if_vlan.c revision 156495
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/net/if_vlan.c 156495 2006-03-09 14:42:51Z ru $
30 */
31
32/*
33 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34 * Might be extended some day to also handle IEEE 802.1p priority
35 * tagging.  This is sort of sneaky in the implementation, since
36 * we need to pretend to be enough of an Ethernet implementation
37 * to make arp work.  The way we do this is by telling everyone
38 * that we are an Ethernet, and then catch the packets that
39 * ether_output() left on our output queue when it calls
40 * if_start(), rewrite them for use by the real outgoing interface,
41 * and ask it to send them.
42 */
43
44#include "opt_inet.h"
45#include "opt_vlan.h"
46
47#include <sys/param.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#include <sys/module.h>
53#include <sys/rwlock.h>
54#include <sys/queue.h>
55#include <sys/socket.h>
56#include <sys/sockio.h>
57#include <sys/sysctl.h>
58#include <sys/systm.h>
59
60#include <net/bpf.h>
61#include <net/ethernet.h>
62#include <net/if.h>
63#include <net/if_clone.h>
64#include <net/if_arp.h>
65#include <net/if_dl.h>
66#include <net/if_types.h>
67#include <net/if_vlan_var.h>
68
69#ifdef INET
70#include <netinet/in.h>
71#include <netinet/if_ether.h>
72#endif
73
74#define VLANNAME	"vlan"
75#define	VLAN_DEF_HWIDTH	4
76#define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
77
78LIST_HEAD(ifvlanhead, ifvlan);
79
80struct ifvlantrunk {
81	struct	ifnet   *parent;	/* parent interface of this trunk */
82	struct	rwlock	rw;
83#ifdef VLAN_ARRAY
84	struct	ifvlan	*vlans[EVL_VLID_MASK+1]; /* static table */
85#else
86	struct	ifvlanhead *hash;	/* dynamic hash-list table */
87	uint16_t	hmask;
88	uint16_t	hwidth;
89#endif
90	int		refcnt;
91	LIST_ENTRY(ifvlantrunk) trunk_entry;
92};
93static LIST_HEAD(, ifvlantrunk) trunk_list;
94
95struct vlan_mc_entry {
96	struct ether_addr		mc_addr;
97	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
98};
99
100struct	ifvlan {
101	struct	ifvlantrunk *ifv_trunk;
102	struct	ifnet *ifv_ifp;
103#define	TRUNK(ifv)	((ifv)->ifv_trunk)
104#define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
105	int	ifv_pflags;	/* special flags we have set on parent */
106	struct	ifv_linkmib {
107		int	ifvm_parent;
108		int	ifvm_encaplen;	/* encapsulation length */
109		int	ifvm_mtufudge;	/* MTU fudged by this much */
110		int	ifvm_mintu;	/* min transmission unit */
111		uint16_t ifvm_proto;	/* encapsulation ethertype */
112		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
113	}	ifv_mib;
114	SLIST_HEAD(__vlan_mchead, vlan_mc_entry) vlan_mc_listhead;
115	LIST_ENTRY(ifvlan) ifv_list;
116};
117#define	ifv_tag	ifv_mib.ifvm_tag
118#define	ifv_encaplen	ifv_mib.ifvm_encaplen
119#define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
120#define	ifv_mintu	ifv_mib.ifvm_mintu
121
122/* Special flags we should propagate to parent. */
123static struct {
124	int flag;
125	int (*func)(struct ifnet *, int);
126} vlan_pflags[] = {
127	{IFF_PROMISC, ifpromisc},
128	{IFF_ALLMULTI, if_allmulti},
129	{0, NULL}
130};
131
132SYSCTL_DECL(_net_link);
133SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
134SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
135
136static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
137
138/*
139 * We have a global mutex, that is used to serialize configuration
140 * changes and isn't used in normal packet delivery.
141 *
142 * We also have a per-trunk rwlock, that is locked shared on packet
143 * processing and exclusive when configuration is changed.
144 *
145 * The VLAN_ARRAY substitutes the dynamic hash with a static array
146 * with 4096 entries. In theory this can give a boots in processing,
147 * however on practice it does not. Probably this is because array
148 * is too big to fit into CPU cache.
149 */
150static struct mtx ifv_mtx;
151#define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
152#define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
153#define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
154#define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
155#define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
156#define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
157#define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
158#define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
159#define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
160#define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
161#define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
162#define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
163#define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
164
165#ifndef VLAN_ARRAY
166static	void vlan_inithash(struct ifvlantrunk *trunk);
167static	void vlan_freehash(struct ifvlantrunk *trunk);
168static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
169static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
170static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
171static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
172	uint16_t tag);
173#endif
174static	void trunk_destroy(struct ifvlantrunk *trunk);
175
176static	void vlan_start(struct ifnet *ifp);
177static	void vlan_ifinit(void *foo);
178static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
179static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
180static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
181    int (*func)(struct ifnet *, int));
182static	int vlan_setflags(struct ifnet *ifp, int status);
183static	int vlan_setmulti(struct ifnet *ifp);
184static	int vlan_unconfig(struct ifnet *ifp);
185static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
186static	void vlan_link_state(struct ifnet *ifp, int link);
187static	void vlan_capabilities(struct ifvlan *ifv);
188static	void vlan_trunk_capabilities(struct ifnet *ifp);
189
190static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
191    const char *, int *);
192static	int vlan_clone_match(struct if_clone *, const char *);
193static	int vlan_clone_create(struct if_clone *, char *, size_t);
194static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
195
196static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
197    IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
198
199#ifndef VLAN_ARRAY
200#define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
201static void
202vlan_inithash(struct ifvlantrunk *trunk)
203{
204	int i, n;
205
206	/*
207	 * The trunk must not be locked here since we call malloc(M_WAITOK).
208	 * It is OK in case this function is called before the trunk struct
209	 * gets hooked up and becomes visible from other threads.
210	 */
211
212	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
213	    ("%s: hash already initialized", __func__));
214
215	trunk->hwidth = VLAN_DEF_HWIDTH;
216	n = 1 << trunk->hwidth;
217	trunk->hmask = n - 1;
218	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
219	for (i = 0; i < n; i++)
220		LIST_INIT(&trunk->hash[i]);
221}
222
223static void
224vlan_freehash(struct ifvlantrunk *trunk)
225{
226#ifdef INVARIANTS
227	int i;
228
229	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
230	for (i = 0; i < (1 << trunk->hwidth); i++)
231		KASSERT(LIST_EMPTY(&trunk->hash[i]),
232		    ("%s: hash table not empty", __func__));
233#endif
234	free(trunk->hash, M_VLAN);
235	trunk->hash = NULL;
236	trunk->hwidth = trunk->hmask = 0;
237}
238
239static int
240vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
241{
242	int i, b;
243	struct ifvlan *ifv2;
244
245	TRUNK_LOCK_ASSERT(trunk);
246	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
247
248	b = 1 << trunk->hwidth;
249	i = HASH(ifv->ifv_tag, trunk->hmask);
250	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
251		if (ifv->ifv_tag == ifv2->ifv_tag)
252			return (EEXIST);
253
254	/*
255	 * Grow the hash when the number of vlans exceeds half of the number of
256	 * hash buckets squared. This will make the average linked-list length
257	 * buckets/2.
258	 */
259	if (trunk->refcnt > (b * b) / 2) {
260		vlan_growhash(trunk, 1);
261		i = HASH(ifv->ifv_tag, trunk->hmask);
262	}
263	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
264	trunk->refcnt++;
265
266	return (0);
267}
268
269static int
270vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
271{
272	int i, b;
273	struct ifvlan *ifv2;
274
275	TRUNK_LOCK_ASSERT(trunk);
276	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
277
278	b = 1 << trunk->hwidth;
279	i = HASH(ifv->ifv_tag, trunk->hmask);
280	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
281		if (ifv2 == ifv) {
282			trunk->refcnt--;
283			LIST_REMOVE(ifv2, ifv_list);
284			if (trunk->refcnt < (b * b) / 2)
285				vlan_growhash(trunk, -1);
286			return (0);
287		}
288
289	panic("%s: vlan not found\n", __func__);
290	return (ENOENT); /*NOTREACHED*/
291}
292
293/*
294 * Grow the hash larger or smaller if memory permits.
295 */
296static void
297vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
298{
299
300	struct ifvlan *ifv;
301	struct ifvlanhead *hash2;
302	int hwidth2, i, j, n, n2;
303
304	TRUNK_LOCK_ASSERT(trunk);
305	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
306
307	if (howmuch == 0) {
308		/* Harmless yet obvious coding error */
309		printf("%s: howmuch is 0\n", __func__);
310		return;
311	}
312
313	hwidth2 = trunk->hwidth + howmuch;
314	n = 1 << trunk->hwidth;
315	n2 = 1 << hwidth2;
316	/* Do not shrink the table below the default */
317	if (hwidth2 < VLAN_DEF_HWIDTH)
318		return;
319
320	/* M_NOWAIT because we're called with trunk mutex held */
321	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
322	if (hash2 == NULL) {
323		printf("%s: out of memory -- hash size not changed\n",
324		    __func__);
325		return;		/* We can live with the old hash table */
326	}
327	for (j = 0; j < n2; j++)
328		LIST_INIT(&hash2[j]);
329	for (i = 0; i < n; i++)
330		while (!LIST_EMPTY(&trunk->hash[i])) {
331			ifv = LIST_FIRST(&trunk->hash[i]);
332			LIST_REMOVE(ifv, ifv_list);
333			j = HASH(ifv->ifv_tag, n2 - 1);
334			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
335		}
336	free(trunk->hash, M_VLAN);
337	trunk->hash = hash2;
338	trunk->hwidth = hwidth2;
339	trunk->hmask = n2 - 1;
340}
341
342static __inline struct ifvlan *
343vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
344{
345	struct ifvlan *ifv;
346
347	TRUNK_LOCK_RASSERT(trunk);
348
349	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
350		if (ifv->ifv_tag == tag)
351			return (ifv);
352	return (NULL);
353}
354
355#if 0
356/* Debugging code to view the hashtables. */
357static void
358vlan_dumphash(struct ifvlantrunk *trunk)
359{
360	int i;
361	struct ifvlan *ifv;
362
363	for (i = 0; i < (1 << trunk->hwidth); i++) {
364		printf("%d: ", i);
365		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
366			printf("%s ", ifv->ifv_ifp->if_xname);
367		printf("\n");
368	}
369}
370#endif /* 0 */
371#endif /* !VLAN_ARRAY */
372
373static void
374trunk_destroy(struct ifvlantrunk *trunk)
375{
376	VLAN_LOCK_ASSERT();
377
378	TRUNK_LOCK(trunk);
379#ifndef VLAN_ARRAY
380	vlan_freehash(trunk);
381#endif
382	trunk->parent->if_vlantrunk = NULL;
383	LIST_REMOVE(trunk, trunk_entry);
384	TRUNK_UNLOCK(trunk);
385	TRUNK_LOCK_DESTROY(trunk);
386	free(trunk, M_VLAN);
387}
388
389/*
390 * Program our multicast filter. What we're actually doing is
391 * programming the multicast filter of the parent. This has the
392 * side effect of causing the parent interface to receive multicast
393 * traffic that it doesn't really want, which ends up being discarded
394 * later by the upper protocol layers. Unfortunately, there's no way
395 * to avoid this: there really is only one physical interface.
396 *
397 * XXX: There is a possible race here if more than one thread is
398 *      modifying the multicast state of the vlan interface at the same time.
399 */
400static int
401vlan_setmulti(struct ifnet *ifp)
402{
403	struct ifnet		*ifp_p;
404	struct ifmultiaddr	*ifma, *rifma = NULL;
405	struct ifvlan		*sc;
406	struct vlan_mc_entry	*mc = NULL;
407	struct sockaddr_dl	sdl;
408	int			error;
409
410	/*VLAN_LOCK_ASSERT();*/
411
412	/* Find the parent. */
413	sc = ifp->if_softc;
414	ifp_p = PARENT(sc);
415
416	bzero((char *)&sdl, sizeof(sdl));
417	sdl.sdl_len = sizeof(sdl);
418	sdl.sdl_family = AF_LINK;
419	sdl.sdl_index = ifp_p->if_index;
420	sdl.sdl_type = IFT_ETHER;
421	sdl.sdl_alen = ETHER_ADDR_LEN;
422
423	/* First, remove any existing filter entries. */
424	while (SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
425		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
426		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
427		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
428		if (error)
429			return (error);
430		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
431		free(mc, M_VLAN);
432	}
433
434	/* Now program new ones. */
435	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
436		if (ifma->ifma_addr->sa_family != AF_LINK)
437			continue;
438		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
439		if (mc == NULL)
440			return (ENOMEM);
441		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
442		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
443		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
444		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
445		    LLADDR(&sdl), ETHER_ADDR_LEN);
446		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
447		if (error)
448			return (error);
449	}
450
451	return (0);
452}
453
454/*
455 * VLAN support can be loaded as a module.  The only place in the
456 * system that's intimately aware of this is ether_input.  We hook
457 * into this code through vlan_input_p which is defined there and
458 * set here.  Noone else in the system should be aware of this so
459 * we use an explicit reference here.
460 */
461extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
462
463/* For if_link_state_change() eyes only... */
464extern	void (*vlan_link_state_p)(struct ifnet *, int);
465
466static int
467vlan_modevent(module_t mod, int type, void *data)
468{
469
470	switch (type) {
471	case MOD_LOAD:
472		LIST_INIT(&trunk_list);
473		VLAN_LOCK_INIT();
474		vlan_input_p = vlan_input;
475		vlan_link_state_p = vlan_link_state;
476		vlan_trunk_cap_p = vlan_trunk_capabilities;
477		if_clone_attach(&vlan_cloner);
478		break;
479	case MOD_UNLOAD:
480	    {
481		struct ifvlantrunk *trunk, *trunk1;
482
483		if_clone_detach(&vlan_cloner);
484		vlan_input_p = NULL;
485		vlan_link_state_p = NULL;
486		vlan_trunk_cap_p = NULL;
487		VLAN_LOCK();
488		LIST_FOREACH_SAFE(trunk, &trunk_list, trunk_entry, trunk1)
489			trunk_destroy(trunk);
490		VLAN_UNLOCK();
491		VLAN_LOCK_DESTROY();
492		break;
493	    }
494	default:
495		return (EOPNOTSUPP);
496	}
497	return (0);
498}
499
500static moduledata_t vlan_mod = {
501	"if_vlan",
502	vlan_modevent,
503	0
504};
505
506DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
507MODULE_VERSION(if_vlan, 3);
508MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
509
510static struct ifnet *
511vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
512{
513	const char *cp;
514	struct ifnet *ifp;
515	int t = 0;
516
517	/* Check for <etherif>.<vlan> style interface names. */
518	IFNET_RLOCK();
519	TAILQ_FOREACH(ifp, &ifnet, if_link) {
520		if (ifp->if_type != IFT_ETHER)
521			continue;
522		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
523			continue;
524		cp = name + strlen(ifp->if_xname);
525		if (*cp != '.')
526			continue;
527		for(; *cp != '\0'; cp++) {
528			if (*cp < '0' || *cp > '9')
529				continue;
530			t = (t * 10) + (*cp - '0');
531		}
532		if (tag != NULL)
533			*tag = t;
534		break;
535	}
536	IFNET_RUNLOCK();
537
538	return (ifp);
539}
540
541static int
542vlan_clone_match(struct if_clone *ifc, const char *name)
543{
544	const char *cp;
545
546	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
547		return (1);
548
549	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
550		return (0);
551	for (cp = name + 4; *cp != '\0'; cp++) {
552		if (*cp < '0' || *cp > '9')
553			return (0);
554	}
555
556	return (1);
557}
558
559static int
560vlan_clone_create(struct if_clone *ifc, char *name, size_t len)
561{
562	char *dp;
563	int wildcard;
564	int unit;
565	int error;
566	int tag;
567	int ethertag;
568	struct ifvlan *ifv;
569	struct ifnet *ifp;
570	struct ifnet *p;
571	u_char eaddr[6] = {0,0,0,0,0,0};
572
573	if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
574		ethertag = 1;
575		unit = -1;
576		wildcard = 0;
577
578		/*
579		 * Don't let the caller set up a VLAN tag with
580		 * anything except VLID bits.
581		 */
582		if (tag & ~EVL_VLID_MASK)
583			return (EINVAL);
584	} else {
585		ethertag = 0;
586
587		error = ifc_name2unit(name, &unit);
588		if (error != 0)
589			return (error);
590
591		wildcard = (unit < 0);
592	}
593
594	error = ifc_alloc_unit(ifc, &unit);
595	if (error != 0)
596		return (error);
597
598	/* In the wildcard case, we need to update the name. */
599	if (wildcard) {
600		for (dp = name; *dp != '\0'; dp++);
601		if (snprintf(dp, len - (dp-name), "%d", unit) >
602		    len - (dp-name) - 1) {
603			panic("%s: interface name too long", __func__);
604		}
605	}
606
607	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
608	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
609	if (ifp == NULL) {
610		ifc_free_unit(ifc, unit);
611		free(ifv, M_VLAN);
612		return (ENOSPC);
613	}
614	SLIST_INIT(&ifv->vlan_mc_listhead);
615
616	ifp->if_softc = ifv;
617	/*
618	 * Set the name manually rather than using if_initname because
619	 * we don't conform to the default naming convention for interfaces.
620	 */
621	strlcpy(ifp->if_xname, name, IFNAMSIZ);
622	ifp->if_dname = ifc->ifc_name;
623	ifp->if_dunit = unit;
624	/* NB: flags are not set here */
625	ifp->if_linkmib = &ifv->ifv_mib;
626	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
627	/* NB: mtu is not set here */
628
629	ifp->if_init = vlan_ifinit;
630	ifp->if_start = vlan_start;
631	ifp->if_ioctl = vlan_ioctl;
632	ifp->if_snd.ifq_maxlen = ifqmaxlen;
633	ifp->if_flags = VLAN_IFFLAGS;
634	ether_ifattach(ifp, eaddr);
635	/* Now undo some of the damage... */
636	ifp->if_baudrate = 0;
637	ifp->if_type = IFT_L2VLAN;
638	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
639
640	if (ethertag) {
641		error = vlan_config(ifv, p, tag);
642		if (error != 0) {
643			/*
644			 * Since we've partialy failed, we need to back
645			 * out all the way, otherwise userland could get
646			 * confused.  Thus, we destroy the interface.
647			 */
648			vlan_unconfig(ifp);
649			ether_ifdetach(ifp);
650			if_free_type(ifp, IFT_ETHER);
651			free(ifv, M_VLAN);
652
653			return (error);
654		}
655		ifp->if_drv_flags |= IFF_DRV_RUNNING;
656
657		/* Update flags on the parent, if necessary. */
658		vlan_setflags(ifp, 1);
659	}
660
661	return (0);
662}
663
664static int
665vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
666{
667	int unit;
668	struct ifvlan *ifv = ifp->if_softc;
669
670	unit = ifp->if_dunit;
671
672	vlan_unconfig(ifp);
673
674	ether_ifdetach(ifp);
675	if_free_type(ifp, IFT_ETHER);
676
677	free(ifv, M_VLAN);
678
679	ifc_free_unit(ifc, unit);
680
681	return (0);
682}
683
684/*
685 * The ifp->if_init entry point for vlan(4) is a no-op.
686 */
687static void
688vlan_ifinit(void *foo)
689{
690
691}
692
693/*
694 * The if_start method for vlan(4) interface. It doesn't
695 * raises the IFF_DRV_OACTIVE flag, since it is called
696 * only from IFQ_HANDOFF() macro in ether_output_frame().
697 * If the interface queue is full, and vlan_start() is
698 * not called, the queue would never get emptied and
699 * interface would stall forever.
700 */
701static void
702vlan_start(struct ifnet *ifp)
703{
704	struct ifvlan *ifv;
705	struct ifnet *p;
706	struct mbuf *m;
707	int error;
708
709	ifv = ifp->if_softc;
710	p = PARENT(ifv);
711
712	for (;;) {
713		IF_DEQUEUE(&ifp->if_snd, m);
714		if (m == 0)
715			break;
716		BPF_MTAP(ifp, m);
717
718		/*
719		 * Do not run parent's if_start() if the parent is not up,
720		 * or parent's driver will cause a system crash.
721		 */
722		if (!((p->if_flags & IFF_UP) &&
723		    (p->if_drv_flags & IFF_DRV_RUNNING))) {
724			m_freem(m);
725			ifp->if_collisions++;
726			continue;
727		}
728
729		/*
730		 * If underlying interface can do VLAN tag insertion itself,
731		 * just pass the packet along. However, we need some way to
732		 * tell the interface where the packet came from so that it
733		 * knows how to find the VLAN tag to use, so we attach a
734		 * packet tag that holds it.
735		 */
736		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
737			struct m_tag *mtag = (struct m_tag *)
738			    uma_zalloc(zone_mtag_vlan, M_NOWAIT);
739			if (mtag == NULL) {
740				ifp->if_oerrors++;
741				m_freem(m);
742				continue;
743			}
744			VLAN_TAG_VALUE(mtag) = ifv->ifv_tag;
745			m_tag_prepend(m, mtag);
746			m->m_flags |= M_VLANTAG;
747		} else {
748			struct ether_vlan_header *evl;
749
750			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
751			if (m == NULL) {
752				if_printf(ifp,
753				    "unable to prepend VLAN header\n");
754				ifp->if_oerrors++;
755				continue;
756			}
757			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
758
759			if (m->m_len < sizeof(*evl)) {
760				m = m_pullup(m, sizeof(*evl));
761				if (m == NULL) {
762					if_printf(ifp,
763					    "cannot pullup VLAN header\n");
764					ifp->if_oerrors++;
765					continue;
766				}
767			}
768
769			/*
770			 * Transform the Ethernet header into an Ethernet header
771			 * with 802.1Q encapsulation.
772			 */
773			bcopy(mtod(m, char *) + ifv->ifv_encaplen,
774			      mtod(m, char *), ETHER_HDR_LEN);
775			evl = mtod(m, struct ether_vlan_header *);
776			evl->evl_proto = evl->evl_encap_proto;
777			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
778			evl->evl_tag = htons(ifv->ifv_tag);
779#ifdef DEBUG
780			printf("%s: %*D\n", __func__, (int)sizeof(*evl),
781			    (unsigned char *)evl, ":");
782#endif
783		}
784
785		/*
786		 * Send it, precisely as ether_output() would have.
787		 * We are already running at splimp.
788		 */
789		IFQ_HANDOFF(p, m, error);
790		if (!error)
791			ifp->if_opackets++;
792		else
793			ifp->if_oerrors++;
794	}
795}
796
797static void
798vlan_input(struct ifnet *ifp, struct mbuf *m)
799{
800	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
801	struct ifvlan *ifv;
802	struct m_tag *mtag;
803	uint16_t tag;
804
805	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
806
807	if (m->m_flags & M_VLANTAG) {
808		/*
809		 * Packet is tagged, but m contains a normal
810		 * Ethernet frame; the tag is stored out-of-band.
811		 */
812		mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
813		KASSERT(mtag != NULL,
814			("%s: M_VLANTAG without m_tag", __func__));
815		tag = EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag));
816		m_tag_delete(m, mtag);
817		m->m_flags &= ~M_VLANTAG;
818	} else {
819		struct ether_vlan_header *evl;
820
821		/*
822		 * Packet is tagged in-band as specified by 802.1q.
823		 */
824		mtag = NULL;
825		switch (ifp->if_type) {
826		case IFT_ETHER:
827			if (m->m_len < sizeof(*evl) &&
828			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
829				if_printf(ifp, "cannot pullup VLAN header\n");
830				return;
831			}
832			evl = mtod(m, struct ether_vlan_header *);
833			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
834				("%s: bad encapsulation protocol (%u)",
835				 __func__, ntohs(evl->evl_encap_proto)));
836
837			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
838
839			/*
840			 * Restore the original ethertype.  We'll remove
841			 * the encapsulation after we've found the vlan
842			 * interface corresponding to the tag.
843			 */
844			evl->evl_encap_proto = evl->evl_proto;
845			break;
846		default:
847			tag = (uint16_t) -1;
848#ifdef INVARIANTS
849			panic("%s: unsupported if_type (%u)",
850			      __func__, ifp->if_type);
851#endif
852			break;
853		}
854	}
855
856	/*
857	 * In VLAN_ARRAY case we proceed completely lockless.
858	 */
859#ifdef VLAN_ARRAY
860	ifv = trunk->vlans[tag];
861	if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
862		m_freem(m);
863		ifp->if_noproto++;
864		return;
865	}
866#else
867	TRUNK_RLOCK(trunk);
868	ifv = vlan_gethash(trunk, tag);
869	if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
870		TRUNK_RUNLOCK(trunk);
871		m_freem(m);
872		ifp->if_noproto++;
873		return;
874	}
875	TRUNK_RUNLOCK(trunk);
876#endif
877
878	if (mtag == NULL) {
879		/*
880		 * Packet had an in-line encapsulation header;
881		 * remove it.  The original header has already
882		 * been fixed up above.
883		 */
884		bcopy(mtod(m, caddr_t),
885		      mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
886		      ETHER_HDR_LEN);
887		m_adj(m, ETHER_VLAN_ENCAP_LEN);
888	}
889
890	m->m_pkthdr.rcvif = ifv->ifv_ifp;
891	ifv->ifv_ifp->if_ipackets++;
892
893	/* Pass it back through the parent's input routine. */
894	(*ifp->if_input)(ifv->ifv_ifp, m);
895}
896
897static int
898vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
899{
900	struct ifvlantrunk *trunk;
901	struct ifnet *ifp;
902	int error = 0;
903
904	/* VID numbers 0x0 and 0xFFF are reserved */
905	if (tag == 0 || tag == 0xFFF)
906		return (EINVAL);
907	if (p->if_type != IFT_ETHER)
908		return (EPROTONOSUPPORT);
909	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
910		return (EPROTONOSUPPORT);
911	if (ifv->ifv_trunk)
912		return (EBUSY);
913
914	if (p->if_vlantrunk == NULL) {
915		trunk = malloc(sizeof(struct ifvlantrunk),
916		    M_VLAN, M_WAITOK | M_ZERO);
917#ifndef VLAN_ARRAY
918		vlan_inithash(trunk);
919#endif
920		VLAN_LOCK();
921		if (p->if_vlantrunk != NULL) {
922			/* A race that that is very unlikely to be hit. */
923#ifndef VLAN_ARRAY
924			vlan_freehash(trunk);
925#endif
926			free(trunk, M_VLAN);
927			goto exists;
928		}
929		TRUNK_LOCK_INIT(trunk);
930		LIST_INSERT_HEAD(&trunk_list, trunk, trunk_entry);
931		TRUNK_LOCK(trunk);
932		p->if_vlantrunk = trunk;
933		trunk->parent = p;
934	} else {
935		VLAN_LOCK();
936exists:
937		trunk = p->if_vlantrunk;
938		TRUNK_LOCK(trunk);
939	}
940
941	ifv->ifv_tag = tag;
942#ifdef VLAN_ARRAY
943	if (trunk->vlans[tag] != NULL)
944		error = EEXIST;
945#else
946	error = vlan_inshash(trunk, ifv);
947#endif
948	if (error)
949		goto done;
950
951	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
952	ifv->ifv_mintu = ETHERMIN;
953	ifv->ifv_pflags = 0;
954
955	/*
956	 * If the parent supports the VLAN_MTU capability,
957	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
958	 * use it.
959	 */
960	if (p->if_capenable & IFCAP_VLAN_MTU) {
961		/*
962		 * No need to fudge the MTU since the parent can
963		 * handle extended frames.
964		 */
965		ifv->ifv_mtufudge = 0;
966	} else {
967		/*
968		 * Fudge the MTU by the encapsulation size.  This
969		 * makes us incompatible with strictly compliant
970		 * 802.1Q implementations, but allows us to use
971		 * the feature with other NetBSD implementations,
972		 * which might still be useful.
973		 */
974		ifv->ifv_mtufudge = ifv->ifv_encaplen;
975	}
976
977	ifv->ifv_trunk = trunk;
978	ifp = ifv->ifv_ifp;
979	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
980	ifp->if_baudrate = p->if_baudrate;
981	/*
982	 * Copy only a selected subset of flags from the parent.
983	 * Other flags are none of our business.
984	 */
985#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
986	ifp->if_flags &= ~VLAN_COPY_FLAGS;
987	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
988#undef VLAN_COPY_FLAGS
989
990	ifp->if_link_state = p->if_link_state;
991
992	vlan_capabilities(ifv);
993
994	/*
995	 * Set up our ``Ethernet address'' to reflect the underlying
996	 * physical interface's.
997	 */
998	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
999
1000	/*
1001	 * Configure multicast addresses that may already be
1002	 * joined on the vlan device.
1003	 */
1004	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1005
1006#ifdef VLAN_ARRAY
1007	atomic_store_rel_ptr((uintptr_t *)&trunk->vlans[tag], (uintptr_t)ifv);
1008	trunk->refcnt++;
1009#endif
1010done:
1011	TRUNK_UNLOCK(trunk);
1012	VLAN_UNLOCK();
1013
1014	return (error);
1015}
1016
1017static int
1018vlan_unconfig(struct ifnet *ifp)
1019{
1020	struct ifvlantrunk *trunk;
1021	struct vlan_mc_entry *mc;
1022	struct ifvlan *ifv;
1023	int error;
1024
1025	VLAN_LOCK();
1026
1027	ifv = ifp->if_softc;
1028	trunk = ifv->ifv_trunk;
1029
1030	if (trunk) {
1031		struct sockaddr_dl sdl;
1032		struct ifnet *p = trunk->parent;
1033
1034		TRUNK_LOCK(trunk);
1035#ifdef VLAN_ARRAY
1036		atomic_store_rel_ptr((uintptr_t *)&trunk->vlans[ifv->ifv_tag],
1037		    (uintptr_t)NULL);
1038		trunk->refcnt--;
1039#endif
1040
1041		/*
1042		 * Since the interface is being unconfigured, we need to
1043		 * empty the list of multicast groups that we may have joined
1044		 * while we were alive from the parent's list.
1045		 */
1046		bzero((char *)&sdl, sizeof(sdl));
1047		sdl.sdl_len = sizeof(sdl);
1048		sdl.sdl_family = AF_LINK;
1049		sdl.sdl_index = p->if_index;
1050		sdl.sdl_type = IFT_ETHER;
1051		sdl.sdl_alen = ETHER_ADDR_LEN;
1052
1053		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
1054			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
1055			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1056			    ETHER_ADDR_LEN);
1057			error = if_delmulti(p, (struct sockaddr *)&sdl);
1058			if (error)
1059				return (error);
1060			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1061			free(mc, M_VLAN);
1062		}
1063
1064		vlan_setflags(ifp, 0); /* clear special flags on parent */
1065#ifndef VLAN_ARRAY
1066		vlan_remhash(trunk, ifv);
1067#endif
1068		ifv->ifv_trunk = NULL;
1069
1070		/*
1071		 * Check if we were the last.
1072		 */
1073		if (trunk->refcnt == 0) {
1074			atomic_store_rel_ptr((uintptr_t *)
1075			    &trunk->parent->if_vlantrunk,
1076			    (uintptr_t)NULL);
1077			/*
1078			 * XXXGL: If some ithread has already entered
1079			 * vlan_input() and is now blocked on the trunk
1080			 * lock, then it should preempt us right after
1081			 * unlock and finish its work. Then we will acquire
1082			 * lock again in trunk_destroy().
1083			 * XXX: not true in case of VLAN_ARRAY
1084			 */
1085			TRUNK_UNLOCK(trunk);
1086			trunk_destroy(trunk);
1087		} else
1088			TRUNK_UNLOCK(trunk);
1089	}
1090
1091	/* Disconnect from parent. */
1092	if (ifv->ifv_pflags)
1093		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1094	ifv->ifv_ifp->if_mtu = ETHERMTU;		/* XXX why not 0? */
1095	ifv->ifv_ifp->if_link_state = LINK_STATE_UNKNOWN;
1096
1097	/* Clear our MAC address. */
1098	bzero(IF_LLADDR(ifv->ifv_ifp), ETHER_ADDR_LEN);
1099
1100	VLAN_UNLOCK();
1101
1102	return (0);
1103}
1104
1105/* Handle a reference counted flag that should be set on the parent as well */
1106static int
1107vlan_setflag(struct ifnet *ifp, int flag, int status,
1108	     int (*func)(struct ifnet *, int))
1109{
1110	struct ifvlan *ifv;
1111	int error;
1112
1113	/* XXX VLAN_LOCK_ASSERT(); */
1114
1115	ifv = ifp->if_softc;
1116	status = status ? (ifp->if_flags & flag) : 0;
1117	/* Now "status" contains the flag value or 0 */
1118
1119	/*
1120	 * See if recorded parent's status is different from what
1121	 * we want it to be.  If it is, flip it.  We record parent's
1122	 * status in ifv_pflags so that we won't clear parent's flag
1123	 * we haven't set.  In fact, we don't clear or set parent's
1124	 * flags directly, but get or release references to them.
1125	 * That's why we can be sure that recorded flags still are
1126	 * in accord with actual parent's flags.
1127	 */
1128	if (status != (ifv->ifv_pflags & flag)) {
1129		error = (*func)(PARENT(ifv), status);
1130		if (error)
1131			return (error);
1132		ifv->ifv_pflags &= ~flag;
1133		ifv->ifv_pflags |= status;
1134	}
1135	return (0);
1136}
1137
1138/*
1139 * Handle IFF_* flags that require certain changes on the parent:
1140 * if "status" is true, update parent's flags respective to our if_flags;
1141 * if "status" is false, forcedly clear the flags set on parent.
1142 */
1143static int
1144vlan_setflags(struct ifnet *ifp, int status)
1145{
1146	int error, i;
1147
1148	for (i = 0; vlan_pflags[i].flag; i++) {
1149		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1150				     status, vlan_pflags[i].func);
1151		if (error)
1152			return (error);
1153	}
1154	return (0);
1155}
1156
1157/* Inform all vlans that their parent has changed link state */
1158static void
1159vlan_link_state(struct ifnet *ifp, int link)
1160{
1161	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1162	struct ifvlan *ifv;
1163	int i;
1164
1165	TRUNK_LOCK(trunk);
1166#ifdef VLAN_ARRAY
1167	for (i = 0; i < EVL_VLID_MASK+1; i++)
1168		if (trunk->vlans[i] != NULL) {
1169			ifv = trunk->vlans[i];
1170#else
1171	for (i = 0; i < (1 << trunk->hwidth); i++) {
1172		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1173#endif
1174			if_link_state_change(ifv->ifv_ifp,
1175			    trunk->parent->if_link_state);
1176	}
1177	TRUNK_UNLOCK(trunk);
1178}
1179
1180static void
1181vlan_capabilities(struct ifvlan *ifv)
1182{
1183	struct ifnet *p = PARENT(ifv);
1184	struct ifnet *ifp = ifv->ifv_ifp;
1185
1186	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1187
1188	/*
1189	 * If the parent interface can do checksum offloading
1190	 * on VLANs, then propagate its hardware-assisted
1191	 * checksumming flags. Also assert that checksum
1192	 * offloading requires hardware VLAN tagging.
1193	 */
1194	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1195		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1196
1197	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1198	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1199		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1200		ifp->if_hwassist = p->if_hwassist;
1201	} else {
1202		ifp->if_capenable = 0;
1203		ifp->if_hwassist = 0;
1204	}
1205}
1206
1207static void
1208vlan_trunk_capabilities(struct ifnet *ifp)
1209{
1210	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1211	struct ifvlan *ifv;
1212	int i;
1213
1214	TRUNK_LOCK(trunk);
1215#ifdef VLAN_ARRAY
1216	for (i = 0; i < EVL_VLID_MASK+1; i++)
1217		if (trunk->vlans[i] != NULL) {
1218			ifv = trunk->vlans[i];
1219#else
1220	for (i = 0; i < (1 << trunk->hwidth); i++) {
1221		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1222#endif
1223			vlan_capabilities(ifv);
1224	}
1225	TRUNK_UNLOCK(trunk);
1226}
1227
1228static int
1229vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1230{
1231	struct ifaddr *ifa;
1232	struct ifnet *p;
1233	struct ifreq *ifr;
1234	struct ifvlan *ifv;
1235	struct vlanreq vlr;
1236	int error = 0;
1237
1238	ifr = (struct ifreq *)data;
1239	ifa = (struct ifaddr *)data;
1240	ifv = ifp->if_softc;
1241
1242	switch (cmd) {
1243	case SIOCSIFADDR:
1244		ifp->if_flags |= IFF_UP;
1245
1246		switch (ifa->ifa_addr->sa_family) {
1247#ifdef INET
1248		case AF_INET:
1249			arp_ifinit(ifv->ifv_ifp, ifa);
1250			break;
1251#endif
1252		default:
1253			break;
1254		}
1255		break;
1256
1257	case SIOCGIFADDR:
1258		{
1259			struct sockaddr *sa;
1260
1261			sa = (struct sockaddr *) &ifr->ifr_data;
1262			bcopy(IF_LLADDR(ifp), (caddr_t)sa->sa_data,
1263			    ETHER_ADDR_LEN);
1264		}
1265		break;
1266
1267	case SIOCGIFMEDIA:
1268		VLAN_LOCK();
1269		if (TRUNK(ifv) != NULL) {
1270			error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
1271					SIOCGIFMEDIA, data);
1272			VLAN_UNLOCK();
1273			/* Limit the result to the parent's current config. */
1274			if (error == 0) {
1275				struct ifmediareq *ifmr;
1276
1277				ifmr = (struct ifmediareq *)data;
1278				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1279					ifmr->ifm_count = 1;
1280					error = copyout(&ifmr->ifm_current,
1281						ifmr->ifm_ulist,
1282						sizeof(int));
1283				}
1284			}
1285		} else {
1286			VLAN_UNLOCK();
1287			error = EINVAL;
1288		}
1289		break;
1290
1291	case SIOCSIFMEDIA:
1292		error = EINVAL;
1293		break;
1294
1295	case SIOCSIFMTU:
1296		/*
1297		 * Set the interface MTU.
1298		 */
1299		VLAN_LOCK();
1300		if (TRUNK(ifv) != NULL) {
1301			if (ifr->ifr_mtu >
1302			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1303			    ifr->ifr_mtu <
1304			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1305				error = EINVAL;
1306			else
1307				ifp->if_mtu = ifr->ifr_mtu;
1308		} else
1309			error = EINVAL;
1310		VLAN_UNLOCK();
1311		break;
1312
1313	case SIOCSETVLAN:
1314		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1315		if (error)
1316			break;
1317		if (vlr.vlr_parent[0] == '\0') {
1318			vlan_unconfig(ifp);
1319			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1320			break;
1321		}
1322		p = ifunit(vlr.vlr_parent);
1323		if (p == 0) {
1324			error = ENOENT;
1325			break;
1326		}
1327		/*
1328		 * Don't let the caller set up a VLAN tag with
1329		 * anything except VLID bits.
1330		 */
1331		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1332			error = EINVAL;
1333			break;
1334		}
1335		error = vlan_config(ifv, p, vlr.vlr_tag);
1336		if (error)
1337			break;
1338		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1339
1340		/* Update flags on the parent, if necessary. */
1341		vlan_setflags(ifp, 1);
1342		break;
1343
1344	case SIOCGETVLAN:
1345		bzero(&vlr, sizeof(vlr));
1346		VLAN_LOCK();
1347		if (TRUNK(ifv) != NULL) {
1348			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1349			    sizeof(vlr.vlr_parent));
1350			vlr.vlr_tag = ifv->ifv_tag;
1351		}
1352		VLAN_UNLOCK();
1353		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1354		break;
1355
1356	case SIOCSIFFLAGS:
1357		/*
1358		 * We should propagate selected flags to the parent,
1359		 * e.g., promiscuous mode.
1360		 */
1361		if (TRUNK(ifv) != NULL)
1362			error = vlan_setflags(ifp, 1);
1363		break;
1364
1365	case SIOCADDMULTI:
1366	case SIOCDELMULTI:
1367		/*
1368		 * If we don't have a parent, just remember the membership for
1369		 * when we do.
1370		 */
1371		if (TRUNK(ifv) != NULL)
1372			error = vlan_setmulti(ifp);
1373		break;
1374
1375	default:
1376		error = EINVAL;
1377	}
1378
1379	return (error);
1380}
1381