ieee80211_output.c revision 184283
1219820Sjeff/*-
2219820Sjeff * Copyright (c) 2001 Atsushi Onoe
3219820Sjeff * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4219820Sjeff * All rights reserved.
5219820Sjeff *
6219820Sjeff * Redistribution and use in source and binary forms, with or without
7219820Sjeff * modification, are permitted provided that the following conditions
8219820Sjeff * are met:
9219820Sjeff * 1. Redistributions of source code must retain the above copyright
10219820Sjeff *    notice, this list of conditions and the following disclaimer.
11219820Sjeff * 2. Redistributions in binary form must reproduce the above copyright
12219820Sjeff *    notice, this list of conditions and the following disclaimer in the
13219820Sjeff *    documentation and/or other materials provided with the distribution.
14219820Sjeff *
15219820Sjeff * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16219820Sjeff * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17219820Sjeff * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18219820Sjeff * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19219820Sjeff * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20219820Sjeff * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21219820Sjeff * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22219820Sjeff * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23219820Sjeff * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24219820Sjeff * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25219820Sjeff */
26219820Sjeff
27219820Sjeff#include <sys/cdefs.h>
28219820Sjeff__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 184283 2008-10-26 00:46:17Z sam $");
29219820Sjeff
30219820Sjeff#include "opt_inet.h"
31219820Sjeff#include "opt_wlan.h"
32219820Sjeff
33219820Sjeff#include <sys/param.h>
34219820Sjeff#include <sys/systm.h>
35219820Sjeff#include <sys/mbuf.h>
36219820Sjeff#include <sys/kernel.h>
37219820Sjeff#include <sys/endian.h>
38219820Sjeff
39219820Sjeff#include <sys/socket.h>
40219820Sjeff
41219820Sjeff#include <net/bpf.h>
42219820Sjeff#include <net/ethernet.h>
43219820Sjeff#include <net/if.h>
44219820Sjeff#include <net/if_llc.h>
45219820Sjeff#include <net/if_media.h>
46219820Sjeff#include <net/if_vlan_var.h>
47219820Sjeff
48219820Sjeff#include <net80211/ieee80211_var.h>
49219820Sjeff#include <net80211/ieee80211_regdomain.h>
50219820Sjeff#include <net80211/ieee80211_wds.h>
51219820Sjeff
52219820Sjeff#ifdef INET
53219820Sjeff#include <netinet/in.h>
54219820Sjeff#include <netinet/if_ether.h>
55219820Sjeff#include <netinet/in_systm.h>
56219820Sjeff#include <netinet/ip.h>
57219820Sjeff#endif
58219820Sjeff
59219820Sjeff#define	ETHER_HEADER_COPY(dst, src) \
60	memcpy(dst, src, sizeof(struct ether_header))
61
62static struct mbuf *ieee80211_encap_fastframe(struct ieee80211vap *,
63	struct mbuf *m1, const struct ether_header *eh1,
64	struct mbuf *m2, const struct ether_header *eh2);
65static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
66	u_int hdrsize, u_int ciphdrsize, u_int mtu);
67static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
68
69#ifdef IEEE80211_DEBUG
70/*
71 * Decide if an outbound management frame should be
72 * printed when debugging is enabled.  This filters some
73 * of the less interesting frames that come frequently
74 * (e.g. beacons).
75 */
76static __inline int
77doprint(struct ieee80211vap *vap, int subtype)
78{
79	switch (subtype) {
80	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
81		return (vap->iv_opmode == IEEE80211_M_IBSS);
82	}
83	return 1;
84}
85#endif
86
87/*
88 * Start method for vap's.  All packets from the stack come
89 * through here.  We handle common processing of the packets
90 * before dispatching them to the underlying device.
91 */
92void
93ieee80211_start(struct ifnet *ifp)
94{
95#define	IS_DWDS(vap) \
96	(vap->iv_opmode == IEEE80211_M_WDS && \
97	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
98	struct ieee80211vap *vap = ifp->if_softc;
99	struct ieee80211com *ic = vap->iv_ic;
100	struct ifnet *parent = ic->ic_ifp;
101	struct ieee80211_node *ni;
102	struct mbuf *m;
103	struct ether_header *eh;
104	int error;
105
106	/* NB: parent must be up and running */
107	if (!IFNET_IS_UP_RUNNING(parent)) {
108		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
109		    "%s: ignore queue, parent %s not up+running\n",
110		    __func__, parent->if_xname);
111		/* XXX stat */
112		return;
113	}
114	if (vap->iv_state == IEEE80211_S_SLEEP) {
115		/*
116		 * In power save, wakeup device for transmit.
117		 */
118		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
119		return;
120	}
121	/*
122	 * No data frames go out unless we're running.
123	 * Note in particular this covers CAC and CSA
124	 * states (though maybe we should check muting
125	 * for CSA).
126	 */
127	if (vap->iv_state != IEEE80211_S_RUN) {
128		IEEE80211_LOCK(ic);
129		/* re-check under the com lock to avoid races */
130		if (vap->iv_state != IEEE80211_S_RUN) {
131			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
132			    "%s: ignore queue, in %s state\n",
133			    __func__, ieee80211_state_name[vap->iv_state]);
134			vap->iv_stats.is_tx_badstate++;
135			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
136			IEEE80211_UNLOCK(ic);
137			return;
138		}
139		IEEE80211_UNLOCK(ic);
140	}
141	for (;;) {
142		IFQ_DEQUEUE(&ifp->if_snd, m);
143		if (m == NULL)
144			break;
145		/*
146		 * Sanitize mbuf flags for net80211 use.  We cannot
147		 * clear M_PWR_SAV because this may be set for frames
148		 * that are re-submitted from the power save queue.
149		 *
150		 * NB: This must be done before ieee80211_classify as
151		 *     it marks EAPOL in frames with M_EAPOL.
152		 */
153		m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
154		/*
155		 * Cancel any background scan.
156		 */
157		if (ic->ic_flags & IEEE80211_F_SCAN)
158			ieee80211_cancel_anyscan(vap);
159		/*
160		 * Find the node for the destination so we can do
161		 * things like power save and fast frames aggregation.
162		 *
163		 * NB: past this point various code assumes the first
164		 *     mbuf has the 802.3 header present (and contiguous).
165		 */
166		ni = NULL;
167		if (m->m_len < sizeof(struct ether_header) &&
168		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
169			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
170			    "discard frame, %s\n", "m_pullup failed");
171			vap->iv_stats.is_tx_nobuf++;	/* XXX */
172			ifp->if_oerrors++;
173			continue;
174		}
175		eh = mtod(m, struct ether_header *);
176		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
177			if (IS_DWDS(vap)) {
178				/*
179				 * Only unicast frames from the above go out
180				 * DWDS vaps; multicast frames are handled by
181				 * dispatching the frame as it comes through
182				 * the AP vap (see below).
183				 */
184				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
185				    eh->ether_dhost, "mcast", "%s", "on DWDS");
186				vap->iv_stats.is_dwds_mcast++;
187				m_freem(m);
188				continue;
189			}
190			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
191				/*
192				 * Spam DWDS vap's w/ multicast traffic.
193				 */
194				/* XXX only if dwds in use? */
195				ieee80211_dwds_mcast(vap, m);
196			}
197		}
198		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
199		if (ni == NULL) {
200			/* NB: ieee80211_find_txnode does stat+msg */
201			ifp->if_oerrors++;
202			m_freem(m);
203			continue;
204		}
205		/* XXX AUTH'd */
206		/* XXX mark vap to identify if associd is required */
207		if (ni->ni_associd == 0 &&
208		    (vap->iv_opmode == IEEE80211_M_STA ||
209		     vap->iv_opmode == IEEE80211_M_HOSTAP || IS_DWDS(vap))) {
210			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
211			    eh->ether_dhost, NULL,
212			    "sta not associated (type 0x%04x)",
213			    htons(eh->ether_type));
214			vap->iv_stats.is_tx_notassoc++;
215			ifp->if_oerrors++;
216			m_freem(m);
217			ieee80211_free_node(ni);
218			continue;
219		}
220		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
221		    (m->m_flags & M_PWR_SAV) == 0) {
222			/*
223			 * Station in power save mode; pass the frame
224			 * to the 802.11 layer and continue.  We'll get
225			 * the frame back when the time is right.
226			 * XXX lose WDS vap linkage?
227			 */
228			ieee80211_pwrsave(ni, m);
229			ieee80211_free_node(ni);
230			continue;
231		}
232		/* calculate priority so drivers can find the tx queue */
233		if (ieee80211_classify(ni, m)) {
234			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
235			    eh->ether_dhost, NULL,
236			    "%s", "classification failure");
237			vap->iv_stats.is_tx_classify++;
238			ifp->if_oerrors++;
239			m_freem(m);
240			ieee80211_free_node(ni);
241			continue;
242		}
243
244		BPF_MTAP(ifp, m);		/* 802.11 tx path */
245
246		/*
247		 * XXX When ni is associated with a WDS link then
248		 * the vap will be the WDS vap but ni_vap will point
249		 * to the ap vap the station associated to.  Once
250		 * we handoff the packet to the driver the callback
251		 * to ieee80211_encap won't be able to tell if the
252		 * packet should be encapsulated for WDS or not (e.g.
253		 * multicast frames will not be handled correctly).
254		 * We hack this by marking the mbuf so ieee80211_encap
255		 * can do the right thing.
256		 */
257		if (vap->iv_opmode == IEEE80211_M_WDS)
258			m->m_flags |= M_WDS;
259		else
260			m->m_flags &= ~M_WDS;
261
262		/*
263		 * Stash the node pointer and hand the frame off to
264		 * the underlying device.  Note that we do this after
265		 * any call to ieee80211_dwds_mcast because that code
266		 * uses any existing value for rcvif.
267		 */
268		m->m_pkthdr.rcvif = (void *)ni;
269
270		/* XXX defer if_start calls? */
271		IFQ_HANDOFF(parent, m, error);
272		if (error != 0) {
273			/* NB: IFQ_HANDOFF reclaims mbuf */
274			ieee80211_free_node(ni);
275		} else {
276			ifp->if_opackets++;
277		}
278		ic->ic_lastdata = ticks;
279	}
280#undef IS_DWDS
281}
282
283/*
284 * 802.11 output routine. This is (currently) used only to
285 * connect bpf write calls to the 802.11 layer for injecting
286 * raw 802.11 frames.  Note we locate the ieee80211com from
287 * the ifnet using a spare field setup at attach time.  This
288 * will go away when the virtual ap support comes in.
289 */
290int
291ieee80211_output(struct ifnet *ifp, struct mbuf *m,
292	struct sockaddr *dst, struct rtentry *rt0)
293{
294#define senderr(e) do { error = (e); goto bad;} while (0)
295	struct ieee80211_node *ni = NULL;
296	struct ieee80211vap *vap;
297	struct ieee80211_frame *wh;
298	int error;
299
300	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
301		/*
302		 * Short-circuit requests if the vap is marked OACTIVE
303		 * as this is used when tearing down state to indicate
304		 * the vap may be gone.  This can also happen because a
305		 * packet came down through ieee80211_start before the
306		 * vap entered RUN state in which case it's also ok to
307		 * just drop the frame.  This should not be necessary
308		 * but callers of if_output don't check OACTIVE.
309		 */
310		senderr(ENETDOWN);
311	}
312	vap = ifp->if_softc;
313	/*
314	 * Hand to the 802.3 code if not tagged as
315	 * a raw 802.11 frame.
316	 */
317	if (dst->sa_family != AF_IEEE80211)
318		return vap->iv_output(ifp, m, dst, rt0);
319#ifdef MAC
320	error = mac_check_ifnet_transmit(ifp, m);
321	if (error)
322		senderr(error);
323#endif
324	if (ifp->if_flags & IFF_MONITOR)
325		senderr(ENETDOWN);
326	if (!IFNET_IS_UP_RUNNING(ifp))
327		senderr(ENETDOWN);
328	if (vap->iv_state == IEEE80211_S_CAC) {
329		IEEE80211_DPRINTF(vap,
330		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
331		    "block %s frame in CAC state\n", "raw data");
332		vap->iv_stats.is_tx_badstate++;
333		senderr(EIO);		/* XXX */
334	}
335	/* XXX bypass bridge, pfil, carp, etc. */
336
337	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
338		senderr(EIO);	/* XXX */
339	wh = mtod(m, struct ieee80211_frame *);
340	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
341	    IEEE80211_FC0_VERSION_0)
342		senderr(EIO);	/* XXX */
343
344	/* locate destination node */
345	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
346	case IEEE80211_FC1_DIR_NODS:
347	case IEEE80211_FC1_DIR_FROMDS:
348		ni = ieee80211_find_txnode(vap, wh->i_addr1);
349		break;
350	case IEEE80211_FC1_DIR_TODS:
351	case IEEE80211_FC1_DIR_DSTODS:
352		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
353			senderr(EIO);	/* XXX */
354		ni = ieee80211_find_txnode(vap, wh->i_addr3);
355		break;
356	default:
357		senderr(EIO);	/* XXX */
358	}
359	if (ni == NULL) {
360		/*
361		 * Permit packets w/ bpf params through regardless
362		 * (see below about sa_len).
363		 */
364		if (dst->sa_len == 0)
365			senderr(EHOSTUNREACH);
366		ni = ieee80211_ref_node(vap->iv_bss);
367	}
368
369	/*
370	 * Sanitize mbuf for net80211 flags leaked from above.
371	 *
372	 * NB: This must be done before ieee80211_classify as
373	 *     it marks EAPOL in frames with M_EAPOL.
374	 */
375	m->m_flags &= ~M_80211_TX;
376
377	/* calculate priority so drivers can find the tx queue */
378	/* XXX assumes an 802.3 frame */
379	if (ieee80211_classify(ni, m))
380		senderr(EIO);		/* XXX */
381
382	BPF_MTAP(ifp, m);
383
384	/*
385	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
386	 * present by setting the sa_len field of the sockaddr (yes,
387	 * this is a hack).
388	 * NB: we assume sa_data is suitably aligned to cast.
389	 */
390	return vap->iv_ic->ic_raw_xmit(ni, m,
391	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
392		dst->sa_data : NULL));
393bad:
394	if (m != NULL)
395		m_freem(m);
396	if (ni != NULL)
397		ieee80211_free_node(ni);
398	return error;
399#undef senderr
400}
401
402/*
403 * Set the direction field and address fields of an outgoing
404 * non-QoS frame.  Note this should be called early on in
405 * constructing a frame as it sets i_fc[1]; other bits can
406 * then be or'd in.
407 */
408static void
409ieee80211_send_setup(
410	struct ieee80211_node *ni,
411	struct ieee80211_frame *wh,
412	int type, int tid,
413	const uint8_t sa[IEEE80211_ADDR_LEN],
414	const uint8_t da[IEEE80211_ADDR_LEN],
415	const uint8_t bssid[IEEE80211_ADDR_LEN])
416{
417#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
418
419	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
420	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
421		struct ieee80211vap *vap = ni->ni_vap;
422
423		switch (vap->iv_opmode) {
424		case IEEE80211_M_STA:
425			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
426			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
427			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
428			IEEE80211_ADDR_COPY(wh->i_addr3, da);
429			break;
430		case IEEE80211_M_IBSS:
431		case IEEE80211_M_AHDEMO:
432			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
433			IEEE80211_ADDR_COPY(wh->i_addr1, da);
434			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
435			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
436			break;
437		case IEEE80211_M_HOSTAP:
438			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
439			IEEE80211_ADDR_COPY(wh->i_addr1, da);
440			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
441			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
442			break;
443		case IEEE80211_M_WDS:
444			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
445			IEEE80211_ADDR_COPY(wh->i_addr1, da);
446			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
447			IEEE80211_ADDR_COPY(wh->i_addr3, da);
448			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
449			break;
450		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
451			break;
452		}
453	} else {
454		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
455		IEEE80211_ADDR_COPY(wh->i_addr1, da);
456		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
457		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
458	}
459	*(uint16_t *)&wh->i_dur[0] = 0;
460	*(uint16_t *)&wh->i_seq[0] =
461	    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
462	ni->ni_txseqs[tid]++;
463#undef WH4
464}
465
466/*
467 * Send a management frame to the specified node.  The node pointer
468 * must have a reference as the pointer will be passed to the driver
469 * and potentially held for a long time.  If the frame is successfully
470 * dispatched to the driver, then it is responsible for freeing the
471 * reference (and potentially free'ing up any associated storage);
472 * otherwise deal with reclaiming any reference (on error).
473 */
474int
475ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
476	struct ieee80211_bpf_params *params)
477{
478	struct ieee80211vap *vap = ni->ni_vap;
479	struct ieee80211com *ic = ni->ni_ic;
480	struct ieee80211_frame *wh;
481
482	KASSERT(ni != NULL, ("null node"));
483
484	if (vap->iv_state == IEEE80211_S_CAC) {
485		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
486		    ni, "block %s frame in CAC state",
487			ieee80211_mgt_subtype_name[
488			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
489				IEEE80211_FC0_SUBTYPE_SHIFT]);
490		vap->iv_stats.is_tx_badstate++;
491		ieee80211_free_node(ni);
492		m_freem(m);
493		return EIO;		/* XXX */
494	}
495
496	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
497	if (m == NULL) {
498		ieee80211_free_node(ni);
499		return ENOMEM;
500	}
501
502	wh = mtod(m, struct ieee80211_frame *);
503	ieee80211_send_setup(ni, wh,
504	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
505	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
506	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
507		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
508		    "encrypting frame (%s)", __func__);
509		wh->i_fc[1] |= IEEE80211_FC1_WEP;
510	}
511
512	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
513	M_WME_SETAC(m, params->ibp_pri);
514
515#ifdef IEEE80211_DEBUG
516	/* avoid printing too many frames */
517	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
518	    ieee80211_msg_dumppkts(vap)) {
519		printf("[%s] send %s on channel %u\n",
520		    ether_sprintf(wh->i_addr1),
521		    ieee80211_mgt_subtype_name[
522			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
523				IEEE80211_FC0_SUBTYPE_SHIFT],
524		    ieee80211_chan2ieee(ic, ic->ic_curchan));
525	}
526#endif
527	IEEE80211_NODE_STAT(ni, tx_mgmt);
528
529	return ic->ic_raw_xmit(ni, m, params);
530}
531
532/*
533 * Send a null data frame to the specified node.  If the station
534 * is setup for QoS then a QoS Null Data frame is constructed.
535 * If this is a WDS station then a 4-address frame is constructed.
536 *
537 * NB: the caller is assumed to have setup a node reference
538 *     for use; this is necessary to deal with a race condition
539 *     when probing for inactive stations.  Like ieee80211_mgmt_output
540 *     we must cleanup any node reference on error;  however we
541 *     can safely just unref it as we know it will never be the
542 *     last reference to the node.
543 */
544int
545ieee80211_send_nulldata(struct ieee80211_node *ni)
546{
547	struct ieee80211vap *vap = ni->ni_vap;
548	struct ieee80211com *ic = ni->ni_ic;
549	struct mbuf *m;
550	struct ieee80211_frame *wh;
551	int hdrlen;
552	uint8_t *frm;
553
554	if (vap->iv_state == IEEE80211_S_CAC) {
555		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
556		    ni, "block %s frame in CAC state", "null data");
557		ieee80211_unref_node(&ni);
558		vap->iv_stats.is_tx_badstate++;
559		return EIO;		/* XXX */
560	}
561
562	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
563		hdrlen = sizeof(struct ieee80211_qosframe);
564	else
565		hdrlen = sizeof(struct ieee80211_frame);
566	/* NB: only WDS vap's get 4-address frames */
567	if (vap->iv_opmode == IEEE80211_M_WDS)
568		hdrlen += IEEE80211_ADDR_LEN;
569	if (ic->ic_flags & IEEE80211_F_DATAPAD)
570		hdrlen = roundup(hdrlen, sizeof(uint32_t));
571
572	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
573	if (m == NULL) {
574		/* XXX debug msg */
575		ieee80211_unref_node(&ni);
576		vap->iv_stats.is_tx_nobuf++;
577		return ENOMEM;
578	}
579	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
580	    ("leading space %zd", M_LEADINGSPACE(m)));
581	M_PREPEND(m, hdrlen, M_DONTWAIT);
582	if (m == NULL) {
583		/* NB: cannot happen */
584		ieee80211_free_node(ni);
585		return ENOMEM;
586	}
587
588	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
589	if (ni->ni_flags & IEEE80211_NODE_QOS) {
590		const int tid = WME_AC_TO_TID(WME_AC_BE);
591		uint8_t *qos;
592
593		ieee80211_send_setup(ni, wh,
594		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
595		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
596
597		if (vap->iv_opmode == IEEE80211_M_WDS)
598			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
599		else
600			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
601		qos[0] = tid & IEEE80211_QOS_TID;
602		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
603			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
604		qos[1] = 0;
605	} else {
606		ieee80211_send_setup(ni, wh,
607		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
608		    IEEE80211_NONQOS_TID,
609		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
610	}
611	if (vap->iv_opmode != IEEE80211_M_WDS) {
612		/* NB: power management bit is never sent by an AP */
613		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
614		    vap->iv_opmode != IEEE80211_M_HOSTAP)
615			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
616	}
617	m->m_len = m->m_pkthdr.len = hdrlen;
618
619	M_WME_SETAC(m, WME_AC_BE);
620
621	IEEE80211_NODE_STAT(ni, tx_data);
622
623	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
624	    "send %snull data frame on channel %u, pwr mgt %s",
625	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
626	    ieee80211_chan2ieee(ic, ic->ic_curchan),
627	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
628
629	return ic->ic_raw_xmit(ni, m, NULL);
630}
631
632/*
633 * Assign priority to a frame based on any vlan tag assigned
634 * to the station and/or any Diffserv setting in an IP header.
635 * Finally, if an ACM policy is setup (in station mode) it's
636 * applied.
637 */
638int
639ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
640{
641	const struct ether_header *eh = mtod(m, struct ether_header *);
642	int v_wme_ac, d_wme_ac, ac;
643
644	/*
645	 * Always promote PAE/EAPOL frames to high priority.
646	 */
647	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
648		/* NB: mark so others don't need to check header */
649		m->m_flags |= M_EAPOL;
650		ac = WME_AC_VO;
651		goto done;
652	}
653	/*
654	 * Non-qos traffic goes to BE.
655	 */
656	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
657		ac = WME_AC_BE;
658		goto done;
659	}
660
661	/*
662	 * If node has a vlan tag then all traffic
663	 * to it must have a matching tag.
664	 */
665	v_wme_ac = 0;
666	if (ni->ni_vlan != 0) {
667		 if ((m->m_flags & M_VLANTAG) == 0) {
668			IEEE80211_NODE_STAT(ni, tx_novlantag);
669			return 1;
670		}
671		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
672		    EVL_VLANOFTAG(ni->ni_vlan)) {
673			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
674			return 1;
675		}
676		/* map vlan priority to AC */
677		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
678	}
679
680#ifdef INET
681	if (eh->ether_type == htons(ETHERTYPE_IP)) {
682		uint8_t tos;
683		/*
684		 * IP frame, map the DSCP bits from the TOS field.
685		 */
686		/* XXX m_copydata may be too slow for fast path */
687		/* NB: ip header may not be in first mbuf */
688		m_copydata(m, sizeof(struct ether_header) +
689		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
690		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
691		d_wme_ac = TID_TO_WME_AC(tos);
692	} else {
693#endif /* INET */
694		d_wme_ac = WME_AC_BE;
695#ifdef INET
696	}
697#endif
698	/*
699	 * Use highest priority AC.
700	 */
701	if (v_wme_ac > d_wme_ac)
702		ac = v_wme_ac;
703	else
704		ac = d_wme_ac;
705
706	/*
707	 * Apply ACM policy.
708	 */
709	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
710		static const int acmap[4] = {
711			WME_AC_BK,	/* WME_AC_BE */
712			WME_AC_BK,	/* WME_AC_BK */
713			WME_AC_BE,	/* WME_AC_VI */
714			WME_AC_VI,	/* WME_AC_VO */
715		};
716		struct ieee80211com *ic = ni->ni_ic;
717
718		while (ac != WME_AC_BK &&
719		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
720			ac = acmap[ac];
721	}
722done:
723	M_WME_SETAC(m, ac);
724	return 0;
725}
726
727/*
728 * Insure there is sufficient contiguous space to encapsulate the
729 * 802.11 data frame.  If room isn't already there, arrange for it.
730 * Drivers and cipher modules assume we have done the necessary work
731 * and fail rudely if they don't find the space they need.
732 */
733static struct mbuf *
734ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
735	struct ieee80211_key *key, struct mbuf *m)
736{
737#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
738	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
739
740	if (key != NULL) {
741		/* XXX belongs in crypto code? */
742		needed_space += key->wk_cipher->ic_header;
743		/* XXX frags */
744		/*
745		 * When crypto is being done in the host we must insure
746		 * the data are writable for the cipher routines; clone
747		 * a writable mbuf chain.
748		 * XXX handle SWMIC specially
749		 */
750		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
751			m = m_unshare(m, M_NOWAIT);
752			if (m == NULL) {
753				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
754				    "%s: cannot get writable mbuf\n", __func__);
755				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
756				return NULL;
757			}
758		}
759	}
760	/*
761	 * We know we are called just before stripping an Ethernet
762	 * header and prepending an LLC header.  This means we know
763	 * there will be
764	 *	sizeof(struct ether_header) - sizeof(struct llc)
765	 * bytes recovered to which we need additional space for the
766	 * 802.11 header and any crypto header.
767	 */
768	/* XXX check trailing space and copy instead? */
769	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
770		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
771		if (n == NULL) {
772			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
773			    "%s: cannot expand storage\n", __func__);
774			vap->iv_stats.is_tx_nobuf++;
775			m_freem(m);
776			return NULL;
777		}
778		KASSERT(needed_space <= MHLEN,
779		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
780		/*
781		 * Setup new mbuf to have leading space to prepend the
782		 * 802.11 header and any crypto header bits that are
783		 * required (the latter are added when the driver calls
784		 * back to ieee80211_crypto_encap to do crypto encapsulation).
785		 */
786		/* NB: must be first 'cuz it clobbers m_data */
787		m_move_pkthdr(n, m);
788		n->m_len = 0;			/* NB: m_gethdr does not set */
789		n->m_data += needed_space;
790		/*
791		 * Pull up Ethernet header to create the expected layout.
792		 * We could use m_pullup but that's overkill (i.e. we don't
793		 * need the actual data) and it cannot fail so do it inline
794		 * for speed.
795		 */
796		/* NB: struct ether_header is known to be contiguous */
797		n->m_len += sizeof(struct ether_header);
798		m->m_len -= sizeof(struct ether_header);
799		m->m_data += sizeof(struct ether_header);
800		/*
801		 * Replace the head of the chain.
802		 */
803		n->m_next = m;
804		m = n;
805	}
806	return m;
807#undef TO_BE_RECLAIMED
808}
809
810/*
811 * Return the transmit key to use in sending a unicast frame.
812 * If a unicast key is set we use that.  When no unicast key is set
813 * we fall back to the default transmit key.
814 */
815static __inline struct ieee80211_key *
816ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
817	struct ieee80211_node *ni)
818{
819	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
820		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
821		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
822			return NULL;
823		return &vap->iv_nw_keys[vap->iv_def_txkey];
824	} else {
825		return &ni->ni_ucastkey;
826	}
827}
828
829/*
830 * Return the transmit key to use in sending a multicast frame.
831 * Multicast traffic always uses the group key which is installed as
832 * the default tx key.
833 */
834static __inline struct ieee80211_key *
835ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
836	struct ieee80211_node *ni)
837{
838	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
839	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
840		return NULL;
841	return &vap->iv_nw_keys[vap->iv_def_txkey];
842}
843
844/*
845 * Encapsulate an outbound data frame.  The mbuf chain is updated.
846 * If an error is encountered NULL is returned.  The caller is required
847 * to provide a node reference and pullup the ethernet header in the
848 * first mbuf.
849 *
850 * NB: Packet is assumed to be processed by ieee80211_classify which
851 *     marked EAPOL frames w/ M_EAPOL.
852 */
853struct mbuf *
854ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m)
855{
856#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
857	struct ieee80211vap *vap = ni->ni_vap;
858	struct ieee80211com *ic = ni->ni_ic;
859	struct ether_header eh;
860	struct ieee80211_frame *wh;
861	struct ieee80211_key *key;
862	struct llc *llc;
863	int hdrsize, hdrspace, datalen, addqos, txfrag, isff, is4addr;
864
865	/*
866	 * Copy existing Ethernet header to a safe place.  The
867	 * rest of the code assumes it's ok to strip it when
868	 * reorganizing state for the final encapsulation.
869	 */
870	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
871	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
872
873	/*
874	 * Insure space for additional headers.  First identify
875	 * transmit key to use in calculating any buffer adjustments
876	 * required.  This is also used below to do privacy
877	 * encapsulation work.  Then calculate the 802.11 header
878	 * size and any padding required by the driver.
879	 *
880	 * Note key may be NULL if we fall back to the default
881	 * transmit key and that is not set.  In that case the
882	 * buffer may not be expanded as needed by the cipher
883	 * routines, but they will/should discard it.
884	 */
885	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
886		if (vap->iv_opmode == IEEE80211_M_STA ||
887		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
888		    (vap->iv_opmode == IEEE80211_M_WDS &&
889		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
890			key = ieee80211_crypto_getucastkey(vap, ni);
891		else
892			key = ieee80211_crypto_getmcastkey(vap, ni);
893		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
894			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
895			    eh.ether_dhost,
896			    "no default transmit key (%s) deftxkey %u",
897			    __func__, vap->iv_def_txkey);
898			vap->iv_stats.is_tx_nodefkey++;
899			goto bad;
900		}
901	} else
902		key = NULL;
903	/*
904	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
905	 * frames so suppress use.  This may be an issue if other
906	 * ap's require all data frames to be QoS-encapsulated
907	 * once negotiated in which case we'll need to make this
908	 * configurable.
909	 */
910	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
911		 (m->m_flags & M_EAPOL) == 0;
912	if (addqos)
913		hdrsize = sizeof(struct ieee80211_qosframe);
914	else
915		hdrsize = sizeof(struct ieee80211_frame);
916	/*
917	 * 4-address frames need to be generated for:
918	 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS)
919	 * o packets relayed by a station operating with dynamic WDS
920	 *   (IEEE80211_M_STA+IEEE80211_F_DWDS and src address)
921	 */
922	is4addr = (m->m_flags & M_WDS) ||
923	    vap->iv_opmode == IEEE80211_M_WDS ||	/* XXX redundant? */
924	    (vap->iv_opmode == IEEE80211_M_STA &&
925	     (vap->iv_flags & IEEE80211_F_DWDS) &&
926	     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
927	if (is4addr)
928		hdrsize += IEEE80211_ADDR_LEN;
929	/*
930	 * Honor driver DATAPAD requirement.
931	 */
932	if (ic->ic_flags & IEEE80211_F_DATAPAD)
933		hdrspace = roundup(hdrsize, sizeof(uint32_t));
934	else
935		hdrspace = hdrsize;
936
937	if ((isff = m->m_flags & M_FF) != 0) {
938		struct mbuf *m2;
939		struct ether_header eh2;
940
941		/*
942		 * Fast frame encapsulation.  There must be two packets
943		 * chained with m_nextpkt.  We do header adjustment for
944		 * each, add the tunnel encapsulation, and then concatenate
945		 * the mbuf chains to form a single frame for transmission.
946		 */
947		m2 = m->m_nextpkt;
948		if (m2 == NULL) {
949			IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
950				"%s: only one frame\n", __func__);
951			goto bad;
952		}
953		m->m_nextpkt = NULL;
954		/*
955		 * Include fast frame headers in adjusting header
956		 * layout; this allocates space according to what
957		 * ieee80211_encap_fastframe will do.
958		 */
959		m = ieee80211_mbuf_adjust(vap,
960			hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 +
961			    sizeof(struct ether_header),
962			key, m);
963		if (m == NULL) {
964			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
965			m_freem(m2);
966			goto bad;
967		}
968		/*
969		 * Copy second frame's Ethernet header out of line
970		 * and adjust for encapsulation headers.  Note that
971		 * we make room for padding in case there isn't room
972		 * at the end of first frame.
973		 */
974		KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
975		ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
976		m2 = ieee80211_mbuf_adjust(vap,
977			ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
978			NULL, m2);
979		if (m2 == NULL) {
980			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
981			goto bad;
982		}
983		m = ieee80211_encap_fastframe(vap, m, &eh, m2, &eh2);
984		if (m == NULL)
985			goto bad;
986	} else {
987		/*
988		 * Normal frame.
989		 */
990		m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
991		if (m == NULL) {
992			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
993			goto bad;
994		}
995		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
996		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
997		llc = mtod(m, struct llc *);
998		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
999		llc->llc_control = LLC_UI;
1000		llc->llc_snap.org_code[0] = 0;
1001		llc->llc_snap.org_code[1] = 0;
1002		llc->llc_snap.org_code[2] = 0;
1003		llc->llc_snap.ether_type = eh.ether_type;
1004	}
1005	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1006
1007	M_PREPEND(m, hdrspace, M_DONTWAIT);
1008	if (m == NULL) {
1009		vap->iv_stats.is_tx_nobuf++;
1010		goto bad;
1011	}
1012	wh = mtod(m, struct ieee80211_frame *);
1013	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1014	*(uint16_t *)wh->i_dur = 0;
1015	if (is4addr) {
1016		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1017		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1018		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1019		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1020		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1021	} else switch (vap->iv_opmode) {
1022	case IEEE80211_M_STA:
1023		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1024		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1025		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1026		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1027		break;
1028	case IEEE80211_M_IBSS:
1029	case IEEE80211_M_AHDEMO:
1030		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1031		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1032		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1033		/*
1034		 * NB: always use the bssid from iv_bss as the
1035		 *     neighbor's may be stale after an ibss merge
1036		 */
1037		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1038		break;
1039	case IEEE80211_M_HOSTAP:
1040		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1041		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1042		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1043		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1044		break;
1045	case IEEE80211_M_MONITOR:
1046	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1047		goto bad;
1048	}
1049	if (m->m_flags & M_MORE_DATA)
1050		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1051	if (addqos) {
1052		uint8_t *qos;
1053		int ac, tid;
1054
1055		if (is4addr) {
1056			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1057		} else
1058			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1059		ac = M_WME_GETAC(m);
1060		/* map from access class/queue to 11e header priorty value */
1061		tid = WME_AC_TO_TID(ac);
1062		qos[0] = tid & IEEE80211_QOS_TID;
1063		/*
1064		 * Check if A-MPDU tx aggregation is setup or if we
1065		 * should try to enable it.  The sta must be associated
1066		 * with HT and A-MPDU enabled for use.  When the policy
1067		 * routine decides we should enable A-MPDU we issue an
1068		 * ADDBA request and wait for a reply.  The frame being
1069		 * encapsulated will go out w/o using A-MPDU, or possibly
1070		 * it might be collected by the driver and held/retransmit.
1071		 * The default ic_ampdu_enable routine handles staggering
1072		 * ADDBA requests in case the receiver NAK's us or we are
1073		 * otherwise unable to establish a BA stream.
1074		 */
1075		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
1076		    (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
1077			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
1078
1079			ieee80211_txampdu_count_packet(tap);
1080			if (IEEE80211_AMPDU_RUNNING(tap)) {
1081				/*
1082				 * Operational, mark frame for aggregation.
1083				 *
1084				 * NB: We support only immediate BA's for
1085				 * AMPDU which means we set the QoS control
1086				 * field to "normal ack" (0) to get "implicit
1087				 * block ack" behaviour.
1088				 */
1089				m->m_flags |= M_AMPDU_MPDU;
1090			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
1091			    ic->ic_ampdu_enable(ni, tap)) {
1092				/*
1093				 * Not negotiated yet, request service.
1094				 */
1095				ieee80211_ampdu_request(ni, tap);
1096			}
1097		}
1098		/* XXX works even when BA marked above */
1099		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1100			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1101		qos[1] = 0;
1102		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1103
1104		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1105			/*
1106			 * NB: don't assign a sequence # to potential
1107			 * aggregates; we expect this happens at the
1108			 * point the frame comes off any aggregation q
1109			 * as otherwise we may introduce holes in the
1110			 * BA sequence space and/or make window accouting
1111			 * more difficult.
1112			 *
1113			 * XXX may want to control this with a driver
1114			 * capability; this may also change when we pull
1115			 * aggregation up into net80211
1116			 */
1117			*(uint16_t *)wh->i_seq =
1118			    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
1119			ni->ni_txseqs[tid]++;
1120		}
1121	} else {
1122		*(uint16_t *)wh->i_seq =
1123		    htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
1124		ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1125	}
1126	/* check if xmit fragmentation is required */
1127	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1128	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1129	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1130	    !isff);		/* NB: don't fragment ff's */
1131	if (key != NULL) {
1132		/*
1133		 * IEEE 802.1X: send EAPOL frames always in the clear.
1134		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1135		 */
1136		if ((m->m_flags & M_EAPOL) == 0 ||
1137		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1138		     (vap->iv_opmode == IEEE80211_M_STA ?
1139		      !IEEE80211_KEY_UNDEFINED(key) :
1140		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1141			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1142			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1143				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1144				    eh.ether_dhost,
1145				    "%s", "enmic failed, discard frame");
1146				vap->iv_stats.is_crypto_enmicfail++;
1147				goto bad;
1148			}
1149		}
1150	}
1151	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1152	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1153		goto bad;
1154
1155	IEEE80211_NODE_STAT(ni, tx_data);
1156	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1157		IEEE80211_NODE_STAT(ni, tx_mcast);
1158	else
1159		IEEE80211_NODE_STAT(ni, tx_ucast);
1160	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1161
1162	/* XXX fragmented frames not handled */
1163	if (bpf_peers_present(vap->iv_rawbpf))
1164		bpf_mtap(vap->iv_rawbpf, m);
1165
1166	return m;
1167bad:
1168	if (m != NULL)
1169		m_freem(m);
1170	return NULL;
1171#undef WH4
1172}
1173
1174/*
1175 * Do Ethernet-LLC encapsulation for each payload in a fast frame
1176 * tunnel encapsulation.  The frame is assumed to have an Ethernet
1177 * header at the front that must be stripped before prepending the
1178 * LLC followed by the Ethernet header passed in (with an Ethernet
1179 * type that specifies the payload size).
1180 */
1181static struct mbuf *
1182ieee80211_encap1(struct ieee80211vap *vap, struct mbuf *m,
1183	const struct ether_header *eh)
1184{
1185	struct llc *llc;
1186	uint16_t payload;
1187
1188	/* XXX optimize by combining m_adj+M_PREPEND */
1189	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1190	llc = mtod(m, struct llc *);
1191	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1192	llc->llc_control = LLC_UI;
1193	llc->llc_snap.org_code[0] = 0;
1194	llc->llc_snap.org_code[1] = 0;
1195	llc->llc_snap.org_code[2] = 0;
1196	llc->llc_snap.ether_type = eh->ether_type;
1197	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
1198
1199	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
1200	if (m == NULL) {		/* XXX cannot happen */
1201		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1202			"%s: no space for ether_header\n", __func__);
1203		vap->iv_stats.is_tx_nobuf++;
1204		return NULL;
1205	}
1206	ETHER_HEADER_COPY(mtod(m, void *), eh);
1207	mtod(m, struct ether_header *)->ether_type = htons(payload);
1208	return m;
1209}
1210
1211/*
1212 * Do fast frame tunnel encapsulation.  The two frames and
1213 * Ethernet headers are supplied.  The caller is assumed to
1214 * have arrange for space in the mbuf chains for encapsulating
1215 * headers (to avoid major mbuf fragmentation).
1216 *
1217 * The encapsulated frame is returned or NULL if there is a
1218 * problem (should not happen).
1219 */
1220static struct mbuf *
1221ieee80211_encap_fastframe(struct ieee80211vap *vap,
1222	struct mbuf *m1, const struct ether_header *eh1,
1223	struct mbuf *m2, const struct ether_header *eh2)
1224{
1225	struct llc *llc;
1226	struct mbuf *m;
1227	int pad;
1228
1229	/*
1230	 * First, each frame gets a standard encapsulation.
1231	 */
1232	m1 = ieee80211_encap1(vap, m1, eh1);
1233	if (m1 == NULL) {
1234		m_freem(m2);
1235		return NULL;
1236	}
1237	m2 = ieee80211_encap1(vap, m2, eh2);
1238	if (m2 == NULL) {
1239		m_freem(m1);
1240		return NULL;
1241	}
1242
1243	/*
1244	 * Pad leading frame to a 4-byte boundary.  If there
1245	 * is space at the end of the first frame, put it
1246	 * there; otherwise prepend to the front of the second
1247	 * frame.  We know doing the second will always work
1248	 * because we reserve space above.  We prefer appending
1249	 * as this typically has better DMA alignment properties.
1250	 */
1251	for (m = m1; m->m_next != NULL; m = m->m_next)
1252		;
1253	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
1254	if (pad) {
1255		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
1256			m2->m_data -= pad;
1257			m2->m_len += pad;
1258			m2->m_pkthdr.len += pad;
1259		} else {				/* append to first */
1260			m->m_len += pad;
1261			m1->m_pkthdr.len += pad;
1262		}
1263	}
1264
1265	/*
1266	 * Now, stick 'em together and prepend the tunnel headers;
1267	 * first the Atheros tunnel header (all zero for now) and
1268	 * then a special fast frame LLC.
1269	 *
1270	 * XXX optimize by prepending together
1271	 */
1272	m->m_next = m2;			/* NB: last mbuf from above */
1273	m1->m_pkthdr.len += m2->m_pkthdr.len;
1274	M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
1275	if (m1 == NULL) {		/* XXX cannot happen */
1276		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1277			"%s: no space for tunnel header\n", __func__);
1278		vap->iv_stats.is_tx_nobuf++;
1279		return NULL;
1280	}
1281	memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
1282
1283	M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
1284	if (m1 == NULL) {		/* XXX cannot happen */
1285		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1286			"%s: no space for llc header\n", __func__);
1287		vap->iv_stats.is_tx_nobuf++;
1288		return NULL;
1289	}
1290	llc = mtod(m1, struct llc *);
1291	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1292	llc->llc_control = LLC_UI;
1293	llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
1294	llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
1295	llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
1296	llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
1297
1298	vap->iv_stats.is_ff_encap++;
1299
1300	return m1;
1301}
1302
1303/*
1304 * Fragment the frame according to the specified mtu.
1305 * The size of the 802.11 header (w/o padding) is provided
1306 * so we don't need to recalculate it.  We create a new
1307 * mbuf for each fragment and chain it through m_nextpkt;
1308 * we might be able to optimize this by reusing the original
1309 * packet's mbufs but that is significantly more complicated.
1310 */
1311static int
1312ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1313	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1314{
1315	struct ieee80211_frame *wh, *whf;
1316	struct mbuf *m, *prev, *next;
1317	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1318
1319	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1320	KASSERT(m0->m_pkthdr.len > mtu,
1321		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1322
1323	wh = mtod(m0, struct ieee80211_frame *);
1324	/* NB: mark the first frag; it will be propagated below */
1325	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1326	totalhdrsize = hdrsize + ciphdrsize;
1327	fragno = 1;
1328	off = mtu - ciphdrsize;
1329	remainder = m0->m_pkthdr.len - off;
1330	prev = m0;
1331	do {
1332		fragsize = totalhdrsize + remainder;
1333		if (fragsize > mtu)
1334			fragsize = mtu;
1335		/* XXX fragsize can be >2048! */
1336		KASSERT(fragsize < MCLBYTES,
1337			("fragment size %u too big!", fragsize));
1338		if (fragsize > MHLEN)
1339			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1340		else
1341			m = m_gethdr(M_DONTWAIT, MT_DATA);
1342		if (m == NULL)
1343			goto bad;
1344		/* leave room to prepend any cipher header */
1345		m_align(m, fragsize - ciphdrsize);
1346
1347		/*
1348		 * Form the header in the fragment.  Note that since
1349		 * we mark the first fragment with the MORE_FRAG bit
1350		 * it automatically is propagated to each fragment; we
1351		 * need only clear it on the last fragment (done below).
1352		 */
1353		whf = mtod(m, struct ieee80211_frame *);
1354		memcpy(whf, wh, hdrsize);
1355		*(uint16_t *)&whf->i_seq[0] |= htole16(
1356			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1357				IEEE80211_SEQ_FRAG_SHIFT);
1358		fragno++;
1359
1360		payload = fragsize - totalhdrsize;
1361		/* NB: destination is known to be contiguous */
1362		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1363		m->m_len = hdrsize + payload;
1364		m->m_pkthdr.len = hdrsize + payload;
1365		m->m_flags |= M_FRAG;
1366
1367		/* chain up the fragment */
1368		prev->m_nextpkt = m;
1369		prev = m;
1370
1371		/* deduct fragment just formed */
1372		remainder -= payload;
1373		off += payload;
1374	} while (remainder != 0);
1375	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1376
1377	/* strip first mbuf now that everything has been copied */
1378	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1379	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1380
1381	vap->iv_stats.is_tx_fragframes++;
1382	vap->iv_stats.is_tx_frags += fragno-1;
1383
1384	return 1;
1385bad:
1386	/* reclaim fragments but leave original frame for caller to free */
1387	for (m = m0->m_nextpkt; m != NULL; m = next) {
1388		next = m->m_nextpkt;
1389		m->m_nextpkt = NULL;		/* XXX paranoid */
1390		m_freem(m);
1391	}
1392	m0->m_nextpkt = NULL;
1393	return 0;
1394}
1395
1396/*
1397 * Add a supported rates element id to a frame.
1398 */
1399static uint8_t *
1400ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1401{
1402	int nrates;
1403
1404	*frm++ = IEEE80211_ELEMID_RATES;
1405	nrates = rs->rs_nrates;
1406	if (nrates > IEEE80211_RATE_SIZE)
1407		nrates = IEEE80211_RATE_SIZE;
1408	*frm++ = nrates;
1409	memcpy(frm, rs->rs_rates, nrates);
1410	return frm + nrates;
1411}
1412
1413/*
1414 * Add an extended supported rates element id to a frame.
1415 */
1416static uint8_t *
1417ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1418{
1419	/*
1420	 * Add an extended supported rates element if operating in 11g mode.
1421	 */
1422	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1423		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1424		*frm++ = IEEE80211_ELEMID_XRATES;
1425		*frm++ = nrates;
1426		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1427		frm += nrates;
1428	}
1429	return frm;
1430}
1431
1432/*
1433 * Add an ssid element to a frame.
1434 */
1435static uint8_t *
1436ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1437{
1438	*frm++ = IEEE80211_ELEMID_SSID;
1439	*frm++ = len;
1440	memcpy(frm, ssid, len);
1441	return frm + len;
1442}
1443
1444/*
1445 * Add an erp element to a frame.
1446 */
1447static uint8_t *
1448ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1449{
1450	uint8_t erp;
1451
1452	*frm++ = IEEE80211_ELEMID_ERP;
1453	*frm++ = 1;
1454	erp = 0;
1455	if (ic->ic_nonerpsta != 0)
1456		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1457	if (ic->ic_flags & IEEE80211_F_USEPROT)
1458		erp |= IEEE80211_ERP_USE_PROTECTION;
1459	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1460		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1461	*frm++ = erp;
1462	return frm;
1463}
1464
1465/*
1466 * Add a CFParams element to a frame.
1467 */
1468static uint8_t *
1469ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1470{
1471#define	ADDSHORT(frm, v) do {			\
1472	frm[0] = (v) & 0xff;			\
1473	frm[1] = (v) >> 8;			\
1474	frm += 2;				\
1475} while (0)
1476	*frm++ = IEEE80211_ELEMID_CFPARMS;
1477	*frm++ = 6;
1478	*frm++ = 0;		/* CFP count */
1479	*frm++ = 2;		/* CFP period */
1480	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1481	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1482	return frm;
1483#undef ADDSHORT
1484}
1485
1486static __inline uint8_t *
1487add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1488{
1489	memcpy(frm, ie->ie_data, ie->ie_len);
1490	return frm + ie->ie_len;
1491}
1492
1493static __inline uint8_t *
1494add_ie(uint8_t *frm, const uint8_t *ie)
1495{
1496	memcpy(frm, ie, 2 + ie[1]);
1497	return frm + 2 + ie[1];
1498}
1499
1500#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1501/*
1502 * Add a WME information element to a frame.
1503 */
1504static uint8_t *
1505ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1506{
1507	static const struct ieee80211_wme_info info = {
1508		.wme_id		= IEEE80211_ELEMID_VENDOR,
1509		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1510		.wme_oui	= { WME_OUI_BYTES },
1511		.wme_type	= WME_OUI_TYPE,
1512		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1513		.wme_version	= WME_VERSION,
1514		.wme_info	= 0,
1515	};
1516	memcpy(frm, &info, sizeof(info));
1517	return frm + sizeof(info);
1518}
1519
1520/*
1521 * Add a WME parameters element to a frame.
1522 */
1523static uint8_t *
1524ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1525{
1526#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1527#define	ADDSHORT(frm, v) do {			\
1528	frm[0] = (v) & 0xff;			\
1529	frm[1] = (v) >> 8;			\
1530	frm += 2;				\
1531} while (0)
1532	/* NB: this works 'cuz a param has an info at the front */
1533	static const struct ieee80211_wme_info param = {
1534		.wme_id		= IEEE80211_ELEMID_VENDOR,
1535		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1536		.wme_oui	= { WME_OUI_BYTES },
1537		.wme_type	= WME_OUI_TYPE,
1538		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1539		.wme_version	= WME_VERSION,
1540	};
1541	int i;
1542
1543	memcpy(frm, &param, sizeof(param));
1544	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1545	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1546	*frm++ = 0;					/* reserved field */
1547	for (i = 0; i < WME_NUM_AC; i++) {
1548		const struct wmeParams *ac =
1549		       &wme->wme_bssChanParams.cap_wmeParams[i];
1550		*frm++ = SM(i, WME_PARAM_ACI)
1551		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1552		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1553		       ;
1554		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1555		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1556		       ;
1557		ADDSHORT(frm, ac->wmep_txopLimit);
1558	}
1559	return frm;
1560#undef SM
1561#undef ADDSHORT
1562}
1563#undef WME_OUI_BYTES
1564
1565#define	ATH_OUI_BYTES		0x00, 0x03, 0x7f
1566/*
1567 * Add a WME information element to a frame.
1568 */
1569static uint8_t *
1570ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
1571{
1572	static const struct ieee80211_ath_ie info = {
1573		.ath_id		= IEEE80211_ELEMID_VENDOR,
1574		.ath_len	= sizeof(struct ieee80211_ath_ie) - 2,
1575		.ath_oui	= { ATH_OUI_BYTES },
1576		.ath_oui_type	= ATH_OUI_TYPE,
1577		.ath_oui_subtype= ATH_OUI_SUBTYPE,
1578		.ath_version	= ATH_OUI_VERSION,
1579	};
1580	struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
1581
1582	memcpy(frm, &info, sizeof(info));
1583	ath->ath_capability = caps;
1584	ath->ath_defkeyix[0] = (defkeyix & 0xff);
1585	ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
1586	return frm + sizeof(info);
1587}
1588#undef ATH_OUI_BYTES
1589
1590/*
1591 * Add an 11h Power Constraint element to a frame.
1592 */
1593static uint8_t *
1594ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1595{
1596	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1597	/* XXX per-vap tx power limit? */
1598	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1599
1600	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1601	frm[1] = 1;
1602	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1603	return frm + 3;
1604}
1605
1606/*
1607 * Add an 11h Power Capability element to a frame.
1608 */
1609static uint8_t *
1610ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1611{
1612	frm[0] = IEEE80211_ELEMID_PWRCAP;
1613	frm[1] = 2;
1614	frm[2] = c->ic_minpower;
1615	frm[3] = c->ic_maxpower;
1616	return frm + 4;
1617}
1618
1619/*
1620 * Add an 11h Supported Channels element to a frame.
1621 */
1622static uint8_t *
1623ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1624{
1625	static const int ielen = 26;
1626
1627	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1628	frm[1] = ielen;
1629	/* XXX not correct */
1630	memcpy(frm+2, ic->ic_chan_avail, ielen);
1631	return frm + 2 + ielen;
1632}
1633
1634/*
1635 * Add an 11h Channel Switch Announcement element to a frame.
1636 * Note that we use the per-vap CSA count to adjust the global
1637 * counter so we can use this routine to form probe response
1638 * frames and get the current count.
1639 */
1640static uint8_t *
1641ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1642{
1643	struct ieee80211com *ic = vap->iv_ic;
1644	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1645
1646	csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN;
1647	csa->csa_len = 3;
1648	csa->csa_mode = 1;		/* XXX force quiet on channel */
1649	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1650	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1651	return frm + sizeof(*csa);
1652}
1653
1654/*
1655 * Add an 11h country information element to a frame.
1656 */
1657static uint8_t *
1658ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1659{
1660
1661	if (ic->ic_countryie == NULL ||
1662	    ic->ic_countryie_chan != ic->ic_bsschan) {
1663		/*
1664		 * Handle lazy construction of ie.  This is done on
1665		 * first use and after a channel change that requires
1666		 * re-calculation.
1667		 */
1668		if (ic->ic_countryie != NULL)
1669			free(ic->ic_countryie, M_80211_NODE_IE);
1670		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1671		if (ic->ic_countryie == NULL)
1672			return frm;
1673		ic->ic_countryie_chan = ic->ic_bsschan;
1674	}
1675	return add_appie(frm, ic->ic_countryie);
1676}
1677
1678/*
1679 * Send a probe request frame with the specified ssid
1680 * and any optional information element data.
1681 */
1682int
1683ieee80211_send_probereq(struct ieee80211_node *ni,
1684	const uint8_t sa[IEEE80211_ADDR_LEN],
1685	const uint8_t da[IEEE80211_ADDR_LEN],
1686	const uint8_t bssid[IEEE80211_ADDR_LEN],
1687	const uint8_t *ssid, size_t ssidlen)
1688{
1689	struct ieee80211vap *vap = ni->ni_vap;
1690	struct ieee80211com *ic = ni->ni_ic;
1691	struct ieee80211_frame *wh;
1692	const struct ieee80211_rateset *rs;
1693	struct mbuf *m;
1694	uint8_t *frm;
1695
1696	if (vap->iv_state == IEEE80211_S_CAC) {
1697		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1698		    "block %s frame in CAC state", "probe request");
1699		vap->iv_stats.is_tx_badstate++;
1700		return EIO;		/* XXX */
1701	}
1702
1703	/*
1704	 * Hold a reference on the node so it doesn't go away until after
1705	 * the xmit is complete all the way in the driver.  On error we
1706	 * will remove our reference.
1707	 */
1708	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1709		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1710		__func__, __LINE__,
1711		ni, ether_sprintf(ni->ni_macaddr),
1712		ieee80211_node_refcnt(ni)+1);
1713	ieee80211_ref_node(ni);
1714
1715	/*
1716	 * prreq frame format
1717	 *	[tlv] ssid
1718	 *	[tlv] supported rates
1719	 *	[tlv] RSN (optional)
1720	 *	[tlv] extended supported rates
1721	 *	[tlv] WPA (optional)
1722	 *	[tlv] user-specified ie's
1723	 */
1724	m = ieee80211_getmgtframe(&frm,
1725		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1726	       	 2 + IEEE80211_NWID_LEN
1727	       + 2 + IEEE80211_RATE_SIZE
1728	       + sizeof(struct ieee80211_ie_wpa)
1729	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1730	       + sizeof(struct ieee80211_ie_wpa)
1731	       + (vap->iv_appie_probereq != NULL ?
1732		   vap->iv_appie_probereq->ie_len : 0)
1733	);
1734	if (m == NULL) {
1735		vap->iv_stats.is_tx_nobuf++;
1736		ieee80211_free_node(ni);
1737		return ENOMEM;
1738	}
1739
1740	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1741	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1742	frm = ieee80211_add_rates(frm, rs);
1743	if (vap->iv_flags & IEEE80211_F_WPA2) {
1744		if (vap->iv_rsn_ie != NULL)
1745			frm = add_ie(frm, vap->iv_rsn_ie);
1746		/* XXX else complain? */
1747	}
1748	frm = ieee80211_add_xrates(frm, rs);
1749	if (vap->iv_flags & IEEE80211_F_WPA1) {
1750		if (vap->iv_wpa_ie != NULL)
1751			frm = add_ie(frm, vap->iv_wpa_ie);
1752		/* XXX else complain? */
1753	}
1754	if (vap->iv_appie_probereq != NULL)
1755		frm = add_appie(frm, vap->iv_appie_probereq);
1756	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1757
1758	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1759	if (m == NULL)
1760		return ENOMEM;
1761
1762	wh = mtod(m, struct ieee80211_frame *);
1763	ieee80211_send_setup(ni, wh,
1764	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1765	     IEEE80211_NONQOS_TID, sa, da, bssid);
1766	/* XXX power management? */
1767
1768	M_WME_SETAC(m, WME_AC_BE);
1769
1770	IEEE80211_NODE_STAT(ni, tx_probereq);
1771	IEEE80211_NODE_STAT(ni, tx_mgmt);
1772
1773	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1774	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1775	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1776	    ssidlen, ssid);
1777
1778	return ic->ic_raw_xmit(ni, m, NULL);
1779}
1780
1781/*
1782 * Calculate capability information for mgt frames.
1783 */
1784static uint16_t
1785getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1786{
1787	struct ieee80211com *ic = vap->iv_ic;
1788	uint16_t capinfo;
1789
1790	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1791
1792	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1793		capinfo = IEEE80211_CAPINFO_ESS;
1794	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1795		capinfo = IEEE80211_CAPINFO_IBSS;
1796	else
1797		capinfo = 0;
1798	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1799		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1800	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1801	    IEEE80211_IS_CHAN_2GHZ(chan))
1802		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1803	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1804		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1805	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1806		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1807	return capinfo;
1808}
1809
1810/*
1811 * Send a management frame.  The node is for the destination (or ic_bss
1812 * when in station mode).  Nodes other than ic_bss have their reference
1813 * count bumped to reflect our use for an indeterminant time.
1814 */
1815int
1816ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1817{
1818#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1819#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1820	struct ieee80211vap *vap = ni->ni_vap;
1821	struct ieee80211com *ic = ni->ni_ic;
1822	struct ieee80211_node *bss = vap->iv_bss;
1823	struct ieee80211_bpf_params params;
1824	struct mbuf *m;
1825	uint8_t *frm;
1826	uint16_t capinfo;
1827	int has_challenge, is_shared_key, ret, status;
1828
1829	KASSERT(ni != NULL, ("null node"));
1830
1831	/*
1832	 * Hold a reference on the node so it doesn't go away until after
1833	 * the xmit is complete all the way in the driver.  On error we
1834	 * will remove our reference.
1835	 */
1836	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1837		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1838		__func__, __LINE__,
1839		ni, ether_sprintf(ni->ni_macaddr),
1840		ieee80211_node_refcnt(ni)+1);
1841	ieee80211_ref_node(ni);
1842
1843	memset(&params, 0, sizeof(params));
1844	switch (type) {
1845
1846	case IEEE80211_FC0_SUBTYPE_AUTH:
1847		status = arg >> 16;
1848		arg &= 0xffff;
1849		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1850		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1851		    ni->ni_challenge != NULL);
1852
1853		/*
1854		 * Deduce whether we're doing open authentication or
1855		 * shared key authentication.  We do the latter if
1856		 * we're in the middle of a shared key authentication
1857		 * handshake or if we're initiating an authentication
1858		 * request and configured to use shared key.
1859		 */
1860		is_shared_key = has_challenge ||
1861		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1862		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1863		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1864
1865		m = ieee80211_getmgtframe(&frm,
1866			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1867			  3 * sizeof(uint16_t)
1868			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1869				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1870		);
1871		if (m == NULL)
1872			senderr(ENOMEM, is_tx_nobuf);
1873
1874		((uint16_t *)frm)[0] =
1875		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1876		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1877		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1878		((uint16_t *)frm)[2] = htole16(status);/* status */
1879
1880		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1881			((uint16_t *)frm)[3] =
1882			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1883			    IEEE80211_ELEMID_CHALLENGE);
1884			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1885			    IEEE80211_CHALLENGE_LEN);
1886			m->m_pkthdr.len = m->m_len =
1887				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1888			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1889				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1890				    "request encrypt frame (%s)", __func__);
1891				/* mark frame for encryption */
1892				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1893			}
1894		} else
1895			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1896
1897		/* XXX not right for shared key */
1898		if (status == IEEE80211_STATUS_SUCCESS)
1899			IEEE80211_NODE_STAT(ni, tx_auth);
1900		else
1901			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1902
1903		if (vap->iv_opmode == IEEE80211_M_STA)
1904			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1905				(void *) vap->iv_state);
1906		break;
1907
1908	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1909		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1910		    "send station deauthenticate (reason %d)", arg);
1911		m = ieee80211_getmgtframe(&frm,
1912			ic->ic_headroom + sizeof(struct ieee80211_frame),
1913			sizeof(uint16_t));
1914		if (m == NULL)
1915			senderr(ENOMEM, is_tx_nobuf);
1916		*(uint16_t *)frm = htole16(arg);	/* reason */
1917		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1918
1919		IEEE80211_NODE_STAT(ni, tx_deauth);
1920		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1921
1922		ieee80211_node_unauthorize(ni);		/* port closed */
1923		break;
1924
1925	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1926	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1927		/*
1928		 * asreq frame format
1929		 *	[2] capability information
1930		 *	[2] listen interval
1931		 *	[6*] current AP address (reassoc only)
1932		 *	[tlv] ssid
1933		 *	[tlv] supported rates
1934		 *	[tlv] extended supported rates
1935		 *	[4] power capability (optional)
1936		 *	[28] supported channels (optional)
1937		 *	[tlv] HT capabilities
1938		 *	[tlv] WME (optional)
1939		 *	[tlv] Vendor OUI HT capabilities (optional)
1940		 *	[tlv] Atheros capabilities (if negotiated)
1941		 *	[tlv] AppIE's (optional)
1942		 */
1943		m = ieee80211_getmgtframe(&frm,
1944			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1945			 sizeof(uint16_t)
1946		       + sizeof(uint16_t)
1947		       + IEEE80211_ADDR_LEN
1948		       + 2 + IEEE80211_NWID_LEN
1949		       + 2 + IEEE80211_RATE_SIZE
1950		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1951		       + 4
1952		       + 2 + 26
1953		       + sizeof(struct ieee80211_wme_info)
1954		       + sizeof(struct ieee80211_ie_htcap)
1955		       + 4 + sizeof(struct ieee80211_ie_htcap)
1956		       + sizeof(struct ieee80211_ath_ie)
1957		       + (vap->iv_appie_wpa != NULL ?
1958				vap->iv_appie_wpa->ie_len : 0)
1959		       + (vap->iv_appie_assocreq != NULL ?
1960				vap->iv_appie_assocreq->ie_len : 0)
1961		);
1962		if (m == NULL)
1963			senderr(ENOMEM, is_tx_nobuf);
1964
1965		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1966		    ("wrong mode %u", vap->iv_opmode));
1967		capinfo = IEEE80211_CAPINFO_ESS;
1968		if (vap->iv_flags & IEEE80211_F_PRIVACY)
1969			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1970		/*
1971		 * NB: Some 11a AP's reject the request when
1972		 *     short premable is set.
1973		 */
1974		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1975		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1976			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1977		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
1978		    (ic->ic_caps & IEEE80211_C_SHSLOT))
1979			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1980		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
1981		    (vap->iv_flags & IEEE80211_F_DOTH))
1982			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1983		*(uint16_t *)frm = htole16(capinfo);
1984		frm += 2;
1985
1986		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
1987		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
1988						    bss->ni_intval));
1989		frm += 2;
1990
1991		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1992			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
1993			frm += IEEE80211_ADDR_LEN;
1994		}
1995
1996		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1997		frm = ieee80211_add_rates(frm, &ni->ni_rates);
1998		if (vap->iv_flags & IEEE80211_F_WPA2) {
1999			if (vap->iv_rsn_ie != NULL)
2000				frm = add_ie(frm, vap->iv_rsn_ie);
2001			/* XXX else complain? */
2002		}
2003		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2004		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2005			frm = ieee80211_add_powercapability(frm,
2006			    ic->ic_curchan);
2007			frm = ieee80211_add_supportedchannels(frm, ic);
2008		}
2009		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2010		    ni->ni_ies.htcap_ie != NULL &&
2011		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2012			frm = ieee80211_add_htcap(frm, ni);
2013		if (vap->iv_flags & IEEE80211_F_WPA1) {
2014			if (vap->iv_wpa_ie != NULL)
2015				frm = add_ie(frm, vap->iv_wpa_ie);
2016			/* XXX else complain */
2017		}
2018		if ((ic->ic_flags & IEEE80211_F_WME) &&
2019		    ni->ni_ies.wme_ie != NULL)
2020			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2021		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2022		    ni->ni_ies.htcap_ie != NULL &&
2023		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2024			frm = ieee80211_add_htcap_vendor(frm, ni);
2025		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2026			frm = ieee80211_add_ath(frm,
2027				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2028				(vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2029				ni->ni_authmode != IEEE80211_AUTH_8021X &&
2030				vap->iv_def_txkey != IEEE80211_KEYIX_NONE ?
2031				vap->iv_def_txkey : 0x7fff);
2032		if (vap->iv_appie_assocreq != NULL)
2033			frm = add_appie(frm, vap->iv_appie_assocreq);
2034		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2035
2036		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2037			(void *) vap->iv_state);
2038		break;
2039
2040	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2041	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2042		/*
2043		 * asresp frame format
2044		 *	[2] capability information
2045		 *	[2] status
2046		 *	[2] association ID
2047		 *	[tlv] supported rates
2048		 *	[tlv] extended supported rates
2049		 *	[tlv] HT capabilities (standard, if STA enabled)
2050		 *	[tlv] HT information (standard, if STA enabled)
2051		 *	[tlv] WME (if configured and STA enabled)
2052		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2053		 *	[tlv] HT information (vendor OUI, if STA enabled)
2054		 *	[tlv] Atheros capabilities (if STA enabled)
2055		 *	[tlv] AppIE's (optional)
2056		 */
2057		m = ieee80211_getmgtframe(&frm,
2058			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2059			 sizeof(uint16_t)
2060		       + sizeof(uint16_t)
2061		       + sizeof(uint16_t)
2062		       + 2 + IEEE80211_RATE_SIZE
2063		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2064		       + sizeof(struct ieee80211_ie_htcap) + 4
2065		       + sizeof(struct ieee80211_ie_htinfo) + 4
2066		       + sizeof(struct ieee80211_wme_param)
2067		       + sizeof(struct ieee80211_ath_ie)
2068		       + (vap->iv_appie_assocresp != NULL ?
2069				vap->iv_appie_assocresp->ie_len : 0)
2070		);
2071		if (m == NULL)
2072			senderr(ENOMEM, is_tx_nobuf);
2073
2074		capinfo = getcapinfo(vap, bss->ni_chan);
2075		*(uint16_t *)frm = htole16(capinfo);
2076		frm += 2;
2077
2078		*(uint16_t *)frm = htole16(arg);	/* status */
2079		frm += 2;
2080
2081		if (arg == IEEE80211_STATUS_SUCCESS) {
2082			*(uint16_t *)frm = htole16(ni->ni_associd);
2083			IEEE80211_NODE_STAT(ni, tx_assoc);
2084		} else
2085			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2086		frm += 2;
2087
2088		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2089		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2090		/* NB: respond according to what we received */
2091		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2092			frm = ieee80211_add_htcap(frm, ni);
2093			frm = ieee80211_add_htinfo(frm, ni);
2094		}
2095		if ((vap->iv_flags & IEEE80211_F_WME) &&
2096		    ni->ni_ies.wme_ie != NULL)
2097			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2098		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2099			frm = ieee80211_add_htcap_vendor(frm, ni);
2100			frm = ieee80211_add_htinfo_vendor(frm, ni);
2101		}
2102		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2103			frm = ieee80211_add_ath(frm,
2104				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2105				ni->ni_ath_defkeyix);
2106		if (vap->iv_appie_assocresp != NULL)
2107			frm = add_appie(frm, vap->iv_appie_assocresp);
2108		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2109		break;
2110
2111	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2112		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2113		    "send station disassociate (reason %d)", arg);
2114		m = ieee80211_getmgtframe(&frm,
2115			ic->ic_headroom + sizeof(struct ieee80211_frame),
2116			sizeof(uint16_t));
2117		if (m == NULL)
2118			senderr(ENOMEM, is_tx_nobuf);
2119		*(uint16_t *)frm = htole16(arg);	/* reason */
2120		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2121
2122		IEEE80211_NODE_STAT(ni, tx_disassoc);
2123		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2124		break;
2125
2126	default:
2127		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2128		    "invalid mgmt frame type %u", type);
2129		senderr(EINVAL, is_tx_unknownmgt);
2130		/* NOTREACHED */
2131	}
2132
2133	/* NB: force non-ProbeResp frames to the highest queue */
2134	params.ibp_pri = WME_AC_VO;
2135	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2136	/* NB: we know all frames are unicast */
2137	params.ibp_try0 = bss->ni_txparms->maxretry;
2138	params.ibp_power = bss->ni_txpower;
2139	return ieee80211_mgmt_output(ni, m, type, &params);
2140bad:
2141	ieee80211_free_node(ni);
2142	return ret;
2143#undef senderr
2144#undef HTFLAGS
2145}
2146
2147/*
2148 * Return an mbuf with a probe response frame in it.
2149 * Space is left to prepend and 802.11 header at the
2150 * front but it's left to the caller to fill in.
2151 */
2152struct mbuf *
2153ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2154{
2155	struct ieee80211vap *vap = bss->ni_vap;
2156	struct ieee80211com *ic = bss->ni_ic;
2157	const struct ieee80211_rateset *rs;
2158	struct mbuf *m;
2159	uint16_t capinfo;
2160	uint8_t *frm;
2161
2162	/*
2163	 * probe response frame format
2164	 *	[8] time stamp
2165	 *	[2] beacon interval
2166	 *	[2] cabability information
2167	 *	[tlv] ssid
2168	 *	[tlv] supported rates
2169	 *	[tlv] parameter set (FH/DS)
2170	 *	[tlv] parameter set (IBSS)
2171	 *	[tlv] country (optional)
2172	 *	[3] power control (optional)
2173	 *	[5] channel switch announcement (CSA) (optional)
2174	 *	[tlv] extended rate phy (ERP)
2175	 *	[tlv] extended supported rates
2176	 *	[tlv] RSN (optional)
2177	 *	[tlv] HT capabilities
2178	 *	[tlv] HT information
2179	 *	[tlv] WPA (optional)
2180	 *	[tlv] WME (optional)
2181	 *	[tlv] Vendor OUI HT capabilities (optional)
2182	 *	[tlv] Vendor OUI HT information (optional)
2183	 *	[tlv] Atheros capabilities
2184	 *	[tlv] AppIE's (optional)
2185	 */
2186	m = ieee80211_getmgtframe(&frm,
2187		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2188		 8
2189	       + sizeof(uint16_t)
2190	       + sizeof(uint16_t)
2191	       + 2 + IEEE80211_NWID_LEN
2192	       + 2 + IEEE80211_RATE_SIZE
2193	       + 7	/* max(7,3) */
2194	       + IEEE80211_COUNTRY_MAX_SIZE
2195	       + 3
2196	       + sizeof(struct ieee80211_csa_ie)
2197	       + 3
2198	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2199	       + sizeof(struct ieee80211_ie_wpa)
2200	       + sizeof(struct ieee80211_ie_htcap)
2201	       + sizeof(struct ieee80211_ie_htinfo)
2202	       + sizeof(struct ieee80211_ie_wpa)
2203	       + sizeof(struct ieee80211_wme_param)
2204	       + 4 + sizeof(struct ieee80211_ie_htcap)
2205	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2206	       + sizeof(struct ieee80211_ath_ie)
2207	       + (vap->iv_appie_proberesp != NULL ?
2208			vap->iv_appie_proberesp->ie_len : 0)
2209	);
2210	if (m == NULL) {
2211		vap->iv_stats.is_tx_nobuf++;
2212		return NULL;
2213	}
2214
2215	memset(frm, 0, 8);	/* timestamp should be filled later */
2216	frm += 8;
2217	*(uint16_t *)frm = htole16(bss->ni_intval);
2218	frm += 2;
2219	capinfo = getcapinfo(vap, bss->ni_chan);
2220	*(uint16_t *)frm = htole16(capinfo);
2221	frm += 2;
2222
2223	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2224	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2225	frm = ieee80211_add_rates(frm, rs);
2226
2227	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2228		*frm++ = IEEE80211_ELEMID_FHPARMS;
2229		*frm++ = 5;
2230		*frm++ = bss->ni_fhdwell & 0x00ff;
2231		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2232		*frm++ = IEEE80211_FH_CHANSET(
2233		    ieee80211_chan2ieee(ic, bss->ni_chan));
2234		*frm++ = IEEE80211_FH_CHANPAT(
2235		    ieee80211_chan2ieee(ic, bss->ni_chan));
2236		*frm++ = bss->ni_fhindex;
2237	} else {
2238		*frm++ = IEEE80211_ELEMID_DSPARMS;
2239		*frm++ = 1;
2240		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2241	}
2242
2243	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2244		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2245		*frm++ = 2;
2246		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2247	}
2248	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2249	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2250		frm = ieee80211_add_countryie(frm, ic);
2251	if (vap->iv_flags & IEEE80211_F_DOTH) {
2252		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2253			frm = ieee80211_add_powerconstraint(frm, vap);
2254		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2255			frm = ieee80211_add_csa(frm, vap);
2256	}
2257	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2258		frm = ieee80211_add_erp(frm, ic);
2259	frm = ieee80211_add_xrates(frm, rs);
2260	if (vap->iv_flags & IEEE80211_F_WPA2) {
2261		if (vap->iv_rsn_ie != NULL)
2262			frm = add_ie(frm, vap->iv_rsn_ie);
2263		/* XXX else complain? */
2264	}
2265	/*
2266	 * NB: legacy 11b clients do not get certain ie's.
2267	 *     The caller identifies such clients by passing
2268	 *     a token in legacy to us.  Could expand this to be
2269	 *     any legacy client for stuff like HT ie's.
2270	 */
2271	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2272	    legacy != IEEE80211_SEND_LEGACY_11B) {
2273		frm = ieee80211_add_htcap(frm, bss);
2274		frm = ieee80211_add_htinfo(frm, bss);
2275	}
2276	if (vap->iv_flags & IEEE80211_F_WPA1) {
2277		if (vap->iv_wpa_ie != NULL)
2278			frm = add_ie(frm, vap->iv_wpa_ie);
2279		/* XXX else complain? */
2280	}
2281	if (vap->iv_flags & IEEE80211_F_WME)
2282		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2283	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2284	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
2285	    legacy != IEEE80211_SEND_LEGACY_11B) {
2286		frm = ieee80211_add_htcap_vendor(frm, bss);
2287		frm = ieee80211_add_htinfo_vendor(frm, bss);
2288	}
2289	if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B)
2290		frm = ieee80211_add_ath(frm, bss->ni_ath_flags,
2291			bss->ni_ath_defkeyix);
2292	if (vap->iv_appie_proberesp != NULL)
2293		frm = add_appie(frm, vap->iv_appie_proberesp);
2294	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2295
2296	return m;
2297}
2298
2299/*
2300 * Send a probe response frame to the specified mac address.
2301 * This does not go through the normal mgt frame api so we
2302 * can specify the destination address and re-use the bss node
2303 * for the sta reference.
2304 */
2305int
2306ieee80211_send_proberesp(struct ieee80211vap *vap,
2307	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2308{
2309	struct ieee80211_node *bss = vap->iv_bss;
2310	struct ieee80211com *ic = vap->iv_ic;
2311	struct ieee80211_frame *wh;
2312	struct mbuf *m;
2313
2314	if (vap->iv_state == IEEE80211_S_CAC) {
2315		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2316		    "block %s frame in CAC state", "probe response");
2317		vap->iv_stats.is_tx_badstate++;
2318		return EIO;		/* XXX */
2319	}
2320
2321	/*
2322	 * Hold a reference on the node so it doesn't go away until after
2323	 * the xmit is complete all the way in the driver.  On error we
2324	 * will remove our reference.
2325	 */
2326	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2327	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2328	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2329	    ieee80211_node_refcnt(bss)+1);
2330	ieee80211_ref_node(bss);
2331
2332	m = ieee80211_alloc_proberesp(bss, legacy);
2333	if (m == NULL) {
2334		ieee80211_free_node(bss);
2335		return ENOMEM;
2336	}
2337
2338	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2339	KASSERT(m != NULL, ("no room for header"));
2340
2341	wh = mtod(m, struct ieee80211_frame *);
2342	ieee80211_send_setup(bss, wh,
2343	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2344	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2345	/* XXX power management? */
2346
2347	M_WME_SETAC(m, WME_AC_BE);
2348
2349	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2350	    "send probe resp on channel %u to %s%s\n",
2351	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2352	    legacy ? " <legacy>" : "");
2353	IEEE80211_NODE_STAT(bss, tx_mgmt);
2354
2355	return ic->ic_raw_xmit(bss, m, NULL);
2356}
2357
2358/*
2359 * Allocate and build a RTS (Request To Send) control frame.
2360 */
2361struct mbuf *
2362ieee80211_alloc_rts(struct ieee80211com *ic,
2363	const uint8_t ra[IEEE80211_ADDR_LEN],
2364	const uint8_t ta[IEEE80211_ADDR_LEN],
2365	uint16_t dur)
2366{
2367	struct ieee80211_frame_rts *rts;
2368	struct mbuf *m;
2369
2370	/* XXX honor ic_headroom */
2371	m = m_gethdr(M_DONTWAIT, MT_DATA);
2372	if (m != NULL) {
2373		rts = mtod(m, struct ieee80211_frame_rts *);
2374		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2375			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2376		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2377		*(u_int16_t *)rts->i_dur = htole16(dur);
2378		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2379		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2380
2381		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2382	}
2383	return m;
2384}
2385
2386/*
2387 * Allocate and build a CTS (Clear To Send) control frame.
2388 */
2389struct mbuf *
2390ieee80211_alloc_cts(struct ieee80211com *ic,
2391	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2392{
2393	struct ieee80211_frame_cts *cts;
2394	struct mbuf *m;
2395
2396	/* XXX honor ic_headroom */
2397	m = m_gethdr(M_DONTWAIT, MT_DATA);
2398	if (m != NULL) {
2399		cts = mtod(m, struct ieee80211_frame_cts *);
2400		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2401			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2402		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2403		*(u_int16_t *)cts->i_dur = htole16(dur);
2404		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2405
2406		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2407	}
2408	return m;
2409}
2410
2411static void
2412ieee80211_tx_mgt_timeout(void *arg)
2413{
2414	struct ieee80211_node *ni = arg;
2415	struct ieee80211vap *vap = ni->ni_vap;
2416
2417	if (vap->iv_state != IEEE80211_S_INIT &&
2418	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2419		/*
2420		 * NB: it's safe to specify a timeout as the reason here;
2421		 *     it'll only be used in the right state.
2422		 */
2423		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2424			IEEE80211_SCAN_FAIL_TIMEOUT);
2425	}
2426}
2427
2428static void
2429ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2430{
2431	struct ieee80211vap *vap = ni->ni_vap;
2432	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2433
2434	/*
2435	 * Frame transmit completed; arrange timer callback.  If
2436	 * transmit was successfuly we wait for response.  Otherwise
2437	 * we arrange an immediate callback instead of doing the
2438	 * callback directly since we don't know what state the driver
2439	 * is in (e.g. what locks it is holding).  This work should
2440	 * not be too time-critical and not happen too often so the
2441	 * added overhead is acceptable.
2442	 *
2443	 * XXX what happens if !acked but response shows up before callback?
2444	 */
2445	if (vap->iv_state == ostate)
2446		callout_reset(&vap->iv_mgtsend,
2447			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2448			ieee80211_tx_mgt_timeout, ni);
2449}
2450
2451static void
2452ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2453	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2454{
2455	struct ieee80211vap *vap = ni->ni_vap;
2456	struct ieee80211com *ic = ni->ni_ic;
2457	struct ieee80211_rateset *rs = &ni->ni_rates;
2458	uint16_t capinfo;
2459
2460	/*
2461	 * beacon frame format
2462	 *	[8] time stamp
2463	 *	[2] beacon interval
2464	 *	[2] cabability information
2465	 *	[tlv] ssid
2466	 *	[tlv] supported rates
2467	 *	[3] parameter set (DS)
2468	 *	[8] CF parameter set (optional)
2469	 *	[tlv] parameter set (IBSS/TIM)
2470	 *	[tlv] country (optional)
2471	 *	[3] power control (optional)
2472	 *	[5] channel switch announcement (CSA) (optional)
2473	 *	[tlv] extended rate phy (ERP)
2474	 *	[tlv] extended supported rates
2475	 *	[tlv] RSN parameters
2476	 *	[tlv] HT capabilities
2477	 *	[tlv] HT information
2478	 * XXX Vendor-specific OIDs (e.g. Atheros)
2479	 *	[tlv] WPA parameters
2480	 *	[tlv] WME parameters
2481	 *	[tlv] Vendor OUI HT capabilities (optional)
2482	 *	[tlv] Vendor OUI HT information (optional)
2483	 *	[tlv] application data (optional)
2484	 */
2485
2486	memset(bo, 0, sizeof(*bo));
2487
2488	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2489	frm += 8;
2490	*(uint16_t *)frm = htole16(ni->ni_intval);
2491	frm += 2;
2492	capinfo = getcapinfo(vap, ni->ni_chan);
2493	bo->bo_caps = (uint16_t *)frm;
2494	*(uint16_t *)frm = htole16(capinfo);
2495	frm += 2;
2496	*frm++ = IEEE80211_ELEMID_SSID;
2497	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2498		*frm++ = ni->ni_esslen;
2499		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2500		frm += ni->ni_esslen;
2501	} else
2502		*frm++ = 0;
2503	frm = ieee80211_add_rates(frm, rs);
2504	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2505		*frm++ = IEEE80211_ELEMID_DSPARMS;
2506		*frm++ = 1;
2507		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2508	}
2509	if (ic->ic_flags & IEEE80211_F_PCF) {
2510		bo->bo_cfp = frm;
2511		frm = ieee80211_add_cfparms(frm, ic);
2512	}
2513	bo->bo_tim = frm;
2514	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2515		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2516		*frm++ = 2;
2517		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2518		bo->bo_tim_len = 0;
2519	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2520		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2521
2522		tie->tim_ie = IEEE80211_ELEMID_TIM;
2523		tie->tim_len = 4;	/* length */
2524		tie->tim_count = 0;	/* DTIM count */
2525		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2526		tie->tim_bitctl = 0;	/* bitmap control */
2527		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2528		frm += sizeof(struct ieee80211_tim_ie);
2529		bo->bo_tim_len = 1;
2530	}
2531	bo->bo_tim_trailer = frm;
2532	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2533	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2534		frm = ieee80211_add_countryie(frm, ic);
2535	if (vap->iv_flags & IEEE80211_F_DOTH) {
2536		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2537			frm = ieee80211_add_powerconstraint(frm, vap);
2538		bo->bo_csa = frm;
2539		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2540			frm = ieee80211_add_csa(frm, vap);
2541	} else
2542		bo->bo_csa = frm;
2543	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2544		bo->bo_erp = frm;
2545		frm = ieee80211_add_erp(frm, ic);
2546	}
2547	frm = ieee80211_add_xrates(frm, rs);
2548	if (vap->iv_flags & IEEE80211_F_WPA2) {
2549		if (vap->iv_rsn_ie != NULL)
2550			frm = add_ie(frm, vap->iv_rsn_ie);
2551		/* XXX else complain */
2552	}
2553	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2554		frm = ieee80211_add_htcap(frm, ni);
2555		bo->bo_htinfo = frm;
2556		frm = ieee80211_add_htinfo(frm, ni);
2557	}
2558	if (vap->iv_flags & IEEE80211_F_WPA1) {
2559		if (vap->iv_wpa_ie != NULL)
2560			frm = add_ie(frm, vap->iv_wpa_ie);
2561		/* XXX else complain */
2562	}
2563	if (vap->iv_flags & IEEE80211_F_WME) {
2564		bo->bo_wme = frm;
2565		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2566	}
2567	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2568	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2569		frm = ieee80211_add_htcap_vendor(frm, ni);
2570		frm = ieee80211_add_htinfo_vendor(frm, ni);
2571	}
2572	if (vap->iv_appie_beacon != NULL) {
2573		bo->bo_appie = frm;
2574		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2575		frm = add_appie(frm, vap->iv_appie_beacon);
2576	}
2577	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2578	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2579	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2580}
2581
2582/*
2583 * Allocate a beacon frame and fillin the appropriate bits.
2584 */
2585struct mbuf *
2586ieee80211_beacon_alloc(struct ieee80211_node *ni,
2587	struct ieee80211_beacon_offsets *bo)
2588{
2589	struct ieee80211vap *vap = ni->ni_vap;
2590	struct ieee80211com *ic = ni->ni_ic;
2591	struct ifnet *ifp = vap->iv_ifp;
2592	struct ieee80211_frame *wh;
2593	struct mbuf *m;
2594	int pktlen;
2595	uint8_t *frm;
2596
2597	/*
2598	 * beacon frame format
2599	 *	[8] time stamp
2600	 *	[2] beacon interval
2601	 *	[2] cabability information
2602	 *	[tlv] ssid
2603	 *	[tlv] supported rates
2604	 *	[3] parameter set (DS)
2605	 *	[8] CF parameter set (optional)
2606	 *	[tlv] parameter set (IBSS/TIM)
2607	 *	[tlv] country (optional)
2608	 *	[3] power control (optional)
2609	 *	[5] channel switch announcement (CSA) (optional)
2610	 *	[tlv] extended rate phy (ERP)
2611	 *	[tlv] extended supported rates
2612	 *	[tlv] RSN parameters
2613	 *	[tlv] HT capabilities
2614	 *	[tlv] HT information
2615	 *	[tlv] Vendor OUI HT capabilities (optional)
2616	 *	[tlv] Vendor OUI HT information (optional)
2617	 * XXX Vendor-specific OIDs (e.g. Atheros)
2618	 *	[tlv] WPA parameters
2619	 *	[tlv] WME parameters
2620	 *	[tlv] application data (optional)
2621	 * NB: we allocate the max space required for the TIM bitmap.
2622	 * XXX how big is this?
2623	 */
2624	pktlen =   8					/* time stamp */
2625		 + sizeof(uint16_t)			/* beacon interval */
2626		 + sizeof(uint16_t)			/* capabilities */
2627		 + 2 + ni->ni_esslen			/* ssid */
2628	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2629	         + 2 + 1				/* DS parameters */
2630		 + 2 + 6				/* CF parameters */
2631		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2632		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2633		 + 2 + 1				/* power control */
2634	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2635		 + 2 + 1				/* ERP */
2636	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2637		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2638			2*sizeof(struct ieee80211_ie_wpa) : 0)
2639		 /* XXX conditional? */
2640		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2641		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2642		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2643			sizeof(struct ieee80211_wme_param) : 0)
2644		 + IEEE80211_MAX_APPIE
2645		 ;
2646	m = ieee80211_getmgtframe(&frm,
2647		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2648	if (m == NULL) {
2649		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2650			"%s: cannot get buf; size %u\n", __func__, pktlen);
2651		vap->iv_stats.is_tx_nobuf++;
2652		return NULL;
2653	}
2654	ieee80211_beacon_construct(m, frm, bo, ni);
2655
2656	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2657	KASSERT(m != NULL, ("no space for 802.11 header?"));
2658	wh = mtod(m, struct ieee80211_frame *);
2659	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2660	    IEEE80211_FC0_SUBTYPE_BEACON;
2661	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2662	*(uint16_t *)wh->i_dur = 0;
2663	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2664	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2665	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2666	*(uint16_t *)wh->i_seq = 0;
2667
2668	return m;
2669}
2670
2671/*
2672 * Update the dynamic parts of a beacon frame based on the current state.
2673 */
2674int
2675ieee80211_beacon_update(struct ieee80211_node *ni,
2676	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2677{
2678	struct ieee80211vap *vap = ni->ni_vap;
2679	struct ieee80211com *ic = ni->ni_ic;
2680	int len_changed = 0;
2681	uint16_t capinfo;
2682
2683	IEEE80211_LOCK(ic);
2684	/*
2685	 * Handle 11h channel change when we've reached the count.
2686	 * We must recalculate the beacon frame contents to account
2687	 * for the new channel.  Note we do this only for the first
2688	 * vap that reaches this point; subsequent vaps just update
2689	 * their beacon state to reflect the recalculated channel.
2690	 */
2691	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2692	    vap->iv_csa_count == ic->ic_csa_count) {
2693		vap->iv_csa_count = 0;
2694		/*
2695		 * Effect channel change before reconstructing the beacon
2696		 * frame contents as many places reference ni_chan.
2697		 */
2698		if (ic->ic_csa_newchan != NULL)
2699			ieee80211_csa_completeswitch(ic);
2700		/*
2701		 * NB: ieee80211_beacon_construct clears all pending
2702		 * updates in bo_flags so we don't need to explicitly
2703		 * clear IEEE80211_BEACON_CSA.
2704		 */
2705		ieee80211_beacon_construct(m,
2706		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2707
2708		/* XXX do WME aggressive mode processing? */
2709		IEEE80211_UNLOCK(ic);
2710		return 1;		/* just assume length changed */
2711	}
2712
2713	/* XXX faster to recalculate entirely or just changes? */
2714	capinfo = getcapinfo(vap, ni->ni_chan);
2715	*bo->bo_caps = htole16(capinfo);
2716
2717	if (vap->iv_flags & IEEE80211_F_WME) {
2718		struct ieee80211_wme_state *wme = &ic->ic_wme;
2719
2720		/*
2721		 * Check for agressive mode change.  When there is
2722		 * significant high priority traffic in the BSS
2723		 * throttle back BE traffic by using conservative
2724		 * parameters.  Otherwise BE uses agressive params
2725		 * to optimize performance of legacy/non-QoS traffic.
2726		 */
2727		if (wme->wme_flags & WME_F_AGGRMODE) {
2728			if (wme->wme_hipri_traffic >
2729			    wme->wme_hipri_switch_thresh) {
2730				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2731				    "%s: traffic %u, disable aggressive mode\n",
2732				    __func__, wme->wme_hipri_traffic);
2733				wme->wme_flags &= ~WME_F_AGGRMODE;
2734				ieee80211_wme_updateparams_locked(vap);
2735				wme->wme_hipri_traffic =
2736					wme->wme_hipri_switch_hysteresis;
2737			} else
2738				wme->wme_hipri_traffic = 0;
2739		} else {
2740			if (wme->wme_hipri_traffic <=
2741			    wme->wme_hipri_switch_thresh) {
2742				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2743				    "%s: traffic %u, enable aggressive mode\n",
2744				    __func__, wme->wme_hipri_traffic);
2745				wme->wme_flags |= WME_F_AGGRMODE;
2746				ieee80211_wme_updateparams_locked(vap);
2747				wme->wme_hipri_traffic = 0;
2748			} else
2749				wme->wme_hipri_traffic =
2750					wme->wme_hipri_switch_hysteresis;
2751		}
2752		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2753			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2754			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2755		}
2756	}
2757
2758	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2759		ieee80211_ht_update_beacon(vap, bo);
2760		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2761	}
2762
2763	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
2764		struct ieee80211_tim_ie *tie =
2765			(struct ieee80211_tim_ie *) bo->bo_tim;
2766		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2767			u_int timlen, timoff, i;
2768			/*
2769			 * ATIM/DTIM needs updating.  If it fits in the
2770			 * current space allocated then just copy in the
2771			 * new bits.  Otherwise we need to move any trailing
2772			 * data to make room.  Note that we know there is
2773			 * contiguous space because ieee80211_beacon_allocate
2774			 * insures there is space in the mbuf to write a
2775			 * maximal-size virtual bitmap (based on iv_max_aid).
2776			 */
2777			/*
2778			 * Calculate the bitmap size and offset, copy any
2779			 * trailer out of the way, and then copy in the
2780			 * new bitmap and update the information element.
2781			 * Note that the tim bitmap must contain at least
2782			 * one byte and any offset must be even.
2783			 */
2784			if (vap->iv_ps_pending != 0) {
2785				timoff = 128;		/* impossibly large */
2786				for (i = 0; i < vap->iv_tim_len; i++)
2787					if (vap->iv_tim_bitmap[i]) {
2788						timoff = i &~ 1;
2789						break;
2790					}
2791				KASSERT(timoff != 128, ("tim bitmap empty!"));
2792				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2793					if (vap->iv_tim_bitmap[i])
2794						break;
2795				timlen = 1 + (i - timoff);
2796			} else {
2797				timoff = 0;
2798				timlen = 1;
2799			}
2800			if (timlen != bo->bo_tim_len) {
2801				/* copy up/down trailer */
2802				int adjust = tie->tim_bitmap+timlen
2803					   - bo->bo_tim_trailer;
2804				ovbcopy(bo->bo_tim_trailer,
2805				    bo->bo_tim_trailer+adjust,
2806				    bo->bo_tim_trailer_len);
2807				bo->bo_tim_trailer += adjust;
2808				bo->bo_erp += adjust;
2809				bo->bo_htinfo += adjust;
2810				bo->bo_appie += adjust;
2811				bo->bo_wme += adjust;
2812				bo->bo_csa += adjust;
2813				bo->bo_tim_len = timlen;
2814
2815				/* update information element */
2816				tie->tim_len = 3 + timlen;
2817				tie->tim_bitctl = timoff;
2818				len_changed = 1;
2819			}
2820			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2821				bo->bo_tim_len);
2822
2823			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2824
2825			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2826				"%s: TIM updated, pending %u, off %u, len %u\n",
2827				__func__, vap->iv_ps_pending, timoff, timlen);
2828		}
2829		/* count down DTIM period */
2830		if (tie->tim_count == 0)
2831			tie->tim_count = tie->tim_period - 1;
2832		else
2833			tie->tim_count--;
2834		/* update state for buffered multicast frames on DTIM */
2835		if (mcast && tie->tim_count == 0)
2836			tie->tim_bitctl |= 1;
2837		else
2838			tie->tim_bitctl &= ~1;
2839		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2840			struct ieee80211_csa_ie *csa =
2841			    (struct ieee80211_csa_ie *) bo->bo_csa;
2842
2843			/*
2844			 * Insert or update CSA ie.  If we're just starting
2845			 * to count down to the channel switch then we need
2846			 * to insert the CSA ie.  Otherwise we just need to
2847			 * drop the count.  The actual change happens above
2848			 * when the vap's count reaches the target count.
2849			 */
2850			if (vap->iv_csa_count == 0) {
2851				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2852				bo->bo_erp += sizeof(*csa);
2853				bo->bo_wme += sizeof(*csa);
2854				bo->bo_appie += sizeof(*csa);
2855				bo->bo_csa_trailer_len += sizeof(*csa);
2856				bo->bo_tim_trailer_len += sizeof(*csa);
2857				m->m_len += sizeof(*csa);
2858				m->m_pkthdr.len += sizeof(*csa);
2859
2860				ieee80211_add_csa(bo->bo_csa, vap);
2861			} else
2862				csa->csa_count--;
2863			vap->iv_csa_count++;
2864			/* NB: don't clear IEEE80211_BEACON_CSA */
2865		}
2866		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2867			/*
2868			 * ERP element needs updating.
2869			 */
2870			(void) ieee80211_add_erp(bo->bo_erp, ic);
2871			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2872		}
2873	}
2874	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2875		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2876		int aielen;
2877		uint8_t *frm;
2878
2879		aielen = 0;
2880		if (aie != NULL)
2881			aielen += aie->ie_len;
2882		if (aielen != bo->bo_appie_len) {
2883			/* copy up/down trailer */
2884			int adjust = aielen - bo->bo_appie_len;
2885			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2886				bo->bo_tim_trailer_len);
2887			bo->bo_tim_trailer += adjust;
2888			bo->bo_appie += adjust;
2889			bo->bo_appie_len = aielen;
2890
2891			len_changed = 1;
2892		}
2893		frm = bo->bo_appie;
2894		if (aie != NULL)
2895			frm  = add_appie(frm, aie);
2896		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2897	}
2898	IEEE80211_UNLOCK(ic);
2899
2900	return len_changed;
2901}
2902