if_vlan.c revision 167711
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/net/if_vlan.c 167711 2007-03-19 18:01:39Z yar $
30 */
31
32/*
33 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34 * Might be extended some day to also handle IEEE 802.1p priority
35 * tagging.  This is sort of sneaky in the implementation, since
36 * we need to pretend to be enough of an Ethernet implementation
37 * to make arp work.  The way we do this is by telling everyone
38 * that we are an Ethernet, and then catch the packets that
39 * ether_output() left on our output queue when it calls
40 * if_start(), rewrite them for use by the real outgoing interface,
41 * and ask it to send them.
42 */
43
44#include "opt_vlan.h"
45
46#include <sys/param.h>
47#include <sys/kernel.h>
48#include <sys/lock.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/module.h>
52#include <sys/rwlock.h>
53#include <sys/queue.h>
54#include <sys/socket.h>
55#include <sys/sockio.h>
56#include <sys/sysctl.h>
57#include <sys/systm.h>
58
59#include <net/bpf.h>
60#include <net/ethernet.h>
61#include <net/if.h>
62#include <net/if_clone.h>
63#include <net/if_dl.h>
64#include <net/if_types.h>
65#include <net/if_vlan_var.h>
66
67#define VLANNAME	"vlan"
68#define	VLAN_DEF_HWIDTH	4
69#define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
70
71#define	UP_AND_RUNNING(ifp) \
72    ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
73
74LIST_HEAD(ifvlanhead, ifvlan);
75
76struct ifvlantrunk {
77	struct	ifnet   *parent;	/* parent interface of this trunk */
78	struct	rwlock	rw;
79#ifdef VLAN_ARRAY
80#define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
81	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
82#else
83	struct	ifvlanhead *hash;	/* dynamic hash-list table */
84	uint16_t	hmask;
85	uint16_t	hwidth;
86#endif
87	int		refcnt;
88};
89
90struct vlan_mc_entry {
91	struct ether_addr		mc_addr;
92	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
93};
94
95struct	ifvlan {
96	struct	ifvlantrunk *ifv_trunk;
97	struct	ifnet *ifv_ifp;
98#define	TRUNK(ifv)	((ifv)->ifv_trunk)
99#define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
100	int	ifv_pflags;	/* special flags we have set on parent */
101	struct	ifv_linkmib {
102		int	ifvm_encaplen;	/* encapsulation length */
103		int	ifvm_mtufudge;	/* MTU fudged by this much */
104		int	ifvm_mintu;	/* min transmission unit */
105		uint16_t ifvm_proto;	/* encapsulation ethertype */
106		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
107	}	ifv_mib;
108	SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
109#ifndef VLAN_ARRAY
110	LIST_ENTRY(ifvlan) ifv_list;
111#endif
112};
113#define	ifv_proto	ifv_mib.ifvm_proto
114#define	ifv_tag		ifv_mib.ifvm_tag
115#define	ifv_encaplen	ifv_mib.ifvm_encaplen
116#define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
117#define	ifv_mintu	ifv_mib.ifvm_mintu
118
119/* Special flags we should propagate to parent. */
120static struct {
121	int flag;
122	int (*func)(struct ifnet *, int);
123} vlan_pflags[] = {
124	{IFF_PROMISC, ifpromisc},
125	{IFF_ALLMULTI, if_allmulti},
126	{0, NULL}
127};
128
129SYSCTL_DECL(_net_link);
130SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
131SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
132
133static int soft_pad = 0;
134SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW, &soft_pad, 0,
135	   "pad short frames before tagging");
136
137static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
138
139static eventhandler_tag ifdetach_tag;
140
141/*
142 * We have a global mutex, that is used to serialize configuration
143 * changes and isn't used in normal packet delivery.
144 *
145 * We also have a per-trunk rwlock, that is locked shared on packet
146 * processing and exclusive when configuration is changed.
147 *
148 * The VLAN_ARRAY substitutes the dynamic hash with a static array
149 * with 4096 entries. In theory this can give a boost in processing,
150 * however on practice it does not. Probably this is because array
151 * is too big to fit into CPU cache.
152 */
153static struct mtx ifv_mtx;
154#define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
155#define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
156#define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
157#define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
158#define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
159#define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
160#define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
161#define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
162#define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
163#define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
164#define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
165#define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
166#define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
167
168#ifndef VLAN_ARRAY
169static	void vlan_inithash(struct ifvlantrunk *trunk);
170static	void vlan_freehash(struct ifvlantrunk *trunk);
171static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
172static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
173static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
174static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
175	uint16_t tag);
176#endif
177static	void trunk_destroy(struct ifvlantrunk *trunk);
178
179static	void vlan_start(struct ifnet *ifp);
180static	void vlan_init(void *foo);
181static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
182static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
183static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
184    int (*func)(struct ifnet *, int));
185static	int vlan_setflags(struct ifnet *ifp, int status);
186static	int vlan_setmulti(struct ifnet *ifp);
187static	int vlan_unconfig(struct ifnet *ifp);
188static	int vlan_unconfig_locked(struct ifnet *ifp);
189static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
190static	void vlan_link_state(struct ifnet *ifp, int link);
191static	void vlan_capabilities(struct ifvlan *ifv);
192static	void vlan_trunk_capabilities(struct ifnet *ifp);
193
194static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
195    const char *, int *);
196static	int vlan_clone_match(struct if_clone *, const char *);
197static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
198static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
199
200static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
201
202static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
203    IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
204
205#ifndef VLAN_ARRAY
206#define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
207
208static void
209vlan_inithash(struct ifvlantrunk *trunk)
210{
211	int i, n;
212
213	/*
214	 * The trunk must not be locked here since we call malloc(M_WAITOK).
215	 * It is OK in case this function is called before the trunk struct
216	 * gets hooked up and becomes visible from other threads.
217	 */
218
219	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
220	    ("%s: hash already initialized", __func__));
221
222	trunk->hwidth = VLAN_DEF_HWIDTH;
223	n = 1 << trunk->hwidth;
224	trunk->hmask = n - 1;
225	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
226	for (i = 0; i < n; i++)
227		LIST_INIT(&trunk->hash[i]);
228}
229
230static void
231vlan_freehash(struct ifvlantrunk *trunk)
232{
233#ifdef INVARIANTS
234	int i;
235
236	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
237	for (i = 0; i < (1 << trunk->hwidth); i++)
238		KASSERT(LIST_EMPTY(&trunk->hash[i]),
239		    ("%s: hash table not empty", __func__));
240#endif
241	free(trunk->hash, M_VLAN);
242	trunk->hash = NULL;
243	trunk->hwidth = trunk->hmask = 0;
244}
245
246static int
247vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
248{
249	int i, b;
250	struct ifvlan *ifv2;
251
252	TRUNK_LOCK_ASSERT(trunk);
253	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
254
255	b = 1 << trunk->hwidth;
256	i = HASH(ifv->ifv_tag, trunk->hmask);
257	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
258		if (ifv->ifv_tag == ifv2->ifv_tag)
259			return (EEXIST);
260
261	/*
262	 * Grow the hash when the number of vlans exceeds half of the number of
263	 * hash buckets squared. This will make the average linked-list length
264	 * buckets/2.
265	 */
266	if (trunk->refcnt > (b * b) / 2) {
267		vlan_growhash(trunk, 1);
268		i = HASH(ifv->ifv_tag, trunk->hmask);
269	}
270	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
271	trunk->refcnt++;
272
273	return (0);
274}
275
276static int
277vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
278{
279	int i, b;
280	struct ifvlan *ifv2;
281
282	TRUNK_LOCK_ASSERT(trunk);
283	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
284
285	b = 1 << trunk->hwidth;
286	i = HASH(ifv->ifv_tag, trunk->hmask);
287	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
288		if (ifv2 == ifv) {
289			trunk->refcnt--;
290			LIST_REMOVE(ifv2, ifv_list);
291			if (trunk->refcnt < (b * b) / 2)
292				vlan_growhash(trunk, -1);
293			return (0);
294		}
295
296	panic("%s: vlan not found\n", __func__);
297	return (ENOENT); /*NOTREACHED*/
298}
299
300/*
301 * Grow the hash larger or smaller if memory permits.
302 */
303static void
304vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
305{
306	struct ifvlan *ifv;
307	struct ifvlanhead *hash2;
308	int hwidth2, i, j, n, n2;
309
310	TRUNK_LOCK_ASSERT(trunk);
311	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
312
313	if (howmuch == 0) {
314		/* Harmless yet obvious coding error */
315		printf("%s: howmuch is 0\n", __func__);
316		return;
317	}
318
319	hwidth2 = trunk->hwidth + howmuch;
320	n = 1 << trunk->hwidth;
321	n2 = 1 << hwidth2;
322	/* Do not shrink the table below the default */
323	if (hwidth2 < VLAN_DEF_HWIDTH)
324		return;
325
326	/* M_NOWAIT because we're called with trunk mutex held */
327	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
328	if (hash2 == NULL) {
329		printf("%s: out of memory -- hash size not changed\n",
330		    __func__);
331		return;		/* We can live with the old hash table */
332	}
333	for (j = 0; j < n2; j++)
334		LIST_INIT(&hash2[j]);
335	for (i = 0; i < n; i++)
336		while ((ifv = LIST_FIRST(&trunk->hash[i])) != NULL) {
337			LIST_REMOVE(ifv, ifv_list);
338			j = HASH(ifv->ifv_tag, n2 - 1);
339			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
340		}
341	free(trunk->hash, M_VLAN);
342	trunk->hash = hash2;
343	trunk->hwidth = hwidth2;
344	trunk->hmask = n2 - 1;
345
346	if (bootverbose)
347		if_printf(trunk->parent,
348		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
349}
350
351static __inline struct ifvlan *
352vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
353{
354	struct ifvlan *ifv;
355
356	TRUNK_LOCK_RASSERT(trunk);
357
358	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
359		if (ifv->ifv_tag == tag)
360			return (ifv);
361	return (NULL);
362}
363
364#if 0
365/* Debugging code to view the hashtables. */
366static void
367vlan_dumphash(struct ifvlantrunk *trunk)
368{
369	int i;
370	struct ifvlan *ifv;
371
372	for (i = 0; i < (1 << trunk->hwidth); i++) {
373		printf("%d: ", i);
374		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
375			printf("%s ", ifv->ifv_ifp->if_xname);
376		printf("\n");
377	}
378}
379#endif /* 0 */
380#endif /* !VLAN_ARRAY */
381
382static void
383trunk_destroy(struct ifvlantrunk *trunk)
384{
385	VLAN_LOCK_ASSERT();
386
387	TRUNK_LOCK(trunk);
388#ifndef VLAN_ARRAY
389	vlan_freehash(trunk);
390#endif
391	trunk->parent->if_vlantrunk = NULL;
392	TRUNK_UNLOCK(trunk);
393	TRUNK_LOCK_DESTROY(trunk);
394	free(trunk, M_VLAN);
395}
396
397/*
398 * Program our multicast filter. What we're actually doing is
399 * programming the multicast filter of the parent. This has the
400 * side effect of causing the parent interface to receive multicast
401 * traffic that it doesn't really want, which ends up being discarded
402 * later by the upper protocol layers. Unfortunately, there's no way
403 * to avoid this: there really is only one physical interface.
404 *
405 * XXX: There is a possible race here if more than one thread is
406 *      modifying the multicast state of the vlan interface at the same time.
407 */
408static int
409vlan_setmulti(struct ifnet *ifp)
410{
411	struct ifnet		*ifp_p;
412	struct ifmultiaddr	*ifma, *rifma = NULL;
413	struct ifvlan		*sc;
414	struct vlan_mc_entry	*mc;
415	struct sockaddr_dl	sdl;
416	int			error;
417
418	/*VLAN_LOCK_ASSERT();*/
419
420	/* Find the parent. */
421	sc = ifp->if_softc;
422	ifp_p = PARENT(sc);
423
424	bzero((char *)&sdl, sizeof(sdl));
425	sdl.sdl_len = sizeof(sdl);
426	sdl.sdl_family = AF_LINK;
427	sdl.sdl_index = ifp_p->if_index;
428	sdl.sdl_type = IFT_ETHER;
429	sdl.sdl_alen = ETHER_ADDR_LEN;
430
431	/* First, remove any existing filter entries. */
432	while ((mc = SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
433		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
434		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
435		if (error)
436			return (error);
437		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
438		free(mc, M_VLAN);
439	}
440
441	/* Now program new ones. */
442	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
443		if (ifma->ifma_addr->sa_family != AF_LINK)
444			continue;
445		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
446		if (mc == NULL)
447			return (ENOMEM);
448		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
449		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
450		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
451		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
452		    LLADDR(&sdl), ETHER_ADDR_LEN);
453		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
454		if (error)
455			return (error);
456	}
457
458	return (0);
459}
460
461/*
462 * A handler for network interface departure events.
463 * Track departure of trunks here so that we don't access invalid
464 * pointers or whatever if a trunk is ripped from under us, e.g.,
465 * by ejecting its hot-plug card.
466 */
467static void
468vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
469{
470	struct ifvlan *ifv;
471	int i;
472
473	/*
474	 * Check if it's a trunk interface first of all
475	 * to avoid needless locking.
476	 */
477	if (ifp->if_vlantrunk == NULL)
478		return;
479
480	VLAN_LOCK();
481	/*
482	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
483	 * Check trunk pointer after each vlan_unconfig() as it will
484	 * free it and set to NULL after the last vlan was detached.
485	 */
486#ifdef VLAN_ARRAY
487	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
488		if ((ifv = ifp->if_vlantrunk->vlans[i])) {
489			vlan_unconfig_locked(ifv->ifv_ifp);
490			if (ifp->if_vlantrunk == NULL)
491				break;
492		}
493#else /* VLAN_ARRAY */
494restart:
495	for (i = 0; i < (1 << ifp->if_vlantrunk->hwidth); i++)
496		if ((ifv = LIST_FIRST(&ifp->if_vlantrunk->hash[i]))) {
497			vlan_unconfig_locked(ifv->ifv_ifp);
498			if (ifp->if_vlantrunk)
499				goto restart;	/* trunk->hwidth can change */
500			else
501				break;
502		}
503#endif /* VLAN_ARRAY */
504	/* Trunk should have been destroyed in vlan_unconfig(). */
505	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
506	VLAN_UNLOCK();
507}
508
509/*
510 * VLAN support can be loaded as a module.  The only place in the
511 * system that's intimately aware of this is ether_input.  We hook
512 * into this code through vlan_input_p which is defined there and
513 * set here.  Noone else in the system should be aware of this so
514 * we use an explicit reference here.
515 */
516extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
517
518/* For if_link_state_change() eyes only... */
519extern	void (*vlan_link_state_p)(struct ifnet *, int);
520
521static int
522vlan_modevent(module_t mod, int type, void *data)
523{
524
525	switch (type) {
526	case MOD_LOAD:
527		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
528		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
529		if (ifdetach_tag == NULL)
530			return (ENOMEM);
531		VLAN_LOCK_INIT();
532		vlan_input_p = vlan_input;
533		vlan_link_state_p = vlan_link_state;
534		vlan_trunk_cap_p = vlan_trunk_capabilities;
535		if_clone_attach(&vlan_cloner);
536		if (bootverbose)
537			printf("vlan: initialized, using "
538#ifdef VLAN_ARRAY
539			       "full-size arrays"
540#else
541			       "hash tables with chaining"
542#endif
543
544			       "\n");
545		break;
546	case MOD_UNLOAD:
547		if_clone_detach(&vlan_cloner);
548		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
549		vlan_input_p = NULL;
550		vlan_link_state_p = NULL;
551		vlan_trunk_cap_p = NULL;
552		VLAN_LOCK_DESTROY();
553		if (bootverbose)
554			printf("vlan: unloaded\n");
555		break;
556	default:
557		return (EOPNOTSUPP);
558	}
559	return (0);
560}
561
562static moduledata_t vlan_mod = {
563	"if_vlan",
564	vlan_modevent,
565	0
566};
567
568DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
569MODULE_VERSION(if_vlan, 3);
570MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
571
572static struct ifnet *
573vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
574{
575	const char *cp;
576	struct ifnet *ifp;
577	int t = 0;
578
579	/* Check for <etherif>.<vlan> style interface names. */
580	IFNET_RLOCK();
581	TAILQ_FOREACH(ifp, &ifnet, if_link) {
582		if (ifp->if_type != IFT_ETHER)
583			continue;
584		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
585			continue;
586		cp = name + strlen(ifp->if_xname);
587		if (*cp != '.')
588			continue;
589		for(; *cp != '\0'; cp++) {
590			if (*cp < '0' || *cp > '9')
591				continue;
592			t = (t * 10) + (*cp - '0');
593		}
594		if (tag != NULL)
595			*tag = t;
596		break;
597	}
598	IFNET_RUNLOCK();
599
600	return (ifp);
601}
602
603static int
604vlan_clone_match(struct if_clone *ifc, const char *name)
605{
606	const char *cp;
607
608	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
609		return (1);
610
611	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
612		return (0);
613	for (cp = name + 4; *cp != '\0'; cp++) {
614		if (*cp < '0' || *cp > '9')
615			return (0);
616	}
617
618	return (1);
619}
620
621static int
622vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
623{
624	char *dp;
625	int wildcard;
626	int unit;
627	int error;
628	int tag;
629	int ethertag;
630	struct ifvlan *ifv;
631	struct ifnet *ifp;
632	struct ifnet *p;
633	struct vlanreq vlr;
634	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
635
636	/*
637	 * There are 3 (ugh) ways to specify the cloned device:
638	 * o pass a parameter block with the clone request.
639	 * o specify parameters in the text of the clone device name
640	 * o specify no parameters and get an unattached device that
641	 *   must be configured separately.
642	 * The first technique is preferred; the latter two are
643	 * supported for backwards compatibilty.
644	 */
645	if (params) {
646		error = copyin(params, &vlr, sizeof(vlr));
647		if (error)
648			return error;
649		p = ifunit(vlr.vlr_parent);
650		if (p == NULL)
651			return ENXIO;
652		/*
653		 * Don't let the caller set up a VLAN tag with
654		 * anything except VLID bits.
655		 */
656		if (vlr.vlr_tag & ~EVL_VLID_MASK)
657			return (EINVAL);
658		error = ifc_name2unit(name, &unit);
659		if (error != 0)
660			return (error);
661
662		ethertag = 1;
663		tag = vlr.vlr_tag;
664		wildcard = (unit < 0);
665	} else if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
666		ethertag = 1;
667		unit = -1;
668		wildcard = 0;
669
670		/*
671		 * Don't let the caller set up a VLAN tag with
672		 * anything except VLID bits.
673		 */
674		if (tag & ~EVL_VLID_MASK)
675			return (EINVAL);
676	} else {
677		ethertag = 0;
678
679		error = ifc_name2unit(name, &unit);
680		if (error != 0)
681			return (error);
682
683		wildcard = (unit < 0);
684	}
685
686	error = ifc_alloc_unit(ifc, &unit);
687	if (error != 0)
688		return (error);
689
690	/* In the wildcard case, we need to update the name. */
691	if (wildcard) {
692		for (dp = name; *dp != '\0'; dp++);
693		if (snprintf(dp, len - (dp-name), "%d", unit) >
694		    len - (dp-name) - 1) {
695			panic("%s: interface name too long", __func__);
696		}
697	}
698
699	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
700	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
701	if (ifp == NULL) {
702		ifc_free_unit(ifc, unit);
703		free(ifv, M_VLAN);
704		return (ENOSPC);
705	}
706	SLIST_INIT(&ifv->vlan_mc_listhead);
707
708	ifp->if_softc = ifv;
709	/*
710	 * Set the name manually rather than using if_initname because
711	 * we don't conform to the default naming convention for interfaces.
712	 */
713	strlcpy(ifp->if_xname, name, IFNAMSIZ);
714	ifp->if_dname = ifc->ifc_name;
715	ifp->if_dunit = unit;
716	/* NB: flags are not set here */
717	ifp->if_linkmib = &ifv->ifv_mib;
718	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
719	/* NB: mtu is not set here */
720
721	ifp->if_init = vlan_init;
722	ifp->if_start = vlan_start;
723	ifp->if_ioctl = vlan_ioctl;
724	ifp->if_snd.ifq_maxlen = ifqmaxlen;
725	ifp->if_flags = VLAN_IFFLAGS;
726	ether_ifattach(ifp, eaddr);
727	/* Now undo some of the damage... */
728	ifp->if_baudrate = 0;
729	ifp->if_type = IFT_L2VLAN;
730	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
731
732	if (ethertag) {
733		error = vlan_config(ifv, p, tag);
734		if (error != 0) {
735			/*
736			 * Since we've partialy failed, we need to back
737			 * out all the way, otherwise userland could get
738			 * confused.  Thus, we destroy the interface.
739			 */
740			ether_ifdetach(ifp);
741			vlan_unconfig(ifp);
742			if_free_type(ifp, IFT_ETHER);
743			free(ifv, M_VLAN);
744
745			return (error);
746		}
747
748		/* Update flags on the parent, if necessary. */
749		vlan_setflags(ifp, 1);
750	}
751
752	return (0);
753}
754
755static int
756vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
757{
758	struct ifvlan *ifv = ifp->if_softc;
759	int unit = ifp->if_dunit;
760
761	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
762	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
763	if_free_type(ifp, IFT_ETHER);
764	free(ifv, M_VLAN);
765	ifc_free_unit(ifc, unit);
766
767	return (0);
768}
769
770/*
771 * The ifp->if_init entry point for vlan(4) is a no-op.
772 */
773static void
774vlan_init(void *foo __unused)
775{
776}
777
778/*
779 * The if_start method for vlan(4) interface. It doesn't
780 * raises the IFF_DRV_OACTIVE flag, since it is called
781 * only from IFQ_HANDOFF() macro in ether_output_frame().
782 * If the interface queue is full, and vlan_start() is
783 * not called, the queue would never get emptied and
784 * interface would stall forever.
785 */
786static void
787vlan_start(struct ifnet *ifp)
788{
789	struct ifvlan *ifv;
790	struct ifnet *p;
791	struct mbuf *m;
792	int error;
793
794	ifv = ifp->if_softc;
795	p = PARENT(ifv);
796
797	for (;;) {
798		IF_DEQUEUE(&ifp->if_snd, m);
799		if (m == NULL)
800			break;
801		BPF_MTAP(ifp, m);
802
803		/*
804		 * Do not run parent's if_start() if the parent is not up,
805		 * or parent's driver will cause a system crash.
806		 */
807		if (!UP_AND_RUNNING(p)) {
808			m_freem(m);
809			ifp->if_collisions++;
810			continue;
811		}
812
813		/*
814		 * Pad the frame to the minimum size allowed if told to.
815		 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
816		 * paragraph C.4.4.3.b.  It can help to work around buggy
817		 * bridges that violate paragraph C.4.4.3.a from the same
818		 * document, i.e., fail to pad short frames after untagging.
819		 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
820		 * untagging it will produce a 62-byte frame, which is a runt
821		 * and requires padding.  There are VLAN-enabled network
822		 * devices that just discard such runts instead or mishandle
823		 * them somehow.
824		 */
825		if (soft_pad) {
826			static char pad[8];	/* just zeros */
827			int n;
828
829			for (n = ETHERMIN + ETHER_HDR_LEN - m->m_pkthdr.len;
830			     n > 0; n -= sizeof(pad))
831				if (!m_append(m, min(n, sizeof(pad)), pad))
832					break;
833
834			if (n > 0) {
835				if_printf(ifp, "cannot pad short frame\n");
836				ifp->if_oerrors++;
837				m_freem(m);
838				continue;
839			}
840		}
841
842		/*
843		 * If underlying interface can do VLAN tag insertion itself,
844		 * just pass the packet along. However, we need some way to
845		 * tell the interface where the packet came from so that it
846		 * knows how to find the VLAN tag to use, so we attach a
847		 * packet tag that holds it.
848		 */
849		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
850			m->m_pkthdr.ether_vtag = ifv->ifv_tag;
851			m->m_flags |= M_VLANTAG;
852		} else {
853			struct ether_vlan_header *evl;
854
855			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
856			if (m == NULL) {
857				if_printf(ifp,
858				    "unable to prepend VLAN header\n");
859				ifp->if_oerrors++;
860				continue;
861			}
862			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
863
864			if (m->m_len < sizeof(*evl)) {
865				m = m_pullup(m, sizeof(*evl));
866				if (m == NULL) {
867					if_printf(ifp,
868					    "cannot pullup VLAN header\n");
869					ifp->if_oerrors++;
870					continue;
871				}
872			}
873
874			/*
875			 * Transform the Ethernet header into an Ethernet header
876			 * with 802.1Q encapsulation.
877			 */
878			evl = mtod(m, struct ether_vlan_header *);
879			bcopy((char *)evl + ifv->ifv_encaplen,
880			      (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
881			evl->evl_encap_proto = htons(ifv->ifv_proto);
882			evl->evl_tag = htons(ifv->ifv_tag);
883#ifdef DEBUG
884			printf("%s: %*D\n", __func__, (int)sizeof(*evl),
885			    (unsigned char *)evl, ":");
886#endif
887		}
888
889		/*
890		 * Send it, precisely as ether_output() would have.
891		 * We are already running at splimp.
892		 */
893		IFQ_HANDOFF(p, m, error);
894		if (!error)
895			ifp->if_opackets++;
896		else
897			ifp->if_oerrors++;
898	}
899}
900
901static void
902vlan_input(struct ifnet *ifp, struct mbuf *m)
903{
904	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
905	struct ifvlan *ifv;
906	uint16_t tag;
907
908	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
909
910	if (m->m_flags & M_VLANTAG) {
911		/*
912		 * Packet is tagged, but m contains a normal
913		 * Ethernet frame; the tag is stored out-of-band.
914		 */
915		tag = EVL_VLANOFTAG(m->m_pkthdr.ether_vtag);
916		m->m_flags &= ~M_VLANTAG;
917	} else {
918		struct ether_vlan_header *evl;
919
920		/*
921		 * Packet is tagged in-band as specified by 802.1q.
922		 */
923		switch (ifp->if_type) {
924		case IFT_ETHER:
925			if (m->m_len < sizeof(*evl) &&
926			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
927				if_printf(ifp, "cannot pullup VLAN header\n");
928				return;
929			}
930			evl = mtod(m, struct ether_vlan_header *);
931			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
932
933			/*
934			 * Remove the 802.1q header by copying the Ethernet
935			 * addresses over it and adjusting the beginning of
936			 * the data in the mbuf.  The encapsulated Ethernet
937			 * type field is already in place.
938			 */
939			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
940			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
941			m_adj(m, ETHER_VLAN_ENCAP_LEN);
942			break;
943
944		default:
945#ifdef INVARIANTS
946			panic("%s: %s has unsupported if_type %u",
947			      __func__, ifp->if_xname, ifp->if_type);
948#endif
949			m_freem(m);
950			ifp->if_noproto++;
951			return;
952		}
953	}
954
955	TRUNK_RLOCK(trunk);
956#ifdef VLAN_ARRAY
957	ifv = trunk->vlans[tag];
958#else
959	ifv = vlan_gethash(trunk, tag);
960#endif
961	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
962		TRUNK_RUNLOCK(trunk);
963		m_freem(m);
964		ifp->if_noproto++;
965		return;
966	}
967	TRUNK_RUNLOCK(trunk);
968
969	m->m_pkthdr.rcvif = ifv->ifv_ifp;
970	ifv->ifv_ifp->if_ipackets++;
971
972	/* Pass it back through the parent's input routine. */
973	(*ifp->if_input)(ifv->ifv_ifp, m);
974}
975
976static int
977vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
978{
979	struct ifvlantrunk *trunk;
980	struct ifnet *ifp;
981	int error = 0;
982
983	/* VID numbers 0x0 and 0xFFF are reserved */
984	if (tag == 0 || tag == 0xFFF)
985		return (EINVAL);
986	if (p->if_type != IFT_ETHER)
987		return (EPROTONOSUPPORT);
988	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
989		return (EPROTONOSUPPORT);
990	if (ifv->ifv_trunk)
991		return (EBUSY);
992
993	if (p->if_vlantrunk == NULL) {
994		trunk = malloc(sizeof(struct ifvlantrunk),
995		    M_VLAN, M_WAITOK | M_ZERO);
996#ifndef VLAN_ARRAY
997		vlan_inithash(trunk);
998#endif
999		VLAN_LOCK();
1000		if (p->if_vlantrunk != NULL) {
1001			/* A race that that is very unlikely to be hit. */
1002#ifndef VLAN_ARRAY
1003			vlan_freehash(trunk);
1004#endif
1005			free(trunk, M_VLAN);
1006			goto exists;
1007		}
1008		TRUNK_LOCK_INIT(trunk);
1009		TRUNK_LOCK(trunk);
1010		p->if_vlantrunk = trunk;
1011		trunk->parent = p;
1012	} else {
1013		VLAN_LOCK();
1014exists:
1015		trunk = p->if_vlantrunk;
1016		TRUNK_LOCK(trunk);
1017	}
1018
1019	ifv->ifv_tag = tag;	/* must set this before vlan_inshash() */
1020#ifdef VLAN_ARRAY
1021	if (trunk->vlans[tag] != NULL) {
1022		error = EEXIST;
1023		goto done;
1024	}
1025	trunk->vlans[tag] = ifv;
1026	trunk->refcnt++;
1027#else
1028	error = vlan_inshash(trunk, ifv);
1029	if (error)
1030		goto done;
1031#endif
1032	ifv->ifv_proto = ETHERTYPE_VLAN;
1033	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1034	ifv->ifv_mintu = ETHERMIN;
1035	ifv->ifv_pflags = 0;
1036
1037	/*
1038	 * If the parent supports the VLAN_MTU capability,
1039	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1040	 * use it.
1041	 */
1042	if (p->if_capenable & IFCAP_VLAN_MTU) {
1043		/*
1044		 * No need to fudge the MTU since the parent can
1045		 * handle extended frames.
1046		 */
1047		ifv->ifv_mtufudge = 0;
1048	} else {
1049		/*
1050		 * Fudge the MTU by the encapsulation size.  This
1051		 * makes us incompatible with strictly compliant
1052		 * 802.1Q implementations, but allows us to use
1053		 * the feature with other NetBSD implementations,
1054		 * which might still be useful.
1055		 */
1056		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1057	}
1058
1059	ifv->ifv_trunk = trunk;
1060	ifp = ifv->ifv_ifp;
1061	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1062	ifp->if_baudrate = p->if_baudrate;
1063	/*
1064	 * Copy only a selected subset of flags from the parent.
1065	 * Other flags are none of our business.
1066	 */
1067#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1068	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1069	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1070#undef VLAN_COPY_FLAGS
1071
1072	ifp->if_link_state = p->if_link_state;
1073
1074	vlan_capabilities(ifv);
1075
1076	/*
1077	 * Set up our ``Ethernet address'' to reflect the underlying
1078	 * physical interface's.
1079	 */
1080	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
1081
1082	/*
1083	 * Configure multicast addresses that may already be
1084	 * joined on the vlan device.
1085	 */
1086	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1087
1088	/* We are ready for operation now. */
1089	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1090done:
1091	TRUNK_UNLOCK(trunk);
1092	VLAN_UNLOCK();
1093
1094	return (error);
1095}
1096
1097static int
1098vlan_unconfig(struct ifnet *ifp)
1099{
1100	int ret;
1101
1102	VLAN_LOCK();
1103	ret = vlan_unconfig_locked(ifp);
1104	VLAN_UNLOCK();
1105	return (ret);
1106}
1107
1108static int
1109vlan_unconfig_locked(struct ifnet *ifp)
1110{
1111	struct ifvlantrunk *trunk;
1112	struct vlan_mc_entry *mc;
1113	struct ifvlan *ifv;
1114	int error;
1115
1116	VLAN_LOCK_ASSERT();
1117
1118	ifv = ifp->if_softc;
1119	trunk = ifv->ifv_trunk;
1120
1121	if (trunk) {
1122		struct sockaddr_dl sdl;
1123		struct ifnet *p = trunk->parent;
1124
1125		TRUNK_LOCK(trunk);
1126
1127		/*
1128		 * Since the interface is being unconfigured, we need to
1129		 * empty the list of multicast groups that we may have joined
1130		 * while we were alive from the parent's list.
1131		 */
1132		bzero((char *)&sdl, sizeof(sdl));
1133		sdl.sdl_len = sizeof(sdl);
1134		sdl.sdl_family = AF_LINK;
1135		sdl.sdl_index = p->if_index;
1136		sdl.sdl_type = IFT_ETHER;
1137		sdl.sdl_alen = ETHER_ADDR_LEN;
1138
1139		while ((mc = SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1140			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1141			    ETHER_ADDR_LEN);
1142			error = if_delmulti(p, (struct sockaddr *)&sdl);
1143			if (error)
1144				return (error);
1145			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1146			free(mc, M_VLAN);
1147		}
1148
1149		vlan_setflags(ifp, 0); /* clear special flags on parent */
1150#ifdef VLAN_ARRAY
1151		trunk->vlans[ifv->ifv_tag] = NULL;
1152		trunk->refcnt--;
1153#else
1154		vlan_remhash(trunk, ifv);
1155#endif
1156		ifv->ifv_trunk = NULL;
1157
1158		/*
1159		 * Check if we were the last.
1160		 */
1161		if (trunk->refcnt == 0) {
1162			trunk->parent->if_vlantrunk = NULL;
1163			/*
1164			 * XXXGL: If some ithread has already entered
1165			 * vlan_input() and is now blocked on the trunk
1166			 * lock, then it should preempt us right after
1167			 * unlock and finish its work. Then we will acquire
1168			 * lock again in trunk_destroy().
1169			 */
1170			TRUNK_UNLOCK(trunk);
1171			trunk_destroy(trunk);
1172		} else
1173			TRUNK_UNLOCK(trunk);
1174	}
1175
1176	/* Disconnect from parent. */
1177	if (ifv->ifv_pflags)
1178		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1179	ifp->if_mtu = ETHERMTU;
1180	ifp->if_link_state = LINK_STATE_UNKNOWN;
1181	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1182
1183	return (0);
1184}
1185
1186/* Handle a reference counted flag that should be set on the parent as well */
1187static int
1188vlan_setflag(struct ifnet *ifp, int flag, int status,
1189	     int (*func)(struct ifnet *, int))
1190{
1191	struct ifvlan *ifv;
1192	int error;
1193
1194	/* XXX VLAN_LOCK_ASSERT(); */
1195
1196	ifv = ifp->if_softc;
1197	status = status ? (ifp->if_flags & flag) : 0;
1198	/* Now "status" contains the flag value or 0 */
1199
1200	/*
1201	 * See if recorded parent's status is different from what
1202	 * we want it to be.  If it is, flip it.  We record parent's
1203	 * status in ifv_pflags so that we won't clear parent's flag
1204	 * we haven't set.  In fact, we don't clear or set parent's
1205	 * flags directly, but get or release references to them.
1206	 * That's why we can be sure that recorded flags still are
1207	 * in accord with actual parent's flags.
1208	 */
1209	if (status != (ifv->ifv_pflags & flag)) {
1210		error = (*func)(PARENT(ifv), status);
1211		if (error)
1212			return (error);
1213		ifv->ifv_pflags &= ~flag;
1214		ifv->ifv_pflags |= status;
1215	}
1216	return (0);
1217}
1218
1219/*
1220 * Handle IFF_* flags that require certain changes on the parent:
1221 * if "status" is true, update parent's flags respective to our if_flags;
1222 * if "status" is false, forcedly clear the flags set on parent.
1223 */
1224static int
1225vlan_setflags(struct ifnet *ifp, int status)
1226{
1227	int error, i;
1228
1229	for (i = 0; vlan_pflags[i].flag; i++) {
1230		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1231				     status, vlan_pflags[i].func);
1232		if (error)
1233			return (error);
1234	}
1235	return (0);
1236}
1237
1238/* Inform all vlans that their parent has changed link state */
1239static void
1240vlan_link_state(struct ifnet *ifp, int link)
1241{
1242	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1243	struct ifvlan *ifv;
1244	int i;
1245
1246	TRUNK_LOCK(trunk);
1247#ifdef VLAN_ARRAY
1248	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1249		if (trunk->vlans[i] != NULL) {
1250			ifv = trunk->vlans[i];
1251#else
1252	for (i = 0; i < (1 << trunk->hwidth); i++)
1253		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list) {
1254#endif
1255			ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1256			if_link_state_change(ifv->ifv_ifp,
1257			    trunk->parent->if_link_state);
1258		}
1259	TRUNK_UNLOCK(trunk);
1260}
1261
1262static void
1263vlan_capabilities(struct ifvlan *ifv)
1264{
1265	struct ifnet *p = PARENT(ifv);
1266	struct ifnet *ifp = ifv->ifv_ifp;
1267
1268	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1269
1270	/*
1271	 * If the parent interface can do checksum offloading
1272	 * on VLANs, then propagate its hardware-assisted
1273	 * checksumming flags. Also assert that checksum
1274	 * offloading requires hardware VLAN tagging.
1275	 */
1276	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1277		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1278
1279	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1280	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1281		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1282		ifp->if_hwassist = p->if_hwassist;
1283	} else {
1284		ifp->if_capenable = 0;
1285		ifp->if_hwassist = 0;
1286	}
1287}
1288
1289static void
1290vlan_trunk_capabilities(struct ifnet *ifp)
1291{
1292	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1293	struct ifvlan *ifv;
1294	int i;
1295
1296	TRUNK_LOCK(trunk);
1297#ifdef VLAN_ARRAY
1298	for (i = 0; i < VLAN_ARRAY_SIZE; i++)
1299		if (trunk->vlans[i] != NULL) {
1300			ifv = trunk->vlans[i];
1301#else
1302	for (i = 0; i < (1 << trunk->hwidth); i++) {
1303		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1304#endif
1305			vlan_capabilities(ifv);
1306	}
1307	TRUNK_UNLOCK(trunk);
1308}
1309
1310static int
1311vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1312{
1313	struct ifaddr *ifa;
1314	struct ifnet *p;
1315	struct ifreq *ifr;
1316	struct ifvlan *ifv;
1317	struct vlanreq vlr;
1318	int error = 0;
1319
1320	ifr = (struct ifreq *)data;
1321	ifa = (struct ifaddr *)data;
1322	ifv = ifp->if_softc;
1323
1324	switch (cmd) {
1325	case SIOCGIFMEDIA:
1326		VLAN_LOCK();
1327		if (TRUNK(ifv) != NULL) {
1328			error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
1329					SIOCGIFMEDIA, data);
1330			VLAN_UNLOCK();
1331			/* Limit the result to the parent's current config. */
1332			if (error == 0) {
1333				struct ifmediareq *ifmr;
1334
1335				ifmr = (struct ifmediareq *)data;
1336				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1337					ifmr->ifm_count = 1;
1338					error = copyout(&ifmr->ifm_current,
1339						ifmr->ifm_ulist,
1340						sizeof(int));
1341				}
1342			}
1343		} else {
1344			VLAN_UNLOCK();
1345			error = EINVAL;
1346		}
1347		break;
1348
1349	case SIOCSIFMEDIA:
1350		error = EINVAL;
1351		break;
1352
1353	case SIOCSIFMTU:
1354		/*
1355		 * Set the interface MTU.
1356		 */
1357		VLAN_LOCK();
1358		if (TRUNK(ifv) != NULL) {
1359			if (ifr->ifr_mtu >
1360			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1361			    ifr->ifr_mtu <
1362			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1363				error = EINVAL;
1364			else
1365				ifp->if_mtu = ifr->ifr_mtu;
1366		} else
1367			error = EINVAL;
1368		VLAN_UNLOCK();
1369		break;
1370
1371	case SIOCSETVLAN:
1372		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1373		if (error)
1374			break;
1375		if (vlr.vlr_parent[0] == '\0') {
1376			vlan_unconfig(ifp);
1377			break;
1378		}
1379		p = ifunit(vlr.vlr_parent);
1380		if (p == 0) {
1381			error = ENOENT;
1382			break;
1383		}
1384		/*
1385		 * Don't let the caller set up a VLAN tag with
1386		 * anything except VLID bits.
1387		 */
1388		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1389			error = EINVAL;
1390			break;
1391		}
1392		error = vlan_config(ifv, p, vlr.vlr_tag);
1393		if (error)
1394			break;
1395
1396		/* Update flags on the parent, if necessary. */
1397		vlan_setflags(ifp, 1);
1398		break;
1399
1400	case SIOCGETVLAN:
1401		bzero(&vlr, sizeof(vlr));
1402		VLAN_LOCK();
1403		if (TRUNK(ifv) != NULL) {
1404			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1405			    sizeof(vlr.vlr_parent));
1406			vlr.vlr_tag = ifv->ifv_tag;
1407		}
1408		VLAN_UNLOCK();
1409		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1410		break;
1411
1412	case SIOCSIFFLAGS:
1413		/*
1414		 * We should propagate selected flags to the parent,
1415		 * e.g., promiscuous mode.
1416		 */
1417		if (TRUNK(ifv) != NULL)
1418			error = vlan_setflags(ifp, 1);
1419		break;
1420
1421	case SIOCADDMULTI:
1422	case SIOCDELMULTI:
1423		/*
1424		 * If we don't have a parent, just remember the membership for
1425		 * when we do.
1426		 */
1427		if (TRUNK(ifv) != NULL)
1428			error = vlan_setmulti(ifp);
1429		break;
1430
1431	default:
1432		error = ether_ioctl(ifp, cmd, data);
1433	}
1434
1435	return (error);
1436}
1437