADDSHORT(frm, v) do {			\
1476	frm[0] = (v) & 0xff;			\
1477	frm[1] = (v) >> 8;			\
1478	frm += 2;				\
1479} while (0)
1480	*frm++ = IEEE80211_ELEMID_CFPARMS;
1481	*frm++ = 6;
1482	*frm++ = 0;		/* CFP count */
1483	*frm++ = 2;		/* CFP period */
1484	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1485	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1486	return frm;
1487#undef ADDSHORT
1488}
1489
1490static __inline uint8_t *
1491add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1492{
1493	memcpy(frm, ie->ie_data, ie->ie_len);
1494	return frm + ie->ie_len;
1495}
1496
1497static __inline uint8_t *
1498add_ie(uint8_t *frm, const uint8_t *ie)
1499{
1500	memcpy(frm, ie, 2 + ie[1]);
1501	return frm + 2 + ie[1];
1502}
1503
1504#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1505/*
1506 * Add a WME information element to a frame.
1507 */
1508static uint8_t *
1509ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1510{
1511	static const struct ieee80211_wme_info info = {
1512		.wme_id		= IEEE80211_ELEMID_VENDOR,
1513		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1514		.wme_oui	= { WME_OUI_BYTES },
1515		.wme_type	= WME_OUI_TYPE,
1516		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1517		.wme_version	= WME_VERSION,
1518		.wme_info	= 0,
1519	};
1520	memcpy(frm, &info, sizeof(info));
1521	return frm + sizeof(info);
1522}
1523
1524/*
1525 * Add a WME parameters element to a frame.
1526 */
1527static uint8_t *
1528ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1529{
1530#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1531#define	ADDSHORT(frm, v) do {			\
1532	frm[0] = (v) & 0xff;			\
1533	frm[1] = (v) >> 8;			\
1534	frm += 2;				\
1535} while (0)
1536	/* NB: this works 'cuz a param has an info at the front */
1537	static const struct ieee80211_wme_info param = {
1538		.wme_id		= IEEE80211_ELEMID_VENDOR,
1539		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1540		.wme_oui	= { WME_OUI_BYTES },
1541		.wme_type	= WME_OUI_TYPE,
1542		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1543		.wme_version	= WME_VERSION,
1544	};
1545	int i;
1546
1547	memcpy(frm, &param, sizeof(param));
1548	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1549	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1550	*frm++ = 0;					/* reserved field */
1551	for (i = 0; i < WME_NUM_AC; i++) {
1552		const struct wmeParams *ac =
1553		       &wme->wme_bssChanParams.cap_wmeParams[i];
1554		*frm++ = SM(i, WME_PARAM_ACI)
1555		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1556		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1557		       ;
1558		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1559		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1560		       ;
1561		ADDSHORT(frm, ac->wmep_txopLimit);
1562	}
1563	return frm;
1564#undef SM
1565#undef ADDSHORT
1566}
1567#undef WME_OUI_BYTES
1568
1569#define	ATH_OUI_BYTES		0x00, 0x03, 0x7f
1570/*
1571 * Add a WME information element to a frame.
1572 */
1573static uint8_t *
1574ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
1575{
1576	static const struct ieee80211_ath_ie info = {
1577		.ath_id		= IEEE80211_ELEMID_VENDOR,
1578		.ath_len	= sizeof(struct ieee80211_ath_ie) - 2,
1579		.ath_oui	= { ATH_OUI_BYTES },
1580		.ath_oui_type	= ATH_OUI_TYPE,
1581		.ath_oui_subtype= ATH_OUI_SUBTYPE,
1582		.ath_version	= ATH_OUI_VERSION,
1583	};
1584	struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
1585
1586	memcpy(frm, &info, sizeof(info));
1587	ath->ath_capability = caps;
1588	ath->ath_defkeyix[0] = (defkeyix & 0xff);
1589	ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
1590	return frm + sizeof(info);
1591}
1592#undef ATH_OUI_BYTES
1593
1594/*
1595 * Add an 11h Power Constraint element to a frame.
1596 */
1597static uint8_t *
1598ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1599{
1600	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1601	/* XXX per-vap tx power limit? */
1602	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1603
1604	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1605	frm[1] = 1;
1606	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1607	return frm + 3;
1608}
1609
1610/*
1611 * Add an 11h Power Capability element to a frame.
1612 */
1613static uint8_t *
1614ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1615{
1616	frm[0] = IEEE80211_ELEMID_PWRCAP;
1617	frm[1] = 2;
1618	frm[2] = c->ic_minpower;
1619	frm[3] = c->ic_maxpower;
1620	return frm + 4;
1621}
1622
1623/*
1624 * Add an 11h Supported Channels element to a frame.
1625 */
1626static uint8_t *
1627ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1628{
1629	static const int ielen = 26;
1630
1631	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1632	frm[1] = ielen;
1633	/* XXX not correct */
1634	memcpy(frm+2, ic->ic_chan_avail, ielen);
1635	return frm + 2 + ielen;
1636}
1637
1638/*
1639 * Add an 11h Channel Switch Announcement element to a frame.
1640 * Note that we use the per-vap CSA count to adjust the global
1641 * counter so we can use this routine to form probe response
1642 * frames and get the current count.
1643 */
1644static uint8_t *
1645ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1646{
1647	struct ieee80211com *ic = vap->iv_ic;
1648	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1649
1650	csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN;
1651	csa->csa_len = 3;
1652	csa->csa_mode = 1;		/* XXX force quiet on channel */
1653	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1654	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1655	return frm + sizeof(*csa);
1656}
1657
1658/*
1659 * Add an 11h country information element to a frame.
1660 */
1661static uint8_t *
1662ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1663{
1664
1665	if (ic->ic_countryie == NULL ||
1666	    ic->ic_countryie_chan != ic->ic_bsschan) {
1667		/*
1668		 * Handle lazy construction of ie.  This is done on
1669		 * first use and after a channel change that requires
1670		 * re-calculation.
1671		 */
1672		if (ic->ic_countryie != NULL)
1673			free(ic->ic_countryie, M_80211_NODE_IE);
1674		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1675		if (ic->ic_countryie == NULL)
1676			return frm;
1677		ic->ic_countryie_chan = ic->ic_bsschan;
1678	}
1679	return add_appie(frm, ic->ic_countryie);
1680}
1681
1682/*
1683 * Send a probe request frame with the specified ssid
1684 * and any optional information element data.
1685 */
1686int
1687ieee80211_send_probereq(struct ieee80211_node *ni,
1688	const uint8_t sa[IEEE80211_ADDR_LEN],
1689	const uint8_t da[IEEE80211_ADDR_LEN],
1690	const uint8_t bssid[IEEE80211_ADDR_LEN],
1691	const uint8_t *ssid, size_t ssidlen)
1692{
1693	struct ieee80211vap *vap = ni->ni_vap;
1694	struct ieee80211com *ic = ni->ni_ic;
1695	const struct ieee80211_txparam *tp;
1696	struct ieee80211_bpf_params params;
1697	struct ieee80211_frame *wh;
1698	const struct ieee80211_rateset *rs;
1699	struct mbuf *m;
1700	uint8_t *frm;
1701
1702	if (vap->iv_state == IEEE80211_S_CAC) {
1703		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1704		    "block %s frame in CAC state", "probe request");
1705		vap->iv_stats.is_tx_badstate++;
1706		return EIO;		/* XXX */
1707	}
1708
1709	/*
1710	 * Hold a reference on the node so it doesn't go away until after
1711	 * the xmit is complete all the way in the driver.  On error we
1712	 * will remove our reference.
1713	 */
1714	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1715		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1716		__func__, __LINE__,
1717		ni, ether_sprintf(ni->ni_macaddr),
1718		ieee80211_node_refcnt(ni)+1);
1719	ieee80211_ref_node(ni);
1720
1721	/*
1722	 * prreq frame format
1723	 *	[tlv] ssid
1724	 *	[tlv] supported rates
1725	 *	[tlv] RSN (optional)
1726	 *	[tlv] extended supported rates
1727	 *	[tlv] WPA (optional)
1728	 *	[tlv] user-specified ie's
1729	 */
1730	m = ieee80211_getmgtframe(&frm,
1731		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1732	       	 2 + IEEE80211_NWID_LEN
1733	       + 2 + IEEE80211_RATE_SIZE
1734	       + sizeof(struct ieee80211_ie_wpa)
1735	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1736	       + sizeof(struct ieee80211_ie_wpa)
1737	       + (vap->iv_appie_probereq != NULL ?
1738		   vap->iv_appie_probereq->ie_len : 0)
1739	);
1740	if (m == NULL) {
1741		vap->iv_stats.is_tx_nobuf++;
1742		ieee80211_free_node(ni);
1743		return ENOMEM;
1744	}
1745
1746	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1747	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1748	frm = ieee80211_add_rates(frm, rs);
1749	if (vap->iv_flags & IEEE80211_F_WPA2) {
1750		if (vap->iv_rsn_ie != NULL)
1751			frm = add_ie(frm, vap->iv_rsn_ie);
1752		/* XXX else complain? */
1753	}
1754	frm = ieee80211_add_xrates(frm, rs);
1755	if (vap->iv_flags & IEEE80211_F_WPA1) {
1756		if (vap->iv_wpa_ie != NULL)
1757			frm = add_ie(frm, vap->iv_wpa_ie);
1758		/* XXX else complain? */
1759	}
1760	if (vap->iv_appie_probereq != NULL)
1761		frm = add_appie(frm, vap->iv_appie_probereq);
1762	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1763
1764	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1765	    ("leading space %zd", M_LEADINGSPACE(m)));
1766	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1767	if (m == NULL) {
1768		/* NB: cannot happen */
1769		ieee80211_free_node(ni);
1770		return ENOMEM;
1771	}
1772
1773	wh = mtod(m, struct ieee80211_frame *);
1774	ieee80211_send_setup(ni, wh,
1775	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1776	     IEEE80211_NONQOS_TID, sa, da, bssid);
1777	/* XXX power management? */
1778	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1779
1780	M_WME_SETAC(m, WME_AC_BE);
1781
1782	IEEE80211_NODE_STAT(ni, tx_probereq);
1783	IEEE80211_NODE_STAT(ni, tx_mgmt);
1784
1785	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1786	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1787	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1788	    ssidlen, ssid);
1789
1790	memset(&params, 0, sizeof(params));
1791	params.ibp_pri = M_WME_GETAC(m);
1792	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1793	params.ibp_rate0 = tp->mgmtrate;
1794	if (IEEE80211_IS_MULTICAST(da)) {
1795		params.ibp_flags |= IEEE80211_BPF_NOACK;
1796		params.ibp_try0 = 1;
1797	} else
1798		params.ibp_try0 = tp->maxretry;
1799	params.ibp_power = ni->ni_txpower;
1800	return ic->ic_raw_xmit(ni, m, &params);
1801}
1802
1803/*
1804 * Calculate capability information for mgt frames.
1805 */
1806static uint16_t
1807getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1808{
1809	struct ieee80211com *ic = vap->iv_ic;
1810	uint16_t capinfo;
1811
1812	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1813
1814	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1815		capinfo = IEEE80211_CAPINFO_ESS;
1816	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1817		capinfo = IEEE80211_CAPINFO_IBSS;
1818	else
1819		capinfo = 0;
1820	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1821		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1822	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1823	    IEEE80211_IS_CHAN_2GHZ(chan))
1824		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1825	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1826		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1827	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1828		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1829	return capinfo;
1830}
1831
1832/*
1833 * Send a management frame.  The node is for the destination (or ic_bss
1834 * when in station mode).  Nodes other than ic_bss have their reference
1835 * count bumped to reflect our use for an indeterminant time.
1836 */
1837int
1838ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1839{
1840#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1841#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1842	struct ieee80211vap *vap = ni->ni_vap;
1843	struct ieee80211com *ic = ni->ni_ic;
1844	struct ieee80211_node *bss = vap->iv_bss;
1845	struct ieee80211_bpf_params params;
1846	struct mbuf *m;
1847	uint8_t *frm;
1848	uint16_t capinfo;
1849	int has_challenge, is_shared_key, ret, status;
1850
1851	KASSERT(ni != NULL, ("null node"));
1852
1853	/*
1854	 * Hold a reference on the node so it doesn't go away until after
1855	 * the xmit is complete all the way in the driver.  On error we
1856	 * will remove our reference.
1857	 */
1858	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1859		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1860		__func__, __LINE__,
1861		ni, ether_sprintf(ni->ni_macaddr),
1862		ieee80211_node_refcnt(ni)+1);
1863	ieee80211_ref_node(ni);
1864
1865	memset(&params, 0, sizeof(params));
1866	switch (type) {
1867
1868	case IEEE80211_FC0_SUBTYPE_AUTH:
1869		status = arg >> 16;
1870		arg &= 0xffff;
1871		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1872		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1873		    ni->ni_challenge != NULL);
1874
1875		/*
1876		 * Deduce whether we're doing open authentication or
1877		 * shared key authentication.  We do the latter if
1878		 * we're in the middle of a shared key authentication
1879		 * handshake or if we're initiating an authentication
1880		 * request and configured to use shared key.
1881		 */
1882		is_shared_key = has_challenge ||
1883		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1884		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1885		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1886
1887		m = ieee80211_getmgtframe(&frm,
1888			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1889			  3 * sizeof(uint16_t)
1890			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1891				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1892		);
1893		if (m == NULL)
1894			senderr(ENOMEM, is_tx_nobuf);
1895
1896		((uint16_t *)frm)[0] =
1897		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1898		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1899		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1900		((uint16_t *)frm)[2] = htole16(status);/* status */
1901
1902		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1903			((uint16_t *)frm)[3] =
1904			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1905			    IEEE80211_ELEMID_CHALLENGE);
1906			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1907			    IEEE80211_CHALLENGE_LEN);
1908			m->m_pkthdr.len = m->m_len =
1909				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1910			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1911				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1912				    "request encrypt frame (%s)", __func__);
1913				/* mark frame for encryption */
1914				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1915			}
1916		} else
1917			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1918
1919		/* XXX not right for shared key */
1920		if (status == IEEE80211_STATUS_SUCCESS)
1921			IEEE80211_NODE_STAT(ni, tx_auth);
1922		else
1923			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1924
1925		if (vap->iv_opmode == IEEE80211_M_STA)
1926			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1927				(void *) vap->iv_state);
1928		break;
1929
1930	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1931		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1932		    "send station deauthenticate (reason %d)", arg);
1933		m = ieee80211_getmgtframe(&frm,
1934			ic->ic_headroom + sizeof(struct ieee80211_frame),
1935			sizeof(uint16_t));
1936		if (m == NULL)
1937			senderr(ENOMEM, is_tx_nobuf);
1938		*(uint16_t *)frm = htole16(arg);	/* reason */
1939		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1940
1941		IEEE80211_NODE_STAT(ni, tx_deauth);
1942		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1943
1944		ieee80211_node_unauthorize(ni);		/* port closed */
1945		break;
1946
1947	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1948	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1949		/*
1950		 * asreq frame format
1951		 *	[2] capability information
1952		 *	[2] listen interval
1953		 *	[6*] current AP address (reassoc only)
1954		 *	[tlv] ssid
1955		 *	[tlv] supported rates
1956		 *	[tlv] extended supported rates
1957		 *	[4] power capability (optional)
1958		 *	[28] supported channels (optional)
1959		 *	[tlv] HT capabilities
1960		 *	[tlv] WME (optional)
1961		 *	[tlv] Vendor OUI HT capabilities (optional)
1962		 *	[tlv] Atheros capabilities (if negotiated)
1963		 *	[tlv] AppIE's (optional)
1964		 */
1965		m = ieee80211_getmgtframe(&frm,
1966			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1967			 sizeof(uint16_t)
1968		       + sizeof(uint16_t)
1969		       + IEEE80211_ADDR_LEN
1970		       + 2 + IEEE80211_NWID_LEN
1971		       + 2 + IEEE80211_RATE_SIZE
1972		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1973		       + 4
1974		       + 2 + 26
1975		       + sizeof(struct ieee80211_wme_info)
1976		       + sizeof(struct ieee80211_ie_htcap)
1977		       + 4 + sizeof(struct ieee80211_ie_htcap)
1978		       + sizeof(struct ieee80211_ath_ie)
1979		       + (vap->iv_appie_wpa != NULL ?
1980				vap->iv_appie_wpa->ie_len : 0)
1981		       + (vap->iv_appie_assocreq != NULL ?
1982				vap->iv_appie_assocreq->ie_len : 0)
1983		);
1984		if (m == NULL)
1985			senderr(ENOMEM, is_tx_nobuf);
1986
1987		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1988		    ("wrong mode %u", vap->iv_opmode));
1989		capinfo = IEEE80211_CAPINFO_ESS;
1990		if (vap->iv_flags & IEEE80211_F_PRIVACY)
1991			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1992		/*
1993		 * NB: Some 11a AP's reject the request when
1994		 *     short premable is set.
1995		 */
1996		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1997		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1998			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1999		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2000		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2001			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2002		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2003		    (vap->iv_flags & IEEE80211_F_DOTH))
2004			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2005		*(uint16_t *)frm = htole16(capinfo);
2006		frm += 2;
2007
2008		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2009		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2010						    bss->ni_intval));
2011		frm += 2;
2012
2013		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2014			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2015			frm += IEEE80211_ADDR_LEN;
2016		}
2017
2018		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2019		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2020		if (vap->iv_flags & IEEE80211_F_WPA2) {
2021			if (vap->iv_rsn_ie != NULL)
2022				frm = add_ie(frm, vap->iv_rsn_ie);
2023			/* XXX else complain? */
2024		}
2025		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2026		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2027			frm = ieee80211_add_powercapability(frm,
2028			    ic->ic_curchan);
2029			frm = ieee80211_add_supportedchannels(frm, ic);
2030		}
2031		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2032		    ni->ni_ies.htcap_ie != NULL &&
2033		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2034			frm = ieee80211_add_htcap(frm, ni);
2035		if (vap->iv_flags & IEEE80211_F_WPA1) {
2036			if (vap->iv_wpa_ie != NULL)
2037				frm = add_ie(frm, vap->iv_wpa_ie);
2038			/* XXX else complain */
2039		}
2040		if ((ic->ic_flags & IEEE80211_F_WME) &&
2041		    ni->ni_ies.wme_ie != NULL)
2042			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2043		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2044		    ni->ni_ies.htcap_ie != NULL &&
2045		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2046			frm = ieee80211_add_htcap_vendor(frm, ni);
2047		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2048			frm = ieee80211_add_ath(frm,
2049				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2050				(vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2051				ni->ni_authmode != IEEE80211_AUTH_8021X &&
2052				vap->iv_def_txkey != IEEE80211_KEYIX_NONE ?
2053				vap->iv_def_txkey : 0x7fff);
2054		if (vap->iv_appie_assocreq != NULL)
2055			frm = add_appie(frm, vap->iv_appie_assocreq);
2056		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2057
2058		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2059			(void *) vap->iv_state);
2060		break;
2061
2062	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2063	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2064		/*
2065		 * asresp frame format
2066		 *	[2] capability information
2067		 *	[2] status
2068		 *	[2] association ID
2069		 *	[tlv] supported rates
2070		 *	[tlv] extended supported rates
2071		 *	[tlv] HT capabilities (standard, if STA enabled)
2072		 *	[tlv] HT information (standard, if STA enabled)
2073		 *	[tlv] WME (if configured and STA enabled)
2074		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2075		 *	[tlv] HT information (vendor OUI, if STA enabled)
2076		 *	[tlv] Atheros capabilities (if STA enabled)
2077		 *	[tlv] AppIE's (optional)
2078		 */
2079		m = ieee80211_getmgtframe(&frm,
2080			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2081			 sizeof(uint16_t)
2082		       + sizeof(uint16_t)
2083		       + sizeof(uint16_t)
2084		       + 2 + IEEE80211_RATE_SIZE
2085		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2086		       + sizeof(struct ieee80211_ie_htcap) + 4
2087		       + sizeof(struct ieee80211_ie_htinfo) + 4
2088		       + sizeof(struct ieee80211_wme_param)
2089		       + sizeof(struct ieee80211_ath_ie)
2090		       + (vap->iv_appie_assocresp != NULL ?
2091				vap->iv_appie_assocresp->ie_len : 0)
2092		);
2093		if (m == NULL)
2094			senderr(ENOMEM, is_tx_nobuf);
2095
2096		capinfo = getcapinfo(vap, bss->ni_chan);
2097		*(uint16_t *)frm = htole16(capinfo);
2098		frm += 2;
2099
2100		*(uint16_t *)frm = htole16(arg);	/* status */
2101		frm += 2;
2102
2103		if (arg == IEEE80211_STATUS_SUCCESS) {
2104			*(uint16_t *)frm = htole16(ni->ni_associd);
2105			IEEE80211_NODE_STAT(ni, tx_assoc);
2106		} else
2107			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2108		frm += 2;
2109
2110		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2111		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2112		/* NB: respond according to what we received */
2113		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2114			frm = ieee80211_add_htcap(frm, ni);
2115			frm = ieee80211_add_htinfo(frm, ni);
2116		}
2117		if ((vap->iv_flags & IEEE80211_F_WME) &&
2118		    ni->ni_ies.wme_ie != NULL)
2119			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2120		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2121			frm = ieee80211_add_htcap_vendor(frm, ni);
2122			frm = ieee80211_add_htinfo_vendor(frm, ni);
2123		}
2124		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2125			frm = ieee80211_add_ath(frm,
2126				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2127				ni->ni_ath_defkeyix);
2128		if (vap->iv_appie_assocresp != NULL)
2129			frm = add_appie(frm, vap->iv_appie_assocresp);
2130		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2131		break;
2132
2133	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2134		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2135		    "send station disassociate (reason %d)", arg);
2136		m = ieee80211_getmgtframe(&frm,
2137			ic->ic_headroom + sizeof(struct ieee80211_frame),
2138			sizeof(uint16_t));
2139		if (m == NULL)
2140			senderr(ENOMEM, is_tx_nobuf);
2141		*(uint16_t *)frm = htole16(arg);	/* reason */
2142		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2143
2144		IEEE80211_NODE_STAT(ni, tx_disassoc);
2145		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2146		break;
2147
2148	default:
2149		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2150		    "invalid mgmt frame type %u", type);
2151		senderr(EINVAL, is_tx_unknownmgt);
2152		/* NOTREACHED */
2153	}
2154
2155	/* NB: force non-ProbeResp frames to the highest queue */
2156	params.ibp_pri = WME_AC_VO;
2157	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2158	/* NB: we know all frames are unicast */
2159	params.ibp_try0 = bss->ni_txparms->maxretry;
2160	params.ibp_power = bss->ni_txpower;
2161	return ieee80211_mgmt_output(ni, m, type, &params);
2162bad:
2163	ieee80211_free_node(ni);
2164	return ret;
2165#undef senderr
2166#undef HTFLAGS
2167}
2168
2169/*
2170 * Return an mbuf with a probe response frame in it.
2171 * Space is left to prepend and 802.11 header at the
2172 * front but it's left to the caller to fill in.
2173 */
2174struct mbuf *
2175ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2176{
2177	struct ieee80211vap *vap = bss->ni_vap;
2178	struct ieee80211com *ic = bss->ni_ic;
2179	const struct ieee80211_rateset *rs;
2180	struct mbuf *m;
2181	uint16_t capinfo;
2182	uint8_t *frm;
2183
2184	/*
2185	 * probe response frame format
2186	 *	[8] time stamp
2187	 *	[2] beacon interval
2188	 *	[2] cabability information
2189	 *	[tlv] ssid
2190	 *	[tlv] supported rates
2191	 *	[tlv] parameter set (FH/DS)
2192	 *	[tlv] parameter set (IBSS)
2193	 *	[tlv] country (optional)
2194	 *	[3] power control (optional)
2195	 *	[5] channel switch announcement (CSA) (optional)
2196	 *	[tlv] extended rate phy (ERP)
2197	 *	[tlv] extended supported rates
2198	 *	[tlv] RSN (optional)
2199	 *	[tlv] HT capabilities
2200	 *	[tlv] HT information
2201	 *	[tlv] WPA (optional)
2202	 *	[tlv] WME (optional)
2203	 *	[tlv] Vendor OUI HT capabilities (optional)
2204	 *	[tlv] Vendor OUI HT information (optional)
2205	 *	[tlv] Atheros capabilities
2206	 *	[tlv] AppIE's (optional)
2207	 */
2208	m = ieee80211_getmgtframe(&frm,
2209		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2210		 8
2211	       + sizeof(uint16_t)
2212	       + sizeof(uint16_t)
2213	       + 2 + IEEE80211_NWID_LEN
2214	       + 2 + IEEE80211_RATE_SIZE
2215	       + 7	/* max(7,3) */
2216	       + IEEE80211_COUNTRY_MAX_SIZE
2217	       + 3
2218	       + sizeof(struct ieee80211_csa_ie)
2219	       + 3
2220	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2221	       + sizeof(struct ieee80211_ie_wpa)
2222	       + sizeof(struct ieee80211_ie_htcap)
2223	       + sizeof(struct ieee80211_ie_htinfo)
2224	       + sizeof(struct ieee80211_ie_wpa)
2225	       + sizeof(struct ieee80211_wme_param)
2226	       + 4 + sizeof(struct ieee80211_ie_htcap)
2227	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2228	       + sizeof(struct ieee80211_ath_ie)
2229	       + (vap->iv_appie_proberesp != NULL ?
2230			vap->iv_appie_proberesp->ie_len : 0)
2231	);
2232	if (m == NULL) {
2233		vap->iv_stats.is_tx_nobuf++;
2234		return NULL;
2235	}
2236
2237	memset(frm, 0, 8);	/* timestamp should be filled later */
2238	frm += 8;
2239	*(uint16_t *)frm = htole16(bss->ni_intval);
2240	frm += 2;
2241	capinfo = getcapinfo(vap, bss->ni_chan);
2242	*(uint16_t *)frm = htole16(capinfo);
2243	frm += 2;
2244
2245	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2246	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2247	frm = ieee80211_add_rates(frm, rs);
2248
2249	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2250		*frm++ = IEEE80211_ELEMID_FHPARMS;
2251		*frm++ = 5;
2252		*frm++ = bss->ni_fhdwell & 0x00ff;
2253		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2254		*frm++ = IEEE80211_FH_CHANSET(
2255		    ieee80211_chan2ieee(ic, bss->ni_chan));
2256		*frm++ = IEEE80211_FH_CHANPAT(
2257		    ieee80211_chan2ieee(ic, bss->ni_chan));
2258		*frm++ = bss->ni_fhindex;
2259	} else {
2260		*frm++ = IEEE80211_ELEMID_DSPARMS;
2261		*frm++ = 1;
2262		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2263	}
2264
2265	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2266		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2267		*frm++ = 2;
2268		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2269	}
2270	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2271	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2272		frm = ieee80211_add_countryie(frm, ic);
2273	if (vap->iv_flags & IEEE80211_F_DOTH) {
2274		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2275			frm = ieee80211_add_powerconstraint(frm, vap);
2276		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2277			frm = ieee80211_add_csa(frm, vap);
2278	}
2279	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2280		frm = ieee80211_add_erp(frm, ic);
2281	frm = ieee80211_add_xrates(frm, rs);
2282	if (vap->iv_flags & IEEE80211_F_WPA2) {
2283		if (vap->iv_rsn_ie != NULL)
2284			frm = add_ie(frm, vap->iv_rsn_ie);
2285		/* XXX else complain? */
2286	}
2287	/*
2288	 * NB: legacy 11b clients do not get certain ie's.
2289	 *     The caller identifies such clients by passing
2290	 *     a token in legacy to us.  Could expand this to be
2291	 *     any legacy client for stuff like HT ie's.
2292	 */
2293	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2294	    legacy != IEEE80211_SEND_LEGACY_11B) {
2295		frm = ieee80211_add_htcap(frm, bss);
2296		frm = ieee80211_add_htinfo(frm, bss);
2297	}
2298	if (vap->iv_flags & IEEE80211_F_WPA1) {
2299		if (vap->iv_wpa_ie != NULL)
2300			frm = add_ie(frm, vap->iv_wpa_ie);
2301		/* XXX else complain? */
2302	}
2303	if (vap->iv_flags & IEEE80211_F_WME)
2304		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2305	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2306	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
2307	    legacy != IEEE80211_SEND_LEGACY_11B) {
2308		frm = ieee80211_add_htcap_vendor(frm, bss);
2309		frm = ieee80211_add_htinfo_vendor(frm, bss);
2310	}
2311	if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B)
2312		frm = ieee80211_add_ath(frm, bss->ni_ath_flags,
2313			bss->ni_ath_defkeyix);
2314	if (vap->iv_appie_proberesp != NULL)
2315		frm = add_appie(frm, vap->iv_appie_proberesp);
2316	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2317
2318	return m;
2319}
2320
2321/*
2322 * Send a probe response frame to the specified mac address.
2323 * This does not go through the normal mgt frame api so we
2324 * can specify the destination address and re-use the bss node
2325 * for the sta reference.
2326 */
2327int
2328ieee80211_send_proberesp(struct ieee80211vap *vap,
2329	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2330{
2331	struct ieee80211_node *bss = vap->iv_bss;
2332	struct ieee80211com *ic = vap->iv_ic;
2333	struct ieee80211_frame *wh;
2334	struct mbuf *m;
2335
2336	if (vap->iv_state == IEEE80211_S_CAC) {
2337		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2338		    "block %s frame in CAC state", "probe response");
2339		vap->iv_stats.is_tx_badstate++;
2340		return EIO;		/* XXX */
2341	}
2342
2343	/*
2344	 * Hold a reference on the node so it doesn't go away until after
2345	 * the xmit is complete all the way in the driver.  On error we
2346	 * will remove our reference.
2347	 */
2348	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2349	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2350	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2351	    ieee80211_node_refcnt(bss)+1);
2352	ieee80211_ref_node(bss);
2353
2354	m = ieee80211_alloc_proberesp(bss, legacy);
2355	if (m == NULL) {
2356		ieee80211_free_node(bss);
2357		return ENOMEM;
2358	}
2359
2360	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2361	KASSERT(m != NULL, ("no room for header"));
2362
2363	wh = mtod(m, struct ieee80211_frame *);
2364	ieee80211_send_setup(bss, wh,
2365	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2366	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2367	/* XXX power management? */
2368	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2369
2370	M_WME_SETAC(m, WME_AC_BE);
2371
2372	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2373	    "send probe resp on channel %u to %s%s\n",
2374	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2375	    legacy ? " <legacy>" : "");
2376	IEEE80211_NODE_STAT(bss, tx_mgmt);
2377
2378	return ic->ic_raw_xmit(bss, m, NULL);
2379}
2380
2381/*
2382 * Allocate and build a RTS (Request To Send) control frame.
2383 */
2384struct mbuf *
2385ieee80211_alloc_rts(struct ieee80211com *ic,
2386	const uint8_t ra[IEEE80211_ADDR_LEN],
2387	const uint8_t ta[IEEE80211_ADDR_LEN],
2388	uint16_t dur)
2389{
2390	struct ieee80211_frame_rts *rts;
2391	struct mbuf *m;
2392
2393	/* XXX honor ic_headroom */
2394	m = m_gethdr(M_DONTWAIT, MT_DATA);
2395	if (m != NULL) {
2396		rts = mtod(m, struct ieee80211_frame_rts *);
2397		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2398			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2399		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2400		*(u_int16_t *)rts->i_dur = htole16(dur);
2401		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2402		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2403
2404		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2405	}
2406	return m;
2407}
2408
2409/*
2410 * Allocate and build a CTS (Clear To Send) control frame.
2411 */
2412struct mbuf *
2413ieee80211_alloc_cts(struct ieee80211com *ic,
2414	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2415{
2416	struct ieee80211_frame_cts *cts;
2417	struct mbuf *m;
2418
2419	/* XXX honor ic_headroom */
2420	m = m_gethdr(M_DONTWAIT, MT_DATA);
2421	if (m != NULL) {
2422		cts = mtod(m, struct ieee80211_frame_cts *);
2423		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2424			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2425		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2426		*(u_int16_t *)cts->i_dur = htole16(dur);
2427		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2428
2429		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2430	}
2431	return m;
2432}
2433
2434static void
2435ieee80211_tx_mgt_timeout(void *arg)
2436{
2437	struct ieee80211_node *ni = arg;
2438	struct ieee80211vap *vap = ni->ni_vap;
2439
2440	if (vap->iv_state != IEEE80211_S_INIT &&
2441	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2442		/*
2443		 * NB: it's safe to specify a timeout as the reason here;
2444		 *     it'll only be used in the right state.
2445		 */
2446		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2447			IEEE80211_SCAN_FAIL_TIMEOUT);
2448	}
2449}
2450
2451static void
2452ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2453{
2454	struct ieee80211vap *vap = ni->ni_vap;
2455	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2456
2457	/*
2458	 * Frame transmit completed; arrange timer callback.  If
2459	 * transmit was successfuly we wait for response.  Otherwise
2460	 * we arrange an immediate callback instead of doing the
2461	 * callback directly since we don't know what state the driver
2462	 * is in (e.g. what locks it is holding).  This work should
2463	 * not be too time-critical and not happen too often so the
2464	 * added overhead is acceptable.
2465	 *
2466	 * XXX what happens if !acked but response shows up before callback?
2467	 */
2468	if (vap->iv_state == ostate)
2469		callout_reset(&vap->iv_mgtsend,
2470			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2471			ieee80211_tx_mgt_timeout, ni);
2472}
2473
2474static void
2475ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2476	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2477{
2478	struct ieee80211vap *vap = ni->ni_vap;
2479	struct ieee80211com *ic = ni->ni_ic;
2480	struct ieee80211_rateset *rs = &ni->ni_rates;
2481	uint16_t capinfo;
2482
2483	/*
2484	 * beacon frame format
2485	 *	[8] time stamp
2486	 *	[2] beacon interval
2487	 *	[2] cabability information
2488	 *	[tlv] ssid
2489	 *	[tlv] supported rates
2490	 *	[3] parameter set (DS)
2491	 *	[8] CF parameter set (optional)
2492	 *	[tlv] parameter set (IBSS/TIM)
2493	 *	[tlv] country (optional)
2494	 *	[3] power control (optional)
2495	 *	[5] channel switch announcement (CSA) (optional)
2496	 *	[tlv] extended rate phy (ERP)
2497	 *	[tlv] extended supported rates
2498	 *	[tlv] RSN parameters
2499	 *	[tlv] HT capabilities
2500	 *	[tlv] HT information
2501	 * XXX Vendor-specific OIDs (e.g. Atheros)
2502	 *	[tlv] WPA parameters
2503	 *	[tlv] WME parameters
2504	 *	[tlv] Vendor OUI HT capabilities (optional)
2505	 *	[tlv] Vendor OUI HT information (optional)
2506	 *	[tlv] TDMA parameters (optional)
2507	 *	[tlv] application data (optional)
2508	 */
2509
2510	memset(bo, 0, sizeof(*bo));
2511
2512	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2513	frm += 8;
2514	*(uint16_t *)frm = htole16(ni->ni_intval);
2515	frm += 2;
2516	capinfo = getcapinfo(vap, ni->ni_chan);
2517	bo->bo_caps = (uint16_t *)frm;
2518	*(uint16_t *)frm = htole16(capinfo);
2519	frm += 2;
2520	*frm++ = IEEE80211_ELEMID_SSID;
2521	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2522		*frm++ = ni->ni_esslen;
2523		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2524		frm += ni->ni_esslen;
2525	} else
2526		*frm++ = 0;
2527	frm = ieee80211_add_rates(frm, rs);
2528	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2529		*frm++ = IEEE80211_ELEMID_DSPARMS;
2530		*frm++ = 1;
2531		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2532	}
2533	if (ic->ic_flags & IEEE80211_F_PCF) {
2534		bo->bo_cfp = frm;
2535		frm = ieee80211_add_cfparms(frm, ic);
2536	}
2537	bo->bo_tim = frm;
2538	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2539		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2540		*frm++ = 2;
2541		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2542		bo->bo_tim_len = 0;
2543	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2544		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2545
2546		tie->tim_ie = IEEE80211_ELEMID_TIM;
2547		tie->tim_len = 4;	/* length */
2548		tie->tim_count = 0;	/* DTIM count */
2549		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2550		tie->tim_bitctl = 0;	/* bitmap control */
2551		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2552		frm += sizeof(struct ieee80211_tim_ie);
2553		bo->bo_tim_len = 1;
2554	}
2555	bo->bo_tim_trailer = frm;
2556	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2557	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2558		frm = ieee80211_add_countryie(frm, ic);
2559	if (vap->iv_flags & IEEE80211_F_DOTH) {
2560		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2561			frm = ieee80211_add_powerconstraint(frm, vap);
2562		bo->bo_csa = frm;
2563		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2564			frm = ieee80211_add_csa(frm, vap);
2565	} else
2566		bo->bo_csa = frm;
2567	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2568		bo->bo_erp = frm;
2569		frm = ieee80211_add_erp(frm, ic);
2570	}
2571	frm = ieee80211_add_xrates(frm, rs);
2572	if (vap->iv_flags & IEEE80211_F_WPA2) {
2573		if (vap->iv_rsn_ie != NULL)
2574			frm = add_ie(frm, vap->iv_rsn_ie);
2575		/* XXX else complain */
2576	}
2577	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2578		frm = ieee80211_add_htcap(frm, ni);
2579		bo->bo_htinfo = frm;
2580		frm = ieee80211_add_htinfo(frm, ni);
2581	}
2582	if (vap->iv_flags & IEEE80211_F_WPA1) {
2583		if (vap->iv_wpa_ie != NULL)
2584			frm = add_ie(frm, vap->iv_wpa_ie);
2585		/* XXX else complain */
2586	}
2587	if (vap->iv_flags & IEEE80211_F_WME) {
2588		bo->bo_wme = frm;
2589		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2590	}
2591	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2592	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2593		frm = ieee80211_add_htcap_vendor(frm, ni);
2594		frm = ieee80211_add_htinfo_vendor(frm, ni);
2595	}
2596#ifdef IEEE80211_SUPPORT_TDMA
2597	if (vap->iv_caps & IEEE80211_C_TDMA) {
2598		bo->bo_tdma = frm;
2599		frm = ieee80211_add_tdma(frm, vap);
2600	}
2601#endif
2602	if (vap->iv_appie_beacon != NULL) {
2603		bo->bo_appie = frm;
2604		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2605		frm = add_appie(frm, vap->iv_appie_beacon);
2606	}
2607	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2608	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2609	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2610}
2611
2612/*
2613 * Allocate a beacon frame and fillin the appropriate bits.
2614 */
2615struct mbuf *
2616ieee80211_beacon_alloc(struct ieee80211_node *ni,
2617	struct ieee80211_beacon_offsets *bo)
2618{
2619	struct ieee80211vap *vap = ni->ni_vap;
2620	struct ieee80211com *ic = ni->ni_ic;
2621	struct ifnet *ifp = vap->iv_ifp;
2622	struct ieee80211_frame *wh;
2623	struct mbuf *m;
2624	int pktlen;
2625	uint8_t *frm;
2626
2627	/*
2628	 * beacon frame format
2629	 *	[8] time stamp
2630	 *	[2] beacon interval
2631	 *	[2] cabability information
2632	 *	[tlv] ssid
2633	 *	[tlv] supported rates
2634	 *	[3] parameter set (DS)
2635	 *	[8] CF parameter set (optional)
2636	 *	[tlv] parameter set (IBSS/TIM)
2637	 *	[tlv] country (optional)
2638	 *	[3] power control (optional)
2639	 *	[5] channel switch announcement (CSA) (optional)
2640	 *	[tlv] extended rate phy (ERP)
2641	 *	[tlv] extended supported rates
2642	 *	[tlv] RSN parameters
2643	 *	[tlv] HT capabilities
2644	 *	[tlv] HT information
2645	 *	[tlv] Vendor OUI HT capabilities (optional)
2646	 *	[tlv] Vendor OUI HT information (optional)
2647	 * XXX Vendor-specific OIDs (e.g. Atheros)
2648	 *	[tlv] WPA parameters
2649	 *	[tlv] WME parameters
2650	 *	[tlv] TDMA parameters (optional)
2651	 *	[tlv] application data (optional)
2652	 * NB: we allocate the max space required for the TIM bitmap.
2653	 * XXX how big is this?
2654	 */
2655	pktlen =   8					/* time stamp */
2656		 + sizeof(uint16_t)			/* beacon interval */
2657		 + sizeof(uint16_t)			/* capabilities */
2658		 + 2 + ni->ni_esslen			/* ssid */
2659	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2660	         + 2 + 1				/* DS parameters */
2661		 + 2 + 6				/* CF parameters */
2662		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2663		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2664		 + 2 + 1				/* power control */
2665	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2666		 + 2 + 1				/* ERP */
2667	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2668		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2669			2*sizeof(struct ieee80211_ie_wpa) : 0)
2670		 /* XXX conditional? */
2671		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2672		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2673		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2674			sizeof(struct ieee80211_wme_param) : 0)
2675#ifdef IEEE80211_SUPPORT_TDMA
2676		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2677			sizeof(struct ieee80211_tdma_param) : 0)
2678#endif
2679		 + IEEE80211_MAX_APPIE
2680		 ;
2681	m = ieee80211_getmgtframe(&frm,
2682		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2683	if (m == NULL) {
2684		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2685			"%s: cannot get buf; size %u\n", __func__, pktlen);
2686		vap->iv_stats.is_tx_nobuf++;
2687		return NULL;
2688	}
2689	ieee80211_beacon_construct(m, frm, bo, ni);
2690
2691	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2692	KASSERT(m != NULL, ("no space for 802.11 header?"));
2693	wh = mtod(m, struct ieee80211_frame *);
2694	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2695	    IEEE80211_FC0_SUBTYPE_BEACON;
2696	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2697	*(uint16_t *)wh->i_dur = 0;
2698	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2699	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2700	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2701	*(uint16_t *)wh->i_seq = 0;
2702
2703	return m;
2704}
2705
2706/*
2707 * Update the dynamic parts of a beacon frame based on the current state.
2708 */
2709int
2710ieee80211_beacon_update(struct ieee80211_node *ni,
2711	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2712{
2713	struct ieee80211vap *vap = ni->ni_vap;
2714	struct ieee80211com *ic = ni->ni_ic;
2715	int len_changed = 0;
2716	uint16_t capinfo;
2717
2718	IEEE80211_LOCK(ic);
2719	/*
2720	 * Handle 11h channel change when we've reached the count.
2721	 * We must recalculate the beacon frame contents to account
2722	 * for the new channel.  Note we do this only for the first
2723	 * vap that reaches this point; subsequent vaps just update
2724	 * their beacon state to reflect the recalculated channel.
2725	 */
2726	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2727	    vap->iv_csa_count == ic->ic_csa_count) {
2728		vap->iv_csa_count = 0;
2729		/*
2730		 * Effect channel change before reconstructing the beacon
2731		 * frame contents as many places reference ni_chan.
2732		 */
2733		if (ic->ic_csa_newchan != NULL)
2734			ieee80211_csa_completeswitch(ic);
2735		/*
2736		 * NB: ieee80211_beacon_construct clears all pending
2737		 * updates in bo_flags so we don't need to explicitly
2738		 * clear IEEE80211_BEACON_CSA.
2739		 */
2740		ieee80211_beacon_construct(m,
2741		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2742
2743		/* XXX do WME aggressive mode processing? */
2744		IEEE80211_UNLOCK(ic);
2745		return 1;		/* just assume length changed */
2746	}
2747
2748	/* XXX faster to recalculate entirely or just changes? */
2749	capinfo = getcapinfo(vap, ni->ni_chan);
2750	*bo->bo_caps = htole16(capinfo);
2751
2752	if (vap->iv_flags & IEEE80211_F_WME) {
2753		struct ieee80211_wme_state *wme = &ic->ic_wme;
2754
2755		/*
2756		 * Check for agressive mode change.  When there is
2757		 * significant high priority traffic in the BSS
2758		 * throttle back BE traffic by using conservative
2759		 * parameters.  Otherwise BE uses agressive params
2760		 * to optimize performance of legacy/non-QoS traffic.
2761		 */
2762		if (wme->wme_flags & WME_F_AGGRMODE) {
2763			if (wme->wme_hipri_traffic >
2764			    wme->wme_hipri_switch_thresh) {
2765				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2766				    "%s: traffic %u, disable aggressive mode\n",
2767				    __func__, wme->wme_hipri_traffic);
2768				wme->wme_flags &= ~WME_F_AGGRMODE;
2769				ieee80211_wme_updateparams_locked(vap);
2770				wme->wme_hipri_traffic =
2771					wme->wme_hipri_switch_hysteresis;
2772			} else
2773				wme->wme_hipri_traffic = 0;
2774		} else {
2775			if (wme->wme_hipri_traffic <=
2776			    wme->wme_hipri_switch_thresh) {
2777				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2778				    "%s: traffic %u, enable aggressive mode\n",
2779				    __func__, wme->wme_hipri_traffic);
2780				wme->wme_flags |= WME_F_AGGRMODE;
2781				ieee80211_wme_updateparams_locked(vap);
2782				wme->wme_hipri_traffic = 0;
2783			} else
2784				wme->wme_hipri_traffic =
2785					wme->wme_hipri_switch_hysteresis;
2786		}
2787		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2788			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2789			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2790		}
2791	}
2792
2793	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2794		ieee80211_ht_update_beacon(vap, bo);
2795		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2796	}
2797#ifdef IEEE80211_SUPPORT_TDMA
2798	if (vap->iv_caps & IEEE80211_C_TDMA) {
2799		/*
2800		 * NB: the beacon is potentially updated every TBTT.
2801		 */
2802		ieee80211_tdma_update_beacon(vap, bo);
2803	}
2804#endif
2805	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
2806		struct ieee80211_tim_ie *tie =
2807			(struct ieee80211_tim_ie *) bo->bo_tim;
2808		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2809			u_int timlen, timoff, i;
2810			/*
2811			 * ATIM/DTIM needs updating.  If it fits in the
2812			 * current space allocated then just copy in the
2813			 * new bits.  Otherwise we need to move any trailing
2814			 * data to make room.  Note that we know there is
2815			 * contiguous space because ieee80211_beacon_allocate
2816			 * insures there is space in the mbuf to write a
2817			 * maximal-size virtual bitmap (based on iv_max_aid).
2818			 */
2819			/*
2820			 * Calculate the bitmap size and offset, copy any
2821			 * trailer out of the way, and then copy in the
2822			 * new bitmap and update the information element.
2823			 * Note that the tim bitmap must contain at least
2824			 * one byte and any offset must be even.
2825			 */
2826			if (vap->iv_ps_pending != 0) {
2827				timoff = 128;		/* impossibly large */
2828				for (i = 0; i < vap->iv_tim_len; i++)
2829					if (vap->iv_tim_bitmap[i]) {
2830						timoff = i &~ 1;
2831						break;
2832					}
2833				KASSERT(timoff != 128, ("tim bitmap empty!"));
2834				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2835					if (vap->iv_tim_bitmap[i])
2836						break;
2837				timlen = 1 + (i - timoff);
2838			} else {
2839				timoff = 0;
2840				timlen = 1;
2841			}
2842			if (timlen != bo->bo_tim_len) {
2843				/* copy up/down trailer */
2844				int adjust = tie->tim_bitmap+timlen
2845					   - bo->bo_tim_trailer;
2846				ovbcopy(bo->bo_tim_trailer,
2847				    bo->bo_tim_trailer+adjust,
2848				    bo->bo_tim_trailer_len);
2849				bo->bo_tim_trailer += adjust;
2850				bo->bo_erp += adjust;
2851				bo->bo_htinfo += adjust;
2852				bo->bo_appie += adjust;
2853				bo->bo_wme += adjust;
2854				bo->bo_csa += adjust;
2855				bo->bo_tim_len = timlen;
2856
2857				/* update information element */
2858				tie->tim_len = 3 + timlen;
2859				tie->tim_bitctl = timoff;
2860				len_changed = 1;
2861			}
2862			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2863				bo->bo_tim_len);
2864
2865			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2866
2867			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2868				"%s: TIM updated, pending %u, off %u, len %u\n",
2869				__func__, vap->iv_ps_pending, timoff, timlen);
2870		}
2871		/* count down DTIM period */
2872		if (tie->tim_count == 0)
2873			tie->tim_count = tie->tim_period - 1;
2874		else
2875			tie->tim_count--;
2876		/* update state for buffered multicast frames on DTIM */
2877		if (mcast && tie->tim_count == 0)
2878			tie->tim_bitctl |= 1;
2879		else
2880			tie->tim_bitctl &= ~1;
2881		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2882			struct ieee80211_csa_ie *csa =
2883			    (struct ieee80211_csa_ie *) bo->bo_csa;
2884
2885			/*
2886			 * Insert or update CSA ie.  If we're just starting
2887			 * to count down to the channel switch then we need
2888			 * to insert the CSA ie.  Otherwise we just need to
2889			 * drop the count.  The actual change happens above
2890			 * when the vap's count reaches the target count.
2891			 */
2892			if (vap->iv_csa_count == 0) {
2893				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2894				bo->bo_erp += sizeof(*csa);
2895				bo->bo_wme += sizeof(*csa);
2896				bo->bo_appie += sizeof(*csa);
2897				bo->bo_csa_trailer_len += sizeof(*csa);
2898				bo->bo_tim_trailer_len += sizeof(*csa);
2899				m->m_len += sizeof(*csa);
2900				m->m_pkthdr.len += sizeof(*csa);
2901
2902				ieee80211_add_csa(bo->bo_csa, vap);
2903			} else
2904				csa->csa_count--;
2905			vap->iv_csa_count++;
2906			/* NB: don't clear IEEE80211_BEACON_CSA */
2907		}
2908		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2909			/*
2910			 * ERP element needs updating.
2911			 */
2912			(void) ieee80211_add_erp(bo->bo_erp, ic);
2913			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2914		}
2915	}
2916	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2917		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2918		int aielen;
2919		uint8_t *frm;
2920
2921		aielen = 0;
2922		if (aie != NULL)
2923			aielen += aie->ie_len;
2924		if (aielen != bo->bo_appie_len) {
2925			/* copy up/down trailer */
2926			int adjust = aielen - bo->bo_appie_len;
2927			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2928				bo->bo_tim_trailer_len);
2929			bo->bo_tim_trailer += adjust;
2930			bo->bo_appie += adjust;
2931			bo->bo_appie_len = aielen;
2932
2933			len_changed = 1;
2934		}
2935		frm = bo->bo_appie;
2936		if (aie != NULL)
2937			frm  = add_appie(frm, aie);
2938		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2939	}
2940	IEEE80211_UNLOCK(ic);
2941
2942	return len_changed;
2943}
2944