ieee80211_output.c revision 184284
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 184284 2008-10-26 00:48:20Z sam $");
29
30#include "opt_inet.h"
31#include "opt_wlan.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/mbuf.h>
36#include <sys/kernel.h>
37#include <sys/endian.h>
38
39#include <sys/socket.h>
40
41#include <net/bpf.h>
42#include <net/ethernet.h>
43#include <net/if.h>
44#include <net/if_llc.h>
45#include <net/if_media.h>
46#include <net/if_vlan_var.h>
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_regdomain.h>
50#include <net80211/ieee80211_wds.h>
51
52#ifdef INET
53#include <netinet/in.h>
54#include <netinet/if_ether.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#endif
58
59#define	ETHER_HEADER_COPY(dst, src) \
60	memcpy(dst, src, sizeof(struct ether_header))
61
62static struct mbuf *ieee80211_encap_fastframe(struct ieee80211vap *,
63	struct mbuf *m1, const struct ether_header *eh1,
64	struct mbuf *m2, const struct ether_header *eh2);
65static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
66	u_int hdrsize, u_int ciphdrsize, u_int mtu);
67static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
68
69#ifdef IEEE80211_DEBUG
70/*
71 * Decide if an outbound management frame should be
72 * printed when debugging is enabled.  This filters some
73 * of the less interesting frames that come frequently
74 * (e.g. beacons).
75 */
76static __inline int
77doprint(struct ieee80211vap *vap, int subtype)
78{
79	switch (subtype) {
80	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
81		return (vap->iv_opmode == IEEE80211_M_IBSS);
82	}
83	return 1;
84}
85#endif
86
87/*
88 * Start method for vap's.  All packets from the stack come
89 * through here.  We handle common processing of the packets
90 * before dispatching them to the underlying device.
91 */
92void
93ieee80211_start(struct ifnet *ifp)
94{
95#define	IS_DWDS(vap) \
96	(vap->iv_opmode == IEEE80211_M_WDS && \
97	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
98	struct ieee80211vap *vap = ifp->if_softc;
99	struct ieee80211com *ic = vap->iv_ic;
100	struct ifnet *parent = ic->ic_ifp;
101	struct ieee80211_node *ni;
102	struct mbuf *m;
103	struct ether_header *eh;
104	int error;
105
106	/* NB: parent must be up and running */
107	if (!IFNET_IS_UP_RUNNING(parent)) {
108		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
109		    "%s: ignore queue, parent %s not up+running\n",
110		    __func__, parent->if_xname);
111		/* XXX stat */
112		return;
113	}
114	if (vap->iv_state == IEEE80211_S_SLEEP) {
115		/*
116		 * In power save, wakeup device for transmit.
117		 */
118		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
119		return;
120	}
121	/*
122	 * No data frames go out unless we're running.
123	 * Note in particular this covers CAC and CSA
124	 * states (though maybe we should check muting
125	 * for CSA).
126	 */
127	if (vap->iv_state != IEEE80211_S_RUN) {
128		IEEE80211_LOCK(ic);
129		/* re-check under the com lock to avoid races */
130		if (vap->iv_state != IEEE80211_S_RUN) {
131			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
132			    "%s: ignore queue, in %s state\n",
133			    __func__, ieee80211_state_name[vap->iv_state]);
134			vap->iv_stats.is_tx_badstate++;
135			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
136			IEEE80211_UNLOCK(ic);
137			return;
138		}
139		IEEE80211_UNLOCK(ic);
140	}
141	for (;;) {
142		IFQ_DEQUEUE(&ifp->if_snd, m);
143		if (m == NULL)
144			break;
145		/*
146		 * Sanitize mbuf flags for net80211 use.  We cannot
147		 * clear M_PWR_SAV because this may be set for frames
148		 * that are re-submitted from the power save queue.
149		 *
150		 * NB: This must be done before ieee80211_classify as
151		 *     it marks EAPOL in frames with M_EAPOL.
152		 */
153		m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
154		/*
155		 * Cancel any background scan.
156		 */
157		if (ic->ic_flags & IEEE80211_F_SCAN)
158			ieee80211_cancel_anyscan(vap);
159		/*
160		 * Find the node for the destination so we can do
161		 * things like power save and fast frames aggregation.
162		 *
163		 * NB: past this point various code assumes the first
164		 *     mbuf has the 802.3 header present (and contiguous).
165		 */
166		ni = NULL;
167		if (m->m_len < sizeof(struct ether_header) &&
168		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
169			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
170			    "discard frame, %s\n", "m_pullup failed");
171			vap->iv_stats.is_tx_nobuf++;	/* XXX */
172			ifp->if_oerrors++;
173			continue;
174		}
175		eh = mtod(m, struct ether_header *);
176		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
177			if (IS_DWDS(vap)) {
178				/*
179				 * Only unicast frames from the above go out
180				 * DWDS vaps; multicast frames are handled by
181				 * dispatching the frame as it comes through
182				 * the AP vap (see below).
183				 */
184				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
185				    eh->ether_dhost, "mcast", "%s", "on DWDS");
186				vap->iv_stats.is_dwds_mcast++;
187				m_freem(m);
188				continue;
189			}
190			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
191				/*
192				 * Spam DWDS vap's w/ multicast traffic.
193				 */
194				/* XXX only if dwds in use? */
195				ieee80211_dwds_mcast(vap, m);
196			}
197		}
198		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
199		if (ni == NULL) {
200			/* NB: ieee80211_find_txnode does stat+msg */
201			ifp->if_oerrors++;
202			m_freem(m);
203			continue;
204		}
205		/* XXX AUTH'd */
206		/* XXX mark vap to identify if associd is required */
207		if (ni->ni_associd == 0 &&
208		    (vap->iv_opmode == IEEE80211_M_STA ||
209		     vap->iv_opmode == IEEE80211_M_HOSTAP || IS_DWDS(vap))) {
210			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
211			    eh->ether_dhost, NULL,
212			    "sta not associated (type 0x%04x)",
213			    htons(eh->ether_type));
214			vap->iv_stats.is_tx_notassoc++;
215			ifp->if_oerrors++;
216			m_freem(m);
217			ieee80211_free_node(ni);
218			continue;
219		}
220		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
221		    (m->m_flags & M_PWR_SAV) == 0) {
222			/*
223			 * Station in power save mode; pass the frame
224			 * to the 802.11 layer and continue.  We'll get
225			 * the frame back when the time is right.
226			 * XXX lose WDS vap linkage?
227			 */
228			ieee80211_pwrsave(ni, m);
229			ieee80211_free_node(ni);
230			continue;
231		}
232		/* calculate priority so drivers can find the tx queue */
233		if (ieee80211_classify(ni, m)) {
234			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
235			    eh->ether_dhost, NULL,
236			    "%s", "classification failure");
237			vap->iv_stats.is_tx_classify++;
238			ifp->if_oerrors++;
239			m_freem(m);
240			ieee80211_free_node(ni);
241			continue;
242		}
243
244		BPF_MTAP(ifp, m);		/* 802.11 tx path */
245
246		/*
247		 * XXX When ni is associated with a WDS link then
248		 * the vap will be the WDS vap but ni_vap will point
249		 * to the ap vap the station associated to.  Once
250		 * we handoff the packet to the driver the callback
251		 * to ieee80211_encap won't be able to tell if the
252		 * packet should be encapsulated for WDS or not (e.g.
253		 * multicast frames will not be handled correctly).
254		 * We hack this by marking the mbuf so ieee80211_encap
255		 * can do the right thing.
256		 */
257		if (vap->iv_opmode == IEEE80211_M_WDS)
258			m->m_flags |= M_WDS;
259		else
260			m->m_flags &= ~M_WDS;
261
262		/*
263		 * Stash the node pointer and hand the frame off to
264		 * the underlying device.  Note that we do this after
265		 * any call to ieee80211_dwds_mcast because that code
266		 * uses any existing value for rcvif.
267		 */
268		m->m_pkthdr.rcvif = (void *)ni;
269
270		/* XXX defer if_start calls? */
271		IFQ_HANDOFF(parent, m, error);
272		if (error != 0) {
273			/* NB: IFQ_HANDOFF reclaims mbuf */
274			ieee80211_free_node(ni);
275		} else {
276			ifp->if_opackets++;
277		}
278		ic->ic_lastdata = ticks;
279	}
280#undef IS_DWDS
281}
282
283/*
284 * 802.11 output routine. This is (currently) used only to
285 * connect bpf write calls to the 802.11 layer for injecting
286 * raw 802.11 frames.  Note we locate the ieee80211com from
287 * the ifnet using a spare field setup at attach time.  This
288 * will go away when the virtual ap support comes in.
289 */
290int
291ieee80211_output(struct ifnet *ifp, struct mbuf *m,
292	struct sockaddr *dst, struct rtentry *rt0)
293{
294#define senderr(e) do { error = (e); goto bad;} while (0)
295	struct ieee80211_node *ni = NULL;
296	struct ieee80211vap *vap;
297	struct ieee80211_frame *wh;
298	int error;
299
300	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
301		/*
302		 * Short-circuit requests if the vap is marked OACTIVE
303		 * as this is used when tearing down state to indicate
304		 * the vap may be gone.  This can also happen because a
305		 * packet came down through ieee80211_start before the
306		 * vap entered RUN state in which case it's also ok to
307		 * just drop the frame.  This should not be necessary
308		 * but callers of if_output don't check OACTIVE.
309		 */
310		senderr(ENETDOWN);
311	}
312	vap = ifp->if_softc;
313	/*
314	 * Hand to the 802.3 code if not tagged as
315	 * a raw 802.11 frame.
316	 */
317	if (dst->sa_family != AF_IEEE80211)
318		return vap->iv_output(ifp, m, dst, rt0);
319#ifdef MAC
320	error = mac_check_ifnet_transmit(ifp, m);
321	if (error)
322		senderr(error);
323#endif
324	if (ifp->if_flags & IFF_MONITOR)
325		senderr(ENETDOWN);
326	if (!IFNET_IS_UP_RUNNING(ifp))
327		senderr(ENETDOWN);
328	if (vap->iv_state == IEEE80211_S_CAC) {
329		IEEE80211_DPRINTF(vap,
330		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
331		    "block %s frame in CAC state\n", "raw data");
332		vap->iv_stats.is_tx_badstate++;
333		senderr(EIO);		/* XXX */
334	}
335	/* XXX bypass bridge, pfil, carp, etc. */
336
337	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
338		senderr(EIO);	/* XXX */
339	wh = mtod(m, struct ieee80211_frame *);
340	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
341	    IEEE80211_FC0_VERSION_0)
342		senderr(EIO);	/* XXX */
343
344	/* locate destination node */
345	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
346	case IEEE80211_FC1_DIR_NODS:
347	case IEEE80211_FC1_DIR_FROMDS:
348		ni = ieee80211_find_txnode(vap, wh->i_addr1);
349		break;
350	case IEEE80211_FC1_DIR_TODS:
351	case IEEE80211_FC1_DIR_DSTODS:
352		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
353			senderr(EIO);	/* XXX */
354		ni = ieee80211_find_txnode(vap, wh->i_addr3);
355		break;
356	default:
357		senderr(EIO);	/* XXX */
358	}
359	if (ni == NULL) {
360		/*
361		 * Permit packets w/ bpf params through regardless
362		 * (see below about sa_len).
363		 */
364		if (dst->sa_len == 0)
365			senderr(EHOSTUNREACH);
366		ni = ieee80211_ref_node(vap->iv_bss);
367	}
368
369	/*
370	 * Sanitize mbuf for net80211 flags leaked from above.
371	 *
372	 * NB: This must be done before ieee80211_classify as
373	 *     it marks EAPOL in frames with M_EAPOL.
374	 */
375	m->m_flags &= ~M_80211_TX;
376
377	/* calculate priority so drivers can find the tx queue */
378	/* XXX assumes an 802.3 frame */
379	if (ieee80211_classify(ni, m))
380		senderr(EIO);		/* XXX */
381
382	BPF_MTAP(ifp, m);
383
384	/*
385	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
386	 * present by setting the sa_len field of the sockaddr (yes,
387	 * this is a hack).
388	 * NB: we assume sa_data is suitably aligned to cast.
389	 */
390	return vap->iv_ic->ic_raw_xmit(ni, m,
391	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
392		dst->sa_data : NULL));
393bad:
394	if (m != NULL)
395		m_freem(m);
396	if (ni != NULL)
397		ieee80211_free_node(ni);
398	return error;
399#undef senderr
400}
401
402/*
403 * Set the direction field and address fields of an outgoing
404 * non-QoS frame.  Note this should be called early on in
405 * constructing a frame as it sets i_fc[1]; other bits can
406 * then be or'd in.
407 */
408static void
409ieee80211_send_setup(
410	struct ieee80211_node *ni,
411	struct ieee80211_frame *wh,
412	int type, int tid,
413	const uint8_t sa[IEEE80211_ADDR_LEN],
414	const uint8_t da[IEEE80211_ADDR_LEN],
415	const uint8_t bssid[IEEE80211_ADDR_LEN])
416{
417#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
418
419	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
420	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
421		struct ieee80211vap *vap = ni->ni_vap;
422
423		switch (vap->iv_opmode) {
424		case IEEE80211_M_STA:
425			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
426			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
427			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
428			IEEE80211_ADDR_COPY(wh->i_addr3, da);
429			break;
430		case IEEE80211_M_IBSS:
431		case IEEE80211_M_AHDEMO:
432			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
433			IEEE80211_ADDR_COPY(wh->i_addr1, da);
434			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
435			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
436			break;
437		case IEEE80211_M_HOSTAP:
438			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
439			IEEE80211_ADDR_COPY(wh->i_addr1, da);
440			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
441			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
442			break;
443		case IEEE80211_M_WDS:
444			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
445			IEEE80211_ADDR_COPY(wh->i_addr1, da);
446			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
447			IEEE80211_ADDR_COPY(wh->i_addr3, da);
448			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
449			break;
450		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
451			break;
452		}
453	} else {
454		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
455		IEEE80211_ADDR_COPY(wh->i_addr1, da);
456		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
457		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
458	}
459	*(uint16_t *)&wh->i_dur[0] = 0;
460	*(uint16_t *)&wh->i_seq[0] =
461	    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
462	ni->ni_txseqs[tid]++;
463#undef WH4
464}
465
466/*
467 * Send a management frame to the specified node.  The node pointer
468 * must have a reference as the pointer will be passed to the driver
469 * and potentially held for a long time.  If the frame is successfully
470 * dispatched to the driver, then it is responsible for freeing the
471 * reference (and potentially free'ing up any associated storage);
472 * otherwise deal with reclaiming any reference (on error).
473 */
474int
475ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
476	struct ieee80211_bpf_params *params)
477{
478	struct ieee80211vap *vap = ni->ni_vap;
479	struct ieee80211com *ic = ni->ni_ic;
480	struct ieee80211_frame *wh;
481
482	KASSERT(ni != NULL, ("null node"));
483
484	if (vap->iv_state == IEEE80211_S_CAC) {
485		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
486		    ni, "block %s frame in CAC state",
487			ieee80211_mgt_subtype_name[
488			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
489				IEEE80211_FC0_SUBTYPE_SHIFT]);
490		vap->iv_stats.is_tx_badstate++;
491		ieee80211_free_node(ni);
492		m_freem(m);
493		return EIO;		/* XXX */
494	}
495
496	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
497	if (m == NULL) {
498		ieee80211_free_node(ni);
499		return ENOMEM;
500	}
501
502	wh = mtod(m, struct ieee80211_frame *);
503	ieee80211_send_setup(ni, wh,
504	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
505	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
506	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
507		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
508		    "encrypting frame (%s)", __func__);
509		wh->i_fc[1] |= IEEE80211_FC1_WEP;
510	}
511
512	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
513	M_WME_SETAC(m, params->ibp_pri);
514
515#ifdef IEEE80211_DEBUG
516	/* avoid printing too many frames */
517	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
518	    ieee80211_msg_dumppkts(vap)) {
519		printf("[%s] send %s on channel %u\n",
520		    ether_sprintf(wh->i_addr1),
521		    ieee80211_mgt_subtype_name[
522			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
523				IEEE80211_FC0_SUBTYPE_SHIFT],
524		    ieee80211_chan2ieee(ic, ic->ic_curchan));
525	}
526#endif
527	IEEE80211_NODE_STAT(ni, tx_mgmt);
528
529	return ic->ic_raw_xmit(ni, m, params);
530}
531
532/*
533 * Send a null data frame to the specified node.  If the station
534 * is setup for QoS then a QoS Null Data frame is constructed.
535 * If this is a WDS station then a 4-address frame is constructed.
536 *
537 * NB: the caller is assumed to have setup a node reference
538 *     for use; this is necessary to deal with a race condition
539 *     when probing for inactive stations.  Like ieee80211_mgmt_output
540 *     we must cleanup any node reference on error;  however we
541 *     can safely just unref it as we know it will never be the
542 *     last reference to the node.
543 */
544int
545ieee80211_send_nulldata(struct ieee80211_node *ni)
546{
547	struct ieee80211vap *vap = ni->ni_vap;
548	struct ieee80211com *ic = ni->ni_ic;
549	struct mbuf *m;
550	struct ieee80211_frame *wh;
551	int hdrlen;
552	uint8_t *frm;
553
554	if (vap->iv_state == IEEE80211_S_CAC) {
555		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
556		    ni, "block %s frame in CAC state", "null data");
557		ieee80211_unref_node(&ni);
558		vap->iv_stats.is_tx_badstate++;
559		return EIO;		/* XXX */
560	}
561
562	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
563		hdrlen = sizeof(struct ieee80211_qosframe);
564	else
565		hdrlen = sizeof(struct ieee80211_frame);
566	/* NB: only WDS vap's get 4-address frames */
567	if (vap->iv_opmode == IEEE80211_M_WDS)
568		hdrlen += IEEE80211_ADDR_LEN;
569	if (ic->ic_flags & IEEE80211_F_DATAPAD)
570		hdrlen = roundup(hdrlen, sizeof(uint32_t));
571
572	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
573	if (m == NULL) {
574		/* XXX debug msg */
575		ieee80211_unref_node(&ni);
576		vap->iv_stats.is_tx_nobuf++;
577		return ENOMEM;
578	}
579	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
580	    ("leading space %zd", M_LEADINGSPACE(m)));
581	M_PREPEND(m, hdrlen, M_DONTWAIT);
582	if (m == NULL) {
583		/* NB: cannot happen */
584		ieee80211_free_node(ni);
585		return ENOMEM;
586	}
587
588	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
589	if (ni->ni_flags & IEEE80211_NODE_QOS) {
590		const int tid = WME_AC_TO_TID(WME_AC_BE);
591		uint8_t *qos;
592
593		ieee80211_send_setup(ni, wh,
594		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
595		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
596
597		if (vap->iv_opmode == IEEE80211_M_WDS)
598			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
599		else
600			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
601		qos[0] = tid & IEEE80211_QOS_TID;
602		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
603			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
604		qos[1] = 0;
605	} else {
606		ieee80211_send_setup(ni, wh,
607		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
608		    IEEE80211_NONQOS_TID,
609		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
610	}
611	if (vap->iv_opmode != IEEE80211_M_WDS) {
612		/* NB: power management bit is never sent by an AP */
613		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
614		    vap->iv_opmode != IEEE80211_M_HOSTAP)
615			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
616	}
617	m->m_len = m->m_pkthdr.len = hdrlen;
618
619	M_WME_SETAC(m, WME_AC_BE);
620
621	IEEE80211_NODE_STAT(ni, tx_data);
622
623	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
624	    "send %snull data frame on channel %u, pwr mgt %s",
625	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
626	    ieee80211_chan2ieee(ic, ic->ic_curchan),
627	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
628
629	return ic->ic_raw_xmit(ni, m, NULL);
630}
631
632/*
633 * Assign priority to a frame based on any vlan tag assigned
634 * to the station and/or any Diffserv setting in an IP header.
635 * Finally, if an ACM policy is setup (in station mode) it's
636 * applied.
637 */
638int
639ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
640{
641	const struct ether_header *eh = mtod(m, struct ether_header *);
642	int v_wme_ac, d_wme_ac, ac;
643
644	/*
645	 * Always promote PAE/EAPOL frames to high priority.
646	 */
647	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
648		/* NB: mark so others don't need to check header */
649		m->m_flags |= M_EAPOL;
650		ac = WME_AC_VO;
651		goto done;
652	}
653	/*
654	 * Non-qos traffic goes to BE.
655	 */
656	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
657		ac = WME_AC_BE;
658		goto done;
659	}
660
661	/*
662	 * If node has a vlan tag then all traffic
663	 * to it must have a matching tag.
664	 */
665	v_wme_ac = 0;
666	if (ni->ni_vlan != 0) {
667		 if ((m->m_flags & M_VLANTAG) == 0) {
668			IEEE80211_NODE_STAT(ni, tx_novlantag);
669			return 1;
670		}
671		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
672		    EVL_VLANOFTAG(ni->ni_vlan)) {
673			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
674			return 1;
675		}
676		/* map vlan priority to AC */
677		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
678	}
679
680#ifdef INET
681	if (eh->ether_type == htons(ETHERTYPE_IP)) {
682		uint8_t tos;
683		/*
684		 * IP frame, map the DSCP bits from the TOS field.
685		 */
686		/* XXX m_copydata may be too slow for fast path */
687		/* NB: ip header may not be in first mbuf */
688		m_copydata(m, sizeof(struct ether_header) +
689		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
690		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
691		d_wme_ac = TID_TO_WME_AC(tos);
692	} else {
693#endif /* INET */
694		d_wme_ac = WME_AC_BE;
695#ifdef INET
696	}
697#endif
698	/*
699	 * Use highest priority AC.
700	 */
701	if (v_wme_ac > d_wme_ac)
702		ac = v_wme_ac;
703	else
704		ac = d_wme_ac;
705
706	/*
707	 * Apply ACM policy.
708	 */
709	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
710		static const int acmap[4] = {
711			WME_AC_BK,	/* WME_AC_BE */
712			WME_AC_BK,	/* WME_AC_BK */
713			WME_AC_BE,	/* WME_AC_VI */
714			WME_AC_VI,	/* WME_AC_VO */
715		};
716		struct ieee80211com *ic = ni->ni_ic;
717
718		while (ac != WME_AC_BK &&
719		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
720			ac = acmap[ac];
721	}
722done:
723	M_WME_SETAC(m, ac);
724	return 0;
725}
726
727/*
728 * Insure there is sufficient contiguous space to encapsulate the
729 * 802.11 data frame.  If room isn't already there, arrange for it.
730 * Drivers and cipher modules assume we have done the necessary work
731 * and fail rudely if they don't find the space they need.
732 */
733static struct mbuf *
734ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
735	struct ieee80211_key *key, struct mbuf *m)
736{
737#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
738	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
739
740	if (key != NULL) {
741		/* XXX belongs in crypto code? */
742		needed_space += key->wk_cipher->ic_header;
743		/* XXX frags */
744		/*
745		 * When crypto is being done in the host we must insure
746		 * the data are writable for the cipher routines; clone
747		 * a writable mbuf chain.
748		 * XXX handle SWMIC specially
749		 */
750		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
751			m = m_unshare(m, M_NOWAIT);
752			if (m == NULL) {
753				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
754				    "%s: cannot get writable mbuf\n", __func__);
755				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
756				return NULL;
757			}
758		}
759	}
760	/*
761	 * We know we are called just before stripping an Ethernet
762	 * header and prepending an LLC header.  This means we know
763	 * there will be
764	 *	sizeof(struct ether_header) - sizeof(struct llc)
765	 * bytes recovered to which we need additional space for the
766	 * 802.11 header and any crypto header.
767	 */
768	/* XXX check trailing space and copy instead? */
769	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
770		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
771		if (n == NULL) {
772			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
773			    "%s: cannot expand storage\n", __func__);
774			vap->iv_stats.is_tx_nobuf++;
775			m_freem(m);
776			return NULL;
777		}
778		KASSERT(needed_space <= MHLEN,
779		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
780		/*
781		 * Setup new mbuf to have leading space to prepend the
782		 * 802.11 header and any crypto header bits that are
783		 * required (the latter are added when the driver calls
784		 * back to ieee80211_crypto_encap to do crypto encapsulation).
785		 */
786		/* NB: must be first 'cuz it clobbers m_data */
787		m_move_pkthdr(n, m);
788		n->m_len = 0;			/* NB: m_gethdr does not set */
789		n->m_data += needed_space;
790		/*
791		 * Pull up Ethernet header to create the expected layout.
792		 * We could use m_pullup but that's overkill (i.e. we don't
793		 * need the actual data) and it cannot fail so do it inline
794		 * for speed.
795		 */
796		/* NB: struct ether_header is known to be contiguous */
797		n->m_len += sizeof(struct ether_header);
798		m->m_len -= sizeof(struct ether_header);
799		m->m_data += sizeof(struct ether_header);
800		/*
801		 * Replace the head of the chain.
802		 */
803		n->m_next = m;
804		m = n;
805	}
806	return m;
807#undef TO_BE_RECLAIMED
808}
809
810/*
811 * Return the transmit key to use in sending a unicast frame.
812 * If a unicast key is set we use that.  When no unicast key is set
813 * we fall back to the default transmit key.
814 */
815static __inline struct ieee80211_key *
816ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
817	struct ieee80211_node *ni)
818{
819	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
820		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
821		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
822			return NULL;
823		return &vap->iv_nw_keys[vap->iv_def_txkey];
824	} else {
825		return &ni->ni_ucastkey;
826	}
827}
828
829/*
830 * Return the transmit key to use in sending a multicast frame.
831 * Multicast traffic always uses the group key which is installed as
832 * the default tx key.
833 */
834static __inline struct ieee80211_key *
835ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
836	struct ieee80211_node *ni)
837{
838	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
839	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
840		return NULL;
841	return &vap->iv_nw_keys[vap->iv_def_txkey];
842}
843
844/*
845 * Encapsulate an outbound data frame.  The mbuf chain is updated.
846 * If an error is encountered NULL is returned.  The caller is required
847 * to provide a node reference and pullup the ethernet header in the
848 * first mbuf.
849 *
850 * NB: Packet is assumed to be processed by ieee80211_classify which
851 *     marked EAPOL frames w/ M_EAPOL.
852 */
853struct mbuf *
854ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m)
855{
856#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
857	struct ieee80211vap *vap = ni->ni_vap;
858	struct ieee80211com *ic = ni->ni_ic;
859	struct ether_header eh;
860	struct ieee80211_frame *wh;
861	struct ieee80211_key *key;
862	struct llc *llc;
863	int hdrsize, hdrspace, datalen, addqos, txfrag, isff, is4addr;
864
865	/*
866	 * Copy existing Ethernet header to a safe place.  The
867	 * rest of the code assumes it's ok to strip it when
868	 * reorganizing state for the final encapsulation.
869	 */
870	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
871	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
872
873	/*
874	 * Insure space for additional headers.  First identify
875	 * transmit key to use in calculating any buffer adjustments
876	 * required.  This is also used below to do privacy
877	 * encapsulation work.  Then calculate the 802.11 header
878	 * size and any padding required by the driver.
879	 *
880	 * Note key may be NULL if we fall back to the default
881	 * transmit key and that is not set.  In that case the
882	 * buffer may not be expanded as needed by the cipher
883	 * routines, but they will/should discard it.
884	 */
885	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
886		if (vap->iv_opmode == IEEE80211_M_STA ||
887		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
888		    (vap->iv_opmode == IEEE80211_M_WDS &&
889		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
890			key = ieee80211_crypto_getucastkey(vap, ni);
891		else
892			key = ieee80211_crypto_getmcastkey(vap, ni);
893		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
894			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
895			    eh.ether_dhost,
896			    "no default transmit key (%s) deftxkey %u",
897			    __func__, vap->iv_def_txkey);
898			vap->iv_stats.is_tx_nodefkey++;
899			goto bad;
900		}
901	} else
902		key = NULL;
903	/*
904	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
905	 * frames so suppress use.  This may be an issue if other
906	 * ap's require all data frames to be QoS-encapsulated
907	 * once negotiated in which case we'll need to make this
908	 * configurable.
909	 */
910	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
911		 (m->m_flags & M_EAPOL) == 0;
912	if (addqos)
913		hdrsize = sizeof(struct ieee80211_qosframe);
914	else
915		hdrsize = sizeof(struct ieee80211_frame);
916	/*
917	 * 4-address frames need to be generated for:
918	 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS)
919	 * o packets relayed by a station operating with dynamic WDS
920	 *   (IEEE80211_M_STA+IEEE80211_F_DWDS and src address)
921	 */
922	is4addr = (m->m_flags & M_WDS) ||
923	    vap->iv_opmode == IEEE80211_M_WDS ||	/* XXX redundant? */
924	    (vap->iv_opmode == IEEE80211_M_STA &&
925	     (vap->iv_flags & IEEE80211_F_DWDS) &&
926	     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
927	if (is4addr)
928		hdrsize += IEEE80211_ADDR_LEN;
929	/*
930	 * Honor driver DATAPAD requirement.
931	 */
932	if (ic->ic_flags & IEEE80211_F_DATAPAD)
933		hdrspace = roundup(hdrsize, sizeof(uint32_t));
934	else
935		hdrspace = hdrsize;
936
937	if ((isff = m->m_flags & M_FF) != 0) {
938		struct mbuf *m2;
939		struct ether_header eh2;
940
941		/*
942		 * Fast frame encapsulation.  There must be two packets
943		 * chained with m_nextpkt.  We do header adjustment for
944		 * each, add the tunnel encapsulation, and then concatenate
945		 * the mbuf chains to form a single frame for transmission.
946		 */
947		m2 = m->m_nextpkt;
948		if (m2 == NULL) {
949			IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
950				"%s: only one frame\n", __func__);
951			goto bad;
952		}
953		m->m_nextpkt = NULL;
954		/*
955		 * Include fast frame headers in adjusting header
956		 * layout; this allocates space according to what
957		 * ieee80211_encap_fastframe will do.
958		 */
959		m = ieee80211_mbuf_adjust(vap,
960			hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 +
961			    sizeof(struct ether_header),
962			key, m);
963		if (m == NULL) {
964			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
965			m_freem(m2);
966			goto bad;
967		}
968		/*
969		 * Copy second frame's Ethernet header out of line
970		 * and adjust for encapsulation headers.  Note that
971		 * we make room for padding in case there isn't room
972		 * at the end of first frame.
973		 */
974		KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
975		ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
976		m2 = ieee80211_mbuf_adjust(vap,
977			ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
978			NULL, m2);
979		if (m2 == NULL) {
980			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
981			goto bad;
982		}
983		m = ieee80211_encap_fastframe(vap, m, &eh, m2, &eh2);
984		if (m == NULL)
985			goto bad;
986	} else {
987		/*
988		 * Normal frame.
989		 */
990		m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
991		if (m == NULL) {
992			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
993			goto bad;
994		}
995		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
996		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
997		llc = mtod(m, struct llc *);
998		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
999		llc->llc_control = LLC_UI;
1000		llc->llc_snap.org_code[0] = 0;
1001		llc->llc_snap.org_code[1] = 0;
1002		llc->llc_snap.org_code[2] = 0;
1003		llc->llc_snap.ether_type = eh.ether_type;
1004	}
1005	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1006
1007	M_PREPEND(m, hdrspace, M_DONTWAIT);
1008	if (m == NULL) {
1009		vap->iv_stats.is_tx_nobuf++;
1010		goto bad;
1011	}
1012	wh = mtod(m, struct ieee80211_frame *);
1013	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1014	*(uint16_t *)wh->i_dur = 0;
1015	if (is4addr) {
1016		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1017		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1018		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1019		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1020		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1021	} else switch (vap->iv_opmode) {
1022	case IEEE80211_M_STA:
1023		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1024		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1025		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1026		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1027		break;
1028	case IEEE80211_M_IBSS:
1029	case IEEE80211_M_AHDEMO:
1030		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1031		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1032		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1033		/*
1034		 * NB: always use the bssid from iv_bss as the
1035		 *     neighbor's may be stale after an ibss merge
1036		 */
1037		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1038		break;
1039	case IEEE80211_M_HOSTAP:
1040		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1041		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1042		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1043		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1044		break;
1045	case IEEE80211_M_MONITOR:
1046	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1047		goto bad;
1048	}
1049	if (m->m_flags & M_MORE_DATA)
1050		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1051	if (addqos) {
1052		uint8_t *qos;
1053		int ac, tid;
1054
1055		if (is4addr) {
1056			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1057		} else
1058			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1059		ac = M_WME_GETAC(m);
1060		/* map from access class/queue to 11e header priorty value */
1061		tid = WME_AC_TO_TID(ac);
1062		qos[0] = tid & IEEE80211_QOS_TID;
1063		/*
1064		 * Check if A-MPDU tx aggregation is setup or if we
1065		 * should try to enable it.  The sta must be associated
1066		 * with HT and A-MPDU enabled for use.  When the policy
1067		 * routine decides we should enable A-MPDU we issue an
1068		 * ADDBA request and wait for a reply.  The frame being
1069		 * encapsulated will go out w/o using A-MPDU, or possibly
1070		 * it might be collected by the driver and held/retransmit.
1071		 * The default ic_ampdu_enable routine handles staggering
1072		 * ADDBA requests in case the receiver NAK's us or we are
1073		 * otherwise unable to establish a BA stream.
1074		 */
1075		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
1076		    (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
1077			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
1078
1079			ieee80211_txampdu_count_packet(tap);
1080			if (IEEE80211_AMPDU_RUNNING(tap)) {
1081				/*
1082				 * Operational, mark frame for aggregation.
1083				 *
1084				 * NB: We support only immediate BA's for
1085				 * AMPDU which means we set the QoS control
1086				 * field to "normal ack" (0) to get "implicit
1087				 * block ack" behaviour.
1088				 */
1089				m->m_flags |= M_AMPDU_MPDU;
1090			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
1091			    ic->ic_ampdu_enable(ni, tap)) {
1092				/*
1093				 * Not negotiated yet, request service.
1094				 */
1095				ieee80211_ampdu_request(ni, tap);
1096			}
1097		}
1098		/* XXX works even when BA marked above */
1099		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1100			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1101		qos[1] = 0;
1102		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1103
1104		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1105			/*
1106			 * NB: don't assign a sequence # to potential
1107			 * aggregates; we expect this happens at the
1108			 * point the frame comes off any aggregation q
1109			 * as otherwise we may introduce holes in the
1110			 * BA sequence space and/or make window accouting
1111			 * more difficult.
1112			 *
1113			 * XXX may want to control this with a driver
1114			 * capability; this may also change when we pull
1115			 * aggregation up into net80211
1116			 */
1117			*(uint16_t *)wh->i_seq =
1118			    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
1119			ni->ni_txseqs[tid]++;
1120		}
1121	} else {
1122		*(uint16_t *)wh->i_seq =
1123		    htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
1124		ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1125	}
1126	/* check if xmit fragmentation is required */
1127	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1128	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1129	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1130	    !isff);		/* NB: don't fragment ff's */
1131	if (key != NULL) {
1132		/*
1133		 * IEEE 802.1X: send EAPOL frames always in the clear.
1134		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1135		 */
1136		if ((m->m_flags & M_EAPOL) == 0 ||
1137		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1138		     (vap->iv_opmode == IEEE80211_M_STA ?
1139		      !IEEE80211_KEY_UNDEFINED(key) :
1140		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1141			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1142			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1143				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1144				    eh.ether_dhost,
1145				    "%s", "enmic failed, discard frame");
1146				vap->iv_stats.is_crypto_enmicfail++;
1147				goto bad;
1148			}
1149		}
1150	}
1151	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1152	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1153		goto bad;
1154
1155	IEEE80211_NODE_STAT(ni, tx_data);
1156	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1157		IEEE80211_NODE_STAT(ni, tx_mcast);
1158	else
1159		IEEE80211_NODE_STAT(ni, tx_ucast);
1160	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1161
1162	/* XXX fragmented frames not handled */
1163	if (bpf_peers_present(vap->iv_rawbpf))
1164		bpf_mtap(vap->iv_rawbpf, m);
1165
1166	return m;
1167bad:
1168	if (m != NULL)
1169		m_freem(m);
1170	return NULL;
1171#undef WH4
1172}
1173
1174/*
1175 * Do Ethernet-LLC encapsulation for each payload in a fast frame
1176 * tunnel encapsulation.  The frame is assumed to have an Ethernet
1177 * header at the front that must be stripped before prepending the
1178 * LLC followed by the Ethernet header passed in (with an Ethernet
1179 * type that specifies the payload size).
1180 */
1181static struct mbuf *
1182ieee80211_encap1(struct ieee80211vap *vap, struct mbuf *m,
1183	const struct ether_header *eh)
1184{
1185	struct llc *llc;
1186	uint16_t payload;
1187
1188	/* XXX optimize by combining m_adj+M_PREPEND */
1189	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1190	llc = mtod(m, struct llc *);
1191	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1192	llc->llc_control = LLC_UI;
1193	llc->llc_snap.org_code[0] = 0;
1194	llc->llc_snap.org_code[1] = 0;
1195	llc->llc_snap.org_code[2] = 0;
1196	llc->llc_snap.ether_type = eh->ether_type;
1197	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
1198
1199	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
1200	if (m == NULL) {		/* XXX cannot happen */
1201		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1202			"%s: no space for ether_header\n", __func__);
1203		vap->iv_stats.is_tx_nobuf++;
1204		return NULL;
1205	}
1206	ETHER_HEADER_COPY(mtod(m, void *), eh);
1207	mtod(m, struct ether_header *)->ether_type = htons(payload);
1208	return m;
1209}
1210
1211/*
1212 * Do fast frame tunnel encapsulation.  The two frames and
1213 * Ethernet headers are supplied.  The caller is assumed to
1214 * have arrange for space in the mbuf chains for encapsulating
1215 * headers (to avoid major mbuf fragmentation).
1216 *
1217 * The encapsulated frame is returned or NULL if there is a
1218 * problem (should not happen).
1219 */
1220static struct mbuf *
1221ieee80211_encap_fastframe(struct ieee80211vap *vap,
1222	struct mbuf *m1, const struct ether_header *eh1,
1223	struct mbuf *m2, const struct ether_header *eh2)
1224{
1225	struct llc *llc;
1226	struct mbuf *m;
1227	int pad;
1228
1229	/*
1230	 * First, each frame gets a standard encapsulation.
1231	 */
1232	m1 = ieee80211_encap1(vap, m1, eh1);
1233	if (m1 == NULL) {
1234		m_freem(m2);
1235		return NULL;
1236	}
1237	m2 = ieee80211_encap1(vap, m2, eh2);
1238	if (m2 == NULL) {
1239		m_freem(m1);
1240		return NULL;
1241	}
1242
1243	/*
1244	 * Pad leading frame to a 4-byte boundary.  If there
1245	 * is space at the end of the first frame, put it
1246	 * there; otherwise prepend to the front of the second
1247	 * frame.  We know doing the second will always work
1248	 * because we reserve space above.  We prefer appending
1249	 * as this typically has better DMA alignment properties.
1250	 */
1251	for (m = m1; m->m_next != NULL; m = m->m_next)
1252		;
1253	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
1254	if (pad) {
1255		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
1256			m2->m_data -= pad;
1257			m2->m_len += pad;
1258			m2->m_pkthdr.len += pad;
1259		} else {				/* append to first */
1260			m->m_len += pad;
1261			m1->m_pkthdr.len += pad;
1262		}
1263	}
1264
1265	/*
1266	 * Now, stick 'em together and prepend the tunnel headers;
1267	 * first the Atheros tunnel header (all zero for now) and
1268	 * then a special fast frame LLC.
1269	 *
1270	 * XXX optimize by prepending together
1271	 */
1272	m->m_next = m2;			/* NB: last mbuf from above */
1273	m1->m_pkthdr.len += m2->m_pkthdr.len;
1274	M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
1275	if (m1 == NULL) {		/* XXX cannot happen */
1276		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1277			"%s: no space for tunnel header\n", __func__);
1278		vap->iv_stats.is_tx_nobuf++;
1279		return NULL;
1280	}
1281	memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
1282
1283	M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
1284	if (m1 == NULL) {		/* XXX cannot happen */
1285		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1286			"%s: no space for llc header\n", __func__);
1287		vap->iv_stats.is_tx_nobuf++;
1288		return NULL;
1289	}
1290	llc = mtod(m1, struct llc *);
1291	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1292	llc->llc_control = LLC_UI;
1293	llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
1294	llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
1295	llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
1296	llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
1297
1298	vap->iv_stats.is_ff_encap++;
1299
1300	return m1;
1301}
1302
1303/*
1304 * Fragment the frame according to the specified mtu.
1305 * The size of the 802.11 header (w/o padding) is provided
1306 * so we don't need to recalculate it.  We create a new
1307 * mbuf for each fragment and chain it through m_nextpkt;
1308 * we might be able to optimize this by reusing the original
1309 * packet's mbufs but that is significantly more complicated.
1310 */
1311static int
1312ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1313	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1314{
1315	struct ieee80211_frame *wh, *whf;
1316	struct mbuf *m, *prev, *next;
1317	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1318
1319	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1320	KASSERT(m0->m_pkthdr.len > mtu,
1321		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1322
1323	wh = mtod(m0, struct ieee80211_frame *);
1324	/* NB: mark the first frag; it will be propagated below */
1325	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1326	totalhdrsize = hdrsize + ciphdrsize;
1327	fragno = 1;
1328	off = mtu - ciphdrsize;
1329	remainder = m0->m_pkthdr.len - off;
1330	prev = m0;
1331	do {
1332		fragsize = totalhdrsize + remainder;
1333		if (fragsize > mtu)
1334			fragsize = mtu;
1335		/* XXX fragsize can be >2048! */
1336		KASSERT(fragsize < MCLBYTES,
1337			("fragment size %u too big!", fragsize));
1338		if (fragsize > MHLEN)
1339			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1340		else
1341			m = m_gethdr(M_DONTWAIT, MT_DATA);
1342		if (m == NULL)
1343			goto bad;
1344		/* leave room to prepend any cipher header */
1345		m_align(m, fragsize - ciphdrsize);
1346
1347		/*
1348		 * Form the header in the fragment.  Note that since
1349		 * we mark the first fragment with the MORE_FRAG bit
1350		 * it automatically is propagated to each fragment; we
1351		 * need only clear it on the last fragment (done below).
1352		 */
1353		whf = mtod(m, struct ieee80211_frame *);
1354		memcpy(whf, wh, hdrsize);
1355		*(uint16_t *)&whf->i_seq[0] |= htole16(
1356			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1357				IEEE80211_SEQ_FRAG_SHIFT);
1358		fragno++;
1359
1360		payload = fragsize - totalhdrsize;
1361		/* NB: destination is known to be contiguous */
1362		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1363		m->m_len = hdrsize + payload;
1364		m->m_pkthdr.len = hdrsize + payload;
1365		m->m_flags |= M_FRAG;
1366
1367		/* chain up the fragment */
1368		prev->m_nextpkt = m;
1369		prev = m;
1370
1371		/* deduct fragment just formed */
1372		remainder -= payload;
1373		off += payload;
1374	} while (remainder != 0);
1375	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1376
1377	/* strip first mbuf now that everything has been copied */
1378	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1379	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1380
1381	vap->iv_stats.is_tx_fragframes++;
1382	vap->iv_stats.is_tx_frags += fragno-1;
1383
1384	return 1;
1385bad:
1386	/* reclaim fragments but leave original frame for caller to free */
1387	for (m = m0->m_nextpkt; m != NULL; m = next) {
1388		next = m->m_nextpkt;
1389		m->m_nextpkt = NULL;		/* XXX paranoid */
1390		m_freem(m);
1391	}
1392	m0->m_nextpkt = NULL;
1393	return 0;
1394}
1395
1396/*
1397 * Add a supported rates element id to a frame.
1398 */
1399static uint8_t *
1400ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1401{
1402	int nrates;
1403
1404	*frm++ = IEEE80211_ELEMID_RATES;
1405	nrates = rs->rs_nrates;
1406	if (nrates > IEEE80211_RATE_SIZE)
1407		nrates = IEEE80211_RATE_SIZE;
1408	*frm++ = nrates;
1409	memcpy(frm, rs->rs_rates, nrates);
1410	return frm + nrates;
1411}
1412
1413/*
1414 * Add an extended supported rates element id to a frame.
1415 */
1416static uint8_t *
1417ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1418{
1419	/*
1420	 * Add an extended supported rates element if operating in 11g mode.
1421	 */
1422	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1423		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1424		*frm++ = IEEE80211_ELEMID_XRATES;
1425		*frm++ = nrates;
1426		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1427		frm += nrates;
1428	}
1429	return frm;
1430}
1431
1432/*
1433 * Add an ssid element to a frame.
1434 */
1435static uint8_t *
1436ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1437{
1438	*frm++ = IEEE80211_ELEMID_SSID;
1439	*frm++ = len;
1440	memcpy(frm, ssid, len);
1441	return frm + len;
1442}
1443
1444/*
1445 * Add an erp element to a frame.
1446 */
1447static uint8_t *
1448ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1449{
1450	uint8_t erp;
1451
1452	*frm++ = IEEE80211_ELEMID_ERP;
1453	*frm++ = 1;
1454	erp = 0;
1455	if (ic->ic_nonerpsta != 0)
1456		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1457	if (ic->ic_flags & IEEE80211_F_USEPROT)
1458		erp |= IEEE80211_ERP_USE_PROTECTION;
1459	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1460		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1461	*frm++ = erp;
1462	return frm;
1463}
1464
1465/*
1466 * Add a CFParams element to a frame.
1467 */
1468static uint8_t *
1469ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1470{
1471#define	ADDSHORT(frm, v) do {			\
1472	frm[0] = (v) & 0xff;			\
1473	frm[1] = (v) >> 8;			\
1474	frm += 2;				\
1475} while (0)
1476	*frm++ = IEEE80211_ELEMID_CFPARMS;
1477	*frm++ = 6;
1478	*frm++ = 0;		/* CFP count */
1479	*frm++ = 2;		/* CFP period */
1480	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1481	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1482	return frm;
1483#undef ADDSHORT
1484}
1485
1486static __inline uint8_t *
1487add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1488{
1489	memcpy(frm, ie->ie_data, ie->ie_len);
1490	return frm + ie->ie_len;
1491}
1492
1493static __inline uint8_t *
1494add_ie(uint8_t *frm, const uint8_t *ie)
1495{
1496	memcpy(frm, ie, 2 + ie[1]);
1497	return frm + 2 + ie[1];
1498}
1499
1500#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1501/*
1502 * Add a WME information element to a frame.
1503 */
1504static uint8_t *
1505ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1506{
1507	static const struct ieee80211_wme_info info = {
1508		.wme_id		= IEEE80211_ELEMID_VENDOR,
1509		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1510		.wme_oui	= { WME_OUI_BYTES },
1511		.wme_type	= WME_OUI_TYPE,
1512		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1513		.wme_version	= WME_VERSION,
1514		.wme_info	= 0,
1515	};
1516	memcpy(frm, &info, sizeof(info));
1517	return frm + sizeof(info);
1518}
1519
1520/*
1521 * Add a WME parameters element to a frame.
1522 */
1523static uint8_t *
1524ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1525{
1526#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1527#define	ADDSHORT(frm, v) do {			\
1528	frm[0] = (v) & 0xff;			\
1529	frm[1] = (v) >> 8;			\
1530	frm += 2;				\
1531} while (0)
1532	/* NB: this works 'cuz a param has an info at the front */
1533	static const struct ieee80211_wme_info param = {
1534		.wme_id		= IEEE80211_ELEMID_VENDOR,
1535		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1536		.wme_oui	= { WME_OUI_BYTES },
1537		.wme_type	= WME_OUI_TYPE,
1538		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1539		.wme_version	= WME_VERSION,
1540	};
1541	int i;
1542
1543	memcpy(frm, &param, sizeof(param));
1544	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1545	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1546	*frm++ = 0;					/* reserved field */
1547	for (i = 0; i < WME_NUM_AC; i++) {
1548		const struct wmeParams *ac =
1549		       &wme->wme_bssChanParams.cap_wmeParams[i];
1550		*frm++ = SM(i, WME_PARAM_ACI)
1551		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1552		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1553		       ;
1554		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1555		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1556		       ;
1557		ADDSHORT(frm, ac->wmep_txopLimit);
1558	}
1559	return frm;
1560#undef SM
1561#undef ADDSHORT
1562}
1563#undef WME_OUI_BYTES
1564
1565#define	ATH_OUI_BYTES		0x00, 0x03, 0x7f
1566/*
1567 * Add a WME information element to a frame.
1568 */
1569static uint8_t *
1570ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
1571{
1572	static const struct ieee80211_ath_ie info = {
1573		.ath_id		= IEEE80211_ELEMID_VENDOR,
1574		.ath_len	= sizeof(struct ieee80211_ath_ie) - 2,
1575		.ath_oui	= { ATH_OUI_BYTES },
1576		.ath_oui_type	= ATH_OUI_TYPE,
1577		.ath_oui_subtype= ATH_OUI_SUBTYPE,
1578		.ath_version	= ATH_OUI_VERSION,
1579	};
1580	struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
1581
1582	memcpy(frm, &info, sizeof(info));
1583	ath->ath_capability = caps;
1584	ath->ath_defkeyix[0] = (defkeyix & 0xff);
1585	ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
1586	return frm + sizeof(info);
1587}
1588#undef ATH_OUI_BYTES
1589
1590/*
1591 * Add an 11h Power Constraint element to a frame.
1592 */
1593static uint8_t *
1594ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1595{
1596	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1597	/* XXX per-vap tx power limit? */
1598	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1599
1600	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1601	frm[1] = 1;
1602	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1603	return frm + 3;
1604}
1605
1606/*
1607 * Add an 11h Power Capability element to a frame.
1608 */
1609static uint8_t *
1610ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1611{
1612	frm[0] = IEEE80211_ELEMID_PWRCAP;
1613	frm[1] = 2;
1614	frm[2] = c->ic_minpower;
1615	frm[3] = c->ic_maxpower;
1616	return frm + 4;
1617}
1618
1619/*
1620 * Add an 11h Supported Channels element to a frame.
1621 */
1622static uint8_t *
1623ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1624{
1625	static const int ielen = 26;
1626
1627	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1628	frm[1] = ielen;
1629	/* XXX not correct */
1630	memcpy(frm+2, ic->ic_chan_avail, ielen);
1631	return frm + 2 + ielen;
1632}
1633
1634/*
1635 * Add an 11h Channel Switch Announcement element to a frame.
1636 * Note that we use the per-vap CSA count to adjust the global
1637 * counter so we can use this routine to form probe response
1638 * frames and get the current count.
1639 */
1640static uint8_t *
1641ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1642{
1643	struct ieee80211com *ic = vap->iv_ic;
1644	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1645
1646	csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN;
1647	csa->csa_len = 3;
1648	csa->csa_mode = 1;		/* XXX force quiet on channel */
1649	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1650	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1651	return frm + sizeof(*csa);
1652}
1653
1654/*
1655 * Add an 11h country information element to a frame.
1656 */
1657static uint8_t *
1658ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1659{
1660
1661	if (ic->ic_countryie == NULL ||
1662	    ic->ic_countryie_chan != ic->ic_bsschan) {
1663		/*
1664		 * Handle lazy construction of ie.  This is done on
1665		 * first use and after a channel change that requires
1666		 * re-calculation.
1667		 */
1668		if (ic->ic_countryie != NULL)
1669			free(ic->ic_countryie, M_80211_NODE_IE);
1670		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1671		if (ic->ic_countryie == NULL)
1672			return frm;
1673		ic->ic_countryie_chan = ic->ic_bsschan;
1674	}
1675	return add_appie(frm, ic->ic_countryie);
1676}
1677
1678/*
1679 * Send a probe request frame with the specified ssid
1680 * and any optional information element data.
1681 */
1682int
1683ieee80211_send_probereq(struct ieee80211_node *ni,
1684	const uint8_t sa[IEEE80211_ADDR_LEN],
1685	const uint8_t da[IEEE80211_ADDR_LEN],
1686	const uint8_t bssid[IEEE80211_ADDR_LEN],
1687	const uint8_t *ssid, size_t ssidlen)
1688{
1689	struct ieee80211vap *vap = ni->ni_vap;
1690	struct ieee80211com *ic = ni->ni_ic;
1691	const struct ieee80211_txparam *tp;
1692	struct ieee80211_bpf_params params;
1693	struct ieee80211_frame *wh;
1694	const struct ieee80211_rateset *rs;
1695	struct mbuf *m;
1696	uint8_t *frm;
1697
1698	if (vap->iv_state == IEEE80211_S_CAC) {
1699		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1700		    "block %s frame in CAC state", "probe request");
1701		vap->iv_stats.is_tx_badstate++;
1702		return EIO;		/* XXX */
1703	}
1704
1705	/*
1706	 * Hold a reference on the node so it doesn't go away until after
1707	 * the xmit is complete all the way in the driver.  On error we
1708	 * will remove our reference.
1709	 */
1710	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1711		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1712		__func__, __LINE__,
1713		ni, ether_sprintf(ni->ni_macaddr),
1714		ieee80211_node_refcnt(ni)+1);
1715	ieee80211_ref_node(ni);
1716
1717	/*
1718	 * prreq frame format
1719	 *	[tlv] ssid
1720	 *	[tlv] supported rates
1721	 *	[tlv] RSN (optional)
1722	 *	[tlv] extended supported rates
1723	 *	[tlv] WPA (optional)
1724	 *	[tlv] user-specified ie's
1725	 */
1726	m = ieee80211_getmgtframe(&frm,
1727		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1728	       	 2 + IEEE80211_NWID_LEN
1729	       + 2 + IEEE80211_RATE_SIZE
1730	       + sizeof(struct ieee80211_ie_wpa)
1731	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1732	       + sizeof(struct ieee80211_ie_wpa)
1733	       + (vap->iv_appie_probereq != NULL ?
1734		   vap->iv_appie_probereq->ie_len : 0)
1735	);
1736	if (m == NULL) {
1737		vap->iv_stats.is_tx_nobuf++;
1738		ieee80211_free_node(ni);
1739		return ENOMEM;
1740	}
1741
1742	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1743	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1744	frm = ieee80211_add_rates(frm, rs);
1745	if (vap->iv_flags & IEEE80211_F_WPA2) {
1746		if (vap->iv_rsn_ie != NULL)
1747			frm = add_ie(frm, vap->iv_rsn_ie);
1748		/* XXX else complain? */
1749	}
1750	frm = ieee80211_add_xrates(frm, rs);
1751	if (vap->iv_flags & IEEE80211_F_WPA1) {
1752		if (vap->iv_wpa_ie != NULL)
1753			frm = add_ie(frm, vap->iv_wpa_ie);
1754		/* XXX else complain? */
1755	}
1756	if (vap->iv_appie_probereq != NULL)
1757		frm = add_appie(frm, vap->iv_appie_probereq);
1758	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1759
1760	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1761	    ("leading space %zd", M_LEADINGSPACE(m)));
1762	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1763	if (m == NULL) {
1764		/* NB: cannot happen */
1765		ieee80211_free_node(ni);
1766		return ENOMEM;
1767	}
1768
1769	wh = mtod(m, struct ieee80211_frame *);
1770	ieee80211_send_setup(ni, wh,
1771	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1772	     IEEE80211_NONQOS_TID, sa, da, bssid);
1773	/* XXX power management? */
1774
1775	M_WME_SETAC(m, WME_AC_BE);
1776
1777	IEEE80211_NODE_STAT(ni, tx_probereq);
1778	IEEE80211_NODE_STAT(ni, tx_mgmt);
1779
1780	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1781	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1782	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1783	    ssidlen, ssid);
1784
1785	memset(&params, 0, sizeof(params));
1786	params.ibp_pri = M_WME_GETAC(m);
1787	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1788	params.ibp_rate0 = tp->mgmtrate;
1789	if (IEEE80211_IS_MULTICAST(da)) {
1790		params.ibp_flags |= IEEE80211_BPF_NOACK;
1791		params.ibp_try0 = 1;
1792	} else
1793		params.ibp_try0 = tp->maxretry;
1794	params.ibp_power = ni->ni_txpower;
1795	return ic->ic_raw_xmit(ni, m, &params);
1796}
1797
1798/*
1799 * Calculate capability information for mgt frames.
1800 */
1801static uint16_t
1802getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1803{
1804	struct ieee80211com *ic = vap->iv_ic;
1805	uint16_t capinfo;
1806
1807	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1808
1809	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1810		capinfo = IEEE80211_CAPINFO_ESS;
1811	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1812		capinfo = IEEE80211_CAPINFO_IBSS;
1813	else
1814		capinfo = 0;
1815	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1816		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1817	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1818	    IEEE80211_IS_CHAN_2GHZ(chan))
1819		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1820	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1821		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1822	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1823		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1824	return capinfo;
1825}
1826
1827/*
1828 * Send a management frame.  The node is for the destination (or ic_bss
1829 * when in station mode).  Nodes other than ic_bss have their reference
1830 * count bumped to reflect our use for an indeterminant time.
1831 */
1832int
1833ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1834{
1835#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1836#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1837	struct ieee80211vap *vap = ni->ni_vap;
1838	struct ieee80211com *ic = ni->ni_ic;
1839	struct ieee80211_node *bss = vap->iv_bss;
1840	struct ieee80211_bpf_params params;
1841	struct mbuf *m;
1842	uint8_t *frm;
1843	uint16_t capinfo;
1844	int has_challenge, is_shared_key, ret, status;
1845
1846	KASSERT(ni != NULL, ("null node"));
1847
1848	/*
1849	 * Hold a reference on the node so it doesn't go away until after
1850	 * the xmit is complete all the way in the driver.  On error we
1851	 * will remove our reference.
1852	 */
1853	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1854		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1855		__func__, __LINE__,
1856		ni, ether_sprintf(ni->ni_macaddr),
1857		ieee80211_node_refcnt(ni)+1);
1858	ieee80211_ref_node(ni);
1859
1860	memset(&params, 0, sizeof(params));
1861	switch (type) {
1862
1863	case IEEE80211_FC0_SUBTYPE_AUTH:
1864		status = arg >> 16;
1865		arg &= 0xffff;
1866		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1867		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1868		    ni->ni_challenge != NULL);
1869
1870		/*
1871		 * Deduce whether we're doing open authentication or
1872		 * shared key authentication.  We do the latter if
1873		 * we're in the middle of a shared key authentication
1874		 * handshake or if we're initiating an authentication
1875		 * request and configured to use shared key.
1876		 */
1877		is_shared_key = has_challenge ||
1878		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1879		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1880		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1881
1882		m = ieee80211_getmgtframe(&frm,
1883			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1884			  3 * sizeof(uint16_t)
1885			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1886				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1887		);
1888		if (m == NULL)
1889			senderr(ENOMEM, is_tx_nobuf);
1890
1891		((uint16_t *)frm)[0] =
1892		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1893		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1894		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1895		((uint16_t *)frm)[2] = htole16(status);/* status */
1896
1897		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1898			((uint16_t *)frm)[3] =
1899			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1900			    IEEE80211_ELEMID_CHALLENGE);
1901			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1902			    IEEE80211_CHALLENGE_LEN);
1903			m->m_pkthdr.len = m->m_len =
1904				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1905			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1906				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1907				    "request encrypt frame (%s)", __func__);
1908				/* mark frame for encryption */
1909				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1910			}
1911		} else
1912			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1913
1914		/* XXX not right for shared key */
1915		if (status == IEEE80211_STATUS_SUCCESS)
1916			IEEE80211_NODE_STAT(ni, tx_auth);
1917		else
1918			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1919
1920		if (vap->iv_opmode == IEEE80211_M_STA)
1921			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1922				(void *) vap->iv_state);
1923		break;
1924
1925	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1926		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1927		    "send station deauthenticate (reason %d)", arg);
1928		m = ieee80211_getmgtframe(&frm,
1929			ic->ic_headroom + sizeof(struct ieee80211_frame),
1930			sizeof(uint16_t));
1931		if (m == NULL)
1932			senderr(ENOMEM, is_tx_nobuf);
1933		*(uint16_t *)frm = htole16(arg);	/* reason */
1934		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1935
1936		IEEE80211_NODE_STAT(ni, tx_deauth);
1937		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1938
1939		ieee80211_node_unauthorize(ni);		/* port closed */
1940		break;
1941
1942	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1943	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1944		/*
1945		 * asreq frame format
1946		 *	[2] capability information
1947		 *	[2] listen interval
1948		 *	[6*] current AP address (reassoc only)
1949		 *	[tlv] ssid
1950		 *	[tlv] supported rates
1951		 *	[tlv] extended supported rates
1952		 *	[4] power capability (optional)
1953		 *	[28] supported channels (optional)
1954		 *	[tlv] HT capabilities
1955		 *	[tlv] WME (optional)
1956		 *	[tlv] Vendor OUI HT capabilities (optional)
1957		 *	[tlv] Atheros capabilities (if negotiated)
1958		 *	[tlv] AppIE's (optional)
1959		 */
1960		m = ieee80211_getmgtframe(&frm,
1961			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1962			 sizeof(uint16_t)
1963		       + sizeof(uint16_t)
1964		       + IEEE80211_ADDR_LEN
1965		       + 2 + IEEE80211_NWID_LEN
1966		       + 2 + IEEE80211_RATE_SIZE
1967		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1968		       + 4
1969		       + 2 + 26
1970		       + sizeof(struct ieee80211_wme_info)
1971		       + sizeof(struct ieee80211_ie_htcap)
1972		       + 4 + sizeof(struct ieee80211_ie_htcap)
1973		       + sizeof(struct ieee80211_ath_ie)
1974		       + (vap->iv_appie_wpa != NULL ?
1975				vap->iv_appie_wpa->ie_len : 0)
1976		       + (vap->iv_appie_assocreq != NULL ?
1977				vap->iv_appie_assocreq->ie_len : 0)
1978		);
1979		if (m == NULL)
1980			senderr(ENOMEM, is_tx_nobuf);
1981
1982		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1983		    ("wrong mode %u", vap->iv_opmode));
1984		capinfo = IEEE80211_CAPINFO_ESS;
1985		if (vap->iv_flags & IEEE80211_F_PRIVACY)
1986			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1987		/*
1988		 * NB: Some 11a AP's reject the request when
1989		 *     short premable is set.
1990		 */
1991		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1992		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1993			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1994		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
1995		    (ic->ic_caps & IEEE80211_C_SHSLOT))
1996			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1997		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
1998		    (vap->iv_flags & IEEE80211_F_DOTH))
1999			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2000		*(uint16_t *)frm = htole16(capinfo);
2001		frm += 2;
2002
2003		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2004		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2005						    bss->ni_intval));
2006		frm += 2;
2007
2008		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2009			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2010			frm += IEEE80211_ADDR_LEN;
2011		}
2012
2013		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2014		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2015		if (vap->iv_flags & IEEE80211_F_WPA2) {
2016			if (vap->iv_rsn_ie != NULL)
2017				frm = add_ie(frm, vap->iv_rsn_ie);
2018			/* XXX else complain? */
2019		}
2020		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2021		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2022			frm = ieee80211_add_powercapability(frm,
2023			    ic->ic_curchan);
2024			frm = ieee80211_add_supportedchannels(frm, ic);
2025		}
2026		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2027		    ni->ni_ies.htcap_ie != NULL &&
2028		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2029			frm = ieee80211_add_htcap(frm, ni);
2030		if (vap->iv_flags & IEEE80211_F_WPA1) {
2031			if (vap->iv_wpa_ie != NULL)
2032				frm = add_ie(frm, vap->iv_wpa_ie);
2033			/* XXX else complain */
2034		}
2035		if ((ic->ic_flags & IEEE80211_F_WME) &&
2036		    ni->ni_ies.wme_ie != NULL)
2037			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2038		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2039		    ni->ni_ies.htcap_ie != NULL &&
2040		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2041			frm = ieee80211_add_htcap_vendor(frm, ni);
2042		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2043			frm = ieee80211_add_ath(frm,
2044				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2045				(vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2046				ni->ni_authmode != IEEE80211_AUTH_8021X &&
2047				vap->iv_def_txkey != IEEE80211_KEYIX_NONE ?
2048				vap->iv_def_txkey : 0x7fff);
2049		if (vap->iv_appie_assocreq != NULL)
2050			frm = add_appie(frm, vap->iv_appie_assocreq);
2051		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2052
2053		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2054			(void *) vap->iv_state);
2055		break;
2056
2057	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2058	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2059		/*
2060		 * asresp frame format
2061		 *	[2] capability information
2062		 *	[2] status
2063		 *	[2] association ID
2064		 *	[tlv] supported rates
2065		 *	[tlv] extended supported rates
2066		 *	[tlv] HT capabilities (standard, if STA enabled)
2067		 *	[tlv] HT information (standard, if STA enabled)
2068		 *	[tlv] WME (if configured and STA enabled)
2069		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2070		 *	[tlv] HT information (vendor OUI, if STA enabled)
2071		 *	[tlv] Atheros capabilities (if STA enabled)
2072		 *	[tlv] AppIE's (optional)
2073		 */
2074		m = ieee80211_getmgtframe(&frm,
2075			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2076			 sizeof(uint16_t)
2077		       + sizeof(uint16_t)
2078		       + sizeof(uint16_t)
2079		       + 2 + IEEE80211_RATE_SIZE
2080		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2081		       + sizeof(struct ieee80211_ie_htcap) + 4
2082		       + sizeof(struct ieee80211_ie_htinfo) + 4
2083		       + sizeof(struct ieee80211_wme_param)
2084		       + sizeof(struct ieee80211_ath_ie)
2085		       + (vap->iv_appie_assocresp != NULL ?
2086				vap->iv_appie_assocresp->ie_len : 0)
2087		);
2088		if (m == NULL)
2089			senderr(ENOMEM, is_tx_nobuf);
2090
2091		capinfo = getcapinfo(vap, bss->ni_chan);
2092		*(uint16_t *)frm = htole16(capinfo);
2093		frm += 2;
2094
2095		*(uint16_t *)frm = htole16(arg);	/* status */
2096		frm += 2;
2097
2098		if (arg == IEEE80211_STATUS_SUCCESS) {
2099			*(uint16_t *)frm = htole16(ni->ni_associd);
2100			IEEE80211_NODE_STAT(ni, tx_assoc);
2101		} else
2102			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2103		frm += 2;
2104
2105		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2106		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2107		/* NB: respond according to what we received */
2108		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2109			frm = ieee80211_add_htcap(frm, ni);
2110			frm = ieee80211_add_htinfo(frm, ni);
2111		}
2112		if ((vap->iv_flags & IEEE80211_F_WME) &&
2113		    ni->ni_ies.wme_ie != NULL)
2114			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2115		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2116			frm = ieee80211_add_htcap_vendor(frm, ni);
2117			frm = ieee80211_add_htinfo_vendor(frm, ni);
2118		}
2119		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2120			frm = ieee80211_add_ath(frm,
2121				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2122				ni->ni_ath_defkeyix);
2123		if (vap->iv_appie_assocresp != NULL)
2124			frm = add_appie(frm, vap->iv_appie_assocresp);
2125		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2126		break;
2127
2128	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2129		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2130		    "send station disassociate (reason %d)", arg);
2131		m = ieee80211_getmgtframe(&frm,
2132			ic->ic_headroom + sizeof(struct ieee80211_frame),
2133			sizeof(uint16_t));
2134		if (m == NULL)
2135			senderr(ENOMEM, is_tx_nobuf);
2136		*(uint16_t *)frm = htole16(arg);	/* reason */
2137		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2138
2139		IEEE80211_NODE_STAT(ni, tx_disassoc);
2140		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2141		break;
2142
2143	default:
2144		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2145		    "invalid mgmt frame type %u", type);
2146		senderr(EINVAL, is_tx_unknownmgt);
2147		/* NOTREACHED */
2148	}
2149
2150	/* NB: force non-ProbeResp frames to the highest queue */
2151	params.ibp_pri = WME_AC_VO;
2152	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2153	/* NB: we know all frames are unicast */
2154	params.ibp_try0 = bss->ni_txparms->maxretry;
2155	params.ibp_power = bss->ni_txpower;
2156	return ieee80211_mgmt_output(ni, m, type, &params);
2157bad:
2158	ieee80211_free_node(ni);
2159	return ret;
2160#undef senderr
2161#undef HTFLAGS
2162}
2163
2164/*
2165 * Return an mbuf with a probe response frame in it.
2166 * Space is left to prepend and 802.11 header at the
2167 * front but it's left to the caller to fill in.
2168 */
2169struct mbuf *
2170ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2171{
2172	struct ieee80211vap *vap = bss->ni_vap;
2173	struct ieee80211com *ic = bss->ni_ic;
2174	const struct ieee80211_rateset *rs;
2175	struct mbuf *m;
2176	uint16_t capinfo;
2177	uint8_t *frm;
2178
2179	/*
2180	 * probe response frame format
2181	 *	[8] time stamp
2182	 *	[2] beacon interval
2183	 *	[2] cabability information
2184	 *	[tlv] ssid
2185	 *	[tlv] supported rates
2186	 *	[tlv] parameter set (FH/DS)
2187	 *	[tlv] parameter set (IBSS)
2188	 *	[tlv] country (optional)
2189	 *	[3] power control (optional)
2190	 *	[5] channel switch announcement (CSA) (optional)
2191	 *	[tlv] extended rate phy (ERP)
2192	 *	[tlv] extended supported rates
2193	 *	[tlv] RSN (optional)
2194	 *	[tlv] HT capabilities
2195	 *	[tlv] HT information
2196	 *	[tlv] WPA (optional)
2197	 *	[tlv] WME (optional)
2198	 *	[tlv] Vendor OUI HT capabilities (optional)
2199	 *	[tlv] Vendor OUI HT information (optional)
2200	 *	[tlv] Atheros capabilities
2201	 *	[tlv] AppIE's (optional)
2202	 */
2203	m = ieee80211_getmgtframe(&frm,
2204		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2205		 8
2206	       + sizeof(uint16_t)
2207	       + sizeof(uint16_t)
2208	       + 2 + IEEE80211_NWID_LEN
2209	       + 2 + IEEE80211_RATE_SIZE
2210	       + 7	/* max(7,3) */
2211	       + IEEE80211_COUNTRY_MAX_SIZE
2212	       + 3
2213	       + sizeof(struct ieee80211_csa_ie)
2214	       + 3
2215	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2216	       + sizeof(struct ieee80211_ie_wpa)
2217	       + sizeof(struct ieee80211_ie_htcap)
2218	       + sizeof(struct ieee80211_ie_htinfo)
2219	       + sizeof(struct ieee80211_ie_wpa)
2220	       + sizeof(struct ieee80211_wme_param)
2221	       + 4 + sizeof(struct ieee80211_ie_htcap)
2222	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2223	       + sizeof(struct ieee80211_ath_ie)
2224	       + (vap->iv_appie_proberesp != NULL ?
2225			vap->iv_appie_proberesp->ie_len : 0)
2226	);
2227	if (m == NULL) {
2228		vap->iv_stats.is_tx_nobuf++;
2229		return NULL;
2230	}
2231
2232	memset(frm, 0, 8);	/* timestamp should be filled later */
2233	frm += 8;
2234	*(uint16_t *)frm = htole16(bss->ni_intval);
2235	frm += 2;
2236	capinfo = getcapinfo(vap, bss->ni_chan);
2237	*(uint16_t *)frm = htole16(capinfo);
2238	frm += 2;
2239
2240	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2241	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2242	frm = ieee80211_add_rates(frm, rs);
2243
2244	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2245		*frm++ = IEEE80211_ELEMID_FHPARMS;
2246		*frm++ = 5;
2247		*frm++ = bss->ni_fhdwell & 0x00ff;
2248		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2249		*frm++ = IEEE80211_FH_CHANSET(
2250		    ieee80211_chan2ieee(ic, bss->ni_chan));
2251		*frm++ = IEEE80211_FH_CHANPAT(
2252		    ieee80211_chan2ieee(ic, bss->ni_chan));
2253		*frm++ = bss->ni_fhindex;
2254	} else {
2255		*frm++ = IEEE80211_ELEMID_DSPARMS;
2256		*frm++ = 1;
2257		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2258	}
2259
2260	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2261		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2262		*frm++ = 2;
2263		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2264	}
2265	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2266	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2267		frm = ieee80211_add_countryie(frm, ic);
2268	if (vap->iv_flags & IEEE80211_F_DOTH) {
2269		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2270			frm = ieee80211_add_powerconstraint(frm, vap);
2271		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2272			frm = ieee80211_add_csa(frm, vap);
2273	}
2274	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2275		frm = ieee80211_add_erp(frm, ic);
2276	frm = ieee80211_add_xrates(frm, rs);
2277	if (vap->iv_flags & IEEE80211_F_WPA2) {
2278		if (vap->iv_rsn_ie != NULL)
2279			frm = add_ie(frm, vap->iv_rsn_ie);
2280		/* XXX else complain? */
2281	}
2282	/*
2283	 * NB: legacy 11b clients do not get certain ie's.
2284	 *     The caller identifies such clients by passing
2285	 *     a token in legacy to us.  Could expand this to be
2286	 *     any legacy client for stuff like HT ie's.
2287	 */
2288	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2289	    legacy != IEEE80211_SEND_LEGACY_11B) {
2290		frm = ieee80211_add_htcap(frm, bss);
2291		frm = ieee80211_add_htinfo(frm, bss);
2292	}
2293	if (vap->iv_flags & IEEE80211_F_WPA1) {
2294		if (vap->iv_wpa_ie != NULL)
2295			frm = add_ie(frm, vap->iv_wpa_ie);
2296		/* XXX else complain? */
2297	}
2298	if (vap->iv_flags & IEEE80211_F_WME)
2299		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2300	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2301	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
2302	    legacy != IEEE80211_SEND_LEGACY_11B) {
2303		frm = ieee80211_add_htcap_vendor(frm, bss);
2304		frm = ieee80211_add_htinfo_vendor(frm, bss);
2305	}
2306	if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B)
2307		frm = ieee80211_add_ath(frm, bss->ni_ath_flags,
2308			bss->ni_ath_defkeyix);
2309	if (vap->iv_appie_proberesp != NULL)
2310		frm = add_appie(frm, vap->iv_appie_proberesp);
2311	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2312
2313	return m;
2314}
2315
2316/*
2317 * Send a probe response frame to the specified mac address.
2318 * This does not go through the normal mgt frame api so we
2319 * can specify the destination address and re-use the bss node
2320 * for the sta reference.
2321 */
2322int
2323ieee80211_send_proberesp(struct ieee80211vap *vap,
2324	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2325{
2326	struct ieee80211_node *bss = vap->iv_bss;
2327	struct ieee80211com *ic = vap->iv_ic;
2328	struct ieee80211_frame *wh;
2329	struct mbuf *m;
2330
2331	if (vap->iv_state == IEEE80211_S_CAC) {
2332		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2333		    "block %s frame in CAC state", "probe response");
2334		vap->iv_stats.is_tx_badstate++;
2335		return EIO;		/* XXX */
2336	}
2337
2338	/*
2339	 * Hold a reference on the node so it doesn't go away until after
2340	 * the xmit is complete all the way in the driver.  On error we
2341	 * will remove our reference.
2342	 */
2343	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2344	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2345	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2346	    ieee80211_node_refcnt(bss)+1);
2347	ieee80211_ref_node(bss);
2348
2349	m = ieee80211_alloc_proberesp(bss, legacy);
2350	if (m == NULL) {
2351		ieee80211_free_node(bss);
2352		return ENOMEM;
2353	}
2354
2355	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2356	KASSERT(m != NULL, ("no room for header"));
2357
2358	wh = mtod(m, struct ieee80211_frame *);
2359	ieee80211_send_setup(bss, wh,
2360	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2361	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2362	/* XXX power management? */
2363
2364	M_WME_SETAC(m, WME_AC_BE);
2365
2366	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2367	    "send probe resp on channel %u to %s%s\n",
2368	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2369	    legacy ? " <legacy>" : "");
2370	IEEE80211_NODE_STAT(bss, tx_mgmt);
2371
2372	return ic->ic_raw_xmit(bss, m, NULL);
2373}
2374
2375/*
2376 * Allocate and build a RTS (Request To Send) control frame.
2377 */
2378struct mbuf *
2379ieee80211_alloc_rts(struct ieee80211com *ic,
2380	const uint8_t ra[IEEE80211_ADDR_LEN],
2381	const uint8_t ta[IEEE80211_ADDR_LEN],
2382	uint16_t dur)
2383{
2384	struct ieee80211_frame_rts *rts;
2385	struct mbuf *m;
2386
2387	/* XXX honor ic_headroom */
2388	m = m_gethdr(M_DONTWAIT, MT_DATA);
2389	if (m != NULL) {
2390		rts = mtod(m, struct ieee80211_frame_rts *);
2391		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2392			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2393		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2394		*(u_int16_t *)rts->i_dur = htole16(dur);
2395		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2396		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2397
2398		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2399	}
2400	return m;
2401}
2402
2403/*
2404 * Allocate and build a CTS (Clear To Send) control frame.
2405 */
2406struct mbuf *
2407ieee80211_alloc_cts(struct ieee80211com *ic,
2408	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2409{
2410	struct ieee80211_frame_cts *cts;
2411	struct mbuf *m;
2412
2413	/* XXX honor ic_headroom */
2414	m = m_gethdr(M_DONTWAIT, MT_DATA);
2415	if (m != NULL) {
2416		cts = mtod(m, struct ieee80211_frame_cts *);
2417		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2418			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2419		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2420		*(u_int16_t *)cts->i_dur = htole16(dur);
2421		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2422
2423		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2424	}
2425	return m;
2426}
2427
2428static void
2429ieee80211_tx_mgt_timeout(void *arg)
2430{
2431	struct ieee80211_node *ni = arg;
2432	struct ieee80211vap *vap = ni->ni_vap;
2433
2434	if (vap->iv_state != IEEE80211_S_INIT &&
2435	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2436		/*
2437		 * NB: it's safe to specify a timeout as the reason here;
2438		 *     it'll only be used in the right state.
2439		 */
2440		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2441			IEEE80211_SCAN_FAIL_TIMEOUT);
2442	}
2443}
2444
2445static void
2446ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2447{
2448	struct ieee80211vap *vap = ni->ni_vap;
2449	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2450
2451	/*
2452	 * Frame transmit completed; arrange timer callback.  If
2453	 * transmit was successfuly we wait for response.  Otherwise
2454	 * we arrange an immediate callback instead of doing the
2455	 * callback directly since we don't know what state the driver
2456	 * is in (e.g. what locks it is holding).  This work should
2457	 * not be too time-critical and not happen too often so the
2458	 * added overhead is acceptable.
2459	 *
2460	 * XXX what happens if !acked but response shows up before callback?
2461	 */
2462	if (vap->iv_state == ostate)
2463		callout_reset(&vap->iv_mgtsend,
2464			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2465			ieee80211_tx_mgt_timeout, ni);
2466}
2467
2468static void
2469ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2470	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2471{
2472	struct ieee80211vap *vap = ni->ni_vap;
2473	struct ieee80211com *ic = ni->ni_ic;
2474	struct ieee80211_rateset *rs = &ni->ni_rates;
2475	uint16_t capinfo;
2476
2477	/*
2478	 * beacon frame format
2479	 *	[8] time stamp
2480	 *	[2] beacon interval
2481	 *	[2] cabability information
2482	 *	[tlv] ssid
2483	 *	[tlv] supported rates
2484	 *	[3] parameter set (DS)
2485	 *	[8] CF parameter set (optional)
2486	 *	[tlv] parameter set (IBSS/TIM)
2487	 *	[tlv] country (optional)
2488	 *	[3] power control (optional)
2489	 *	[5] channel switch announcement (CSA) (optional)
2490	 *	[tlv] extended rate phy (ERP)
2491	 *	[tlv] extended supported rates
2492	 *	[tlv] RSN parameters
2493	 *	[tlv] HT capabilities
2494	 *	[tlv] HT information
2495	 * XXX Vendor-specific OIDs (e.g. Atheros)
2496	 *	[tlv] WPA parameters
2497	 *	[tlv] WME parameters
2498	 *	[tlv] Vendor OUI HT capabilities (optional)
2499	 *	[tlv] Vendor OUI HT information (optional)
2500	 *	[tlv] application data (optional)
2501	 */
2502
2503	memset(bo, 0, sizeof(*bo));
2504
2505	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2506	frm += 8;
2507	*(uint16_t *)frm = htole16(ni->ni_intval);
2508	frm += 2;
2509	capinfo = getcapinfo(vap, ni->ni_chan);
2510	bo->bo_caps = (uint16_t *)frm;
2511	*(uint16_t *)frm = htole16(capinfo);
2512	frm += 2;
2513	*frm++ = IEEE80211_ELEMID_SSID;
2514	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2515		*frm++ = ni->ni_esslen;
2516		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2517		frm += ni->ni_esslen;
2518	} else
2519		*frm++ = 0;
2520	frm = ieee80211_add_rates(frm, rs);
2521	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2522		*frm++ = IEEE80211_ELEMID_DSPARMS;
2523		*frm++ = 1;
2524		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2525	}
2526	if (ic->ic_flags & IEEE80211_F_PCF) {
2527		bo->bo_cfp = frm;
2528		frm = ieee80211_add_cfparms(frm, ic);
2529	}
2530	bo->bo_tim = frm;
2531	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2532		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2533		*frm++ = 2;
2534		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2535		bo->bo_tim_len = 0;
2536	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2537		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2538
2539		tie->tim_ie = IEEE80211_ELEMID_TIM;
2540		tie->tim_len = 4;	/* length */
2541		tie->tim_count = 0;	/* DTIM count */
2542		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2543		tie->tim_bitctl = 0;	/* bitmap control */
2544		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2545		frm += sizeof(struct ieee80211_tim_ie);
2546		bo->bo_tim_len = 1;
2547	}
2548	bo->bo_tim_trailer = frm;
2549	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2550	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2551		frm = ieee80211_add_countryie(frm, ic);
2552	if (vap->iv_flags & IEEE80211_F_DOTH) {
2553		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2554			frm = ieee80211_add_powerconstraint(frm, vap);
2555		bo->bo_csa = frm;
2556		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2557			frm = ieee80211_add_csa(frm, vap);
2558	} else
2559		bo->bo_csa = frm;
2560	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2561		bo->bo_erp = frm;
2562		frm = ieee80211_add_erp(frm, ic);
2563	}
2564	frm = ieee80211_add_xrates(frm, rs);
2565	if (vap->iv_flags & IEEE80211_F_WPA2) {
2566		if (vap->iv_rsn_ie != NULL)
2567			frm = add_ie(frm, vap->iv_rsn_ie);
2568		/* XXX else complain */
2569	}
2570	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2571		frm = ieee80211_add_htcap(frm, ni);
2572		bo->bo_htinfo = frm;
2573		frm = ieee80211_add_htinfo(frm, ni);
2574	}
2575	if (vap->iv_flags & IEEE80211_F_WPA1) {
2576		if (vap->iv_wpa_ie != NULL)
2577			frm = add_ie(frm, vap->iv_wpa_ie);
2578		/* XXX else complain */
2579	}
2580	if (vap->iv_flags & IEEE80211_F_WME) {
2581		bo->bo_wme = frm;
2582		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2583	}
2584	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2585	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2586		frm = ieee80211_add_htcap_vendor(frm, ni);
2587		frm = ieee80211_add_htinfo_vendor(frm, ni);
2588	}
2589	if (vap->iv_appie_beacon != NULL) {
2590		bo->bo_appie = frm;
2591		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2592		frm = add_appie(frm, vap->iv_appie_beacon);
2593	}
2594	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2595	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2596	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2597}
2598
2599/*
2600 * Allocate a beacon frame and fillin the appropriate bits.
2601 */
2602struct mbuf *
2603ieee80211_beacon_alloc(struct ieee80211_node *ni,
2604	struct ieee80211_beacon_offsets *bo)
2605{
2606	struct ieee80211vap *vap = ni->ni_vap;
2607	struct ieee80211com *ic = ni->ni_ic;
2608	struct ifnet *ifp = vap->iv_ifp;
2609	struct ieee80211_frame *wh;
2610	struct mbuf *m;
2611	int pktlen;
2612	uint8_t *frm;
2613
2614	/*
2615	 * beacon frame format
2616	 *	[8] time stamp
2617	 *	[2] beacon interval
2618	 *	[2] cabability information
2619	 *	[tlv] ssid
2620	 *	[tlv] supported rates
2621	 *	[3] parameter set (DS)
2622	 *	[8] CF parameter set (optional)
2623	 *	[tlv] parameter set (IBSS/TIM)
2624	 *	[tlv] country (optional)
2625	 *	[3] power control (optional)
2626	 *	[5] channel switch announcement (CSA) (optional)
2627	 *	[tlv] extended rate phy (ERP)
2628	 *	[tlv] extended supported rates
2629	 *	[tlv] RSN parameters
2630	 *	[tlv] HT capabilities
2631	 *	[tlv] HT information
2632	 *	[tlv] Vendor OUI HT capabilities (optional)
2633	 *	[tlv] Vendor OUI HT information (optional)
2634	 * XXX Vendor-specific OIDs (e.g. Atheros)
2635	 *	[tlv] WPA parameters
2636	 *	[tlv] WME parameters
2637	 *	[tlv] application data (optional)
2638	 * NB: we allocate the max space required for the TIM bitmap.
2639	 * XXX how big is this?
2640	 */
2641	pktlen =   8					/* time stamp */
2642		 + sizeof(uint16_t)			/* beacon interval */
2643		 + sizeof(uint16_t)			/* capabilities */
2644		 + 2 + ni->ni_esslen			/* ssid */
2645	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2646	         + 2 + 1				/* DS parameters */
2647		 + 2 + 6				/* CF parameters */
2648		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2649		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2650		 + 2 + 1				/* power control */
2651	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2652		 + 2 + 1				/* ERP */
2653	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2654		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2655			2*sizeof(struct ieee80211_ie_wpa) : 0)
2656		 /* XXX conditional? */
2657		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2658		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2659		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2660			sizeof(struct ieee80211_wme_param) : 0)
2661		 + IEEE80211_MAX_APPIE
2662		 ;
2663	m = ieee80211_getmgtframe(&frm,
2664		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2665	if (m == NULL) {
2666		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2667			"%s: cannot get buf; size %u\n", __func__, pktlen);
2668		vap->iv_stats.is_tx_nobuf++;
2669		return NULL;
2670	}
2671	ieee80211_beacon_construct(m, frm, bo, ni);
2672
2673	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2674	KASSERT(m != NULL, ("no space for 802.11 header?"));
2675	wh = mtod(m, struct ieee80211_frame *);
2676	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2677	    IEEE80211_FC0_SUBTYPE_BEACON;
2678	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2679	*(uint16_t *)wh->i_dur = 0;
2680	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2681	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2682	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2683	*(uint16_t *)wh->i_seq = 0;
2684
2685	return m;
2686}
2687
2688/*
2689 * Update the dynamic parts of a beacon frame based on the current state.
2690 */
2691int
2692ieee80211_beacon_update(struct ieee80211_node *ni,
2693	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2694{
2695	struct ieee80211vap *vap = ni->ni_vap;
2696	struct ieee80211com *ic = ni->ni_ic;
2697	int len_changed = 0;
2698	uint16_t capinfo;
2699
2700	IEEE80211_LOCK(ic);
2701	/*
2702	 * Handle 11h channel change when we've reached the count.
2703	 * We must recalculate the beacon frame contents to account
2704	 * for the new channel.  Note we do this only for the first
2705	 * vap that reaches this point; subsequent vaps just update
2706	 * their beacon state to reflect the recalculated channel.
2707	 */
2708	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2709	    vap->iv_csa_count == ic->ic_csa_count) {
2710		vap->iv_csa_count = 0;
2711		/*
2712		 * Effect channel change before reconstructing the beacon
2713		 * frame contents as many places reference ni_chan.
2714		 */
2715		if (ic->ic_csa_newchan != NULL)
2716			ieee80211_csa_completeswitch(ic);
2717		/*
2718		 * NB: ieee80211_beacon_construct clears all pending
2719		 * updates in bo_flags so we don't need to explicitly
2720		 * clear IEEE80211_BEACON_CSA.
2721		 */
2722		ieee80211_beacon_construct(m,
2723		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2724
2725		/* XXX do WME aggressive mode processing? */
2726		IEEE80211_UNLOCK(ic);
2727		return 1;		/* just assume length changed */
2728	}
2729
2730	/* XXX faster to recalculate entirely or just changes? */
2731	capinfo = getcapinfo(vap, ni->ni_chan);
2732	*bo->bo_caps = htole16(capinfo);
2733
2734	if (vap->iv_flags & IEEE80211_F_WME) {
2735		struct ieee80211_wme_state *wme = &ic->ic_wme;
2736
2737		/*
2738		 * Check for agressive mode change.  When there is
2739		 * significant high priority traffic in the BSS
2740		 * throttle back BE traffic by using conservative
2741		 * parameters.  Otherwise BE uses agressive params
2742		 * to optimize performance of legacy/non-QoS traffic.
2743		 */
2744		if (wme->wme_flags & WME_F_AGGRMODE) {
2745			if (wme->wme_hipri_traffic >
2746			    wme->wme_hipri_switch_thresh) {
2747				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2748				    "%s: traffic %u, disable aggressive mode\n",
2749				    __func__, wme->wme_hipri_traffic);
2750				wme->wme_flags &= ~WME_F_AGGRMODE;
2751				ieee80211_wme_updateparams_locked(vap);
2752				wme->wme_hipri_traffic =
2753					wme->wme_hipri_switch_hysteresis;
2754			} else
2755				wme->wme_hipri_traffic = 0;
2756		} else {
2757			if (wme->wme_hipri_traffic <=
2758			    wme->wme_hipri_switch_thresh) {
2759				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2760				    "%s: traffic %u, enable aggressive mode\n",
2761				    __func__, wme->wme_hipri_traffic);
2762				wme->wme_flags |= WME_F_AGGRMODE;
2763				ieee80211_wme_updateparams_locked(vap);
2764				wme->wme_hipri_traffic = 0;
2765			} else
2766				wme->wme_hipri_traffic =
2767					wme->wme_hipri_switch_hysteresis;
2768		}
2769		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2770			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2771			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2772		}
2773	}
2774
2775	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2776		ieee80211_ht_update_beacon(vap, bo);
2777		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2778	}
2779
2780	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
2781		struct ieee80211_tim_ie *tie =
2782			(struct ieee80211_tim_ie *) bo->bo_tim;
2783		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2784			u_int timlen, timoff, i;
2785			/*
2786			 * ATIM/DTIM needs updating.  If it fits in the
2787			 * current space allocated then just copy in the
2788			 * new bits.  Otherwise we need to move any trailing
2789			 * data to make room.  Note that we know there is
2790			 * contiguous space because ieee80211_beacon_allocate
2791			 * insures there is space in the mbuf to write a
2792			 * maximal-size virtual bitmap (based on iv_max_aid).
2793			 */
2794			/*
2795			 * Calculate the bitmap size and offset, copy any
2796			 * trailer out of the way, and then copy in the
2797			 * new bitmap and update the information element.
2798			 * Note that the tim bitmap must contain at least
2799			 * one byte and any offset must be even.
2800			 */
2801			if (vap->iv_ps_pending != 0) {
2802				timoff = 128;		/* impossibly large */
2803				for (i = 0; i < vap->iv_tim_len; i++)
2804					if (vap->iv_tim_bitmap[i]) {
2805						timoff = i &~ 1;
2806						break;
2807					}
2808				KASSERT(timoff != 128, ("tim bitmap empty!"));
2809				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2810					if (vap->iv_tim_bitmap[i])
2811						break;
2812				timlen = 1 + (i - timoff);
2813			} else {
2814				timoff = 0;
2815				timlen = 1;
2816			}
2817			if (timlen != bo->bo_tim_len) {
2818				/* copy up/down trailer */
2819				int adjust = tie->tim_bitmap+timlen
2820					   - bo->bo_tim_trailer;
2821				ovbcopy(bo->bo_tim_trailer,
2822				    bo->bo_tim_trailer+adjust,
2823				    bo->bo_tim_trailer_len);
2824				bo->bo_tim_trailer += adjust;
2825				bo->bo_erp += adjust;
2826				bo->bo_htinfo += adjust;
2827				bo->bo_appie += adjust;
2828				bo->bo_wme += adjust;
2829				bo->bo_csa += adjust;
2830				bo->bo_tim_len = timlen;
2831
2832				/* update information element */
2833				tie->tim_len = 3 + timlen;
2834				tie->tim_bitctl = timoff;
2835				len_changed = 1;
2836			}
2837			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2838				bo->bo_tim_len);
2839
2840			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2841
2842			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2843				"%s: TIM updated, pending %u, off %u, len %u\n",
2844				__func__, vap->iv_ps_pending, timoff, timlen);
2845		}
2846		/* count down DTIM period */
2847		if (tie->tim_count == 0)
2848			tie->tim_count = tie->tim_period - 1;
2849		else
2850			tie->tim_count--;
2851		/* update state for buffered multicast frames on DTIM */
2852		if (mcast && tie->tim_count == 0)
2853			tie->tim_bitctl |= 1;
2854		else
2855			tie->tim_bitctl &= ~1;
2856		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2857			struct ieee80211_csa_ie *csa =
2858			    (struct ieee80211_csa_ie *) bo->bo_csa;
2859
2860			/*
2861			 * Insert or update CSA ie.  If we're just starting
2862			 * to count down to the channel switch then we need
2863			 * to insert the CSA ie.  Otherwise we just need to
2864			 * drop the count.  The actual change happens above
2865			 * when the vap's count reaches the target count.
2866			 */
2867			if (vap->iv_csa_count == 0) {
2868				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2869				bo->bo_erp += sizeof(*csa);
2870				bo->bo_wme += sizeof(*csa);
2871				bo->bo_appie += sizeof(*csa);
2872				bo->bo_csa_trailer_len += sizeof(*csa);
2873				bo->bo_tim_trailer_len += sizeof(*csa);
2874				m->m_len += sizeof(*csa);
2875				m->m_pkthdr.len += sizeof(*csa);
2876
2877				ieee80211_add_csa(bo->bo_csa, vap);
2878			} else
2879				csa->csa_count--;
2880			vap->iv_csa_count++;
2881			/* NB: don't clear IEEE80211_BEACON_CSA */
2882		}
2883		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2884			/*
2885			 * ERP element needs updating.
2886			 */
2887			(void) ieee80211_add_erp(bo->bo_erp, ic);
2888			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2889		}
2890	}
2891	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2892		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2893		int aielen;
2894		uint8_t *frm;
2895
2896		aielen = 0;
2897		if (aie != NULL)
2898			aielen += aie->ie_len;
2899		if (aielen != bo->bo_appie_len) {
2900			/* copy up/down trailer */
2901			int adjust = aielen - bo->bo_appie_len;
2902			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2903				bo->bo_tim_trailer_len);
2904			bo->bo_tim_trailer += adjust;
2905			bo->bo_appie += adjust;
2906			bo->bo_appie_len = aielen;
2907
2908			len_changed = 1;
2909		}
2910		frm = bo->bo_appie;
2911		if (aie != NULL)
2912			frm  = add_appie(frm, aie);
2913		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2914	}
2915	IEEE80211_UNLOCK(ic);
2916
2917	return len_changed;
2918}
2919