ieee80211_output.c revision 178354
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 178354 2008-04-20 20:35:46Z sam $");
29
30#include "opt_inet.h"
31#include "opt_wlan.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/mbuf.h>
36#include <sys/kernel.h>
37#include <sys/endian.h>
38
39#include <sys/socket.h>
40
41#include <net/bpf.h>
42#include <net/ethernet.h>
43#include <net/if.h>
44#include <net/if_llc.h>
45#include <net/if_media.h>
46#include <net/if_vlan_var.h>
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_regdomain.h>
50#include <net80211/ieee80211_wds.h>
51
52#ifdef INET
53#include <netinet/in.h>
54#include <netinet/if_ether.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#endif
58
59#define	ETHER_HEADER_COPY(dst, src) \
60	memcpy(dst, src, sizeof(struct ether_header))
61
62static struct mbuf *ieee80211_encap_fastframe(struct ieee80211vap *,
63	struct mbuf *m1, const struct ether_header *eh1,
64	struct mbuf *m2, const struct ether_header *eh2);
65static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
66	u_int hdrsize, u_int ciphdrsize, u_int mtu);
67static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
68
69#ifdef IEEE80211_DEBUG
70/*
71 * Decide if an outbound management frame should be
72 * printed when debugging is enabled.  This filters some
73 * of the less interesting frames that come frequently
74 * (e.g. beacons).
75 */
76static __inline int
77doprint(struct ieee80211vap *vap, int subtype)
78{
79	switch (subtype) {
80	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
81		return (vap->iv_opmode == IEEE80211_M_IBSS);
82	}
83	return 1;
84}
85#endif
86
87/*
88 * Start method for vap's.  All packets from the stack come
89 * through here.  We handle common processing of the packets
90 * before dispatching them to the underlying device.
91 */
92void
93ieee80211_start(struct ifnet *ifp)
94{
95#define	IS_DWDS(vap) \
96	(vap->iv_opmode == IEEE80211_M_WDS && \
97	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
98	struct ieee80211vap *vap = ifp->if_softc;
99	struct ieee80211com *ic = vap->iv_ic;
100	struct ifnet *parent = ic->ic_ifp;
101	struct ieee80211_node *ni;
102	struct mbuf *m;
103	struct ether_header *eh;
104	int error;
105
106	/* NB: parent must be up and running */
107	if (!IFNET_IS_UP_RUNNING(parent)) {
108		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
109		    "%s: ignore queue, parent %s not up+running\n",
110		    __func__, parent->if_xname);
111		/* XXX stat */
112		return;
113	}
114	if (vap->iv_state == IEEE80211_S_SLEEP) {
115		/*
116		 * In power save, wakeup device for transmit.
117		 */
118		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
119		return;
120	}
121	/*
122	 * No data frames go out unless we're running.
123	 * Note in particular this covers CAC and CSA
124	 * states (though maybe we should check muting
125	 * for CSA).
126	 */
127	if (vap->iv_state != IEEE80211_S_RUN) {
128		IEEE80211_LOCK(ic);
129		/* re-check under the com lock to avoid races */
130		if (vap->iv_state != IEEE80211_S_RUN) {
131			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
132			    "%s: ignore queue, in %s state\n",
133			    __func__, ieee80211_state_name[vap->iv_state]);
134			vap->iv_stats.is_tx_badstate++;
135			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
136			IEEE80211_UNLOCK(ic);
137			return;
138		}
139		IEEE80211_UNLOCK(ic);
140	}
141	for (;;) {
142		IFQ_DEQUEUE(&ifp->if_snd, m);
143		if (m == NULL)
144			break;
145		/*
146		 * Sanitize mbuf flags for net80211 use.  We cannot
147		 * clear M_PWR_SAV because this may be set for frames
148		 * that are re-submitted from the power save queue.
149		 *
150		 * NB: This must be done before ieee80211_classify as
151		 *     it marks EAPOL in frames with M_EAPOL.
152		 */
153		m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
154		/*
155		 * Cancel any background scan.
156		 */
157		if (ic->ic_flags & IEEE80211_F_SCAN)
158			ieee80211_cancel_anyscan(vap);
159		/*
160		 * Find the node for the destination so we can do
161		 * things like power save and fast frames aggregation.
162		 *
163		 * NB: past this point various code assumes the first
164		 *     mbuf has the 802.3 header present (and contiguous).
165		 */
166		ni = NULL;
167		if (m->m_len < sizeof(struct ether_header) &&
168		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
169			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
170			    "discard frame, %s\n", "m_pullup failed");
171			vap->iv_stats.is_tx_nobuf++;	/* XXX */
172			ifp->if_oerrors++;
173			continue;
174		}
175		eh = mtod(m, struct ether_header *);
176		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
177			if (IS_DWDS(vap)) {
178				/*
179				 * Only unicast frames from the above go out
180				 * DWDS vaps; multicast frames are handled by
181				 * dispatching the frame as it comes through
182				 * the AP vap (see below).
183				 */
184				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
185				    eh->ether_dhost, "mcast", "%s", "on DWDS");
186				vap->iv_stats.is_dwds_mcast++;
187				m_freem(m);
188				continue;
189			}
190			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
191				/*
192				 * Spam DWDS vap's w/ multicast traffic.
193				 */
194				/* XXX only if dwds in use? */
195				ieee80211_dwds_mcast(vap, m);
196			}
197		}
198		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
199		if (ni == NULL) {
200			/* NB: ieee80211_find_txnode does stat+msg */
201			ifp->if_oerrors++;
202			m_freem(m);
203			continue;
204		}
205		/* XXX AUTH'd */
206		if (ni->ni_associd == 0) {
207			/*
208			 * Destination is not associated; must special
209			 * case DWDS where we point iv_bss at the node
210			 * for the associated station.
211			 * XXX adhoc mode?
212			 */
213			if (ni != vap->iv_bss || IS_DWDS(vap)) {
214				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
215				    eh->ether_dhost, NULL,
216				    "sta not associated (type 0x%04x)",
217				    htons(eh->ether_type));
218				vap->iv_stats.is_tx_notassoc++;
219				ifp->if_oerrors++;
220				m_freem(m);
221				ieee80211_free_node(ni);
222				continue;
223			}
224		}
225		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
226		    (m->m_flags & M_PWR_SAV) == 0) {
227			/*
228			 * Station in power save mode; pass the frame
229			 * to the 802.11 layer and continue.  We'll get
230			 * the frame back when the time is right.
231			 * XXX lose WDS vap linkage?
232			 */
233			ieee80211_pwrsave(ni, m);
234			ieee80211_free_node(ni);
235			continue;
236		}
237		/* calculate priority so drivers can find the tx queue */
238		if (ieee80211_classify(ni, m)) {
239			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
240			    eh->ether_dhost, NULL,
241			    "%s", "classification failure");
242			vap->iv_stats.is_tx_classify++;
243			ifp->if_oerrors++;
244			m_freem(m);
245			ieee80211_free_node(ni);
246			continue;
247		}
248
249		BPF_MTAP(ifp, m);		/* 802.11 tx path */
250
251		/*
252		 * XXX When ni is associated with a WDS link then
253		 * the vap will be the WDS vap but ni_vap will point
254		 * to the ap vap the station associated to.  Once
255		 * we handoff the packet to the driver the callback
256		 * to ieee80211_encap won't be able to tell if the
257		 * packet should be encapsulated for WDS or not (e.g.
258		 * multicast frames will not be handled correctly).
259		 * We hack this by marking the mbuf so ieee80211_encap
260		 * can do the right thing.
261		 */
262		if (vap->iv_opmode == IEEE80211_M_WDS)
263			m->m_flags |= M_WDS;
264		else
265			m->m_flags &= ~M_WDS;
266
267		/*
268		 * Stash the node pointer and hand the frame off to
269		 * the underlying device.  Note that we do this after
270		 * any call to ieee80211_dwds_mcast because that code
271		 * uses any existing value for rcvif.
272		 */
273		m->m_pkthdr.rcvif = (void *)ni;
274
275		/* XXX defer if_start calls? */
276		IFQ_HANDOFF(parent, m, error);
277		if (error != 0) {
278			/* NB: IFQ_HANDOFF reclaims mbuf */
279			ieee80211_free_node(ni);
280		} else {
281			ifp->if_opackets++;
282		}
283		ic->ic_lastdata = ticks;
284	}
285#undef IS_DWDS
286}
287
288/*
289 * 802.11 output routine. This is (currently) used only to
290 * connect bpf write calls to the 802.11 layer for injecting
291 * raw 802.11 frames.  Note we locate the ieee80211com from
292 * the ifnet using a spare field setup at attach time.  This
293 * will go away when the virtual ap support comes in.
294 */
295int
296ieee80211_output(struct ifnet *ifp, struct mbuf *m,
297	struct sockaddr *dst, struct rtentry *rt0)
298{
299#define senderr(e) do { error = (e); goto bad;} while (0)
300	struct ieee80211_node *ni = NULL;
301	struct ieee80211vap *vap;
302	struct ieee80211_frame *wh;
303	int error;
304
305	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
306		/*
307		 * Short-circuit requests if the vap is marked OACTIVE
308		 * as this is used when tearing down state to indicate
309		 * the vap may be gone.  This can also happen because a
310		 * packet came down through ieee80211_start before the
311		 * vap entered RUN state in which case it's also ok to
312		 * just drop the frame.  This should not be necessary
313		 * but callers of if_output don't check OACTIVE.
314		 */
315		senderr(ENETDOWN);
316	}
317	vap = ifp->if_softc;
318	/*
319	 * Hand to the 802.3 code if not tagged as
320	 * a raw 802.11 frame.
321	 */
322	if (dst->sa_family != AF_IEEE80211)
323		return vap->iv_output(ifp, m, dst, rt0);
324#ifdef MAC
325	error = mac_check_ifnet_transmit(ifp, m);
326	if (error)
327		senderr(error);
328#endif
329	if (ifp->if_flags & IFF_MONITOR)
330		senderr(ENETDOWN);
331	if (!IFNET_IS_UP_RUNNING(ifp))
332		senderr(ENETDOWN);
333	if (vap->iv_state == IEEE80211_S_CAC) {
334		IEEE80211_DPRINTF(vap,
335		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
336		    "block %s frame in CAC state\n", "raw data");
337		vap->iv_stats.is_tx_badstate++;
338		senderr(EIO);		/* XXX */
339	}
340	/* XXX bypass bridge, pfil, carp, etc. */
341
342	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
343		senderr(EIO);	/* XXX */
344	wh = mtod(m, struct ieee80211_frame *);
345	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
346	    IEEE80211_FC0_VERSION_0)
347		senderr(EIO);	/* XXX */
348
349	/* locate destination node */
350	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
351	case IEEE80211_FC1_DIR_NODS:
352	case IEEE80211_FC1_DIR_FROMDS:
353		ni = ieee80211_find_txnode(vap, wh->i_addr1);
354		break;
355	case IEEE80211_FC1_DIR_TODS:
356	case IEEE80211_FC1_DIR_DSTODS:
357		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
358			senderr(EIO);	/* XXX */
359		ni = ieee80211_find_txnode(vap, wh->i_addr3);
360		break;
361	default:
362		senderr(EIO);	/* XXX */
363	}
364	if (ni == NULL) {
365		/*
366		 * Permit packets w/ bpf params through regardless
367		 * (see below about sa_len).
368		 */
369		if (dst->sa_len == 0)
370			senderr(EHOSTUNREACH);
371		ni = ieee80211_ref_node(vap->iv_bss);
372	}
373
374	/*
375	 * Sanitize mbuf for net80211 flags leaked from above.
376	 *
377	 * NB: This must be done before ieee80211_classify as
378	 *     it marks EAPOL in frames with M_EAPOL.
379	 */
380	m->m_flags &= ~M_80211_TX;
381
382	/* calculate priority so drivers can find the tx queue */
383	/* XXX assumes an 802.3 frame */
384	if (ieee80211_classify(ni, m))
385		senderr(EIO);		/* XXX */
386
387	BPF_MTAP(ifp, m);
388
389	/*
390	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
391	 * present by setting the sa_len field of the sockaddr (yes,
392	 * this is a hack).
393	 * NB: we assume sa_data is suitably aligned to cast.
394	 */
395	return vap->iv_ic->ic_raw_xmit(ni, m,
396	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
397		dst->sa_data : NULL));
398bad:
399	if (m != NULL)
400		m_freem(m);
401	if (ni != NULL)
402		ieee80211_free_node(ni);
403	return error;
404#undef senderr
405}
406
407/*
408 * Set the direction field and address fields of an outgoing
409 * non-QoS frame.  Note this should be called early on in
410 * constructing a frame as it sets i_fc[1]; other bits can
411 * then be or'd in.
412 */
413static void
414ieee80211_send_setup(
415	struct ieee80211_node *ni,
416	struct ieee80211_frame *wh,
417	int type,
418	const uint8_t sa[IEEE80211_ADDR_LEN],
419	const uint8_t da[IEEE80211_ADDR_LEN],
420	const uint8_t bssid[IEEE80211_ADDR_LEN])
421{
422#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
423
424	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
425	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
426		struct ieee80211vap *vap = ni->ni_vap;
427
428		switch (vap->iv_opmode) {
429		case IEEE80211_M_STA:
430			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
431			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
432			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
433			IEEE80211_ADDR_COPY(wh->i_addr3, da);
434			break;
435		case IEEE80211_M_IBSS:
436		case IEEE80211_M_AHDEMO:
437			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
438			IEEE80211_ADDR_COPY(wh->i_addr1, da);
439			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
440			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
441			break;
442		case IEEE80211_M_HOSTAP:
443			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
444			IEEE80211_ADDR_COPY(wh->i_addr1, da);
445			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
446			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
447			break;
448		case IEEE80211_M_WDS:
449			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
450			IEEE80211_ADDR_COPY(wh->i_addr1, da);
451			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
452			IEEE80211_ADDR_COPY(wh->i_addr3, da);
453			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
454			break;
455		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
456			break;
457		}
458	} else {
459		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
460		IEEE80211_ADDR_COPY(wh->i_addr1, da);
461		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
462		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
463	}
464	*(uint16_t *)&wh->i_dur[0] = 0;
465	/* XXX probe response use per-vap seq#? */
466	/* NB: use non-QoS tid */
467	*(uint16_t *)&wh->i_seq[0] =
468	    htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
469	ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
470#undef WH4
471}
472
473/*
474 * Send a management frame to the specified node.  The node pointer
475 * must have a reference as the pointer will be passed to the driver
476 * and potentially held for a long time.  If the frame is successfully
477 * dispatched to the driver, then it is responsible for freeing the
478 * reference (and potentially free'ing up any associated storage);
479 * otherwise deal with reclaiming any reference (on error).
480 */
481int
482ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type)
483{
484	struct ieee80211vap *vap = ni->ni_vap;
485	struct ieee80211com *ic = ni->ni_ic;
486	struct ieee80211_frame *wh;
487
488	KASSERT(ni != NULL, ("null node"));
489
490	if (vap->iv_state == IEEE80211_S_CAC) {
491		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
492		    ni, "block %s frame in CAC state",
493			ieee80211_mgt_subtype_name[
494			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
495				IEEE80211_FC0_SUBTYPE_SHIFT]);
496		vap->iv_stats.is_tx_badstate++;
497		ieee80211_free_node(ni);
498		m_freem(m);
499		return EIO;		/* XXX */
500	}
501
502	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
503	if (m == NULL) {
504		ieee80211_free_node(ni);
505		return ENOMEM;
506	}
507
508	wh = mtod(m, struct ieee80211_frame *);
509	ieee80211_send_setup(ni, wh,
510		IEEE80211_FC0_TYPE_MGT | type,
511		vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
512	if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
513		m->m_flags &= ~M_LINK0;
514		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
515		    "encrypting frame (%s)", __func__);
516		wh->i_fc[1] |= IEEE80211_FC1_WEP;
517	}
518	if (type != IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
519		/* NB: force non-ProbeResp frames to the highest queue */
520		M_WME_SETAC(m, WME_AC_VO);
521	} else
522		M_WME_SETAC(m, WME_AC_BE);
523#ifdef IEEE80211_DEBUG
524	/* avoid printing too many frames */
525	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
526	    ieee80211_msg_dumppkts(vap)) {
527		printf("[%s] send %s on channel %u\n",
528		    ether_sprintf(wh->i_addr1),
529		    ieee80211_mgt_subtype_name[
530			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
531				IEEE80211_FC0_SUBTYPE_SHIFT],
532		    ieee80211_chan2ieee(ic, ic->ic_curchan));
533	}
534#endif
535	IEEE80211_NODE_STAT(ni, tx_mgmt);
536
537	return ic->ic_raw_xmit(ni, m, NULL);
538}
539
540/*
541 * Send a null data frame to the specified node.
542 *
543 * NB: the caller is assumed to have setup a node reference
544 *     for use; this is necessary to deal with a race condition
545 *     when probing for inactive stations.  Like ieee80211_mgmt_output
546 *     we must cleanup any node reference on error;  however we
547 *     can safely just unref it as we know it will never be the
548 *     last reference to the node.
549 */
550int
551ieee80211_send_nulldata(struct ieee80211_node *ni)
552{
553	struct ieee80211vap *vap = ni->ni_vap;
554	struct ieee80211com *ic = ni->ni_ic;
555	struct mbuf *m;
556	struct ieee80211_frame *wh;
557
558	if (vap->iv_state == IEEE80211_S_CAC) {
559		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
560		    ni, "block %s frame in CAC state", "null data");
561		ieee80211_unref_node(&ni);
562		vap->iv_stats.is_tx_badstate++;
563		return EIO;		/* XXX */
564	}
565
566	m = m_gethdr(M_NOWAIT, MT_HEADER);
567	if (m == NULL) {
568		/* XXX debug msg */
569		ieee80211_unref_node(&ni);
570		vap->iv_stats.is_tx_nobuf++;
571		return ENOMEM;
572	}
573	MH_ALIGN(m, sizeof(struct ieee80211_frame));
574
575	wh = mtod(m, struct ieee80211_frame *);
576	ieee80211_send_setup(ni, wh,
577		IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
578		vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
579	if (vap->iv_opmode != IEEE80211_M_WDS) {
580		/* NB: power management bit is never sent by an AP */
581		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
582		    vap->iv_opmode != IEEE80211_M_HOSTAP)
583			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
584		m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
585	} else {
586		/* NB: 4-address frame */
587		m->m_len = m->m_pkthdr.len =
588		    sizeof(struct ieee80211_frame_addr4);
589	}
590	M_WME_SETAC(m, WME_AC_BE);
591
592	IEEE80211_NODE_STAT(ni, tx_data);
593
594	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
595	    "send null data frame on channel %u, pwr mgt %s",
596	    ieee80211_chan2ieee(ic, ic->ic_curchan),
597	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
598
599	return ic->ic_raw_xmit(ni, m, NULL);
600}
601
602/*
603 * Assign priority to a frame based on any vlan tag assigned
604 * to the station and/or any Diffserv setting in an IP header.
605 * Finally, if an ACM policy is setup (in station mode) it's
606 * applied.
607 */
608int
609ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
610{
611	const struct ether_header *eh = mtod(m, struct ether_header *);
612	int v_wme_ac, d_wme_ac, ac;
613
614	/*
615	 * Always promote PAE/EAPOL frames to high priority.
616	 */
617	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
618		/* NB: mark so others don't need to check header */
619		m->m_flags |= M_EAPOL;
620		ac = WME_AC_VO;
621		goto done;
622	}
623	/*
624	 * Non-qos traffic goes to BE.
625	 */
626	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
627		ac = WME_AC_BE;
628		goto done;
629	}
630
631	/*
632	 * If node has a vlan tag then all traffic
633	 * to it must have a matching tag.
634	 */
635	v_wme_ac = 0;
636	if (ni->ni_vlan != 0) {
637		 if ((m->m_flags & M_VLANTAG) == 0) {
638			IEEE80211_NODE_STAT(ni, tx_novlantag);
639			return 1;
640		}
641		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
642		    EVL_VLANOFTAG(ni->ni_vlan)) {
643			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
644			return 1;
645		}
646		/* map vlan priority to AC */
647		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
648	}
649
650#ifdef INET
651	if (eh->ether_type == htons(ETHERTYPE_IP)) {
652		uint8_t tos;
653		/*
654		 * IP frame, map the DSCP bits from the TOS field.
655		 */
656		/* XXX m_copydata may be too slow for fast path */
657		/* NB: ip header may not be in first mbuf */
658		m_copydata(m, sizeof(struct ether_header) +
659		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
660		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
661		d_wme_ac = TID_TO_WME_AC(tos);
662	} else {
663#endif /* INET */
664		d_wme_ac = WME_AC_BE;
665#ifdef INET
666	}
667#endif
668	/*
669	 * Use highest priority AC.
670	 */
671	if (v_wme_ac > d_wme_ac)
672		ac = v_wme_ac;
673	else
674		ac = d_wme_ac;
675
676	/*
677	 * Apply ACM policy.
678	 */
679	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
680		static const int acmap[4] = {
681			WME_AC_BK,	/* WME_AC_BE */
682			WME_AC_BK,	/* WME_AC_BK */
683			WME_AC_BE,	/* WME_AC_VI */
684			WME_AC_VI,	/* WME_AC_VO */
685		};
686		struct ieee80211com *ic = ni->ni_ic;
687
688		while (ac != WME_AC_BK &&
689		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
690			ac = acmap[ac];
691	}
692done:
693	M_WME_SETAC(m, ac);
694	return 0;
695}
696
697/*
698 * Insure there is sufficient contiguous space to encapsulate the
699 * 802.11 data frame.  If room isn't already there, arrange for it.
700 * Drivers and cipher modules assume we have done the necessary work
701 * and fail rudely if they don't find the space they need.
702 */
703static struct mbuf *
704ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
705	struct ieee80211_key *key, struct mbuf *m)
706{
707#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
708	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
709
710	if (key != NULL) {
711		/* XXX belongs in crypto code? */
712		needed_space += key->wk_cipher->ic_header;
713		/* XXX frags */
714		/*
715		 * When crypto is being done in the host we must insure
716		 * the data are writable for the cipher routines; clone
717		 * a writable mbuf chain.
718		 * XXX handle SWMIC specially
719		 */
720		if (key->wk_flags & (IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC)) {
721			m = m_unshare(m, M_NOWAIT);
722			if (m == NULL) {
723				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
724				    "%s: cannot get writable mbuf\n", __func__);
725				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
726				return NULL;
727			}
728		}
729	}
730	/*
731	 * We know we are called just before stripping an Ethernet
732	 * header and prepending an LLC header.  This means we know
733	 * there will be
734	 *	sizeof(struct ether_header) - sizeof(struct llc)
735	 * bytes recovered to which we need additional space for the
736	 * 802.11 header and any crypto header.
737	 */
738	/* XXX check trailing space and copy instead? */
739	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
740		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
741		if (n == NULL) {
742			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
743			    "%s: cannot expand storage\n", __func__);
744			vap->iv_stats.is_tx_nobuf++;
745			m_freem(m);
746			return NULL;
747		}
748		KASSERT(needed_space <= MHLEN,
749		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
750		/*
751		 * Setup new mbuf to have leading space to prepend the
752		 * 802.11 header and any crypto header bits that are
753		 * required (the latter are added when the driver calls
754		 * back to ieee80211_crypto_encap to do crypto encapsulation).
755		 */
756		/* NB: must be first 'cuz it clobbers m_data */
757		m_move_pkthdr(n, m);
758		n->m_len = 0;			/* NB: m_gethdr does not set */
759		n->m_data += needed_space;
760		/*
761		 * Pull up Ethernet header to create the expected layout.
762		 * We could use m_pullup but that's overkill (i.e. we don't
763		 * need the actual data) and it cannot fail so do it inline
764		 * for speed.
765		 */
766		/* NB: struct ether_header is known to be contiguous */
767		n->m_len += sizeof(struct ether_header);
768		m->m_len -= sizeof(struct ether_header);
769		m->m_data += sizeof(struct ether_header);
770		/*
771		 * Replace the head of the chain.
772		 */
773		n->m_next = m;
774		m = n;
775	}
776	return m;
777#undef TO_BE_RECLAIMED
778}
779
780/*
781 * Return the transmit key to use in sending a unicast frame.
782 * If a unicast key is set we use that.  When no unicast key is set
783 * we fall back to the default transmit key.
784 */
785static __inline struct ieee80211_key *
786ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
787	struct ieee80211_node *ni)
788{
789	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
790		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
791		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
792			return NULL;
793		return &vap->iv_nw_keys[vap->iv_def_txkey];
794	} else {
795		return &ni->ni_ucastkey;
796	}
797}
798
799/*
800 * Return the transmit key to use in sending a multicast frame.
801 * Multicast traffic always uses the group key which is installed as
802 * the default tx key.
803 */
804static __inline struct ieee80211_key *
805ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
806	struct ieee80211_node *ni)
807{
808	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
809	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
810		return NULL;
811	return &vap->iv_nw_keys[vap->iv_def_txkey];
812}
813
814/*
815 * Encapsulate an outbound data frame.  The mbuf chain is updated.
816 * If an error is encountered NULL is returned.  The caller is required
817 * to provide a node reference and pullup the ethernet header in the
818 * first mbuf.
819 *
820 * NB: Packet is assumed to be processed by ieee80211_classify which
821 *     marked EAPOL frames w/ M_EAPOL.
822 */
823struct mbuf *
824ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m)
825{
826#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
827	struct ieee80211vap *vap = ni->ni_vap;
828	struct ieee80211com *ic = ni->ni_ic;
829	struct ether_header eh;
830	struct ieee80211_frame *wh;
831	struct ieee80211_key *key;
832	struct llc *llc;
833	int hdrsize, hdrspace, datalen, addqos, txfrag, isff, is4addr;
834
835	/*
836	 * Copy existing Ethernet header to a safe place.  The
837	 * rest of the code assumes it's ok to strip it when
838	 * reorganizing state for the final encapsulation.
839	 */
840	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
841	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
842
843	/*
844	 * Insure space for additional headers.  First identify
845	 * transmit key to use in calculating any buffer adjustments
846	 * required.  This is also used below to do privacy
847	 * encapsulation work.  Then calculate the 802.11 header
848	 * size and any padding required by the driver.
849	 *
850	 * Note key may be NULL if we fall back to the default
851	 * transmit key and that is not set.  In that case the
852	 * buffer may not be expanded as needed by the cipher
853	 * routines, but they will/should discard it.
854	 */
855	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
856		if (vap->iv_opmode == IEEE80211_M_STA ||
857		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
858		    (vap->iv_opmode == IEEE80211_M_WDS &&
859		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
860			key = ieee80211_crypto_getucastkey(vap, ni);
861		else
862			key = ieee80211_crypto_getmcastkey(vap, ni);
863		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
864			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
865			    eh.ether_dhost,
866			    "no default transmit key (%s) deftxkey %u",
867			    __func__, vap->iv_def_txkey);
868			vap->iv_stats.is_tx_nodefkey++;
869			goto bad;
870		}
871	} else
872		key = NULL;
873	/*
874	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
875	 * frames so suppress use.  This may be an issue if other
876	 * ap's require all data frames to be QoS-encapsulated
877	 * once negotiated in which case we'll need to make this
878	 * configurable.
879	 */
880	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
881		 (m->m_flags & M_EAPOL) == 0;
882	if (addqos)
883		hdrsize = sizeof(struct ieee80211_qosframe);
884	else
885		hdrsize = sizeof(struct ieee80211_frame);
886	/*
887	 * 4-address frames need to be generated for:
888	 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS)
889	 * o packets relayed by a station operating with dynamic WDS
890	 *   (IEEE80211_M_STA+IEEE80211_F_DWDS and src address)
891	 */
892	is4addr = (m->m_flags & M_WDS) ||
893	    vap->iv_opmode == IEEE80211_M_WDS ||	/* XXX redundant? */
894	    (vap->iv_opmode == IEEE80211_M_STA &&
895	     (vap->iv_flags & IEEE80211_F_DWDS) &&
896	     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
897	if (is4addr)
898		hdrsize += IEEE80211_ADDR_LEN;
899	/*
900	 * Honor driver DATAPAD requirement.
901	 */
902	if (ic->ic_flags & IEEE80211_F_DATAPAD)
903		hdrspace = roundup(hdrsize, sizeof(uint32_t));
904	else
905		hdrspace = hdrsize;
906
907	if ((isff = m->m_flags & M_FF) != 0) {
908		struct mbuf *m2;
909		struct ether_header eh2;
910
911		/*
912		 * Fast frame encapsulation.  There must be two packets
913		 * chained with m_nextpkt.  We do header adjustment for
914		 * each, add the tunnel encapsulation, and then concatenate
915		 * the mbuf chains to form a single frame for transmission.
916		 */
917		m2 = m->m_nextpkt;
918		if (m2 == NULL) {
919			IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
920				"%s: only one frame\n", __func__);
921			goto bad;
922		}
923		m->m_nextpkt = NULL;
924		/*
925		 * Include fast frame headers in adjusting header
926		 * layout; this allocates space according to what
927		 * ieee80211_encap_fastframe will do.
928		 */
929		m = ieee80211_mbuf_adjust(vap,
930			hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 +
931			    sizeof(struct ether_header),
932			key, m);
933		if (m == NULL) {
934			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
935			m_freem(m2);
936			goto bad;
937		}
938		/*
939		 * Copy second frame's Ethernet header out of line
940		 * and adjust for encapsulation headers.  Note that
941		 * we make room for padding in case there isn't room
942		 * at the end of first frame.
943		 */
944		KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
945		ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
946		m2 = ieee80211_mbuf_adjust(vap,
947			ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
948			NULL, m2);
949		if (m2 == NULL) {
950			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
951			goto bad;
952		}
953		m = ieee80211_encap_fastframe(vap, m, &eh, m2, &eh2);
954		if (m == NULL)
955			goto bad;
956	} else {
957		/*
958		 * Normal frame.
959		 */
960		m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
961		if (m == NULL) {
962			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
963			goto bad;
964		}
965		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
966		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
967		llc = mtod(m, struct llc *);
968		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
969		llc->llc_control = LLC_UI;
970		llc->llc_snap.org_code[0] = 0;
971		llc->llc_snap.org_code[1] = 0;
972		llc->llc_snap.org_code[2] = 0;
973		llc->llc_snap.ether_type = eh.ether_type;
974	}
975	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
976
977	M_PREPEND(m, hdrspace, M_DONTWAIT);
978	if (m == NULL) {
979		vap->iv_stats.is_tx_nobuf++;
980		goto bad;
981	}
982	wh = mtod(m, struct ieee80211_frame *);
983	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
984	*(uint16_t *)wh->i_dur = 0;
985	if (is4addr) {
986		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
987		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
988		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
989		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
990		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
991	} else switch (vap->iv_opmode) {
992	case IEEE80211_M_STA:
993		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
994		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
995		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
996		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
997		break;
998	case IEEE80211_M_IBSS:
999	case IEEE80211_M_AHDEMO:
1000		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1001		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1002		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1003		/*
1004		 * NB: always use the bssid from iv_bss as the
1005		 *     neighbor's may be stale after an ibss merge
1006		 */
1007		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1008		break;
1009	case IEEE80211_M_HOSTAP:
1010		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1011		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1012		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1013		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1014		break;
1015	case IEEE80211_M_MONITOR:
1016	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1017		goto bad;
1018	}
1019	if (m->m_flags & M_MORE_DATA)
1020		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1021	if (addqos) {
1022		uint8_t *qos;
1023		int ac, tid;
1024
1025		if (is4addr) {
1026			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1027		} else
1028			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1029		ac = M_WME_GETAC(m);
1030		/* map from access class/queue to 11e header priorty value */
1031		tid = WME_AC_TO_TID(ac);
1032		qos[0] = tid & IEEE80211_QOS_TID;
1033		/*
1034		 * Check if A-MPDU tx aggregation is setup or if we
1035		 * should try to enable it.  The sta must be associated
1036		 * with HT and A-MPDU enabled for use.  When the policy
1037		 * routine decides we should enable A-MPDU we issue an
1038		 * ADDBA request and wait for a reply.  The frame being
1039		 * encapsulated will go out w/o using A-MPDU, or possibly
1040		 * it might be collected by the driver and held/retransmit.
1041		 * The default ic_ampdu_enable routine handles staggering
1042		 * ADDBA requests in case the receiver NAK's us or we are
1043		 * otherwise unable to establish a BA stream.
1044		 */
1045		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
1046		    (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
1047			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
1048
1049			ieee80211_txampdu_count_packet(tap);
1050			if (IEEE80211_AMPDU_RUNNING(tap)) {
1051				/*
1052				 * Operational, mark frame for aggregation.
1053				 */
1054				qos[0] |= IEEE80211_QOS_ACKPOLICY_BA;
1055			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
1056			    ic->ic_ampdu_enable(ni, tap)) {
1057				/*
1058				 * Not negotiated yet, request service.
1059				 */
1060				ieee80211_ampdu_request(ni, tap);
1061			}
1062		}
1063		/* XXX works even when BA marked above */
1064		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1065			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1066		qos[1] = 0;
1067		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1068
1069		*(uint16_t *)wh->i_seq =
1070		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
1071		ni->ni_txseqs[tid]++;
1072	} else {
1073		*(uint16_t *)wh->i_seq =
1074		    htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
1075		ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1076	}
1077	/* check if xmit fragmentation is required */
1078	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1079	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1080	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1081	    !isff);		/* NB: don't fragment ff's */
1082	if (key != NULL) {
1083		/*
1084		 * IEEE 802.1X: send EAPOL frames always in the clear.
1085		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1086		 */
1087		if ((m->m_flags & M_EAPOL) == 0 ||
1088		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1089		     (vap->iv_opmode == IEEE80211_M_STA ?
1090		      !IEEE80211_KEY_UNDEFINED(key) :
1091		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1092			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1093			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1094				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1095				    eh.ether_dhost,
1096				    "%s", "enmic failed, discard frame");
1097				vap->iv_stats.is_crypto_enmicfail++;
1098				goto bad;
1099			}
1100		}
1101	}
1102	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1103	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1104		goto bad;
1105
1106	IEEE80211_NODE_STAT(ni, tx_data);
1107	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1108		IEEE80211_NODE_STAT(ni, tx_mcast);
1109	else
1110		IEEE80211_NODE_STAT(ni, tx_ucast);
1111	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1112
1113	/* XXX fragmented frames not handled */
1114	if (bpf_peers_present(vap->iv_rawbpf))
1115		bpf_mtap(vap->iv_rawbpf, m);
1116
1117	return m;
1118bad:
1119	if (m != NULL)
1120		m_freem(m);
1121	return NULL;
1122#undef WH4
1123}
1124
1125/*
1126 * Do Ethernet-LLC encapsulation for each payload in a fast frame
1127 * tunnel encapsulation.  The frame is assumed to have an Ethernet
1128 * header at the front that must be stripped before prepending the
1129 * LLC followed by the Ethernet header passed in (with an Ethernet
1130 * type that specifies the payload size).
1131 */
1132static struct mbuf *
1133ieee80211_encap1(struct ieee80211vap *vap, struct mbuf *m,
1134	const struct ether_header *eh)
1135{
1136	struct llc *llc;
1137	uint16_t payload;
1138
1139	/* XXX optimize by combining m_adj+M_PREPEND */
1140	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1141	llc = mtod(m, struct llc *);
1142	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1143	llc->llc_control = LLC_UI;
1144	llc->llc_snap.org_code[0] = 0;
1145	llc->llc_snap.org_code[1] = 0;
1146	llc->llc_snap.org_code[2] = 0;
1147	llc->llc_snap.ether_type = eh->ether_type;
1148	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
1149
1150	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
1151	if (m == NULL) {		/* XXX cannot happen */
1152		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1153			"%s: no space for ether_header\n", __func__);
1154		vap->iv_stats.is_tx_nobuf++;
1155		return NULL;
1156	}
1157	ETHER_HEADER_COPY(mtod(m, void *), eh);
1158	mtod(m, struct ether_header *)->ether_type = htons(payload);
1159	return m;
1160}
1161
1162/*
1163 * Do fast frame tunnel encapsulation.  The two frames and
1164 * Ethernet headers are supplied.  The caller is assumed to
1165 * have arrange for space in the mbuf chains for encapsulating
1166 * headers (to avoid major mbuf fragmentation).
1167 *
1168 * The encapsulated frame is returned or NULL if there is a
1169 * problem (should not happen).
1170 */
1171static struct mbuf *
1172ieee80211_encap_fastframe(struct ieee80211vap *vap,
1173	struct mbuf *m1, const struct ether_header *eh1,
1174	struct mbuf *m2, const struct ether_header *eh2)
1175{
1176	struct llc *llc;
1177	struct mbuf *m;
1178	int pad;
1179
1180	/*
1181	 * First, each frame gets a standard encapsulation.
1182	 */
1183	m1 = ieee80211_encap1(vap, m1, eh1);
1184	if (m1 == NULL) {
1185		m_freem(m2);
1186		return NULL;
1187	}
1188	m2 = ieee80211_encap1(vap, m2, eh2);
1189	if (m2 == NULL) {
1190		m_freem(m1);
1191		return NULL;
1192	}
1193
1194	/*
1195	 * Pad leading frame to a 4-byte boundary.  If there
1196	 * is space at the end of the first frame, put it
1197	 * there; otherwise prepend to the front of the second
1198	 * frame.  We know doing the second will always work
1199	 * because we reserve space above.  We prefer appending
1200	 * as this typically has better DMA alignment properties.
1201	 */
1202	for (m = m1; m->m_next != NULL; m = m->m_next)
1203		;
1204	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
1205	if (pad) {
1206		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
1207			m2->m_data -= pad;
1208			m2->m_len += pad;
1209			m2->m_pkthdr.len += pad;
1210		} else {				/* append to first */
1211			m->m_len += pad;
1212			m1->m_pkthdr.len += pad;
1213		}
1214	}
1215
1216	/*
1217	 * Now, stick 'em together and prepend the tunnel headers;
1218	 * first the Atheros tunnel header (all zero for now) and
1219	 * then a special fast frame LLC.
1220	 *
1221	 * XXX optimize by prepending together
1222	 */
1223	m->m_next = m2;			/* NB: last mbuf from above */
1224	m1->m_pkthdr.len += m2->m_pkthdr.len;
1225	M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
1226	if (m1 == NULL) {		/* XXX cannot happen */
1227		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1228			"%s: no space for tunnel header\n", __func__);
1229		vap->iv_stats.is_tx_nobuf++;
1230		return NULL;
1231	}
1232	memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
1233
1234	M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
1235	if (m1 == NULL) {		/* XXX cannot happen */
1236		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1237			"%s: no space for llc header\n", __func__);
1238		vap->iv_stats.is_tx_nobuf++;
1239		return NULL;
1240	}
1241	llc = mtod(m1, struct llc *);
1242	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1243	llc->llc_control = LLC_UI;
1244	llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
1245	llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
1246	llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
1247	llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
1248
1249	vap->iv_stats.is_ff_encap++;
1250
1251	return m1;
1252}
1253
1254/*
1255 * Fragment the frame according to the specified mtu.
1256 * The size of the 802.11 header (w/o padding) is provided
1257 * so we don't need to recalculate it.  We create a new
1258 * mbuf for each fragment and chain it through m_nextpkt;
1259 * we might be able to optimize this by reusing the original
1260 * packet's mbufs but that is significantly more complicated.
1261 */
1262static int
1263ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1264	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1265{
1266	struct ieee80211_frame *wh, *whf;
1267	struct mbuf *m, *prev, *next;
1268	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1269
1270	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1271	KASSERT(m0->m_pkthdr.len > mtu,
1272		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1273
1274	wh = mtod(m0, struct ieee80211_frame *);
1275	/* NB: mark the first frag; it will be propagated below */
1276	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1277	totalhdrsize = hdrsize + ciphdrsize;
1278	fragno = 1;
1279	off = mtu - ciphdrsize;
1280	remainder = m0->m_pkthdr.len - off;
1281	prev = m0;
1282	do {
1283		fragsize = totalhdrsize + remainder;
1284		if (fragsize > mtu)
1285			fragsize = mtu;
1286		/* XXX fragsize can be >2048! */
1287		KASSERT(fragsize < MCLBYTES,
1288			("fragment size %u too big!", fragsize));
1289		if (fragsize > MHLEN)
1290			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1291		else
1292			m = m_gethdr(M_DONTWAIT, MT_DATA);
1293		if (m == NULL)
1294			goto bad;
1295		/* leave room to prepend any cipher header */
1296		m_align(m, fragsize - ciphdrsize);
1297
1298		/*
1299		 * Form the header in the fragment.  Note that since
1300		 * we mark the first fragment with the MORE_FRAG bit
1301		 * it automatically is propagated to each fragment; we
1302		 * need only clear it on the last fragment (done below).
1303		 */
1304		whf = mtod(m, struct ieee80211_frame *);
1305		memcpy(whf, wh, hdrsize);
1306		*(uint16_t *)&whf->i_seq[0] |= htole16(
1307			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1308				IEEE80211_SEQ_FRAG_SHIFT);
1309		fragno++;
1310
1311		payload = fragsize - totalhdrsize;
1312		/* NB: destination is known to be contiguous */
1313		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1314		m->m_len = hdrsize + payload;
1315		m->m_pkthdr.len = hdrsize + payload;
1316		m->m_flags |= M_FRAG;
1317
1318		/* chain up the fragment */
1319		prev->m_nextpkt = m;
1320		prev = m;
1321
1322		/* deduct fragment just formed */
1323		remainder -= payload;
1324		off += payload;
1325	} while (remainder != 0);
1326	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1327
1328	/* strip first mbuf now that everything has been copied */
1329	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1330	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1331
1332	vap->iv_stats.is_tx_fragframes++;
1333	vap->iv_stats.is_tx_frags += fragno-1;
1334
1335	return 1;
1336bad:
1337	/* reclaim fragments but leave original frame for caller to free */
1338	for (m = m0->m_nextpkt; m != NULL; m = next) {
1339		next = m->m_nextpkt;
1340		m->m_nextpkt = NULL;		/* XXX paranoid */
1341		m_freem(m);
1342	}
1343	m0->m_nextpkt = NULL;
1344	return 0;
1345}
1346
1347/*
1348 * Add a supported rates element id to a frame.
1349 */
1350static uint8_t *
1351ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1352{
1353	int nrates;
1354
1355	*frm++ = IEEE80211_ELEMID_RATES;
1356	nrates = rs->rs_nrates;
1357	if (nrates > IEEE80211_RATE_SIZE)
1358		nrates = IEEE80211_RATE_SIZE;
1359	*frm++ = nrates;
1360	memcpy(frm, rs->rs_rates, nrates);
1361	return frm + nrates;
1362}
1363
1364/*
1365 * Add an extended supported rates element id to a frame.
1366 */
1367static uint8_t *
1368ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1369{
1370	/*
1371	 * Add an extended supported rates element if operating in 11g mode.
1372	 */
1373	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1374		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1375		*frm++ = IEEE80211_ELEMID_XRATES;
1376		*frm++ = nrates;
1377		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1378		frm += nrates;
1379	}
1380	return frm;
1381}
1382
1383/*
1384 * Add an ssid element to a frame.
1385 */
1386static uint8_t *
1387ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1388{
1389	*frm++ = IEEE80211_ELEMID_SSID;
1390	*frm++ = len;
1391	memcpy(frm, ssid, len);
1392	return frm + len;
1393}
1394
1395/*
1396 * Add an erp element to a frame.
1397 */
1398static uint8_t *
1399ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1400{
1401	uint8_t erp;
1402
1403	*frm++ = IEEE80211_ELEMID_ERP;
1404	*frm++ = 1;
1405	erp = 0;
1406	if (ic->ic_nonerpsta != 0)
1407		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1408	if (ic->ic_flags & IEEE80211_F_USEPROT)
1409		erp |= IEEE80211_ERP_USE_PROTECTION;
1410	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1411		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1412	*frm++ = erp;
1413	return frm;
1414}
1415
1416/*
1417 * Add a CFParams element to a frame.
1418 */
1419static uint8_t *
1420ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1421{
1422#define	ADDSHORT(frm, v) do {			\
1423	frm[0] = (v) & 0xff;			\
1424	frm[1] = (v) >> 8;			\
1425	frm += 2;				\
1426} while (0)
1427	*frm++ = IEEE80211_ELEMID_CFPARMS;
1428	*frm++ = 6;
1429	*frm++ = 0;		/* CFP count */
1430	*frm++ = 2;		/* CFP period */
1431	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1432	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1433	return frm;
1434#undef ADDSHORT
1435}
1436
1437static __inline uint8_t *
1438add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1439{
1440	memcpy(frm, ie->ie_data, ie->ie_len);
1441	return frm + ie->ie_len;
1442}
1443
1444static __inline uint8_t *
1445add_ie(uint8_t *frm, const uint8_t *ie)
1446{
1447	memcpy(frm, ie, 2 + ie[1]);
1448	return frm + 2 + ie[1];
1449}
1450
1451#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1452/*
1453 * Add a WME information element to a frame.
1454 */
1455static uint8_t *
1456ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1457{
1458	static const struct ieee80211_wme_info info = {
1459		.wme_id		= IEEE80211_ELEMID_VENDOR,
1460		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1461		.wme_oui	= { WME_OUI_BYTES },
1462		.wme_type	= WME_OUI_TYPE,
1463		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1464		.wme_version	= WME_VERSION,
1465		.wme_info	= 0,
1466	};
1467	memcpy(frm, &info, sizeof(info));
1468	return frm + sizeof(info);
1469}
1470
1471/*
1472 * Add a WME parameters element to a frame.
1473 */
1474static uint8_t *
1475ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1476{
1477#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1478#define	ADDSHORT(frm, v) do {			\
1479	frm[0] = (v) & 0xff;			\
1480	frm[1] = (v) >> 8;			\
1481	frm += 2;				\
1482} while (0)
1483	/* NB: this works 'cuz a param has an info at the front */
1484	static const struct ieee80211_wme_info param = {
1485		.wme_id		= IEEE80211_ELEMID_VENDOR,
1486		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1487		.wme_oui	= { WME_OUI_BYTES },
1488		.wme_type	= WME_OUI_TYPE,
1489		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1490		.wme_version	= WME_VERSION,
1491	};
1492	int i;
1493
1494	memcpy(frm, &param, sizeof(param));
1495	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1496	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1497	*frm++ = 0;					/* reserved field */
1498	for (i = 0; i < WME_NUM_AC; i++) {
1499		const struct wmeParams *ac =
1500		       &wme->wme_bssChanParams.cap_wmeParams[i];
1501		*frm++ = SM(i, WME_PARAM_ACI)
1502		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1503		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1504		       ;
1505		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1506		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1507		       ;
1508		ADDSHORT(frm, ac->wmep_txopLimit);
1509	}
1510	return frm;
1511#undef SM
1512#undef ADDSHORT
1513}
1514#undef WME_OUI_BYTES
1515
1516#define	ATH_OUI_BYTES		0x00, 0x03, 0x7f
1517/*
1518 * Add a WME information element to a frame.
1519 */
1520static uint8_t *
1521ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
1522{
1523	static const struct ieee80211_ath_ie info = {
1524		.ath_id		= IEEE80211_ELEMID_VENDOR,
1525		.ath_len	= sizeof(struct ieee80211_ath_ie) - 2,
1526		.ath_oui	= { ATH_OUI_BYTES },
1527		.ath_oui_type	= ATH_OUI_TYPE,
1528		.ath_oui_subtype= ATH_OUI_SUBTYPE,
1529		.ath_version	= ATH_OUI_VERSION,
1530	};
1531	struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
1532
1533	memcpy(frm, &info, sizeof(info));
1534	ath->ath_capability = caps;
1535	ath->ath_defkeyix[0] = (defkeyix & 0xff);
1536	ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
1537	return frm + sizeof(info);
1538}
1539#undef ATH_OUI_BYTES
1540
1541/*
1542 * Add an 11h Power Constraint element to a frame.
1543 */
1544static uint8_t *
1545ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1546{
1547	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1548	/* XXX per-vap tx power limit? */
1549	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1550
1551	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1552	frm[1] = 1;
1553	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1554	return frm + 3;
1555}
1556
1557/*
1558 * Add an 11h Power Capability element to a frame.
1559 */
1560static uint8_t *
1561ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1562{
1563	frm[0] = IEEE80211_ELEMID_PWRCAP;
1564	frm[1] = 2;
1565	frm[2] = c->ic_minpower;
1566	frm[3] = c->ic_maxpower;
1567	return frm + 4;
1568}
1569
1570/*
1571 * Add an 11h Supported Channels element to a frame.
1572 */
1573static uint8_t *
1574ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1575{
1576	static const int ielen = 26;
1577
1578	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1579	frm[1] = ielen;
1580	/* XXX not correct */
1581	memcpy(frm+2, ic->ic_chan_avail, ielen);
1582	return frm + 2 + ielen;
1583}
1584
1585/*
1586 * Add an 11h Channel Switch Announcement element to a frame.
1587 * Note that we use the per-vap CSA count to adjust the global
1588 * counter so we can use this routine to form probe response
1589 * frames and get the current count.
1590 */
1591static uint8_t *
1592ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1593{
1594	struct ieee80211com *ic = vap->iv_ic;
1595	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1596
1597	csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN;
1598	csa->csa_len = 3;
1599	csa->csa_mode = 1;		/* XXX force quiet on channel */
1600	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1601	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1602	return frm + sizeof(*csa);
1603}
1604
1605/*
1606 * Add an 11h country information element to a frame.
1607 */
1608static uint8_t *
1609ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1610{
1611
1612	if (ic->ic_countryie == NULL ||
1613	    ic->ic_countryie_chan != ic->ic_bsschan) {
1614		/*
1615		 * Handle lazy construction of ie.  This is done on
1616		 * first use and after a channel change that requires
1617		 * re-calculation.
1618		 */
1619		if (ic->ic_countryie != NULL)
1620			free(ic->ic_countryie, M_80211_NODE_IE);
1621		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1622		if (ic->ic_countryie == NULL)
1623			return frm;
1624		ic->ic_countryie_chan = ic->ic_bsschan;
1625	}
1626	return add_appie(frm, ic->ic_countryie);
1627}
1628
1629/*
1630 * Send a probe request frame with the specified ssid
1631 * and any optional information element data.
1632 */
1633int
1634ieee80211_send_probereq(struct ieee80211_node *ni,
1635	const uint8_t sa[IEEE80211_ADDR_LEN],
1636	const uint8_t da[IEEE80211_ADDR_LEN],
1637	const uint8_t bssid[IEEE80211_ADDR_LEN],
1638	const uint8_t *ssid, size_t ssidlen)
1639{
1640	struct ieee80211vap *vap = ni->ni_vap;
1641	struct ieee80211com *ic = ni->ni_ic;
1642	struct ieee80211_frame *wh;
1643	const struct ieee80211_rateset *rs;
1644	struct mbuf *m;
1645	uint8_t *frm;
1646
1647	if (vap->iv_state == IEEE80211_S_CAC) {
1648		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1649		    "block %s frame in CAC state", "probe request");
1650		vap->iv_stats.is_tx_badstate++;
1651		return EIO;		/* XXX */
1652	}
1653
1654	/*
1655	 * Hold a reference on the node so it doesn't go away until after
1656	 * the xmit is complete all the way in the driver.  On error we
1657	 * will remove our reference.
1658	 */
1659	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1660		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1661		__func__, __LINE__,
1662		ni, ether_sprintf(ni->ni_macaddr),
1663		ieee80211_node_refcnt(ni)+1);
1664	ieee80211_ref_node(ni);
1665
1666	/*
1667	 * prreq frame format
1668	 *	[tlv] ssid
1669	 *	[tlv] supported rates
1670	 *	[tlv] RSN (optional)
1671	 *	[tlv] extended supported rates
1672	 *	[tlv] WPA (optional)
1673	 *	[tlv] user-specified ie's
1674	 */
1675	m = ieee80211_getmgtframe(&frm,
1676		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1677	       	 2 + IEEE80211_NWID_LEN
1678	       + 2 + IEEE80211_RATE_SIZE
1679	       + sizeof(struct ieee80211_ie_wpa)
1680	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1681	       + sizeof(struct ieee80211_ie_wpa)
1682	       + (vap->iv_appie_probereq != NULL ?
1683		   vap->iv_appie_probereq->ie_len : 0)
1684	);
1685	if (m == NULL) {
1686		vap->iv_stats.is_tx_nobuf++;
1687		ieee80211_free_node(ni);
1688		return ENOMEM;
1689	}
1690
1691	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1692	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1693	frm = ieee80211_add_rates(frm, rs);
1694	if (vap->iv_flags & IEEE80211_F_WPA2) {
1695		if (vap->iv_rsn_ie != NULL)
1696			frm = add_ie(frm, vap->iv_rsn_ie);
1697		/* XXX else complain? */
1698	}
1699	frm = ieee80211_add_xrates(frm, rs);
1700	if (vap->iv_flags & IEEE80211_F_WPA1) {
1701		if (vap->iv_wpa_ie != NULL)
1702			frm = add_ie(frm, vap->iv_wpa_ie);
1703		/* XXX else complain? */
1704	}
1705	if (vap->iv_appie_probereq != NULL)
1706		frm = add_appie(frm, vap->iv_appie_probereq);
1707	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1708
1709	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1710	if (m == NULL)
1711		return ENOMEM;
1712
1713	wh = mtod(m, struct ieee80211_frame *);
1714	ieee80211_send_setup(ni, wh,
1715		IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1716		sa, da, bssid);
1717	/* XXX power management? */
1718
1719	M_WME_SETAC(m, WME_AC_BE);
1720
1721	IEEE80211_NODE_STAT(ni, tx_probereq);
1722	IEEE80211_NODE_STAT(ni, tx_mgmt);
1723
1724	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1725	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1726	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1727	    ssidlen, ssid);
1728
1729	return ic->ic_raw_xmit(ni, m, NULL);
1730}
1731
1732/*
1733 * Calculate capability information for mgt frames.
1734 */
1735static uint16_t
1736getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1737{
1738	struct ieee80211com *ic = vap->iv_ic;
1739	uint16_t capinfo;
1740
1741	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1742
1743	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1744		capinfo = IEEE80211_CAPINFO_ESS;
1745	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1746		capinfo = IEEE80211_CAPINFO_IBSS;
1747	else
1748		capinfo = 0;
1749	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1750		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1751	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1752	    IEEE80211_IS_CHAN_2GHZ(chan))
1753		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1754	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1755		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1756	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1757		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1758	return capinfo;
1759}
1760
1761/*
1762 * Send a management frame.  The node is for the destination (or ic_bss
1763 * when in station mode).  Nodes other than ic_bss have their reference
1764 * count bumped to reflect our use for an indeterminant time.
1765 */
1766int
1767ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1768{
1769#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1770#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1771	struct ieee80211vap *vap = ni->ni_vap;
1772	struct ieee80211com *ic = ni->ni_ic;
1773	struct ieee80211_node *bss = vap->iv_bss;
1774	struct mbuf *m;
1775	uint8_t *frm;
1776	uint16_t capinfo;
1777	int has_challenge, is_shared_key, ret, status;
1778
1779	KASSERT(ni != NULL, ("null node"));
1780
1781	/*
1782	 * Hold a reference on the node so it doesn't go away until after
1783	 * the xmit is complete all the way in the driver.  On error we
1784	 * will remove our reference.
1785	 */
1786	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1787		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1788		__func__, __LINE__,
1789		ni, ether_sprintf(ni->ni_macaddr),
1790		ieee80211_node_refcnt(ni)+1);
1791	ieee80211_ref_node(ni);
1792
1793	switch (type) {
1794
1795	case IEEE80211_FC0_SUBTYPE_AUTH:
1796		status = arg >> 16;
1797		arg &= 0xffff;
1798		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1799		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1800		    ni->ni_challenge != NULL);
1801
1802		/*
1803		 * Deduce whether we're doing open authentication or
1804		 * shared key authentication.  We do the latter if
1805		 * we're in the middle of a shared key authentication
1806		 * handshake or if we're initiating an authentication
1807		 * request and configured to use shared key.
1808		 */
1809		is_shared_key = has_challenge ||
1810		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1811		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1812		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1813
1814		m = ieee80211_getmgtframe(&frm,
1815			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1816			  3 * sizeof(uint16_t)
1817			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1818				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1819		);
1820		if (m == NULL)
1821			senderr(ENOMEM, is_tx_nobuf);
1822
1823		((uint16_t *)frm)[0] =
1824		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1825		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1826		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1827		((uint16_t *)frm)[2] = htole16(status);/* status */
1828
1829		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1830			((uint16_t *)frm)[3] =
1831			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1832			    IEEE80211_ELEMID_CHALLENGE);
1833			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1834			    IEEE80211_CHALLENGE_LEN);
1835			m->m_pkthdr.len = m->m_len =
1836				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1837			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1838				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1839				    "request encrypt frame (%s)", __func__);
1840				m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1841			}
1842		} else
1843			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1844
1845		/* XXX not right for shared key */
1846		if (status == IEEE80211_STATUS_SUCCESS)
1847			IEEE80211_NODE_STAT(ni, tx_auth);
1848		else
1849			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1850
1851		if (vap->iv_opmode == IEEE80211_M_STA)
1852			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1853				(void *) vap->iv_state);
1854		break;
1855
1856	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1857		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1858		    "send station deauthenticate (reason %d)", arg);
1859		m = ieee80211_getmgtframe(&frm,
1860			ic->ic_headroom + sizeof(struct ieee80211_frame),
1861			sizeof(uint16_t));
1862		if (m == NULL)
1863			senderr(ENOMEM, is_tx_nobuf);
1864		*(uint16_t *)frm = htole16(arg);	/* reason */
1865		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1866
1867		IEEE80211_NODE_STAT(ni, tx_deauth);
1868		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1869
1870		ieee80211_node_unauthorize(ni);		/* port closed */
1871		break;
1872
1873	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1874	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1875		/*
1876		 * asreq frame format
1877		 *	[2] capability information
1878		 *	[2] listen interval
1879		 *	[6*] current AP address (reassoc only)
1880		 *	[tlv] ssid
1881		 *	[tlv] supported rates
1882		 *	[tlv] extended supported rates
1883		 *	[4] power capability (optional)
1884		 *	[28] supported channels (optional)
1885		 *	[tlv] HT capabilities
1886		 *	[tlv] WME (optional)
1887		 *	[tlv] Vendor OUI HT capabilities (optional)
1888		 *	[tlv] Atheros capabilities (if negotiated)
1889		 *	[tlv] AppIE's (optional)
1890		 */
1891		m = ieee80211_getmgtframe(&frm,
1892			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1893			 sizeof(uint16_t)
1894		       + sizeof(uint16_t)
1895		       + IEEE80211_ADDR_LEN
1896		       + 2 + IEEE80211_NWID_LEN
1897		       + 2 + IEEE80211_RATE_SIZE
1898		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1899		       + 4
1900		       + 2 + 26
1901		       + sizeof(struct ieee80211_wme_info)
1902		       + sizeof(struct ieee80211_ie_htcap)
1903		       + 4 + sizeof(struct ieee80211_ie_htcap)
1904		       + sizeof(struct ieee80211_ath_ie)
1905		       + (vap->iv_appie_wpa != NULL ?
1906				vap->iv_appie_wpa->ie_len : 0)
1907		       + (vap->iv_appie_assocreq != NULL ?
1908				vap->iv_appie_assocreq->ie_len : 0)
1909		);
1910		if (m == NULL)
1911			senderr(ENOMEM, is_tx_nobuf);
1912
1913		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1914		    ("wrong mode %u", vap->iv_opmode));
1915		capinfo = IEEE80211_CAPINFO_ESS;
1916		if (vap->iv_flags & IEEE80211_F_PRIVACY)
1917			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1918		/*
1919		 * NB: Some 11a AP's reject the request when
1920		 *     short premable is set.
1921		 */
1922		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1923		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1924			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1925		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
1926		    (ic->ic_caps & IEEE80211_C_SHSLOT))
1927			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1928		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
1929		    (vap->iv_flags & IEEE80211_F_DOTH))
1930			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1931		*(uint16_t *)frm = htole16(capinfo);
1932		frm += 2;
1933
1934		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
1935		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
1936						    bss->ni_intval));
1937		frm += 2;
1938
1939		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1940			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
1941			frm += IEEE80211_ADDR_LEN;
1942		}
1943
1944		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1945		frm = ieee80211_add_rates(frm, &ni->ni_rates);
1946		if (vap->iv_flags & IEEE80211_F_WPA2) {
1947			if (vap->iv_rsn_ie != NULL)
1948				frm = add_ie(frm, vap->iv_rsn_ie);
1949			/* XXX else complain? */
1950		}
1951		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1952		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
1953			frm = ieee80211_add_powercapability(frm,
1954			    ic->ic_curchan);
1955			frm = ieee80211_add_supportedchannels(frm, ic);
1956		}
1957		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
1958		    ni->ni_ies.htcap_ie != NULL &&
1959		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
1960			frm = ieee80211_add_htcap(frm, ni);
1961		if (vap->iv_flags & IEEE80211_F_WPA1) {
1962			if (vap->iv_wpa_ie != NULL)
1963				frm = add_ie(frm, vap->iv_wpa_ie);
1964			/* XXX else complain */
1965		}
1966		if ((ic->ic_flags & IEEE80211_F_WME) &&
1967		    ni->ni_ies.wme_ie != NULL)
1968			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1969		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
1970		    ni->ni_ies.htcap_ie != NULL &&
1971		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
1972			frm = ieee80211_add_htcap_vendor(frm, ni);
1973		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
1974			frm = ieee80211_add_ath(frm,
1975				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
1976				(vap->iv_flags & IEEE80211_F_WPA) == 0 &&
1977				ni->ni_authmode != IEEE80211_AUTH_8021X &&
1978				vap->iv_def_txkey != IEEE80211_KEYIX_NONE ?
1979				vap->iv_def_txkey : 0x7fff);
1980		if (vap->iv_appie_assocreq != NULL)
1981			frm = add_appie(frm, vap->iv_appie_assocreq);
1982		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1983
1984		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1985			(void *) vap->iv_state);
1986		break;
1987
1988	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1989	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1990		/*
1991		 * asresp frame format
1992		 *	[2] capability information
1993		 *	[2] status
1994		 *	[2] association ID
1995		 *	[tlv] supported rates
1996		 *	[tlv] extended supported rates
1997		 *	[tlv] HT capabilities (standard, if STA enabled)
1998		 *	[tlv] HT information (standard, if STA enabled)
1999		 *	[tlv] WME (if configured and STA enabled)
2000		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2001		 *	[tlv] HT information (vendor OUI, if STA enabled)
2002		 *	[tlv] Atheros capabilities (if STA enabled)
2003		 *	[tlv] AppIE's (optional)
2004		 */
2005		m = ieee80211_getmgtframe(&frm,
2006			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2007			 sizeof(uint16_t)
2008		       + sizeof(uint16_t)
2009		       + sizeof(uint16_t)
2010		       + 2 + IEEE80211_RATE_SIZE
2011		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2012		       + sizeof(struct ieee80211_ie_htcap) + 4
2013		       + sizeof(struct ieee80211_ie_htinfo) + 4
2014		       + sizeof(struct ieee80211_wme_param)
2015		       + sizeof(struct ieee80211_ath_ie)
2016		       + (vap->iv_appie_assocresp != NULL ?
2017				vap->iv_appie_assocresp->ie_len : 0)
2018		);
2019		if (m == NULL)
2020			senderr(ENOMEM, is_tx_nobuf);
2021
2022		capinfo = getcapinfo(vap, bss->ni_chan);
2023		*(uint16_t *)frm = htole16(capinfo);
2024		frm += 2;
2025
2026		*(uint16_t *)frm = htole16(arg);	/* status */
2027		frm += 2;
2028
2029		if (arg == IEEE80211_STATUS_SUCCESS) {
2030			*(uint16_t *)frm = htole16(ni->ni_associd);
2031			IEEE80211_NODE_STAT(ni, tx_assoc);
2032		} else
2033			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2034		frm += 2;
2035
2036		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2037		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2038		/* NB: respond according to what we received */
2039		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2040			frm = ieee80211_add_htcap(frm, ni);
2041			frm = ieee80211_add_htinfo(frm, ni);
2042		}
2043		if ((vap->iv_flags & IEEE80211_F_WME) &&
2044		    ni->ni_ies.wme_ie != NULL)
2045			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2046		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2047			frm = ieee80211_add_htcap_vendor(frm, ni);
2048			frm = ieee80211_add_htinfo_vendor(frm, ni);
2049		}
2050		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2051			frm = ieee80211_add_ath(frm,
2052				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2053				ni->ni_ath_defkeyix);
2054		if (vap->iv_appie_assocresp != NULL)
2055			frm = add_appie(frm, vap->iv_appie_assocresp);
2056		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2057		break;
2058
2059	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2060		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2061		    "send station disassociate (reason %d)", arg);
2062		m = ieee80211_getmgtframe(&frm,
2063			ic->ic_headroom + sizeof(struct ieee80211_frame),
2064			sizeof(uint16_t));
2065		if (m == NULL)
2066			senderr(ENOMEM, is_tx_nobuf);
2067		*(uint16_t *)frm = htole16(arg);	/* reason */
2068		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2069
2070		IEEE80211_NODE_STAT(ni, tx_disassoc);
2071		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2072		break;
2073
2074	default:
2075		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2076		    "invalid mgmt frame type %u", type);
2077		senderr(EINVAL, is_tx_unknownmgt);
2078		/* NOTREACHED */
2079	}
2080
2081	return ieee80211_mgmt_output(ni, m, type);
2082bad:
2083	ieee80211_free_node(ni);
2084	return ret;
2085#undef senderr
2086#undef HTFLAGS
2087}
2088
2089/*
2090 * Return an mbuf with a probe response frame in it.
2091 * Space is left to prepend and 802.11 header at the
2092 * front but it's left to the caller to fill in.
2093 */
2094struct mbuf *
2095ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2096{
2097	struct ieee80211vap *vap = bss->ni_vap;
2098	struct ieee80211com *ic = bss->ni_ic;
2099	const struct ieee80211_rateset *rs;
2100	struct mbuf *m;
2101	uint16_t capinfo;
2102	uint8_t *frm;
2103
2104	/*
2105	 * probe response frame format
2106	 *	[8] time stamp
2107	 *	[2] beacon interval
2108	 *	[2] cabability information
2109	 *	[tlv] ssid
2110	 *	[tlv] supported rates
2111	 *	[tlv] parameter set (FH/DS)
2112	 *	[tlv] parameter set (IBSS)
2113	 *	[tlv] country (optional)
2114	 *	[tlv] RSN (optional)
2115	 *	[3] power control (optional)
2116	 *	[5] channel switch announcement (CSA) (optional)
2117	 *	[tlv] extended rate phy (ERP)
2118	 *	[tlv] extended supported rates
2119	 *	[tlv] HT capabilities
2120	 *	[tlv] HT information
2121	 *	[tlv] WPA (optional)
2122	 *	[tlv] WME (optional)
2123	 *	[tlv] Vendor OUI HT capabilities (optional)
2124	 *	[tlv] Vendor OUI HT information (optional)
2125	 *	[tlv] Atheros capabilities
2126	 *	[tlv] AppIE's (optional)
2127	 */
2128	m = ieee80211_getmgtframe(&frm,
2129		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2130		 8
2131	       + sizeof(uint16_t)
2132	       + sizeof(uint16_t)
2133	       + 2 + IEEE80211_NWID_LEN
2134	       + 2 + IEEE80211_RATE_SIZE
2135	       + 7	/* max(7,3) */
2136	       + IEEE80211_COUNTRY_MAX_SIZE
2137	       + sizeof(struct ieee80211_ie_wpa)
2138	       + 3
2139	       + sizeof(struct ieee80211_csa_ie)
2140	       + 3
2141	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2142	       + sizeof(struct ieee80211_ie_htcap)
2143	       + sizeof(struct ieee80211_ie_htinfo)
2144	       + sizeof(struct ieee80211_ie_wpa)
2145	       + sizeof(struct ieee80211_wme_param)
2146	       + 4 + sizeof(struct ieee80211_ie_htcap)
2147	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2148	       + sizeof(struct ieee80211_ath_ie)
2149	       + (vap->iv_appie_proberesp != NULL ?
2150			vap->iv_appie_proberesp->ie_len : 0)
2151	);
2152	if (m == NULL) {
2153		vap->iv_stats.is_tx_nobuf++;
2154		return NULL;
2155	}
2156
2157	memset(frm, 0, 8);	/* timestamp should be filled later */
2158	frm += 8;
2159	*(uint16_t *)frm = htole16(bss->ni_intval);
2160	frm += 2;
2161	capinfo = getcapinfo(vap, bss->ni_chan);
2162	*(uint16_t *)frm = htole16(capinfo);
2163	frm += 2;
2164
2165	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2166	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2167	frm = ieee80211_add_rates(frm, rs);
2168
2169	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2170		*frm++ = IEEE80211_ELEMID_FHPARMS;
2171		*frm++ = 5;
2172		*frm++ = bss->ni_fhdwell & 0x00ff;
2173		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2174		*frm++ = IEEE80211_FH_CHANSET(
2175		    ieee80211_chan2ieee(ic, bss->ni_chan));
2176		*frm++ = IEEE80211_FH_CHANPAT(
2177		    ieee80211_chan2ieee(ic, bss->ni_chan));
2178		*frm++ = bss->ni_fhindex;
2179	} else {
2180		*frm++ = IEEE80211_ELEMID_DSPARMS;
2181		*frm++ = 1;
2182		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2183	}
2184
2185	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2186		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2187		*frm++ = 2;
2188		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2189	}
2190	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2191	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2192		frm = ieee80211_add_countryie(frm, ic);
2193	if (vap->iv_flags & IEEE80211_F_WPA2) {
2194		if (vap->iv_rsn_ie != NULL)
2195			frm = add_ie(frm, vap->iv_rsn_ie);
2196		/* XXX else complain? */
2197	}
2198	if (vap->iv_flags & IEEE80211_F_DOTH) {
2199		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2200			frm = ieee80211_add_powerconstraint(frm, vap);
2201		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2202			frm = ieee80211_add_csa(frm, vap);
2203	}
2204	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2205		frm = ieee80211_add_erp(frm, ic);
2206	frm = ieee80211_add_xrates(frm, rs);
2207	/*
2208	 * NB: legacy 11b clients do not get certain ie's.
2209	 *     The caller identifies such clients by passing
2210	 *     a token in legacy to us.  Could expand this to be
2211	 *     any legacy client for stuff like HT ie's.
2212	 */
2213	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2214	    legacy != IEEE80211_SEND_LEGACY_11B) {
2215		frm = ieee80211_add_htcap(frm, bss);
2216		frm = ieee80211_add_htinfo(frm, bss);
2217	}
2218	if (vap->iv_flags & IEEE80211_F_WPA1) {
2219		if (vap->iv_wpa_ie != NULL)
2220			frm = add_ie(frm, vap->iv_wpa_ie);
2221		/* XXX else complain? */
2222	}
2223	if (vap->iv_flags & IEEE80211_F_WME)
2224		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2225	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2226	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
2227	    legacy != IEEE80211_SEND_LEGACY_11B) {
2228		frm = ieee80211_add_htcap_vendor(frm, bss);
2229		frm = ieee80211_add_htinfo_vendor(frm, bss);
2230	}
2231	if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B)
2232		frm = ieee80211_add_ath(frm, bss->ni_ath_flags,
2233			bss->ni_ath_defkeyix);
2234	if (vap->iv_appie_proberesp != NULL)
2235		frm = add_appie(frm, vap->iv_appie_proberesp);
2236	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2237
2238	return m;
2239}
2240
2241/*
2242 * Send a probe response frame to the specified mac address.
2243 * This does not go through the normal mgt frame api so we
2244 * can specify the destination address and re-use the bss node
2245 * for the sta reference.
2246 */
2247int
2248ieee80211_send_proberesp(struct ieee80211vap *vap,
2249	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2250{
2251	struct ieee80211_node *bss = vap->iv_bss;
2252	struct ieee80211com *ic = vap->iv_ic;
2253	struct ieee80211_frame *wh;
2254	struct mbuf *m;
2255
2256	if (vap->iv_state == IEEE80211_S_CAC) {
2257		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2258		    "block %s frame in CAC state", "probe response");
2259		vap->iv_stats.is_tx_badstate++;
2260		return EIO;		/* XXX */
2261	}
2262
2263	/*
2264	 * Hold a reference on the node so it doesn't go away until after
2265	 * the xmit is complete all the way in the driver.  On error we
2266	 * will remove our reference.
2267	 */
2268	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2269	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2270	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2271	    ieee80211_node_refcnt(bss)+1);
2272	ieee80211_ref_node(bss);
2273
2274	m = ieee80211_alloc_proberesp(bss, legacy);
2275	if (m == NULL) {
2276		ieee80211_free_node(bss);
2277		return ENOMEM;
2278	}
2279
2280	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2281	KASSERT(m != NULL, ("no room for header"));
2282
2283	wh = mtod(m, struct ieee80211_frame *);
2284	ieee80211_send_setup(bss, wh,
2285		IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2286		vap->iv_myaddr, da, bss->ni_bssid);
2287	/* XXX power management? */
2288
2289	M_WME_SETAC(m, WME_AC_BE);
2290
2291	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2292	    "send probe resp on channel %u to %s%s\n",
2293	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2294	    legacy ? " <legacy>" : "");
2295	IEEE80211_NODE_STAT(bss, tx_mgmt);
2296
2297	return ic->ic_raw_xmit(bss, m, NULL);
2298}
2299
2300/*
2301 * Allocate and build a RTS (Request To Send) control frame.
2302 */
2303struct mbuf *
2304ieee80211_alloc_rts(struct ieee80211com *ic,
2305	const uint8_t ra[IEEE80211_ADDR_LEN],
2306	const uint8_t ta[IEEE80211_ADDR_LEN],
2307	uint16_t dur)
2308{
2309	struct ieee80211_frame_rts *rts;
2310	struct mbuf *m;
2311
2312	/* XXX honor ic_headroom */
2313	m = m_gethdr(M_DONTWAIT, MT_DATA);
2314	if (m != NULL) {
2315		rts = mtod(m, struct ieee80211_frame_rts *);
2316		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2317			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2318		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2319		*(u_int16_t *)rts->i_dur = htole16(dur);
2320		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2321		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2322
2323		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2324	}
2325	return m;
2326}
2327
2328/*
2329 * Allocate and build a CTS (Clear To Send) control frame.
2330 */
2331struct mbuf *
2332ieee80211_alloc_cts(struct ieee80211com *ic,
2333	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2334{
2335	struct ieee80211_frame_cts *cts;
2336	struct mbuf *m;
2337
2338	/* XXX honor ic_headroom */
2339	m = m_gethdr(M_DONTWAIT, MT_DATA);
2340	if (m != NULL) {
2341		cts = mtod(m, struct ieee80211_frame_cts *);
2342		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2343			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2344		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2345		*(u_int16_t *)cts->i_dur = htole16(dur);
2346		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2347
2348		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2349	}
2350	return m;
2351}
2352
2353static void
2354ieee80211_tx_mgt_timeout(void *arg)
2355{
2356	struct ieee80211_node *ni = arg;
2357	struct ieee80211vap *vap = ni->ni_vap;
2358
2359	if (vap->iv_state != IEEE80211_S_INIT &&
2360	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2361		/*
2362		 * NB: it's safe to specify a timeout as the reason here;
2363		 *     it'll only be used in the right state.
2364		 */
2365		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2366			IEEE80211_SCAN_FAIL_TIMEOUT);
2367	}
2368}
2369
2370static void
2371ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2372{
2373	struct ieee80211vap *vap = ni->ni_vap;
2374	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2375
2376	/*
2377	 * Frame transmit completed; arrange timer callback.  If
2378	 * transmit was successfuly we wait for response.  Otherwise
2379	 * we arrange an immediate callback instead of doing the
2380	 * callback directly since we don't know what state the driver
2381	 * is in (e.g. what locks it is holding).  This work should
2382	 * not be too time-critical and not happen too often so the
2383	 * added overhead is acceptable.
2384	 *
2385	 * XXX what happens if !acked but response shows up before callback?
2386	 */
2387	if (vap->iv_state == ostate)
2388		callout_reset(&vap->iv_mgtsend,
2389			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2390			ieee80211_tx_mgt_timeout, ni);
2391}
2392
2393static void
2394ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2395	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2396{
2397	struct ieee80211vap *vap = ni->ni_vap;
2398	struct ieee80211com *ic = ni->ni_ic;
2399	struct ieee80211_rateset *rs = &ni->ni_rates;
2400	uint16_t capinfo;
2401
2402	/*
2403	 * beacon frame format
2404	 *	[8] time stamp
2405	 *	[2] beacon interval
2406	 *	[2] cabability information
2407	 *	[tlv] ssid
2408	 *	[tlv] supported rates
2409	 *	[3] parameter set (DS)
2410	 *	[8] CF parameter set (optional)
2411	 *	[tlv] parameter set (IBSS/TIM)
2412	 *	[tlv] country (optional)
2413	 *	[tlv] RSN parameters
2414	 *	[3] power control (optional)
2415	 *	[5] channel switch announcement (CSA) (optional)
2416	 *	[tlv] extended rate phy (ERP)
2417	 *	[tlv] extended supported rates
2418	 *	[tlv] HT capabilities
2419	 *	[tlv] HT information
2420	 * XXX Vendor-specific OIDs (e.g. Atheros)
2421	 *	[tlv] WPA parameters
2422	 *	[tlv] WME parameters
2423	 *	[tlv] Vendor OUI HT capabilities (optional)
2424	 *	[tlv] Vendor OUI HT information (optional)
2425	 *	[tlv] application data (optional)
2426	 */
2427
2428	memset(bo, 0, sizeof(*bo));
2429
2430	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2431	frm += 8;
2432	*(uint16_t *)frm = htole16(ni->ni_intval);
2433	frm += 2;
2434	capinfo = getcapinfo(vap, ni->ni_chan);
2435	bo->bo_caps = (uint16_t *)frm;
2436	*(uint16_t *)frm = htole16(capinfo);
2437	frm += 2;
2438	*frm++ = IEEE80211_ELEMID_SSID;
2439	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2440		*frm++ = ni->ni_esslen;
2441		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2442		frm += ni->ni_esslen;
2443	} else
2444		*frm++ = 0;
2445	frm = ieee80211_add_rates(frm, rs);
2446	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2447		*frm++ = IEEE80211_ELEMID_DSPARMS;
2448		*frm++ = 1;
2449		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2450	}
2451	if (ic->ic_flags & IEEE80211_F_PCF) {
2452		bo->bo_cfp = frm;
2453		frm = ieee80211_add_cfparms(frm, ic);
2454	}
2455	bo->bo_tim = frm;
2456	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2457		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2458		*frm++ = 2;
2459		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2460		bo->bo_tim_len = 0;
2461	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2462		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2463
2464		tie->tim_ie = IEEE80211_ELEMID_TIM;
2465		tie->tim_len = 4;	/* length */
2466		tie->tim_count = 0;	/* DTIM count */
2467		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2468		tie->tim_bitctl = 0;	/* bitmap control */
2469		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2470		frm += sizeof(struct ieee80211_tim_ie);
2471		bo->bo_tim_len = 1;
2472	}
2473	bo->bo_tim_trailer = frm;
2474	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2475	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2476		frm = ieee80211_add_countryie(frm, ic);
2477	if (vap->iv_flags & IEEE80211_F_WPA2) {
2478		if (vap->iv_rsn_ie != NULL)
2479			frm = add_ie(frm, vap->iv_rsn_ie);
2480		/* XXX else complain */
2481	}
2482	if (vap->iv_flags & IEEE80211_F_DOTH) {
2483		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2484			frm = ieee80211_add_powerconstraint(frm, vap);
2485		bo->bo_csa = frm;
2486		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2487			frm = ieee80211_add_csa(frm, vap);
2488	} else
2489		bo->bo_csa = frm;
2490	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2491		bo->bo_erp = frm;
2492		frm = ieee80211_add_erp(frm, ic);
2493	}
2494	frm = ieee80211_add_xrates(frm, rs);
2495	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2496		frm = ieee80211_add_htcap(frm, ni);
2497		bo->bo_htinfo = frm;
2498		frm = ieee80211_add_htinfo(frm, ni);
2499	}
2500	if (vap->iv_flags & IEEE80211_F_WPA1) {
2501		if (vap->iv_wpa_ie != NULL)
2502			frm = add_ie(frm, vap->iv_wpa_ie);
2503		/* XXX else complain */
2504	}
2505	if (vap->iv_flags & IEEE80211_F_WME) {
2506		bo->bo_wme = frm;
2507		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2508	}
2509	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2510	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2511		frm = ieee80211_add_htcap_vendor(frm, ni);
2512		frm = ieee80211_add_htinfo_vendor(frm, ni);
2513	}
2514	if (vap->iv_appie_beacon != NULL) {
2515		bo->bo_appie = frm;
2516		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2517		frm = add_appie(frm, vap->iv_appie_beacon);
2518	}
2519	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2520	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2521	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2522}
2523
2524/*
2525 * Allocate a beacon frame and fillin the appropriate bits.
2526 */
2527struct mbuf *
2528ieee80211_beacon_alloc(struct ieee80211_node *ni,
2529	struct ieee80211_beacon_offsets *bo)
2530{
2531	struct ieee80211vap *vap = ni->ni_vap;
2532	struct ieee80211com *ic = ni->ni_ic;
2533	struct ifnet *ifp = vap->iv_ifp;
2534	struct ieee80211_frame *wh;
2535	struct mbuf *m;
2536	int pktlen;
2537	uint8_t *frm;
2538
2539	/*
2540	 * beacon frame format
2541	 *	[8] time stamp
2542	 *	[2] beacon interval
2543	 *	[2] cabability information
2544	 *	[tlv] ssid
2545	 *	[tlv] supported rates
2546	 *	[3] parameter set (DS)
2547	 *	[8] CF parameter set (optional)
2548	 *	[tlv] parameter set (IBSS/TIM)
2549	 *	[tlv] country (optional)
2550	 *	[3] power control (optional)
2551	 *	[5] channel switch announcement (CSA) (optional)
2552	 *	[tlv] extended rate phy (ERP)
2553	 *	[tlv] extended supported rates
2554	 *	[tlv] RSN parameters
2555	 *	[tlv] HT capabilities
2556	 *	[tlv] HT information
2557	 *	[tlv] Vendor OUI HT capabilities (optional)
2558	 *	[tlv] Vendor OUI HT information (optional)
2559	 * XXX Vendor-specific OIDs (e.g. Atheros)
2560	 *	[tlv] WPA parameters
2561	 *	[tlv] WME parameters
2562	 *	[tlv] application data (optional)
2563	 * NB: we allocate the max space required for the TIM bitmap.
2564	 * XXX how big is this?
2565	 */
2566	pktlen =   8					/* time stamp */
2567		 + sizeof(uint16_t)			/* beacon interval */
2568		 + sizeof(uint16_t)			/* capabilities */
2569		 + 2 + ni->ni_esslen			/* ssid */
2570	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2571	         + 2 + 1				/* DS parameters */
2572		 + 2 + 6				/* CF parameters */
2573		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2574		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2575		 + 2 + 1				/* power control */
2576	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2577		 + 2 + 1				/* ERP */
2578	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2579		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2580			2*sizeof(struct ieee80211_ie_wpa) : 0)
2581		 /* XXX conditional? */
2582		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2583		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2584		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2585			sizeof(struct ieee80211_wme_param) : 0)
2586		 + IEEE80211_MAX_APPIE
2587		 ;
2588	m = ieee80211_getmgtframe(&frm,
2589		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2590	if (m == NULL) {
2591		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2592			"%s: cannot get buf; size %u\n", __func__, pktlen);
2593		vap->iv_stats.is_tx_nobuf++;
2594		return NULL;
2595	}
2596	ieee80211_beacon_construct(m, frm, bo, ni);
2597
2598	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2599	KASSERT(m != NULL, ("no space for 802.11 header?"));
2600	wh = mtod(m, struct ieee80211_frame *);
2601	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2602	    IEEE80211_FC0_SUBTYPE_BEACON;
2603	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2604	*(uint16_t *)wh->i_dur = 0;
2605	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2606	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2607	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2608	*(uint16_t *)wh->i_seq = 0;
2609
2610	return m;
2611}
2612
2613/*
2614 * Update the dynamic parts of a beacon frame based on the current state.
2615 */
2616int
2617ieee80211_beacon_update(struct ieee80211_node *ni,
2618	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2619{
2620	struct ieee80211vap *vap = ni->ni_vap;
2621	struct ieee80211com *ic = ni->ni_ic;
2622	int len_changed = 0;
2623	uint16_t capinfo;
2624
2625	IEEE80211_LOCK(ic);
2626	/*
2627	 * Handle 11h channel change when we've reached the count.
2628	 * We must recalculate the beacon frame contents to account
2629	 * for the new channel.  Note we do this only for the first
2630	 * vap that reaches this point; subsequent vaps just update
2631	 * their beacon state to reflect the recalculated channel.
2632	 */
2633	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2634	    vap->iv_csa_count == ic->ic_csa_count) {
2635		vap->iv_csa_count = 0;
2636		/*
2637		 * Effect channel change before reconstructing the beacon
2638		 * frame contents as many places reference ni_chan.
2639		 */
2640		if (ic->ic_csa_newchan != NULL)
2641			ieee80211_csa_completeswitch(ic);
2642		/*
2643		 * NB: ieee80211_beacon_construct clears all pending
2644		 * updates in bo_flags so we don't need to explicitly
2645		 * clear IEEE80211_BEACON_CSA.
2646		 */
2647		ieee80211_beacon_construct(m,
2648		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2649
2650		/* XXX do WME aggressive mode processing? */
2651		IEEE80211_UNLOCK(ic);
2652		return 1;		/* just assume length changed */
2653	}
2654
2655	/* XXX faster to recalculate entirely or just changes? */
2656	capinfo = getcapinfo(vap, ni->ni_chan);
2657	*bo->bo_caps = htole16(capinfo);
2658
2659	if (vap->iv_flags & IEEE80211_F_WME) {
2660		struct ieee80211_wme_state *wme = &ic->ic_wme;
2661
2662		/*
2663		 * Check for agressive mode change.  When there is
2664		 * significant high priority traffic in the BSS
2665		 * throttle back BE traffic by using conservative
2666		 * parameters.  Otherwise BE uses agressive params
2667		 * to optimize performance of legacy/non-QoS traffic.
2668		 */
2669		if (wme->wme_flags & WME_F_AGGRMODE) {
2670			if (wme->wme_hipri_traffic >
2671			    wme->wme_hipri_switch_thresh) {
2672				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2673				    "%s: traffic %u, disable aggressive mode\n",
2674				    __func__, wme->wme_hipri_traffic);
2675				wme->wme_flags &= ~WME_F_AGGRMODE;
2676				ieee80211_wme_updateparams_locked(vap);
2677				wme->wme_hipri_traffic =
2678					wme->wme_hipri_switch_hysteresis;
2679			} else
2680				wme->wme_hipri_traffic = 0;
2681		} else {
2682			if (wme->wme_hipri_traffic <=
2683			    wme->wme_hipri_switch_thresh) {
2684				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2685				    "%s: traffic %u, enable aggressive mode\n",
2686				    __func__, wme->wme_hipri_traffic);
2687				wme->wme_flags |= WME_F_AGGRMODE;
2688				ieee80211_wme_updateparams_locked(vap);
2689				wme->wme_hipri_traffic = 0;
2690			} else
2691				wme->wme_hipri_traffic =
2692					wme->wme_hipri_switch_hysteresis;
2693		}
2694		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2695			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2696			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2697		}
2698	}
2699
2700	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2701		ieee80211_ht_update_beacon(vap, bo);
2702		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2703	}
2704
2705	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
2706		struct ieee80211_tim_ie *tie =
2707			(struct ieee80211_tim_ie *) bo->bo_tim;
2708		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2709			u_int timlen, timoff, i;
2710			/*
2711			 * ATIM/DTIM needs updating.  If it fits in the
2712			 * current space allocated then just copy in the
2713			 * new bits.  Otherwise we need to move any trailing
2714			 * data to make room.  Note that we know there is
2715			 * contiguous space because ieee80211_beacon_allocate
2716			 * insures there is space in the mbuf to write a
2717			 * maximal-size virtual bitmap (based on iv_max_aid).
2718			 */
2719			/*
2720			 * Calculate the bitmap size and offset, copy any
2721			 * trailer out of the way, and then copy in the
2722			 * new bitmap and update the information element.
2723			 * Note that the tim bitmap must contain at least
2724			 * one byte and any offset must be even.
2725			 */
2726			if (vap->iv_ps_pending != 0) {
2727				timoff = 128;		/* impossibly large */
2728				for (i = 0; i < vap->iv_tim_len; i++)
2729					if (vap->iv_tim_bitmap[i]) {
2730						timoff = i &~ 1;
2731						break;
2732					}
2733				KASSERT(timoff != 128, ("tim bitmap empty!"));
2734				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2735					if (vap->iv_tim_bitmap[i])
2736						break;
2737				timlen = 1 + (i - timoff);
2738			} else {
2739				timoff = 0;
2740				timlen = 1;
2741			}
2742			if (timlen != bo->bo_tim_len) {
2743				/* copy up/down trailer */
2744				int adjust = tie->tim_bitmap+timlen
2745					   - bo->bo_tim_trailer;
2746				ovbcopy(bo->bo_tim_trailer,
2747				    bo->bo_tim_trailer+adjust,
2748				    bo->bo_tim_trailer_len);
2749				bo->bo_tim_trailer += adjust;
2750				bo->bo_erp += adjust;
2751				bo->bo_htinfo += adjust;
2752				bo->bo_appie += adjust;
2753				bo->bo_wme += adjust;
2754				bo->bo_csa += adjust;
2755				bo->bo_tim_len = timlen;
2756
2757				/* update information element */
2758				tie->tim_len = 3 + timlen;
2759				tie->tim_bitctl = timoff;
2760				len_changed = 1;
2761			}
2762			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2763				bo->bo_tim_len);
2764
2765			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2766
2767			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2768				"%s: TIM updated, pending %u, off %u, len %u\n",
2769				__func__, vap->iv_ps_pending, timoff, timlen);
2770		}
2771		/* count down DTIM period */
2772		if (tie->tim_count == 0)
2773			tie->tim_count = tie->tim_period - 1;
2774		else
2775			tie->tim_count--;
2776		/* update state for buffered multicast frames on DTIM */
2777		if (mcast && tie->tim_count == 0)
2778			tie->tim_bitctl |= 1;
2779		else
2780			tie->tim_bitctl &= ~1;
2781		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2782			struct ieee80211_csa_ie *csa =
2783			    (struct ieee80211_csa_ie *) bo->bo_csa;
2784
2785			/*
2786			 * Insert or update CSA ie.  If we're just starting
2787			 * to count down to the channel switch then we need
2788			 * to insert the CSA ie.  Otherwise we just need to
2789			 * drop the count.  The actual change happens above
2790			 * when the vap's count reaches the target count.
2791			 */
2792			if (vap->iv_csa_count == 0) {
2793				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2794				bo->bo_erp += sizeof(*csa);
2795				bo->bo_wme += sizeof(*csa);
2796				bo->bo_appie += sizeof(*csa);
2797				bo->bo_csa_trailer_len += sizeof(*csa);
2798				bo->bo_tim_trailer_len += sizeof(*csa);
2799				m->m_len += sizeof(*csa);
2800				m->m_pkthdr.len += sizeof(*csa);
2801
2802				ieee80211_add_csa(bo->bo_csa, vap);
2803			} else
2804				csa->csa_count--;
2805			vap->iv_csa_count++;
2806			/* NB: don't clear IEEE80211_BEACON_CSA */
2807		}
2808		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2809			/*
2810			 * ERP element needs updating.
2811			 */
2812			(void) ieee80211_add_erp(bo->bo_erp, ic);
2813			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2814		}
2815	}
2816	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2817		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2818		int aielen;
2819		uint8_t *frm;
2820
2821		aielen = 0;
2822		if (aie != NULL)
2823			aielen += aie->ie_len;
2824		if (aielen != bo->bo_appie_len) {
2825			/* copy up/down trailer */
2826			int adjust = aielen - bo->bo_appie_len;
2827			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2828				bo->bo_tim_trailer_len);
2829			bo->bo_tim_trailer += adjust;
2830			bo->bo_appie += adjust;
2831			bo->bo_appie_len = aielen;
2832
2833			len_changed = 1;
2834		}
2835		frm = bo->bo_appie;
2836		if (aie != NULL)
2837			frm  = add_appie(frm, aie);
2838		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2839	}
2840	IEEE80211_UNLOCK(ic);
2841
2842	return len_changed;
2843}
2844