if_vlan.c revision 188575
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/net/if_vlan.c 188575 2009-02-13 12:59:54Z maxim $
30 */
31
32/*
33 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34 * Might be extended some day to also handle IEEE 802.1p priority
35 * tagging.  This is sort of sneaky in the implementation, since
36 * we need to pretend to be enough of an Ethernet implementation
37 * to make arp work.  The way we do this is by telling everyone
38 * that we are an Ethernet, and then catch the packets that
39 * ether_output() left on our output queue when it calls
40 * if_start(), rewrite them for use by the real outgoing interface,
41 * and ask it to send them.
42 */
43
44#include "opt_vlan.h"
45
46#include <sys/param.h>
47#include <sys/kernel.h>
48#include <sys/lock.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/module.h>
52#include <sys/rwlock.h>
53#include <sys/queue.h>
54#include <sys/socket.h>
55#include <sys/sockio.h>
56#include <sys/sysctl.h>
57#include <sys/systm.h>
58#include <sys/vimage.h>
59
60#include <net/bpf.h>
61#include <net/ethernet.h>
62#include <net/if.h>
63#include <net/if_clone.h>
64#include <net/if_dl.h>
65#include <net/if_types.h>
66#include <net/if_vlan_var.h>
67#include <net/vnet.h>
68
69#define VLANNAME	"vlan"
70#define	VLAN_DEF_HWIDTH	4
71#define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
72
73#define	UP_AND_RUNNING(ifp) \
74    ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
75
76LIST_HEAD(ifvlanhead, ifvlan);
77
78struct ifvlantrunk {
79	struct	ifnet   *parent;	/* parent interface of this trunk */
80	struct	rwlock	rw;
81#ifdef VLAN_ARRAY
82#define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
83	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
84#else
85	struct	ifvlanhead *hash;	/* dynamic hash-list table */
86	uint16_t	hmask;
87	uint16_t	hwidth;
88#endif
89	int		refcnt;
90};
91
92struct vlan_mc_entry {
93	struct ether_addr		mc_addr;
94	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
95};
96
97struct	ifvlan {
98	struct	ifvlantrunk *ifv_trunk;
99	struct	ifnet *ifv_ifp;
100#define	TRUNK(ifv)	((ifv)->ifv_trunk)
101#define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
102	int	ifv_pflags;	/* special flags we have set on parent */
103	struct	ifv_linkmib {
104		int	ifvm_encaplen;	/* encapsulation length */
105		int	ifvm_mtufudge;	/* MTU fudged by this much */
106		int	ifvm_mintu;	/* min transmission unit */
107		uint16_t ifvm_proto;	/* encapsulation ethertype */
108		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
109	}	ifv_mib;
110	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
111#ifndef VLAN_ARRAY
112	LIST_ENTRY(ifvlan) ifv_list;
113#endif
114};
115#define	ifv_proto	ifv_mib.ifvm_proto
116#define	ifv_tag		ifv_mib.ifvm_tag
117#define	ifv_encaplen	ifv_mib.ifvm_encaplen
118#define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
119#define	ifv_mintu	ifv_mib.ifvm_mintu
120
121/* Special flags we should propagate to parent. */
122static struct {
123	int flag;
124	int (*func)(struct ifnet *, int);
125} vlan_pflags[] = {
126	{IFF_PROMISC, ifpromisc},
127	{IFF_ALLMULTI, if_allmulti},
128	{0, NULL}
129};
130
131SYSCTL_DECL(_net_link);
132SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
133SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
134
135static int soft_pad = 0;
136SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
137	   "pad short frames before tagging");
138
139static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
140
141static eventhandler_tag ifdetach_tag;
142
143/*
144 * We have a global mutex, that is used to serialize configuration
145 * changes and isn't used in normal packet delivery.
146 *
147 * We also have a per-trunk rwlock, that is locked shared on packet
148 * processing and exclusive when configuration is changed.
149 *
150 * The VLAN_ARRAY substitutes the dynamic hash with a static array
151 * with 4096 entries. In theory this can give a boost in processing,
152 * however on practice it does not. Probably this is because array
153 * is too big to fit into CPU cache.
154 */
155static struct mtx ifv_mtx;
156#define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
157#define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
158#define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
159#define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
160#define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
161#define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
162#define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
163#define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
164#define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
165#define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
166#define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
167#define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
168#define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
169
170#ifndef VLAN_ARRAY
171static	void vlan_inithash(struct ifvlantrunk *trunk);
172static	void vlan_freehash(struct ifvlantrunk *trunk);
173static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
174static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
175static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
176static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
177	uint16_t tag);
178#endif
179static	void trunk_destroy(struct ifvlantrunk *trunk);
180
181static	void vlan_start(struct ifnet *ifp);
182static	void vlan_init(void *foo);
183static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
184static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
185static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
186    int (*func)(struct ifnet *, int));
187static	int vlan_setflags(struct ifnet *ifp, int status);
188static	int vlan_setmulti(struct ifnet *ifp);
189static	int vlan_unconfig(struct ifnet *ifp);
190static	int vlan_unconfig_locked(struct ifnet *ifp);
191static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
192static	void vlan_link_state(struct ifnet *ifp, int link);
193static	void vlan_capabilities(struct ifvlan *ifv);
194static	void vlan_trunk_capabilities(struct ifnet *ifp);
195
196static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
197    const char *, int *);
198static	int vlan_clone_match(struct if_clone *, const char *);
199static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
200static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
201
202static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
203
204static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
205    IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
206
207#ifndef VLAN_ARRAY
208#define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
209
210static void
211vlan_inithash(struct ifvlantrunk *trunk)
212{
213	int i, n;
214
215	/*
216	 * The trunk must not be locked here since we call malloc(M_WAITOK).
217	 * It is OK in case this function is called before the trunk struct
218	 * gets hooked up and becomes visible from other threads.
219	 */
220
221	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
222	    ("%s: hash already initialized", __func__));
223
224	trunk->hwidth = VLAN_DEF_HWIDTH;
225	n = 1 << trunk->hwidth;
226	trunk->hmask = n - 1;
227	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
228	for (i = 0; i < n; i++)
229		LIST_INIT(&trunk->hash[i]);
230}
231
232static void
233vlan_freehash(struct ifvlantrunk *trunk)
234{
235#ifdef INVARIANTS
236	int i;
237
238	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
239	for (i = 0; i < (1 << trunk->hwidth); i++)
240		KASSERT(LIST_EMPTY(&trunk->hash[i]),
241		    ("%s: hash table not empty", __func__));
242#endif
243	free(trunk->hash, M_VLAN);
244	trunk->hash = NULL;
245	trunk->hwidth = trunk->hmask = 0;
246}
247
248static int
249vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
250{
251	int i, b;
252	struct ifvlan *ifv2;
253
254	TRUNK_LOCK_ASSERT(trunk);
255	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
256
257	b = 1 << trunk->hwidth;
258	i = HASH(ifv->ifv_tag, trunk->hmask);
259	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
260		if (ifv->ifv_tag == ifv2->ifv_tag)
261			return (EEXIST);
262
263	/*
264	 * Grow the hash when the number of vlans exceeds half of the number of
265	 * hash buckets squared. This will make the average linked-list length
266	 * buckets/2.
267	 */
268	if (trunk->refcnt > (b * b) / 2) {
269		vlan_growhash(trunk, 1);
270		i = HASH(ifv->ifv_tag, trunk->hmask);
271	}
272	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
273	trunk->refcnt++;
274
275	return (0);
276}
277
278static int
279vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
280{
281	int i, b;
282	struct ifvlan *ifv2;
283
284	TRUNK_LOCK_ASSERT(trunk);
285	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
286
287	b = 1 << trunk->hwidth;
288	i = HASH(ifv->ifv_tag, trunk->hmask);
289	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
290		if (ifv2 == ifv) {
291			trunk->refcnt--;
292			LIST_REMOVE(ifv2, ifv_list);
293			if (trunk->refcnt < (b * b) / 2)
294				vlan_growhash(trunk, -1);
295			return (0);
296		}
297
298	panic("%s: vlan not found\n", __func__);
299	return (ENOENT); /*NOTREACHED*/
300}
301
302/*
303 * Grow the hash larger or smaller if memory permits.
304 */
305static void
306vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
307{
308	struct ifvlan *ifv;
309	struct ifvlanhead *hash2;
310	int hwidth2, i, j, n, n2;
311
312	TRUNK_LOCK_ASSERT(trunk);
313	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
314
315	if (howmuch == 0) {
316		/* Harmless yet obvious coding error */
317		printf("%s: howmuch is 0\n", __func__);
318		return;
319	}
320
321	hwidth2 = trunk->hwidth + howmuch;
322	n = 1 << trunk->hwidth;
323	n2 = 1 << hwidth2;
324	/* Do not shrink the table below the default */
325	if (hwidth2 < VLAN_DEF_HWIDTH)
326		return;
327
328	/* M_NOWAIT because we're called with trunk mutex held */
329	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
330	if (hash2 == NULL) {
331		printf("%s: out of memory -- hash size not changed\n",
332		    __func__);
333		return;		/* We can live with the old hash table */
334	}
335	for (j = 0; j < n2; j++)
336		LIST_INIT(&hash2[j]);
337	for (i = 0; i < n; i++)
338		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
339			LIST_REMOVE(ifv, ifv_list);
340			j = HASH(ifv->ifv_tag, n2 - 1);
341			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
342		}
343	free(trunk->hash, M_VLAN);
344	trunk->hash = hash2;
345	trunk->hwidth = hwidth2;
346	trunk->hmask = n2 - 1;
347
348	if (bootverbose)
349		if_printf(trunk->parent,
350		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
351}
352
353static __inline struct ifvlan *
354vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
355{
356	struct ifvlan *ifv;
357
358	TRUNK_LOCK_RASSERT(trunk);
359
360	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
361		if (ifv->ifv_tag == tag)
362			return (ifv);
363	return (NULL);
364}
365
366#if 0
367/* Debugging code to view the hashtables. */
368static void
369vlan_dumphash(struct ifvlantrunk *trunk)
370{
371	int i;
372	struct ifvlan *ifv;
373
374	for (i = 0; i < (1 << trunk->hwidth); i++) {
375		printf("%d: ", i);
376		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
377			printf("%s ", ifv->ifv_ifp->if_xname);
378		printf("\n");
379	}
380}
381#endif /* 0 */
382#endif /* !VLAN_ARRAY */
383
384static void
385trunk_destroy(struct ifvlantrunk *trunk)
386{
387	VLAN_LOCK_ASSERT();
388
389	TRUNK_LOCK(trunk);
390#ifndef VLAN_ARRAY
391	vlan_freehash(trunk);
392#endif
393	trunk->parent->if_vlantrunk = NULL;
394	TRUNK_UNLOCK(trunk);
395	TRUNK_LOCK_DESTROY(trunk);
396	free(trunk, M_VLAN);
397}
398
399/*
400 * Program our multicast filter. What we're actually doing is
401 * programming the multicast filter of the parent. This has the
402 * side effect of causing the parent interface to receive multicast
403 * traffic that it doesn't really want, which ends up being discarded
404 * later by the upper protocol layers. Unfortunately, there's no way
405 * to avoid this: there really is only one physical interface.
406 *
407 * XXX: There is a possible race here if more than one thread is
408 *      modifying the multicast state of the vlan interface at the same time.
409 */
410static int
411vlan_setmulti(struct ifnet *ifp)
412{
413	struct ifnet		*ifp_p;
414	struct ifmultiaddr	*ifma, *rifma = NULL;
415	struct ifvlan		*sc;
416	struct vlan_mc_entry	*mc;
417	struct sockaddr_dl	sdl;
418	int			error;
419
420	/*VLAN_LOCK_ASSERT();*/
421
422	/* Find the parent. */
423	sc = ifp->if_softc;
424	ifp_p = PARENT(sc);
425
426	CURVNET_SET_QUIET(ifp_p->if_vnet);
427
428	bzero((char *)&sdl, sizeof(sdl));
429	sdl.sdl_len = sizeof(sdl);
430	sdl.sdl_family = AF_LINK;
431	sdl.sdl_index = ifp_p->if_index;
432	sdl.sdl_type = IFT_ETHER;
433	sdl.sdl_alen = ETHER_ADDR_LEN;
434
435	/* First, remove any existing filter entries. */
436	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
437		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
438		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
439		if (error)
440			return (error);
441		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
442		free(mc, M_VLAN);
443	}
444
445	/* Now program new ones. */
446	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
447		if (ifma->ifma_addr->sa_family != AF_LINK)
448			continue;
449		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
450		if (mc == NULL)
451			return (ENOMEM);
452		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
453		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
454		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
455		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
456		    LLADDR(&sdl), ETHER_ADDR_LEN);
457		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
458		if (error)
459			return (error);
460	}
461
462	CURVNET_RESTORE();
463	return (0);
464}
465
466/*
467 * A handler for network interface departure events.
468 * Track departure of trunks here so that we don't access invalid
469 * pointers or whatever if a trunk is ripped from under us, e.g.,
470 * by ejecting its hot-plug card.
471 */
472static void
473vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
474{
475	struct ifvlan *ifv;
476	int i;
477
478	/*
479	 * Check if it's a trunk interface first of all
480	 * to avoid needless locking.
481	 */
482	if (ifp->if_vlantrunk == NULL)
483		return;
484
485	VLAN_LOCK();
486	/*
487	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
488	 * Check trunk pointer after each vlan_unconfig() as it will
489	 * free it and set to NULL after the last vlan was detached.
490	 */
491#ifdef VLAN_ARRAY
492	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
493		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
494			vlan_unconfig_locked(ifv->ifv_ifp);
495			if (ifp->if_vlantrunk == NULL)
496				break;
497		}
498#else /* VLAN_ARRAY */
499restart:
500	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
501		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
502			vlan_unconfig_locked(ifv->ifv_ifp);
503			if (ifp->if_vlantrunk)
504				goto restart;	/* trunk->hwidth can change */
505			else
506				break;
507		}
508#endif /* VLAN_ARRAY */
509	/* Trunk should have been destroyed in vlan_unconfig(). */
510	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
511	VLAN_UNLOCK();
512}
513
514/*
515 * VLAN support can be loaded as a module.  The only place in the
516 * system that's intimately aware of this is ether_input.  We hook
517 * into this code through vlan_input_p which is defined there and
518 * set here.  Noone else in the system should be aware of this so
519 * we use an explicit reference here.
520 */
521extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
522
523/* For if_link_state_change() eyes only... */
524extern	void (*vlan_link_state_p)(struct ifnet *, int);
525
526static int
527vlan_modevent(module_t mod, int type, void *data)
528{
529
530	switch (type) {
531	case MOD_LOAD:
532		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
533		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
534		if (ifdetach_tag == NULL)
535			return (ENOMEM);
536		VLAN_LOCK_INIT();
537		vlan_input_p = vlan_input;
538		vlan_link_state_p = vlan_link_state;
539		vlan_trunk_cap_p = vlan_trunk_capabilities;
540		if_clone_attach(&vlan_cloner);
541		if (bootverbose)
542			printf("vlan: initialized, using "
543#ifdef VLAN_ARRAY
544			       "full-size arrays"
545#else
546			       "hash tables with chaining"
547#endif
548
549			       "\n");
550		break;
551	case MOD_UNLOAD:
552		if_clone_detach(&vlan_cloner);
553		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
554		vlan_input_p = NULL;
555		vlan_link_state_p = NULL;
556		vlan_trunk_cap_p = NULL;
557		VLAN_LOCK_DESTROY();
558		if (bootverbose)
559			printf("vlan: unloaded\n");
560		break;
561	default:
562		return (EOPNOTSUPP);
563	}
564	return (0);
565}
566
567static moduledata_t vlan_mod = {
568	"if_vlan",
569	vlan_modevent,
570	0
571};
572
573DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
574MODULE_VERSION(if_vlan, 3);
575MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
576
577static struct ifnet *
578vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
579{
580	INIT_VNET_NET(curvnet);
581	const char *cp;
582	struct ifnet *ifp;
583	int t = 0;
584
585	/* Check for <etherif>.<vlan> style interface names. */
586	IFNET_RLOCK();
587	TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
588		if (ifp->if_type != IFT_ETHER)
589			continue;
590		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
591			continue;
592		cp = name + strlen(ifp->if_xname);
593		if (*cp != '.')
594			continue;
595		for(; *cp != '\0'; cp++) {
596			if (*cp < '0' || *cp > '9')
597				continue;
598			t = (t * 10) + (*cp - '0');
599		}
600		if (tag != NULL)
601			*tag = t;
602		break;
603	}
604	IFNET_RUNLOCK();
605
606	return (ifp);
607}
608
609static int
610vlan_clone_match(struct if_clone *ifc, const char *name)
611{
612	const char *cp;
613
614	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
615		return (1);
616
617	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
618		return (0);
619	for (cp = name + 4; *cp != '\0'; cp++) {
620		if (*cp < '0' || *cp > '9')
621			return (0);
622	}
623
624	return (1);
625}
626
627static int
628vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
629{
630	char *dp;
631	int wildcard;
632	int unit;
633	int error;
634	int tag;
635	int ethertag;
636	struct ifvlan *ifv;
637	struct ifnet *ifp;
638	struct ifnet *p;
639	struct vlanreq vlr;
640	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
641
642	/*
643	 * There are 3 (ugh) ways to specify the cloned device:
644	 * o pass a parameter block with the clone request.
645	 * o specify parameters in the text of the clone device name
646	 * o specify no parameters and get an unattached device that
647	 *   must be configured separately.
648	 * The first technique is preferred; the latter two are
649	 * supported for backwards compatibilty.
650	 */
651	if (params) {
652		error = copyin(params, &vlr, sizeof(vlr));
653		if (error)
654			return error;
655		p = ifunit(vlr.vlr_parent);
656		if (p == NULL)
657			return ENXIO;
658		/*
659		 * Don't let the caller set up a VLAN tag with
660		 * anything except VLID bits.
661		 */
662		if (vlr.vlr_tag & ~EVL_VLID_MASK)
663			return (EINVAL);
664		error = ifc_name2unit(name, &unit);
665		if (error != 0)
666			return (error);
667
668		ethertag = 1;
669		tag = vlr.vlr_tag;
670		wildcard = (unit < 0);
671	} else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
672		ethertag = 1;
673		unit = -1;
674		wildcard = 0;
675
676		/*
677		 * Don't let the caller set up a VLAN tag with
678		 * anything except VLID bits.
679		 */
680		if (tag & ~EVL_VLID_MASK)
681			return (EINVAL);
682	} else {
683		ethertag = 0;
684
685		error = ifc_name2unit(name, &unit);
686		if (error != 0)
687			return (error);
688
689		wildcard = (unit < 0);
690	}
691
692	error = ifc_alloc_unit(ifc, &unit);
693	if (error != 0)
694		return (error);
695
696	/* In the wildcard case, we need to update the name. */
697	if (wildcard) {
698		for (dp = name; *dp != '\0'; dp++);
699		if (snprintf(dp, len - (dp-name), "%d", unit) >
700		    len - (dp-name) - 1) {
701			panic("%s: interface name too long", __func__);
702		}
703	}
704
705	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
706	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
707	if (ifp == NULL) {
708		ifc_free_unit(ifc, unit);
709		free(ifv, M_VLAN);
710		return (ENOSPC);
711	}
712	SLIST_INIT(&ifv->vlan_mc_listhead);
713
714	ifp->if_softc = ifv;
715	/*
716	 * Set the name manually rather than using if_initname because
717	 * we don't conform to the default naming convention for interfaces.
718	 */
719	strlcpy(ifp->if_xname, name, IFNAMSIZ);
720	ifp->if_dname = ifc->ifc_name;
721	ifp->if_dunit = unit;
722	/* NB: flags are not set here */
723	ifp->if_linkmib = &ifv->ifv_mib;
724	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
725	/* NB: mtu is not set here */
726
727	ifp->if_init = vlan_init;
728	ifp->if_start = vlan_start;
729	ifp->if_ioctl = vlan_ioctl;
730	ifp->if_snd.ifq_maxlen = ifqmaxlen;
731	ifp->if_flags = VLAN_IFFLAGS;
732	ether_ifattach(ifp, eaddr);
733	/* Now undo some of the damage... */
734	ifp->if_baudrate = 0;
735	ifp->if_type = IFT_L2VLAN;
736	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
737
738	if (ethertag) {
739		error = vlan_config(ifv, p, tag);
740		if (error != 0) {
741			/*
742			 * Since we've partialy failed, we need to back
743			 * out all the way, otherwise userland could get
744			 * confused.  Thus, we destroy the interface.
745			 */
746			ether_ifdetach(ifp);
747			vlan_unconfig(ifp);
748			if_free_type(ifp, IFT_ETHER);
749			ifc_free_unit(ifc, unit);
750			free(ifv, M_VLAN);
751
752			return (error);
753		}
754
755		/* Update flags on the parent, if necessary. */
756		vlan_setflags(ifp, 1);
757	}
758
759	return (0);
760}
761
762static int
763vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
764{
765	struct ifvlan *ifv = ifp->if_softc;
766	int unit = ifp->if_dunit;
767
768	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
769	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
770	if_free_type(ifp, IFT_ETHER);
771	free(ifv, M_VLAN);
772	ifc_free_unit(ifc, unit);
773
774	return (0);
775}
776
777/*
778 * The ifp->if_init entry point for vlan(4) is a no-op.
779 */
780static void
781vlan_init(void *foo __unused)
782{
783}
784
785/*
786 * The if_start method for vlan(4) interface. It doesn't
787 * raises the IFF_DRV_OACTIVE flag, since it is called
788 * only from IFQ_HANDOFF() macro in ether_output_frame().
789 * If the interface queue is full, and vlan_start() is
790 * not called, the queue would never get emptied and
791 * interface would stall forever.
792 */
793static void
794vlan_start(struct ifnet *ifp)
795{
796	struct ifvlan *ifv;
797	struct ifnet *p;
798	struct mbuf *m;
799	int error;
800
801	ifv = ifp->if_softc;
802	p = PARENT(ifv);
803
804	for (;;) {
805		IF_DEQUEUE(&ifp->if_snd, m);
806		if (m == NULL)
807			break;
808		BPF_MTAP(ifp, m);
809
810		/*
811		 * Do not run parent's if_start() if the parent is not up,
812		 * or parent's driver will cause a system crash.
813		 */
814		if (!UP_AND_RUNNING(p)) {
815			m_freem(m);
816			ifp->if_collisions++;
817			continue;
818		}
819
820		/*
821		 * Pad the frame to the minimum size allowed if told to.
822		 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
823		 * paragraph C.4.4.3.b.  It can help to work around buggy
824		 * bridges that violate paragraph C.4.4.3.a from the same
825		 * document, i.e., fail to pad short frames after untagging.
826		 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
827		 * untagging it will produce a 62-byte frame, which is a runt
828		 * and requires padding.  There are VLAN-enabled network
829		 * devices that just discard such runts instead or mishandle
830		 * them somehow.
831		 */
832		if (soft_pad) {
833			static char pad[8];	/* just zeros */
834			int n;
835
836			for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
837			     n > 0; n -= sizeof(pad))
838				if (!m_append(m, min(n, sizeof(pad)), pad))
839					break;
840
841			if (n > 0) {
842				if_printf(ifp, "cannot pad short frame\n");
843				ifp->if_oerrors++;
844				m_freem(m);
845				continue;
846			}
847		}
848
849		/*
850		 * If underlying interface can do VLAN tag insertion itself,
851		 * just pass the packet along. However, we need some way to
852		 * tell the interface where the packet came from so that it
853		 * knows how to find the VLAN tag to use, so we attach a
854		 * packet tag that holds it.
855		 */
856		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
857			m->m_pkthdr.ether_vtag = ifv->ifv_tag;
858			m->m_flags |= M_VLANTAG;
859		} else {
860			m = ether_vlanencap(m, ifv->ifv_tag);
861			if (m == NULL) {
862				if_printf(ifp,
863				    "unable to prepend VLAN header\n");
864				ifp->if_oerrors++;
865				continue;
866			}
867		}
868
869		/*
870		 * Send it, precisely as ether_output() would have.
871		 * We are already running at splimp.
872		 */
873		error = (p->if_transmit)(p, m);
874		if (!error)
875			ifp->if_opackets++;
876		else
877			ifp->if_oerrors++;
878	}
879}
880
881static void
882vlan_input(struct ifnet *ifp, struct mbuf *m)
883{
884	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
885	struct ifvlan *ifv;
886	uint16_t tag;
887
888	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
889
890	if (m->m_flags & M_VLANTAG) {
891		/*
892		 * Packet is tagged, but m contains a normal
893		 * Ethernet frame; the tag is stored out-of-band.
894		 */
895		tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
896		m->m_flags &= ~M_VLANTAG;
897	} else {
898		struct ether_vlan_header *evl;
899
900		/*
901		 * Packet is tagged in-band as specified by 802.1q.
902		 */
903		switch (ifp->if_type) {
904		case IFT_ETHER:
905			if (m->m_len < sizeof(*evl) &&
906			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
907				if_printf(ifp, "cannot pullup VLAN header\n");
908				return;
909			}
910			evl = mtod(m, struct ether_vlan_header *);
911			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
912
913			/*
914			 * Remove the 802.1q header by copying the Ethernet
915			 * addresses over it and adjusting the beginning of
916			 * the data in the mbuf.  The encapsulated Ethernet
917			 * type field is already in place.
918			 */
919			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
920			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
921			m_adj(m, ETHER_VLAN_ENCAP_LEN);
922			break;
923
924		default:
925#ifdef INVARIANTS
926			panic("%s: %s has unsupported if_type %u",
927			      __func__, ifp->if_xname, ifp->if_type);
928#endif
929			m_freem(m);
930			ifp->if_noproto++;
931			return;
932		}
933	}
934
935	TRUNK_RLOCK(trunk);
936#ifdef VLAN_ARRAY
937	ifv = trunk->vlans[tag];
938#else
939	ifv = vlan_gethash(trunk, tag);
940#endif
941	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
942		TRUNK_RUNLOCK(trunk);
943		m_freem(m);
944		ifp->if_noproto++;
945		return;
946	}
947	TRUNK_RUNLOCK(trunk);
948
949	m->m_pkthdr.rcvif = ifv->ifv_ifp;
950	ifv->ifv_ifp->if_ipackets++;
951
952	/* Pass it back through the parent's input routine. */
953	(*ifp->if_input)(ifv->ifv_ifp, m);
954}
955
956static int
957vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
958{
959	struct ifvlantrunk *trunk;
960	struct ifnet *ifp;
961	int error = 0;
962
963	/* VID numbers 0x0 and 0xFFF are reserved */
964	if (tag == 0 || tag == 0xFFF)
965		return (EINVAL);
966	if (p->if_type != IFT_ETHER)
967		return (EPROTONOSUPPORT);
968	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
969		return (EPROTONOSUPPORT);
970	if (ifv->ifv_trunk)
971		return (EBUSY);
972
973	if (p->if_vlantrunk == NULL) {
974		trunk = malloc(sizeof(struct ifvlantrunk),
975		    M_VLAN, M_WAITOK | M_ZERO);
976#ifndef VLAN_ARRAY
977		vlan_inithash(trunk);
978#endif
979		VLAN_LOCK();
980		if (p->if_vlantrunk != NULL) {
981			/* A race that that is very unlikely to be hit. */
982#ifndef VLAN_ARRAY
983			vlan_freehash(trunk);
984#endif
985			free(trunk, M_VLAN);
986			goto exists;
987		}
988		TRUNK_LOCK_INIT(trunk);
989		TRUNK_LOCK(trunk);
990		p->if_vlantrunk = trunk;
991		trunk->parent = p;
992	} else {
993		VLAN_LOCK();
994exists:
995		trunk = p->if_vlantrunk;
996		TRUNK_LOCK(trunk);
997	}
998
999	ifv->ifv_tag = tag;	/* must set this before vlan_inshash() */
1000#ifdef VLAN_ARRAY
1001	if (trunk->vlans[tag] != NULL) {
1002		error = EEXIST;
1003		goto done;
1004	}
1005	trunk->vlans[tag] = ifv;
1006	trunk->refcnt++;
1007#else
1008	error = vlan_inshash(trunk, ifv);
1009	if (error)
1010		goto done;
1011#endif
1012	ifv->ifv_proto = ETHERTYPE_VLAN;
1013	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1014	ifv->ifv_mintu = ETHERMIN;
1015	ifv->ifv_pflags = 0;
1016
1017	/*
1018	 * If the parent supports the VLAN_MTU capability,
1019	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1020	 * use it.
1021	 */
1022	if (p->if_capenable & IFCAP_VLAN_MTU) {
1023		/*
1024		 * No need to fudge the MTU since the parent can
1025		 * handle extended frames.
1026		 */
1027		ifv->ifv_mtufudge = 0;
1028	} else {
1029		/*
1030		 * Fudge the MTU by the encapsulation size.  This
1031		 * makes us incompatible with strictly compliant
1032		 * 802.1Q implementations, but allows us to use
1033		 * the feature with other NetBSD implementations,
1034		 * which might still be useful.
1035		 */
1036		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1037	}
1038
1039	ifv->ifv_trunk = trunk;
1040	ifp = ifv->ifv_ifp;
1041	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1042	ifp->if_baudrate = p->if_baudrate;
1043	/*
1044	 * Copy only a selected subset of flags from the parent.
1045	 * Other flags are none of our business.
1046	 */
1047#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1048	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1049	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1050#undef VLAN_COPY_FLAGS
1051
1052	ifp->if_link_state = p->if_link_state;
1053
1054	vlan_capabilities(ifv);
1055
1056	/*
1057	 * Set up our ``Ethernet address'' to reflect the underlying
1058	 * physical interface's.
1059	 */
1060	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
1061
1062	/*
1063	 * Configure multicast addresses that may already be
1064	 * joined on the vlan device.
1065	 */
1066	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1067
1068	/* We are ready for operation now. */
1069	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1070done:
1071	TRUNK_UNLOCK(trunk);
1072	if (error == 0)
1073		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_tag);
1074	VLAN_UNLOCK();
1075
1076	return (error);
1077}
1078
1079static int
1080vlan_unconfig(struct ifnet *ifp)
1081{
1082	int ret;
1083
1084	VLAN_LOCK();
1085	ret = vlan_unconfig_locked(ifp);
1086	VLAN_UNLOCK();
1087	return (ret);
1088}
1089
1090static int
1091vlan_unconfig_locked(struct ifnet *ifp)
1092{
1093	struct ifvlantrunk *trunk;
1094	struct vlan_mc_entry *mc;
1095	struct ifvlan *ifv;
1096	struct ifnet  *parent;
1097	int error;
1098
1099	VLAN_LOCK_ASSERT();
1100
1101	ifv = ifp->if_softc;
1102	trunk = ifv->ifv_trunk;
1103	parent = NULL;
1104
1105	if (trunk != NULL) {
1106		struct sockaddr_dl sdl;
1107
1108		TRUNK_LOCK(trunk);
1109		parent = trunk->parent;
1110
1111		/*
1112		 * Since the interface is being unconfigured, we need to
1113		 * empty the list of multicast groups that we may have joined
1114		 * while we were alive from the parent's list.
1115		 */
1116		bzero((char *)&sdl, sizeof(sdl));
1117		sdl.sdl_len = sizeof(sdl);
1118		sdl.sdl_family = AF_LINK;
1119		sdl.sdl_index = parent->if_index;
1120		sdl.sdl_type = IFT_ETHER;
1121		sdl.sdl_alen = ETHER_ADDR_LEN;
1122
1123		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1124			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1125			    ETHER_ADDR_LEN);
1126			error = if_delmulti(parent, (struct sockaddr *)&sdl);
1127			if (error)
1128				return (error);
1129			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1130			free(mc, M_VLAN);
1131		}
1132
1133		vlan_setflags(ifp, 0); /* clear special flags on parent */
1134#ifdef VLAN_ARRAY
1135		trunk->vlans[ifv->ifv_tag] = NULL;
1136		trunk->refcnt--;
1137#else
1138		vlan_remhash(trunk, ifv);
1139#endif
1140		ifv->ifv_trunk = NULL;
1141
1142		/*
1143		 * Check if we were the last.
1144		 */
1145		if (trunk->refcnt == 0) {
1146			trunk->parent->if_vlantrunk = NULL;
1147			/*
1148			 * XXXGL: If some ithread has already entered
1149			 * vlan_input() and is now blocked on the trunk
1150			 * lock, then it should preempt us right after
1151			 * unlock and finish its work. Then we will acquire
1152			 * lock again in trunk_destroy().
1153			 */
1154			TRUNK_UNLOCK(trunk);
1155			trunk_destroy(trunk);
1156		} else
1157			TRUNK_UNLOCK(trunk);
1158	}
1159
1160	/* Disconnect from parent. */
1161	if (ifv->ifv_pflags)
1162		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1163	ifp->if_mtu = ETHERMTU;
1164	ifp->if_link_state = LINK_STATE_UNKNOWN;
1165	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1166
1167	/*
1168	 * Only dispatch an event if vlan was
1169	 * attached, otherwise there is nothing
1170	 * to cleanup anyway.
1171	 */
1172	if (parent != NULL)
1173		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_tag);
1174
1175	return (0);
1176}
1177
1178/* Handle a reference counted flag that should be set on the parent as well */
1179static int
1180vlan_setflag(struct ifnet *ifp, int flag, int status,
1181	     int (*func)(struct ifnet *, int))
1182{
1183	struct ifvlan *ifv;
1184	int error;
1185
1186	/* XXX VLAN_LOCK_ASSERT(); */
1187
1188	ifv = ifp->if_softc;
1189	status = status ? (ifp->if_flags & flag) : 0;
1190	/* Now "status" contains the flag value or 0 */
1191
1192	/*
1193	 * See if recorded parent's status is different from what
1194	 * we want it to be.  If it is, flip it.  We record parent's
1195	 * status in ifv_pflags so that we won't clear parent's flag
1196	 * we haven't set.  In fact, we don't clear or set parent's
1197	 * flags directly, but get or release references to them.
1198	 * That's why we can be sure that recorded flags still are
1199	 * in accord with actual parent's flags.
1200	 */
1201	if (status != (ifv->ifv_pflags & flag)) {
1202		error = (*func)(PARENT(ifv), status);
1203		if (error)
1204			return (error);
1205		ifv->ifv_pflags &= ~flag;
1206		ifv->ifv_pflags |= status;
1207	}
1208	return (0);
1209}
1210
1211/*
1212 * Handle IFF_* flags that require certain changes on the parent:
1213 * if "status" is true, update parent's flags respective to our if_flags;
1214 * if "status" is false, forcedly clear the flags set on parent.
1215 */
1216static int
1217vlan_setflags(struct ifnet *ifp, int status)
1218{
1219	int error, i;
1220
1221	for (i = 0; vlan_pflags[i].flag; i++) {
1222		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1223				     status, vlan_pflags[i].func);
1224		if (error)
1225			return (error);
1226	}
1227	return (0);
1228}
1229
1230/* Inform all vlans that their parent has changed link state */
1231static void
1232vlan_link_state(struct ifnet *ifp, int link)
1233{
1234	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1235	struct ifvlan *ifv;
1236	int i;
1237
1238	TRUNK_LOCK(trunk);
1239#ifdef VLAN_ARRAY
1240	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1241		if (trunk->vlans[i] != NULL) {
1242			ifv = trunk->vlans[i];
1243#else
1244	for (i = 0; i < (1 << trunk->hwidth); i++)
1245		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1246#endif
1247			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1248			if_link_state_change(ifv->ifv_ifp,
1249			    trunk->parent->if_link_state);
1250		}
1251	TRUNK_UNLOCK(trunk);
1252}
1253
1254static void
1255vlan_capabilities(struct ifvlan *ifv)
1256{
1257	struct ifnet *p = PARENT(ifv);
1258	struct ifnet *ifp = ifv->ifv_ifp;
1259
1260	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1261
1262	/*
1263	 * If the parent interface can do checksum offloading
1264	 * on VLANs, then propagate its hardware-assisted
1265	 * checksumming flags. Also assert that checksum
1266	 * offloading requires hardware VLAN tagging.
1267	 */
1268	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1269		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1270
1271	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1272	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1273		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1274		ifp->if_hwassist = p->if_hwassist;
1275	} else {
1276		ifp->if_capenable = 0;
1277		ifp->if_hwassist = 0;
1278	}
1279}
1280
1281static void
1282vlan_trunk_capabilities(struct ifnet *ifp)
1283{
1284	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1285	struct ifvlan *ifv;
1286	int i;
1287
1288	TRUNK_LOCK(trunk);
1289#ifdef VLAN_ARRAY
1290	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1291		if (trunk->vlans[i] != NULL) {
1292			ifv = trunk->vlans[i];
1293#else
1294	for (i = 0; i < (1 << trunk->hwidth); i++) {
1295		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1296#endif
1297			vlan_capabilities(ifv);
1298	}
1299	TRUNK_UNLOCK(trunk);
1300}
1301
1302static int
1303vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1304{
1305	struct ifnet *p;
1306	struct ifreq *ifr;
1307	struct ifvlan *ifv;
1308	struct vlanreq vlr;
1309	int error = 0;
1310
1311	ifr = (struct ifreq *)data;
1312	ifv = ifp->if_softc;
1313
1314	switch (cmd) {
1315	case SIOCGIFMEDIA:
1316		VLAN_LOCK();
1317		if (TRUNK(ifv) != NULL) {
1318			error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
1319					SIOCGIFMEDIA, data);
1320			VLAN_UNLOCK();
1321			/* Limit the result to the parent's current config. */
1322			if (error == 0) {
1323				struct ifmediareq *ifmr;
1324
1325				ifmr = (struct ifmediareq *)data;
1326				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1327					ifmr->ifm_count = 1;
1328					error = copyout(&ifmr->ifm_current,
1329						ifmr->ifm_ulist,
1330						sizeof(int));
1331				}
1332			}
1333		} else {
1334			VLAN_UNLOCK();
1335			error = EINVAL;
1336		}
1337		break;
1338
1339	case SIOCSIFMEDIA:
1340		error = EINVAL;
1341		break;
1342
1343	case SIOCSIFMTU:
1344		/*
1345		 * Set the interface MTU.
1346		 */
1347		VLAN_LOCK();
1348		if (TRUNK(ifv) != NULL) {
1349			if (ifr->ifr_mtu >
1350			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1351			    ifr->ifr_mtu <
1352			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1353				error = EINVAL;
1354			else
1355				ifp->if_mtu = ifr->ifr_mtu;
1356		} else
1357			error = EINVAL;
1358		VLAN_UNLOCK();
1359		break;
1360
1361	case SIOCSETVLAN:
1362		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1363		if (error)
1364			break;
1365		if (vlr.vlr_parent[0] == '\0') {
1366			vlan_unconfig(ifp);
1367			break;
1368		}
1369		p = ifunit(vlr.vlr_parent);
1370		if (p == 0) {
1371			error = ENOENT;
1372			break;
1373		}
1374		/*
1375		 * Don't let the caller set up a VLAN tag with
1376		 * anything except VLID bits.
1377		 */
1378		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1379			error = EINVAL;
1380			break;
1381		}
1382		error = vlan_config(ifv, p, vlr.vlr_tag);
1383		if (error)
1384			break;
1385
1386		/* Update flags on the parent, if necessary. */
1387		vlan_setflags(ifp, 1);
1388		break;
1389
1390	case SIOCGETVLAN:
1391		bzero(&vlr, sizeof(vlr));
1392		VLAN_LOCK();
1393		if (TRUNK(ifv) != NULL) {
1394			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1395			    sizeof(vlr.vlr_parent));
1396			vlr.vlr_tag = ifv->ifv_tag;
1397		}
1398		VLAN_UNLOCK();
1399		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1400		break;
1401
1402	case SIOCSIFFLAGS:
1403		/*
1404		 * We should propagate selected flags to the parent,
1405		 * e.g., promiscuous mode.
1406		 */
1407		if (TRUNK(ifv) != NULL)
1408			error = vlan_setflags(ifp, 1);
1409		break;
1410
1411	case SIOCADDMULTI:
1412	case SIOCDELMULTI:
1413		/*
1414		 * If we don't have a parent, just remember the membership for
1415		 * when we do.
1416		 */
1417		if (TRUNK(ifv) != NULL)
1418			error = vlan_setmulti(ifp);
1419		break;
1420
1421	default:
1422		error = ether_ioctl(ifp, cmd, data);
1423	}
1424
1425	return (error);
1426}
1427