ieee80211.c revision 170360
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2007 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211.c 170360 2007-06-06 04:56:04Z sam $");
29
30/*
31 * IEEE 802.11 generic handler
32 */
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kernel.h>
37
38#include <sys/socket.h>
39
40#include <net/if.h>
41#include <net/if_media.h>
42#include <net/ethernet.h>
43
44#include <net80211/ieee80211_var.h>
45
46#include <net/bpf.h>
47
48const char *ieee80211_phymode_name[] = {
49	"auto",		/* IEEE80211_MODE_AUTO */
50	"11a",		/* IEEE80211_MODE_11A */
51	"11b",		/* IEEE80211_MODE_11B */
52	"11g",		/* IEEE80211_MODE_11G */
53	"FH",		/* IEEE80211_MODE_FH */
54	"turboA",	/* IEEE80211_MODE_TURBO_A */
55	"turboG",	/* IEEE80211_MODE_TURBO_G */
56};
57
58/*
59 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
60 */
61#define	B(r)	((r) | IEEE80211_RATE_BASIC)
62static const struct ieee80211_rateset ieee80211_rateset_11a =
63	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
64static const struct ieee80211_rateset ieee80211_rateset_half =
65	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
66static const struct ieee80211_rateset ieee80211_rateset_quarter =
67	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
68static const struct ieee80211_rateset ieee80211_rateset_11b =
69	{ 4, { B(2), B(4), B(11), B(22) } };
70/* NB: OFDM rates are handled specially based on mode */
71static const struct ieee80211_rateset ieee80211_rateset_11g =
72	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
73#undef B
74
75/* list of all instances */
76SLIST_HEAD(ieee80211_list, ieee80211com);
77static struct ieee80211_list ieee80211_list =
78	SLIST_HEAD_INITIALIZER(ieee80211_list);
79static u_int8_t ieee80211_vapmap[32];		/* enough for 256 */
80static struct mtx ieee80211_vap_mtx;
81MTX_SYSINIT(ieee80211, &ieee80211_vap_mtx, "net80211 instances", MTX_DEF);
82
83static void
84ieee80211_add_vap(struct ieee80211com *ic)
85{
86#define	N(a)	(sizeof(a)/sizeof(a[0]))
87	int i;
88	u_int8_t b;
89
90	mtx_lock(&ieee80211_vap_mtx);
91	ic->ic_vap = 0;
92	for (i = 0; i < N(ieee80211_vapmap) && ieee80211_vapmap[i] == 0xff; i++)
93		ic->ic_vap += NBBY;
94	if (i == N(ieee80211_vapmap))
95		panic("vap table full");
96	for (b = ieee80211_vapmap[i]; b & 1; b >>= 1)
97		ic->ic_vap++;
98	setbit(ieee80211_vapmap, ic->ic_vap);
99	SLIST_INSERT_HEAD(&ieee80211_list, ic, ic_next);
100	mtx_unlock(&ieee80211_vap_mtx);
101#undef N
102}
103
104static void
105ieee80211_remove_vap(struct ieee80211com *ic)
106{
107	mtx_lock(&ieee80211_vap_mtx);
108	SLIST_REMOVE(&ieee80211_list, ic, ieee80211com, ic_next);
109	KASSERT(ic->ic_vap < sizeof(ieee80211_vapmap)*NBBY,
110		("invalid vap id %d", ic->ic_vap));
111	KASSERT(isset(ieee80211_vapmap, ic->ic_vap),
112		("vap id %d not allocated", ic->ic_vap));
113	clrbit(ieee80211_vapmap, ic->ic_vap);
114	mtx_unlock(&ieee80211_vap_mtx);
115}
116
117/*
118 * Default reset method for use with the ioctl support.  This
119 * method is invoked after any state change in the 802.11
120 * layer that should be propagated to the hardware but not
121 * require re-initialization of the 802.11 state machine (e.g
122 * rescanning for an ap).  We always return ENETRESET which
123 * should cause the driver to re-initialize the device. Drivers
124 * can override this method to implement more optimized support.
125 */
126static int
127ieee80211_default_reset(struct ifnet *ifp)
128{
129	return ENETRESET;
130}
131
132/*
133 * Fill in 802.11 available channel set, mark
134 * all available channels as active, and pick
135 * a default channel if not already specified.
136 */
137static void
138ieee80211_chan_init(struct ieee80211com *ic)
139{
140#define	DEFAULTRATES(m, def) do { \
141	if (isset(ic->ic_modecaps, m) && ic->ic_sup_rates[m].rs_nrates == 0) \
142		ic->ic_sup_rates[m] = def; \
143} while (0)
144	struct ifnet *ifp = ic->ic_ifp;
145	struct ieee80211_channel *c;
146	int i;
147
148	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
149	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
150	for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
151		c = &ic->ic_channels[i];
152		if (c->ic_flags) {
153			/*
154			 * Verify driver passed us valid data.
155			 */
156			if (i != ieee80211_chan2ieee(ic, c)) {
157				if_printf(ifp, "bad channel ignored; "
158					"freq %u flags %x number %u\n",
159					c->ic_freq, c->ic_flags, i);
160				c->ic_flags = 0;	/* NB: remove */
161				continue;
162			}
163			setbit(ic->ic_chan_avail, i);
164			/*
165			 * Identify mode capabilities.
166			 */
167			if (IEEE80211_IS_CHAN_A(c))
168				setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
169			if (IEEE80211_IS_CHAN_B(c))
170				setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
171			if (IEEE80211_IS_CHAN_ANYG(c))
172				setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
173			if (IEEE80211_IS_CHAN_FHSS(c))
174				setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
175			if (IEEE80211_IS_CHAN_T(c))
176				setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
177			if (IEEE80211_IS_CHAN_108G(c))
178				setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
179			if (ic->ic_curchan == NULL) {
180				/* arbitrarily pick the first channel */
181				ic->ic_curchan = &ic->ic_channels[i];
182			}
183		}
184	}
185
186	/* fillin well-known rate sets if driver has not specified */
187	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
188	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
189	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
190	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
191	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
192
193	/*
194	 * Set auto mode to reset active channel state and any desired channel.
195	 */
196	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
197#undef DEFAULTRATES
198}
199
200void
201ieee80211_ifattach(struct ieee80211com *ic)
202{
203	struct ifnet *ifp = ic->ic_ifp;
204
205	ether_ifattach(ifp, ic->ic_myaddr);
206	ifp->if_output = ieee80211_output;
207
208	bpfattach2(ifp, DLT_IEEE802_11,
209	    sizeof(struct ieee80211_frame_addr4), &ic->ic_rawbpf);
210
211	ieee80211_crypto_attach(ic);
212
213	ic->ic_des_chan = IEEE80211_CHAN_ANYC;
214	/*
215	 * Fill in 802.11 available channel set, mark all
216	 * available channels as active, and pick a default
217	 * channel if not already specified.
218	 */
219	ieee80211_chan_init(ic);
220#if 0
221	/*
222	 * Enable WME by default if we're capable.
223	 */
224	if (ic->ic_caps & IEEE80211_C_WME)
225		ic->ic_flags |= IEEE80211_F_WME;
226#endif
227	if (ic->ic_caps & IEEE80211_C_BURST)
228		ic->ic_flags |= IEEE80211_F_BURST;
229
230	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
231	ic->ic_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
232	ic->ic_dtim_period = IEEE80211_DTIM_DEFAULT;
233	IEEE80211_BEACON_LOCK_INIT(ic, "beacon");
234
235	ic->ic_lintval = ic->ic_bintval;
236	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
237
238	ieee80211_node_attach(ic);
239	ieee80211_proto_attach(ic);
240
241	ieee80211_add_vap(ic);
242
243	ieee80211_sysctl_attach(ic);		/* NB: requires ic_vap */
244
245	/*
246	 * Install a default reset method for the ioctl support.
247	 * The driver is expected to fill this in before calling us.
248	 */
249	if (ic->ic_reset == NULL)
250		ic->ic_reset = ieee80211_default_reset;
251
252	KASSERT(ifp->if_spare2 == NULL, ("oops, hosed"));
253	ifp->if_spare2 = ic;			/* XXX temp backpointer */
254}
255
256void
257ieee80211_ifdetach(struct ieee80211com *ic)
258{
259	struct ifnet *ifp = ic->ic_ifp;
260
261	ieee80211_remove_vap(ic);
262
263	ieee80211_sysctl_detach(ic);
264	/* NB: must be called before ieee80211_node_detach */
265	ieee80211_proto_detach(ic);
266	ieee80211_crypto_detach(ic);
267	ieee80211_node_detach(ic);
268	ifmedia_removeall(&ic->ic_media);
269
270	IEEE80211_BEACON_LOCK_DESTROY(ic);
271
272	bpfdetach(ifp);
273	ether_ifdetach(ifp);
274}
275
276static __inline int
277mapgsm(u_int freq, u_int flags)
278{
279	freq *= 10;
280	if (flags & IEEE80211_CHAN_QUARTER)
281		freq += 5;
282	else if (flags & IEEE80211_CHAN_HALF)
283		freq += 10;
284	else
285		freq += 20;
286	/* NB: there is no 907/20 wide but leave room */
287	return (freq - 906*10) / 5;
288}
289
290static __inline int
291mappsb(u_int freq, u_int flags)
292{
293	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
294}
295
296/*
297 * Convert MHz frequency to IEEE channel number.
298 */
299int
300ieee80211_mhz2ieee(u_int freq, u_int flags)
301{
302#define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
303	if (flags & IEEE80211_CHAN_GSM)
304		return mapgsm(freq, flags);
305	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
306		if (freq == 2484)
307			return 14;
308		if (freq < 2484)
309			return ((int) freq - 2407) / 5;
310		else
311			return 15 + ((freq - 2512) / 20);
312	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
313		if (freq <= 5000) {
314			if (IS_FREQ_IN_PSB(freq))
315				return mappsb(freq, flags);
316			return (freq - 4000) / 5;
317		} else
318			return (freq - 5000) / 5;
319	} else {				/* either, guess */
320		if (freq == 2484)
321			return 14;
322		if (freq < 2484) {
323			if (907 <= freq && freq <= 922)
324				return mapgsm(freq, flags);
325			return ((int) freq - 2407) / 5;
326		}
327		if (freq < 5000) {
328			if (IS_FREQ_IN_PSB(freq))
329				return mappsb(freq, flags);
330			else if (freq > 4900)
331				return (freq - 4000) / 5;
332			else
333				return 15 + ((freq - 2512) / 20);
334		}
335		return (freq - 5000) / 5;
336	}
337#undef IS_FREQ_IN_PSB
338}
339
340/*
341 * Convert channel to IEEE channel number.
342 */
343int
344ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
345{
346	if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX])
347		return c - ic->ic_channels;
348	else if (c == IEEE80211_CHAN_ANYC)
349		return IEEE80211_CHAN_ANY;
350	else if (c != NULL) {
351		if_printf(ic->ic_ifp, "invalid channel freq %u flags %x\n",
352			c->ic_freq, c->ic_flags);
353		return 0;		/* XXX */
354	} else {
355		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
356		return 0;		/* XXX */
357	}
358}
359
360/*
361 * Convert IEEE channel number to MHz frequency.
362 */
363u_int
364ieee80211_ieee2mhz(u_int chan, u_int flags)
365{
366	if (flags & IEEE80211_CHAN_GSM)
367		return 907 + 5 * (chan / 10);
368	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
369		if (chan == 14)
370			return 2484;
371		if (chan < 14)
372			return 2407 + chan*5;
373		else
374			return 2512 + ((chan-15)*20);
375	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
376		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
377			chan -= 37;
378			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
379		}
380		return 5000 + (chan*5);
381	} else {				/* either, guess */
382		/* XXX can't distinguish PSB+GSM channels */
383		if (chan == 14)
384			return 2484;
385		if (chan < 14)			/* 0-13 */
386			return 2407 + chan*5;
387		if (chan < 27)			/* 15-26 */
388			return 2512 + ((chan-15)*20);
389		return 5000 + (chan*5);
390	}
391}
392
393/*
394 * Setup the media data structures according to the channel and
395 * rate tables.  This must be called by the driver after
396 * ieee80211_attach and before most anything else.
397 */
398void
399ieee80211_media_init(struct ieee80211com *ic,
400	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
401{
402#define	ADD(_ic, _s, _o) \
403	ifmedia_add(&(_ic)->ic_media, \
404		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
405	struct ifnet *ifp = ic->ic_ifp;
406	struct ifmediareq imr;
407	int i, j, mode, rate, maxrate, mword, mopt, r;
408	struct ieee80211_rateset *rs;
409	struct ieee80211_rateset allrates;
410
411	/* NB: this works because the structure is initialized to zero */
412	if (LIST_EMPTY(&ic->ic_media.ifm_list)) {
413		/*
414		 * Do late attach work that must wait for any subclass
415		 * (i.e. driver) work such as overriding methods.
416		 */
417		ieee80211_node_lateattach(ic);
418	} else {
419		/*
420		 * We are re-initializing the channel list; clear
421		 * the existing media state as the media routines
422		 * don't suppress duplicates.
423		 */
424		ifmedia_removeall(&ic->ic_media);
425		ieee80211_chan_init(ic);
426	}
427
428	/*
429	 * Fill in media characteristics.
430	 */
431	ifmedia_init(&ic->ic_media, 0, media_change, media_stat);
432	maxrate = 0;
433	memset(&allrates, 0, sizeof(allrates));
434	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_MAX; mode++) {
435		static const u_int mopts[] = {
436			IFM_AUTO,
437			IFM_IEEE80211_11A,
438			IFM_IEEE80211_11B,
439			IFM_IEEE80211_11G,
440			IFM_IEEE80211_FH,
441			IFM_IEEE80211_11A | IFM_IEEE80211_TURBO,
442			IFM_IEEE80211_11G | IFM_IEEE80211_TURBO,
443		};
444		if (isclr(ic->ic_modecaps, mode))
445			continue;
446		mopt = mopts[mode];
447		ADD(ic, IFM_AUTO, mopt);	/* e.g. 11a auto */
448		if (ic->ic_caps & IEEE80211_C_IBSS)
449			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC);
450		if (ic->ic_caps & IEEE80211_C_HOSTAP)
451			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP);
452		if (ic->ic_caps & IEEE80211_C_AHDEMO)
453			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
454		if (ic->ic_caps & IEEE80211_C_MONITOR)
455			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR);
456		if (mode == IEEE80211_MODE_AUTO)
457			continue;
458		rs = &ic->ic_sup_rates[mode];
459		for (i = 0; i < rs->rs_nrates; i++) {
460			rate = rs->rs_rates[i];
461			mword = ieee80211_rate2media(ic, rate, mode);
462			if (mword == 0)
463				continue;
464			ADD(ic, mword, mopt);
465			if (ic->ic_caps & IEEE80211_C_IBSS)
466				ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC);
467			if (ic->ic_caps & IEEE80211_C_HOSTAP)
468				ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP);
469			if (ic->ic_caps & IEEE80211_C_AHDEMO)
470				ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
471			if (ic->ic_caps & IEEE80211_C_MONITOR)
472				ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR);
473			/*
474			 * Add rate to the collection of all rates.
475			 */
476			r = rate & IEEE80211_RATE_VAL;
477			for (j = 0; j < allrates.rs_nrates; j++)
478				if (allrates.rs_rates[j] == r)
479					break;
480			if (j == allrates.rs_nrates) {
481				/* unique, add to the set */
482				allrates.rs_rates[j] = r;
483				allrates.rs_nrates++;
484			}
485			rate = (rate & IEEE80211_RATE_VAL) / 2;
486			if (rate > maxrate)
487				maxrate = rate;
488		}
489	}
490	for (i = 0; i < allrates.rs_nrates; i++) {
491		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
492				IEEE80211_MODE_AUTO);
493		if (mword == 0)
494			continue;
495		mword = IFM_SUBTYPE(mword);	/* remove media options */
496		ADD(ic, mword, 0);
497		if (ic->ic_caps & IEEE80211_C_IBSS)
498			ADD(ic, mword, IFM_IEEE80211_ADHOC);
499		if (ic->ic_caps & IEEE80211_C_HOSTAP)
500			ADD(ic, mword, IFM_IEEE80211_HOSTAP);
501		if (ic->ic_caps & IEEE80211_C_AHDEMO)
502			ADD(ic, mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
503		if (ic->ic_caps & IEEE80211_C_MONITOR)
504			ADD(ic, mword, IFM_IEEE80211_MONITOR);
505	}
506	ieee80211_media_status(ifp, &imr);
507	ifmedia_set(&ic->ic_media, imr.ifm_active);
508
509	if (maxrate)
510		ifp->if_baudrate = IF_Mbps(maxrate);
511#undef ADD
512}
513
514const struct ieee80211_rateset *
515ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
516{
517	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, c);
518
519	if (IEEE80211_IS_CHAN_HALF(c))
520		return &ieee80211_rateset_half;
521	if (IEEE80211_IS_CHAN_QUARTER(c))
522		return &ieee80211_rateset_quarter;
523	return &ic->ic_sup_rates[mode];
524}
525
526void
527ieee80211_announce(struct ieee80211com *ic)
528{
529	struct ifnet *ifp = ic->ic_ifp;
530	int i, mode, rate, mword;
531	struct ieee80211_rateset *rs;
532
533	for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) {
534		if (isclr(ic->ic_modecaps, mode))
535			continue;
536		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
537		rs = &ic->ic_sup_rates[mode];
538		for (i = 0; i < rs->rs_nrates; i++) {
539			rate = rs->rs_rates[i];
540			mword = ieee80211_rate2media(ic, rate, mode);
541			if (mword == 0)
542				continue;
543			printf("%s%d%sMbps", (i != 0 ? " " : ""),
544			    (rate & IEEE80211_RATE_VAL) / 2,
545			    ((rate & 0x1) != 0 ? ".5" : ""));
546		}
547		printf("\n");
548	}
549}
550
551static int
552findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, int rate)
553{
554#define	IEEERATE(_ic,_m,_i) \
555	((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL)
556	int i, nrates = ic->ic_sup_rates[mode].rs_nrates;
557	for (i = 0; i < nrates; i++)
558		if (IEEERATE(ic, mode, i) == rate)
559			return i;
560	return -1;
561#undef IEEERATE
562}
563
564/*
565 * Find an instance by it's mac address.
566 */
567struct ieee80211com *
568ieee80211_find_vap(const u_int8_t mac[IEEE80211_ADDR_LEN])
569{
570	struct ieee80211com *ic;
571
572	/* XXX lock */
573	SLIST_FOREACH(ic, &ieee80211_list, ic_next)
574		if (IEEE80211_ADDR_EQ(mac, ic->ic_myaddr))
575			return ic;
576	return NULL;
577}
578
579static struct ieee80211com *
580ieee80211_find_instance(struct ifnet *ifp)
581{
582	struct ieee80211com *ic;
583
584	/* XXX lock */
585	/* XXX not right for multiple instances but works for now */
586	SLIST_FOREACH(ic, &ieee80211_list, ic_next)
587		if (ic->ic_ifp == ifp)
588			return ic;
589	return NULL;
590}
591
592/*
593 * Handle a media change request.
594 */
595int
596ieee80211_media_change(struct ifnet *ifp)
597{
598	struct ieee80211com *ic;
599	struct ifmedia_entry *ime;
600	enum ieee80211_opmode newopmode;
601	enum ieee80211_phymode newphymode;
602	int i, j, newrate, error = 0;
603
604	ic = ieee80211_find_instance(ifp);
605	if (!ic) {
606		if_printf(ifp, "%s: no 802.11 instance!\n", __func__);
607		return EINVAL;
608	}
609	ime = ic->ic_media.ifm_cur;
610	/*
611	 * First, identify the phy mode.
612	 */
613	switch (IFM_MODE(ime->ifm_media)) {
614	case IFM_IEEE80211_11A:
615		newphymode = IEEE80211_MODE_11A;
616		break;
617	case IFM_IEEE80211_11B:
618		newphymode = IEEE80211_MODE_11B;
619		break;
620	case IFM_IEEE80211_11G:
621		newphymode = IEEE80211_MODE_11G;
622		break;
623	case IFM_IEEE80211_FH:
624		newphymode = IEEE80211_MODE_FH;
625		break;
626	case IFM_AUTO:
627		newphymode = IEEE80211_MODE_AUTO;
628		break;
629	default:
630		return EINVAL;
631	}
632	/*
633	 * Turbo mode is an ``option''.
634	 * XXX does not apply to AUTO
635	 */
636	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
637		if (newphymode == IEEE80211_MODE_11A)
638			newphymode = IEEE80211_MODE_TURBO_A;
639		else if (newphymode == IEEE80211_MODE_11G)
640			newphymode = IEEE80211_MODE_TURBO_G;
641		else
642			return EINVAL;
643	}
644	/*
645	 * Validate requested mode is available.
646	 */
647	if (isclr(ic->ic_modecaps, newphymode))
648		return EINVAL;
649
650	/*
651	 * Next, the fixed/variable rate.
652	 */
653	i = -1;
654	if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) {
655		/*
656		 * Convert media subtype to rate.
657		 */
658		newrate = ieee80211_media2rate(ime->ifm_media);
659		if (newrate == 0)
660			return EINVAL;
661		/*
662		 * Check the rate table for the specified/current phy.
663		 */
664		if (newphymode == IEEE80211_MODE_AUTO) {
665			/*
666			 * In autoselect mode search for the rate.
667			 */
668			for (j = IEEE80211_MODE_11A;
669			     j < IEEE80211_MODE_MAX; j++) {
670				if (isclr(ic->ic_modecaps, j))
671					continue;
672				i = findrate(ic, j, newrate);
673				if (i != -1) {
674					/* lock mode too */
675					newphymode = j;
676					break;
677				}
678			}
679		} else {
680			i = findrate(ic, newphymode, newrate);
681		}
682		if (i == -1)			/* mode/rate mismatch */
683			return EINVAL;
684	}
685	/* NB: defer rate setting to later */
686
687	/*
688	 * Deduce new operating mode but don't install it just yet.
689	 */
690	if ((ime->ifm_media & (IFM_IEEE80211_ADHOC|IFM_FLAG0)) ==
691	    (IFM_IEEE80211_ADHOC|IFM_FLAG0))
692		newopmode = IEEE80211_M_AHDEMO;
693	else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
694		newopmode = IEEE80211_M_HOSTAP;
695	else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
696		newopmode = IEEE80211_M_IBSS;
697	else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
698		newopmode = IEEE80211_M_MONITOR;
699	else
700		newopmode = IEEE80211_M_STA;
701
702	/*
703	 * Autoselect doesn't make sense when operating as an AP.
704	 * If no phy mode has been selected, pick one and lock it
705	 * down so rate tables can be used in forming beacon frames
706	 * and the like.
707	 */
708	if (newopmode == IEEE80211_M_HOSTAP &&
709	    newphymode == IEEE80211_MODE_AUTO) {
710		for (j = IEEE80211_MODE_11A; j < IEEE80211_MODE_MAX; j++)
711			if (isset(ic->ic_modecaps, j)) {
712				newphymode = j;
713				break;
714			}
715	}
716
717	/*
718	 * Handle phy mode change.
719	 */
720	if (ic->ic_curmode != newphymode) {		/* change phy mode */
721		error = ieee80211_setmode(ic, newphymode);
722		if (error != 0)
723			return error;
724		error = ENETRESET;
725	}
726
727	/*
728	 * Committed to changes, install the rate setting.
729	 */
730	if (ic->ic_fixed_rate != i) {
731		ic->ic_fixed_rate = i;			/* set fixed tx rate */
732		error = ENETRESET;
733	}
734
735	/*
736	 * Handle operating mode change.
737	 */
738	if (ic->ic_opmode != newopmode) {
739		ic->ic_opmode = newopmode;
740		switch (newopmode) {
741		case IEEE80211_M_AHDEMO:
742		case IEEE80211_M_HOSTAP:
743		case IEEE80211_M_STA:
744		case IEEE80211_M_MONITOR:
745			ic->ic_flags &= ~IEEE80211_F_IBSSON;
746			break;
747		case IEEE80211_M_IBSS:
748			ic->ic_flags |= IEEE80211_F_IBSSON;
749			break;
750		}
751		/*
752		 * Yech, slot time may change depending on the
753		 * operating mode so reset it to be sure everything
754		 * is setup appropriately.
755		 */
756		ieee80211_reset_erp(ic);
757		ieee80211_wme_initparams(ic);	/* after opmode change */
758		error = ENETRESET;
759	}
760#ifdef notdef
761	if (error == 0)
762		ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media);
763#endif
764	return error;
765}
766
767void
768ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
769{
770	struct ieee80211com *ic;
771	const struct ieee80211_rateset *rs;
772
773	ic = ieee80211_find_instance(ifp);
774	if (!ic) {
775		if_printf(ifp, "%s: no 802.11 instance!\n", __func__);
776		return;
777	}
778	imr->ifm_status = IFM_AVALID;
779	imr->ifm_active = IFM_IEEE80211;
780	if (ic->ic_state == IEEE80211_S_RUN)
781		imr->ifm_status |= IFM_ACTIVE;
782	/*
783	 * Calculate a current rate if possible.
784	 */
785	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
786		/*
787		 * A fixed rate is set, report that.
788		 */
789		rs = ieee80211_get_suprates(ic, ic->ic_curchan);
790		imr->ifm_active |= ieee80211_rate2media(ic,
791			rs->rs_rates[ic->ic_fixed_rate], ic->ic_curmode);
792	} else if (ic->ic_opmode == IEEE80211_M_STA) {
793		/*
794		 * In station mode report the current transmit rate.
795		 */
796		rs = &ic->ic_bss->ni_rates;
797		imr->ifm_active |= ieee80211_rate2media(ic,
798			rs->rs_rates[ic->ic_bss->ni_txrate], ic->ic_curmode);
799	} else
800		imr->ifm_active |= IFM_AUTO;
801	switch (ic->ic_opmode) {
802	case IEEE80211_M_STA:
803		break;
804	case IEEE80211_M_IBSS:
805		imr->ifm_active |= IFM_IEEE80211_ADHOC;
806		break;
807	case IEEE80211_M_AHDEMO:
808		/* should not come here */
809		break;
810	case IEEE80211_M_HOSTAP:
811		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
812		break;
813	case IEEE80211_M_MONITOR:
814		imr->ifm_active |= IFM_IEEE80211_MONITOR;
815		break;
816	}
817	switch (ic->ic_curmode) {
818	case IEEE80211_MODE_11A:
819		imr->ifm_active |= IFM_IEEE80211_11A;
820		break;
821	case IEEE80211_MODE_11B:
822		imr->ifm_active |= IFM_IEEE80211_11B;
823		break;
824	case IEEE80211_MODE_11G:
825		imr->ifm_active |= IFM_IEEE80211_11G;
826		break;
827	case IEEE80211_MODE_FH:
828		imr->ifm_active |= IFM_IEEE80211_FH;
829		break;
830	case IEEE80211_MODE_TURBO_A:
831		imr->ifm_active |= IFM_IEEE80211_11A
832				|  IFM_IEEE80211_TURBO;
833		break;
834	case IEEE80211_MODE_TURBO_G:
835		imr->ifm_active |= IFM_IEEE80211_11G
836				|  IFM_IEEE80211_TURBO;
837		break;
838	}
839}
840
841void
842ieee80211_watchdog(struct ieee80211com *ic)
843{
844	struct ieee80211_node_table *nt;
845	int need_inact_timer = 0;
846
847	if (ic->ic_state != IEEE80211_S_INIT) {
848		if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0)
849			ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
850		nt = &ic->ic_scan;
851		if (nt->nt_inact_timer) {
852			if (--nt->nt_inact_timer == 0)
853				nt->nt_timeout(nt);
854			need_inact_timer += nt->nt_inact_timer;
855		}
856		nt = &ic->ic_sta;
857		if (nt->nt_inact_timer) {
858			if (--nt->nt_inact_timer == 0)
859				nt->nt_timeout(nt);
860			need_inact_timer += nt->nt_inact_timer;
861		}
862	}
863	if (ic->ic_mgt_timer != 0 || need_inact_timer)
864		ic->ic_ifp->if_timer = 1;
865}
866
867/*
868 * Set the current phy mode and recalculate the active channel
869 * set based on the available channels for this mode.  Also
870 * select a new default/current channel if the current one is
871 * inappropriate for this mode.
872 */
873int
874ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
875{
876#define	N(a)	(sizeof(a) / sizeof(a[0]))
877	static const u_int chanflags[] = {
878		0,			/* IEEE80211_MODE_AUTO */
879		IEEE80211_CHAN_A,	/* IEEE80211_MODE_11A */
880		IEEE80211_CHAN_B,	/* IEEE80211_MODE_11B */
881		IEEE80211_CHAN_PUREG,	/* IEEE80211_MODE_11G */
882		IEEE80211_CHAN_FHSS,	/* IEEE80211_MODE_FH */
883		IEEE80211_CHAN_T,	/* IEEE80211_MODE_TURBO_A */
884		IEEE80211_CHAN_108G,	/* IEEE80211_MODE_TURBO_G */
885	};
886	struct ieee80211_channel *c;
887	u_int modeflags;
888	int i;
889
890	/* validate new mode */
891	if (isclr(ic->ic_modecaps, mode)) {
892		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
893			"%s: mode %u not supported (caps 0x%x)\n",
894			__func__, mode, ic->ic_modecaps);
895		return EINVAL;
896	}
897
898	/*
899	 * Verify at least one channel is present in the available
900	 * channel list before committing to the new mode.
901	 */
902	KASSERT(mode < N(chanflags), ("Unexpected mode %u", mode));
903	modeflags = chanflags[mode];
904	for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
905		c = &ic->ic_channels[i];
906		if (c->ic_flags == 0)
907			continue;
908		if (mode == IEEE80211_MODE_AUTO) {
909			/* ignore static turbo channels for autoselect */
910			if (!IEEE80211_IS_CHAN_T(c))
911				break;
912		} else {
913			if ((c->ic_flags & modeflags) == modeflags)
914				break;
915		}
916	}
917	if (i > IEEE80211_CHAN_MAX) {
918		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
919			"%s: no channels found for mode %u\n", __func__, mode);
920		return EINVAL;
921	}
922
923	/*
924	 * Calculate the active channel set.
925	 */
926	memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active));
927	for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
928		c = &ic->ic_channels[i];
929		if (c->ic_flags == 0)
930			continue;
931		if (mode == IEEE80211_MODE_AUTO) {
932			/* take anything but static turbo channels */
933			if (!IEEE80211_IS_CHAN_T(c))
934				setbit(ic->ic_chan_active, i);
935		} else {
936			if ((c->ic_flags & modeflags) == modeflags)
937				setbit(ic->ic_chan_active, i);
938		}
939	}
940	/*
941	 * If no current/default channel is setup or the current
942	 * channel is wrong for the mode then pick the first
943	 * available channel from the active list.  This is likely
944	 * not the right one.
945	 */
946	if (isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_curchan))) {
947		ic->ic_curchan = NULL;
948		for (i = 0; i <= IEEE80211_CHAN_MAX; i++)
949			if (isset(ic->ic_chan_active, i)) {
950				ic->ic_curchan = &ic->ic_channels[i];
951				break;
952			}
953		KASSERT(ic->ic_curchan != NULL, ("no current channel"));
954	}
955	if (ic->ic_ibss_chan == NULL ||
956	    isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_ibss_chan)))
957		ic->ic_ibss_chan = ic->ic_curchan;
958	/*
959	 * If the desired channel is set but no longer valid then reset it.
960	 */
961	if (ic->ic_des_chan != IEEE80211_CHAN_ANYC &&
962	    isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_des_chan)))
963		ic->ic_des_chan = IEEE80211_CHAN_ANYC;
964
965	/*
966	 * Adjust basic rates in 11b/11g supported rate set.
967	 * Note that if operating on a hal/quarter rate channel
968	 * this is a noop as those rates sets are different
969	 * and used instead.
970	 */
971	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
972		ieee80211_set11gbasicrates(&ic->ic_sup_rates[mode], mode);
973
974	/*
975	 * Setup an initial rate set according to the
976	 * current/default channel selected above.  This
977	 * will be changed when scanning but must exist
978	 * now so driver have a consistent state of ic_ibss_chan.
979	 */
980	if (ic->ic_bss != NULL)	/* NB: can be called before lateattach */
981		ic->ic_bss->ni_rates = ic->ic_sup_rates[mode];
982
983	ic->ic_curmode = mode;
984	ieee80211_reset_erp(ic);	/* reset ERP state */
985	ieee80211_wme_initparams(ic);	/* reset WME stat */
986
987	return 0;
988#undef N
989}
990
991/*
992 * Return the phy mode for with the specified channel so the
993 * caller can select a rate set.  This is problematic for channels
994 * where multiple operating modes are possible (e.g. 11g+11b).
995 * In those cases we defer to the current operating mode when set.
996 */
997enum ieee80211_phymode
998ieee80211_chan2mode(struct ieee80211com *ic, const struct ieee80211_channel *chan)
999{
1000	if (IEEE80211_IS_CHAN_T(chan)) {
1001		return IEEE80211_MODE_TURBO_A;
1002	} else if (IEEE80211_IS_CHAN_5GHZ(chan)) {
1003		return IEEE80211_MODE_11A;
1004	} else if (IEEE80211_IS_CHAN_FHSS(chan))
1005		return IEEE80211_MODE_FH;
1006	else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) {
1007		/*
1008		 * This assumes all 11g channels are also usable
1009		 * for 11b, which is currently true.
1010		 */
1011		if (ic->ic_curmode == IEEE80211_MODE_TURBO_G)
1012			return IEEE80211_MODE_TURBO_G;
1013		if (ic->ic_curmode == IEEE80211_MODE_11B)
1014			return IEEE80211_MODE_11B;
1015		return IEEE80211_MODE_11G;
1016	} else
1017		return IEEE80211_MODE_11B;
1018}
1019
1020/*
1021 * convert IEEE80211 rate value to ifmedia subtype.
1022 * ieee80211 rate is in unit of 0.5Mbps.
1023 */
1024int
1025ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1026{
1027#define	N(a)	(sizeof(a) / sizeof(a[0]))
1028	static const struct {
1029		u_int	m;	/* rate + mode */
1030		u_int	r;	/* if_media rate */
1031	} rates[] = {
1032		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1033		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1034		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1035		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1036		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1037		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1038		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1039		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1040		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1041		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1042		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1043		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1044		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1045		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1046		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1047		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1048		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1049		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1050		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1051		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1052		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1053		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1054		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1055		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1056		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1057		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1058		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1059		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1060		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1061		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1062		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1063	};
1064	u_int mask, i;
1065
1066	mask = rate & IEEE80211_RATE_VAL;
1067	switch (mode) {
1068	case IEEE80211_MODE_11A:
1069	case IEEE80211_MODE_TURBO_A:
1070		mask |= IFM_IEEE80211_11A;
1071		break;
1072	case IEEE80211_MODE_11B:
1073		mask |= IFM_IEEE80211_11B;
1074		break;
1075	case IEEE80211_MODE_FH:
1076		mask |= IFM_IEEE80211_FH;
1077		break;
1078	case IEEE80211_MODE_AUTO:
1079		/* NB: ic may be NULL for some drivers */
1080		if (ic && ic->ic_phytype == IEEE80211_T_FH) {
1081			mask |= IFM_IEEE80211_FH;
1082			break;
1083		}
1084		/* NB: hack, 11g matches both 11b+11a rates */
1085		/* fall thru... */
1086	case IEEE80211_MODE_11G:
1087	case IEEE80211_MODE_TURBO_G:
1088		mask |= IFM_IEEE80211_11G;
1089		break;
1090	}
1091	for (i = 0; i < N(rates); i++)
1092		if (rates[i].m == mask)
1093			return rates[i].r;
1094	return IFM_AUTO;
1095#undef N
1096}
1097
1098int
1099ieee80211_media2rate(int mword)
1100{
1101#define	N(a)	(sizeof(a) / sizeof(a[0]))
1102	static const int ieeerates[] = {
1103		-1,		/* IFM_AUTO */
1104		0,		/* IFM_MANUAL */
1105		0,		/* IFM_NONE */
1106		2,		/* IFM_IEEE80211_FH1 */
1107		4,		/* IFM_IEEE80211_FH2 */
1108		2,		/* IFM_IEEE80211_DS1 */
1109		4,		/* IFM_IEEE80211_DS2 */
1110		11,		/* IFM_IEEE80211_DS5 */
1111		22,		/* IFM_IEEE80211_DS11 */
1112		44,		/* IFM_IEEE80211_DS22 */
1113		12,		/* IFM_IEEE80211_OFDM6 */
1114		18,		/* IFM_IEEE80211_OFDM9 */
1115		24,		/* IFM_IEEE80211_OFDM12 */
1116		36,		/* IFM_IEEE80211_OFDM18 */
1117		48,		/* IFM_IEEE80211_OFDM24 */
1118		72,		/* IFM_IEEE80211_OFDM36 */
1119		96,		/* IFM_IEEE80211_OFDM48 */
1120		108,		/* IFM_IEEE80211_OFDM54 */
1121		144,		/* IFM_IEEE80211_OFDM72 */
1122		0,		/* IFM_IEEE80211_DS354k */
1123		0,		/* IFM_IEEE80211_DS512k */
1124		6,		/* IFM_IEEE80211_OFDM3 */
1125		9,		/* IFM_IEEE80211_OFDM4 */
1126		54,		/* IFM_IEEE80211_OFDM27 */
1127	};
1128	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1129		ieeerates[IFM_SUBTYPE(mword)] : 0;
1130#undef N
1131}
1132