if_vlan.c revision 155114
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/net/if_vlan.c 155114 2006-01-31 16:41:05Z yar $
30 */
31
32/*
33 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34 * Might be extended some day to also handle IEEE 802.1p priority
35 * tagging.  This is sort of sneaky in the implementation, since
36 * we need to pretend to be enough of an Ethernet implementation
37 * to make arp work.  The way we do this is by telling everyone
38 * that we are an Ethernet, and then catch the packets that
39 * ether_output() left on our output queue when it calls
40 * if_start(), rewrite them for use by the real outgoing interface,
41 * and ask it to send them.
42 */
43
44#include "opt_inet.h"
45#include "opt_vlan.h"
46
47#include <sys/param.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#include <sys/module.h>
53#include <sys/rwlock.h>
54#include <sys/queue.h>
55#include <sys/socket.h>
56#include <sys/sockio.h>
57#include <sys/sysctl.h>
58#include <sys/systm.h>
59
60#include <net/bpf.h>
61#include <net/ethernet.h>
62#include <net/if.h>
63#include <net/if_clone.h>
64#include <net/if_arp.h>
65#include <net/if_dl.h>
66#include <net/if_types.h>
67#include <net/if_vlan_var.h>
68
69#ifdef INET
70#include <netinet/in.h>
71#include <netinet/if_ether.h>
72#endif
73
74#define VLANNAME	"vlan"
75#define	VLAN_DEF_HWIDTH	4
76#define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
77
78LIST_HEAD(ifvlanhead, ifvlan);
79
80struct ifvlantrunk {
81	struct	ifnet   *parent;	/* parent interface of this trunk */
82	struct	rwlock	rw;
83#ifdef VLAN_ARRAY
84	struct	ifvlan	*vlans[EVL_VLID_MASK+1]; /* static table */
85#else
86	struct	ifvlanhead *hash;	/* dynamic hash-list table */
87	uint16_t	hmask;
88	uint16_t	hwidth;
89#endif
90	int		refcnt;
91	LIST_ENTRY(ifvlantrunk) trunk_entry;
92};
93static LIST_HEAD(, ifvlantrunk) trunk_list;
94
95struct vlan_mc_entry {
96	struct ether_addr		mc_addr;
97	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
98};
99
100struct	ifvlan {
101	struct	ifvlantrunk *ifv_trunk;
102	struct	ifnet *ifv_ifp;
103#define	TRUNK(ifv)	((ifv)->ifv_trunk)
104#define	PARENT(ifv)	((ifv)->ifv_trunk->parent)
105	int	ifv_pflags;	/* special flags we have set on parent */
106	struct	ifv_linkmib {
107		int	ifvm_parent;
108		int	ifvm_encaplen;	/* encapsulation length */
109		int	ifvm_mtufudge;	/* MTU fudged by this much */
110		int	ifvm_mintu;	/* min transmission unit */
111		uint16_t ifvm_proto;	/* encapsulation ethertype */
112		uint16_t ifvm_tag;	/* tag to apply on packets leaving if */
113	}	ifv_mib;
114	SLIST_HEAD(__vlan_mchead, vlan_mc_entry) vlan_mc_listhead;
115	LIST_ENTRY(ifvlan) ifv_list;
116};
117#define	ifv_tag	ifv_mib.ifvm_tag
118#define	ifv_encaplen	ifv_mib.ifvm_encaplen
119#define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
120#define	ifv_mintu	ifv_mib.ifvm_mintu
121
122/* Special flags we should propagate to parent. */
123static struct {
124	int flag;
125	int (*func)(struct ifnet *, int);
126} vlan_pflags[] = {
127	{IFF_PROMISC, ifpromisc},
128	{IFF_ALLMULTI, if_allmulti},
129	{0, NULL}
130};
131
132SYSCTL_DECL(_net_link);
133SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
134SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
135
136static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
137
138/*
139 * We have a global mutex, that is used to serialize configuration
140 * changes and isn't used in normal packet delivery.
141 *
142 * We also have a per-trunk rwlock, that is locked shared on packet
143 * processing and exclusive when configuration is changed.
144 *
145 * The VLAN_ARRAY substitutes the dynamic hash with a static array
146 * with 4096 entries. In theory this can give a boots in processing,
147 * however on practice it does not. Probably this is because array
148 * is too big to fit into CPU cache.
149 */
150static struct mtx ifv_mtx;
151#define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, "vlan_global", NULL, MTX_DEF)
152#define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
153#define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
154#define	VLAN_LOCK()		mtx_lock(&ifv_mtx)
155#define	VLAN_UNLOCK()		mtx_unlock(&ifv_mtx)
156#define	TRUNK_LOCK_INIT(trunk)	rw_init(&(trunk)->rw, VLANNAME)
157#define	TRUNK_LOCK_DESTROY(trunk) rw_destroy(&(trunk)->rw)
158#define	TRUNK_LOCK(trunk)	rw_wlock(&(trunk)->rw)
159#define	TRUNK_UNLOCK(trunk)	rw_wunlock(&(trunk)->rw)
160#define	TRUNK_LOCK_ASSERT(trunk) rw_assert(&(trunk)->rw, RA_WLOCKED)
161#define	TRUNK_RLOCK(trunk)	rw_rlock(&(trunk)->rw)
162#define	TRUNK_RUNLOCK(trunk)	rw_runlock(&(trunk)->rw)
163#define	TRUNK_LOCK_RASSERT(trunk) rw_assert(&(trunk)->rw, RA_RLOCKED)
164
165#ifndef VLAN_ARRAY
166static	void vlan_inithash(struct ifvlantrunk *trunk);
167static	void vlan_freehash(struct ifvlantrunk *trunk);
168static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
169static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
170static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
171static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
172	uint16_t tag);
173#endif
174static	void trunk_destroy(struct ifvlantrunk *trunk);
175
176static	void vlan_start(struct ifnet *ifp);
177static	void vlan_ifinit(void *foo);
178static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
179static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
180static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
181    int (*func)(struct ifnet *, int));
182static	int vlan_setflags(struct ifnet *ifp, int status);
183static	int vlan_setmulti(struct ifnet *ifp);
184static	int vlan_unconfig(struct ifnet *ifp);
185static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag);
186static	void vlan_link_state(struct ifnet *ifp, int link);
187static	void vlan_capabilities(struct ifvlan *ifv);
188static	void vlan_trunk_capabilities(struct ifnet *ifp);
189
190static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
191    const char *, int *);
192static	int vlan_clone_match(struct if_clone *, const char *);
193static	int vlan_clone_create(struct if_clone *, char *, size_t);
194static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
195
196static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
197    IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
198
199#ifndef VLAN_ARRAY
200#define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
201static void
202vlan_inithash(struct ifvlantrunk *trunk)
203{
204	int i, n;
205
206	/*
207	 * The trunk must not be locked here since we call malloc(M_WAITOK).
208	 * It is OK in case this function is called before the trunk struct
209	 * gets hooked up and becomes visible from other threads.
210	 */
211
212	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
213	    ("%s: hash already initialized", __func__));
214
215	trunk->hwidth = VLAN_DEF_HWIDTH;
216	n = 1 << trunk->hwidth;
217	trunk->hmask = n - 1;
218	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
219	for (i = 0; i < n; i++)
220		LIST_INIT(&trunk->hash[i]);
221}
222
223static void
224vlan_freehash(struct ifvlantrunk *trunk)
225{
226#ifdef INVARIANTS
227	int i;
228
229	TRUNK_LOCK_ASSERT(trunk);	/* XXX just unhook trunk first? */
230	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
231	for (i = 0; i < (1 << trunk->hwidth); i++)
232		KASSERT(LIST_EMPTY(&trunk->hash[i]),
233		    ("%s: hash table not empty", __func__));
234#endif
235	free(trunk->hash, M_VLAN);
236	trunk->hash = NULL;
237	trunk->hwidth = trunk->hmask = 0;
238}
239
240static int
241vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
242{
243	int i, b;
244	struct ifvlan *ifv2;
245
246	TRUNK_LOCK_ASSERT(trunk);
247	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
248
249	b = 1 << trunk->hwidth;
250	i = HASH(ifv->ifv_tag, trunk->hmask);
251	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
252		if (ifv->ifv_tag == ifv2->ifv_tag)
253			return (EEXIST);
254
255	/*
256	 * Grow the hash when the number of vlans exceeds half of the number of
257	 * hash buckets squared. This will make the average linked-list length
258	 * buckets/2.
259	 */
260	if (trunk->refcnt > (b * b) / 2) {
261		vlan_growhash(trunk, 1);
262		i = HASH(ifv->ifv_tag, trunk->hmask);
263	}
264	LIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
265	trunk->refcnt++;
266
267	return (0);
268}
269
270static int
271vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
272{
273	int i, b;
274	struct ifvlan *ifv2;
275
276	TRUNK_LOCK_ASSERT(trunk);
277	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
278
279	b = 1 << trunk->hwidth;
280	i = HASH(ifv->ifv_tag, trunk->hmask);
281	LIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
282		if (ifv2 == ifv) {
283			trunk->refcnt--;
284			LIST_REMOVE(ifv2, ifv_list);
285			if (trunk->refcnt < (b * b) / 2)
286				vlan_growhash(trunk, -1);
287			return (0);
288		}
289
290	panic("%s: vlan not found\n", __func__);
291	return (ENOENT); /*NOTREACHED*/
292}
293
294/*
295 * Grow the hash larger or smaller if memory permits.
296 */
297static void
298vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
299{
300
301	struct ifvlan *ifv;
302	struct ifvlanhead *hash2;
303	int hwidth2, i, j, n, n2;
304
305	TRUNK_LOCK_ASSERT(trunk);
306	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
307
308	if (howmuch == 0) {
309		/* Harmless yet obvious coding error */
310		printf("%s: howmuch is 0\n", __func__);
311		return;
312	}
313
314	hwidth2 = trunk->hwidth + howmuch;
315	n = 1 << trunk->hwidth;
316	n2 = 1 << hwidth2;
317	/* Do not shrink the table below the default */
318	if (hwidth2 < VLAN_DEF_HWIDTH)
319		return;
320
321	/* M_NOWAIT because we're called with trunk mutex held */
322	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_NOWAIT);
323	if (hash2 == NULL) {
324		printf("%s: out of memory -- hash size not changed\n",
325		    __func__);
326		return;		/* We can live with the old hash table */
327	}
328	for (j = 0; j < n2; j++)
329		LIST_INIT(&hash2[j]);
330	for (i = 0; i < n; i++)
331		while (!LIST_EMPTY(&trunk->hash[i])) {
332			ifv = LIST_FIRST(&trunk->hash[i]);
333			LIST_REMOVE(ifv, ifv_list);
334			j = HASH(ifv->ifv_tag, n2 - 1);
335			LIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
336		}
337	free(trunk->hash, M_VLAN);
338	trunk->hash = hash2;
339	trunk->hwidth = hwidth2;
340	trunk->hmask = n2 - 1;
341}
342
343static __inline struct ifvlan *
344vlan_gethash(struct ifvlantrunk *trunk, uint16_t tag)
345{
346	struct ifvlan *ifv;
347
348	TRUNK_LOCK_RASSERT(trunk);
349
350	LIST_FOREACH(ifv, &trunk->hash[HASH(tag, trunk->hmask)], ifv_list)
351		if (ifv->ifv_tag == tag)
352			return (ifv);
353	return (NULL);
354}
355
356#if 0
357/* Debugging code to view the hashtables. */
358static void
359vlan_dumphash(struct ifvlantrunk *trunk)
360{
361	int i;
362	struct ifvlan *ifv;
363
364	for (i = 0; i < (1 << trunk->hwidth); i++) {
365		printf("%d: ", i);
366		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
367			printf("%s ", ifv->ifv_ifp->if_xname);
368		printf("\n");
369	}
370}
371#endif /* 0 */
372#endif /* !VLAN_ARRAY */
373
374static void
375trunk_destroy(struct ifvlantrunk *trunk)
376{
377	VLAN_LOCK_ASSERT();
378
379	TRUNK_LOCK(trunk);
380#ifndef VLAN_ARRAY
381	vlan_freehash(trunk);
382#endif
383	TRUNK_LOCK_DESTROY(trunk);
384	LIST_REMOVE(trunk, trunk_entry);
385	trunk->parent->if_vlantrunk = NULL;
386	free(trunk, M_VLAN);
387}
388
389/*
390 * Program our multicast filter. What we're actually doing is
391 * programming the multicast filter of the parent. This has the
392 * side effect of causing the parent interface to receive multicast
393 * traffic that it doesn't really want, which ends up being discarded
394 * later by the upper protocol layers. Unfortunately, there's no way
395 * to avoid this: there really is only one physical interface.
396 *
397 * XXX: There is a possible race here if more than one thread is
398 *      modifying the multicast state of the vlan interface at the same time.
399 */
400static int
401vlan_setmulti(struct ifnet *ifp)
402{
403	struct ifnet		*ifp_p;
404	struct ifmultiaddr	*ifma, *rifma = NULL;
405	struct ifvlan		*sc;
406	struct vlan_mc_entry	*mc = NULL;
407	struct sockaddr_dl	sdl;
408	int			error;
409
410	/*VLAN_LOCK_ASSERT();*/
411
412	/* Find the parent. */
413	sc = ifp->if_softc;
414	ifp_p = PARENT(sc);
415
416	bzero((char *)&sdl, sizeof(sdl));
417	sdl.sdl_len = sizeof(sdl);
418	sdl.sdl_family = AF_LINK;
419	sdl.sdl_index = ifp_p->if_index;
420	sdl.sdl_type = IFT_ETHER;
421	sdl.sdl_alen = ETHER_ADDR_LEN;
422
423	/* First, remove any existing filter entries. */
424	while (SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
425		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
426		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
427		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
428		if (error)
429			return (error);
430		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
431		free(mc, M_VLAN);
432	}
433
434	/* Now program new ones. */
435	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
436		if (ifma->ifma_addr->sa_family != AF_LINK)
437			continue;
438		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
439		if (mc == NULL)
440			return (ENOMEM);
441		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
442		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
443		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
444		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
445		    LLADDR(&sdl), ETHER_ADDR_LEN);
446		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
447		if (error)
448			return (error);
449	}
450
451	return (0);
452}
453
454/*
455 * VLAN support can be loaded as a module.  The only place in the
456 * system that's intimately aware of this is ether_input.  We hook
457 * into this code through vlan_input_p which is defined there and
458 * set here.  Noone else in the system should be aware of this so
459 * we use an explicit reference here.
460 */
461extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
462
463/* For if_link_state_change() eyes only... */
464extern	void (*vlan_link_state_p)(struct ifnet *, int);
465
466static int
467vlan_modevent(module_t mod, int type, void *data)
468{
469
470	switch (type) {
471	case MOD_LOAD:
472		LIST_INIT(&trunk_list);
473		VLAN_LOCK_INIT();
474		vlan_input_p = vlan_input;
475		vlan_link_state_p = vlan_link_state;
476		vlan_trunk_cap_p = vlan_trunk_capabilities;
477		if_clone_attach(&vlan_cloner);
478		break;
479	case MOD_UNLOAD:
480	    {
481		struct ifvlantrunk *trunk, *trunk1;
482
483		if_clone_detach(&vlan_cloner);
484		vlan_input_p = NULL;
485		vlan_link_state_p = NULL;
486		vlan_trunk_cap_p = NULL;
487		VLAN_LOCK();
488		LIST_FOREACH_SAFE(trunk, &trunk_list, trunk_entry, trunk1)
489			trunk_destroy(trunk);
490		VLAN_UNLOCK();
491		VLAN_LOCK_DESTROY();
492		break;
493	    }
494	default:
495		return (EOPNOTSUPP);
496	}
497	return (0);
498}
499
500static moduledata_t vlan_mod = {
501	"if_vlan",
502	vlan_modevent,
503	0
504};
505
506DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
507MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
508
509static struct ifnet *
510vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
511{
512	const char *cp;
513	struct ifnet *ifp;
514	int t = 0;
515
516	/* Check for <etherif>.<vlan> style interface names. */
517	IFNET_RLOCK();
518	TAILQ_FOREACH(ifp, &ifnet, if_link) {
519		if (ifp->if_type != IFT_ETHER)
520			continue;
521		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
522			continue;
523		cp = name + strlen(ifp->if_xname);
524		if (*cp != '.')
525			continue;
526		for(; *cp != '\0'; cp++) {
527			if (*cp < '0' || *cp > '9')
528				continue;
529			t = (t * 10) + (*cp - '0');
530		}
531		if (tag != NULL)
532			*tag = t;
533		break;
534	}
535	IFNET_RUNLOCK();
536
537	return (ifp);
538}
539
540static int
541vlan_clone_match(struct if_clone *ifc, const char *name)
542{
543	const char *cp;
544
545	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
546		return (1);
547
548	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
549		return (0);
550	for (cp = name + 4; *cp != '\0'; cp++) {
551		if (*cp < '0' || *cp > '9')
552			return (0);
553	}
554
555	return (1);
556}
557
558static int
559vlan_clone_create(struct if_clone *ifc, char *name, size_t len)
560{
561	char *dp;
562	int wildcard;
563	int unit;
564	int error;
565	int tag;
566	int ethertag;
567	struct ifvlan *ifv;
568	struct ifnet *ifp;
569	struct ifnet *p;
570	u_char eaddr[6] = {0,0,0,0,0,0};
571
572	if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
573		ethertag = 1;
574		unit = -1;
575		wildcard = 0;
576
577		/*
578		 * Don't let the caller set up a VLAN tag with
579		 * anything except VLID bits.
580		 */
581		if (tag & ~EVL_VLID_MASK)
582			return (EINVAL);
583	} else {
584		ethertag = 0;
585
586		error = ifc_name2unit(name, &unit);
587		if (error != 0)
588			return (error);
589
590		wildcard = (unit < 0);
591	}
592
593	error = ifc_alloc_unit(ifc, &unit);
594	if (error != 0)
595		return (error);
596
597	/* In the wildcard case, we need to update the name. */
598	if (wildcard) {
599		for (dp = name; *dp != '\0'; dp++);
600		if (snprintf(dp, len - (dp-name), "%d", unit) >
601		    len - (dp-name) - 1) {
602			panic("%s: interface name too long", __func__);
603		}
604	}
605
606	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
607	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
608	if (ifp == NULL) {
609		ifc_free_unit(ifc, unit);
610		free(ifv, M_VLAN);
611		return (ENOSPC);
612	}
613	SLIST_INIT(&ifv->vlan_mc_listhead);
614
615	ifp->if_softc = ifv;
616	/*
617	 * Set the name manually rather than using if_initname because
618	 * we don't conform to the default naming convention for interfaces.
619	 */
620	strlcpy(ifp->if_xname, name, IFNAMSIZ);
621	ifp->if_dname = ifc->ifc_name;
622	ifp->if_dunit = unit;
623	/* NB: flags are not set here */
624	ifp->if_linkmib = &ifv->ifv_mib;
625	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
626	/* NB: mtu is not set here */
627
628	ifp->if_init = vlan_ifinit;
629	ifp->if_start = vlan_start;
630	ifp->if_ioctl = vlan_ioctl;
631	ifp->if_snd.ifq_maxlen = ifqmaxlen;
632	ifp->if_flags = VLAN_IFFLAGS;
633	ether_ifattach(ifp, eaddr);
634	/* Now undo some of the damage... */
635	ifp->if_baudrate = 0;
636	ifp->if_type = IFT_L2VLAN;
637	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
638
639	if (ethertag) {
640		error = vlan_config(ifv, p, tag);
641		if (error != 0) {
642			/*
643			 * Since we've partialy failed, we need to back
644			 * out all the way, otherwise userland could get
645			 * confused.  Thus, we destroy the interface.
646			 */
647			vlan_unconfig(ifp);
648			ether_ifdetach(ifp);
649			if_free_type(ifp, IFT_ETHER);
650			free(ifv, M_VLAN);
651
652			return (error);
653		}
654		ifp->if_drv_flags |= IFF_DRV_RUNNING;
655
656		/* Update flags on the parent, if necessary. */
657		vlan_setflags(ifp, 1);
658	}
659
660	return (0);
661}
662
663static int
664vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
665{
666	int unit;
667	struct ifvlan *ifv = ifp->if_softc;
668
669	unit = ifp->if_dunit;
670
671	vlan_unconfig(ifp);
672
673	ether_ifdetach(ifp);
674	if_free_type(ifp, IFT_ETHER);
675
676	free(ifv, M_VLAN);
677
678	ifc_free_unit(ifc, unit);
679
680	return (0);
681}
682
683/*
684 * The ifp->if_init entry point for vlan(4) is a no-op.
685 */
686static void
687vlan_ifinit(void *foo)
688{
689
690}
691
692/*
693 * The if_start method for vlan(4) interface. It doesn't
694 * raises the IFF_DRV_OACTIVE flag, since it is called
695 * only from IFQ_HANDOFF() macro in ether_output_frame().
696 * If the interface queue is full, and vlan_start() is
697 * not called, the queue would never get emptied and
698 * interface would stall forever.
699 */
700static void
701vlan_start(struct ifnet *ifp)
702{
703	struct ifvlan *ifv;
704	struct ifnet *p;
705	struct mbuf *m;
706	int error;
707
708	ifv = ifp->if_softc;
709	p = PARENT(ifv);
710
711	for (;;) {
712		IF_DEQUEUE(&ifp->if_snd, m);
713		if (m == 0)
714			break;
715		BPF_MTAP(ifp, m);
716
717		/*
718		 * Do not run parent's if_start() if the parent is not up,
719		 * or parent's driver will cause a system crash.
720		 */
721		if (!((p->if_flags & IFF_UP) &&
722		    (p->if_drv_flags & IFF_DRV_RUNNING))) {
723			m_freem(m);
724			ifp->if_collisions++;
725			continue;
726		}
727
728		/*
729		 * If underlying interface can do VLAN tag insertion itself,
730		 * just pass the packet along. However, we need some way to
731		 * tell the interface where the packet came from so that it
732		 * knows how to find the VLAN tag to use, so we attach a
733		 * packet tag that holds it.
734		 */
735		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
736			struct m_tag *mtag = (struct m_tag *)
737			    uma_zalloc(zone_mtag_vlan, M_NOWAIT);
738			if (mtag == NULL) {
739				ifp->if_oerrors++;
740				m_freem(m);
741				continue;
742			}
743			VLAN_TAG_VALUE(mtag) = ifv->ifv_tag;
744			m_tag_prepend(m, mtag);
745			m->m_flags |= M_VLANTAG;
746		} else {
747			struct ether_vlan_header *evl;
748
749			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
750			if (m == NULL) {
751				if_printf(ifp,
752				    "unable to prepend VLAN header\n");
753				ifp->if_oerrors++;
754				continue;
755			}
756			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
757
758			if (m->m_len < sizeof(*evl)) {
759				m = m_pullup(m, sizeof(*evl));
760				if (m == NULL) {
761					if_printf(ifp,
762					    "cannot pullup VLAN header\n");
763					ifp->if_oerrors++;
764					continue;
765				}
766			}
767
768			/*
769			 * Transform the Ethernet header into an Ethernet header
770			 * with 802.1Q encapsulation.
771			 */
772			bcopy(mtod(m, char *) + ifv->ifv_encaplen,
773			      mtod(m, char *), ETHER_HDR_LEN);
774			evl = mtod(m, struct ether_vlan_header *);
775			evl->evl_proto = evl->evl_encap_proto;
776			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
777			evl->evl_tag = htons(ifv->ifv_tag);
778#ifdef DEBUG
779			printf("%s: %*D\n", __func__, (int)sizeof(*evl),
780			    (unsigned char *)evl, ":");
781#endif
782		}
783
784		/*
785		 * Send it, precisely as ether_output() would have.
786		 * We are already running at splimp.
787		 */
788		IFQ_HANDOFF(p, m, error);
789		if (!error)
790			ifp->if_opackets++;
791		else
792			ifp->if_oerrors++;
793	}
794}
795
796static void
797vlan_input(struct ifnet *ifp, struct mbuf *m)
798{
799	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
800	struct ifvlan *ifv;
801	struct m_tag *mtag;
802	uint16_t tag;
803
804	KASSERT(trunk != NULL, ("%s: no trunk", __func__));
805
806	if (m->m_flags & M_VLANTAG) {
807		/*
808		 * Packet is tagged, but m contains a normal
809		 * Ethernet frame; the tag is stored out-of-band.
810		 */
811		mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
812		KASSERT(mtag != NULL,
813			("%s: M_VLANTAG without m_tag", __func__));
814		tag = EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag));
815		m_tag_delete(m, mtag);
816		m->m_flags &= ~M_VLANTAG;
817	} else {
818		struct ether_vlan_header *evl;
819
820		/*
821		 * Packet is tagged in-band as specified by 802.1q.
822		 */
823		mtag = NULL;
824		switch (ifp->if_type) {
825		case IFT_ETHER:
826			if (m->m_len < sizeof(*evl) &&
827			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
828				if_printf(ifp, "cannot pullup VLAN header\n");
829				return;
830			}
831			evl = mtod(m, struct ether_vlan_header *);
832			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
833				("%s: bad encapsulation protocol (%u)",
834				 __func__, ntohs(evl->evl_encap_proto)));
835
836			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
837
838			/*
839			 * Restore the original ethertype.  We'll remove
840			 * the encapsulation after we've found the vlan
841			 * interface corresponding to the tag.
842			 */
843			evl->evl_encap_proto = evl->evl_proto;
844			break;
845		default:
846			tag = (uint16_t) -1;
847#ifdef INVARIANTS
848			panic("%s: unsupported if_type (%u)",
849			      __func__, ifp->if_type);
850#endif
851			break;
852		}
853	}
854
855	/*
856	 * In VLAN_ARRAY case we proceed completely lockless.
857	 */
858#ifdef VLAN_ARRAY
859	ifv = trunk->vlans[tag];
860	if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
861		m_freem(m);
862		ifp->if_noproto++;
863		return;
864	}
865#else
866	TRUNK_RLOCK(trunk);
867	ifv = vlan_gethash(trunk, tag);
868	if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
869		TRUNK_RUNLOCK(trunk);
870		m_freem(m);
871		ifp->if_noproto++;
872		return;
873	}
874	TRUNK_RUNLOCK(trunk);
875#endif
876
877	if (mtag == NULL) {
878		/*
879		 * Packet had an in-line encapsulation header;
880		 * remove it.  The original header has already
881		 * been fixed up above.
882		 */
883		bcopy(mtod(m, caddr_t),
884		      mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
885		      ETHER_HDR_LEN);
886		m_adj(m, ETHER_VLAN_ENCAP_LEN);
887	}
888
889	m->m_pkthdr.rcvif = ifv->ifv_ifp;
890	ifv->ifv_ifp->if_ipackets++;
891
892	/* Pass it back through the parent's input routine. */
893	(*ifp->if_input)(ifv->ifv_ifp, m);
894}
895
896static int
897vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
898{
899	struct ifvlantrunk *trunk;
900	struct ifnet *ifp;
901	int error = 0;
902
903	/* VID numbers 0x0 and 0xFFF are reserved */
904	if (tag == 0 || tag == 0xFFF)
905		return (EINVAL);
906	if (p->if_type != IFT_ETHER)
907		return (EPROTONOSUPPORT);
908	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
909		return (EPROTONOSUPPORT);
910	if (ifv->ifv_trunk)
911		return (EBUSY);
912
913	if (p->if_vlantrunk == NULL) {
914		trunk = malloc(sizeof(struct ifvlantrunk),
915		    M_VLAN, M_WAITOK | M_ZERO);
916		VLAN_LOCK();
917		if (p->if_vlantrunk != NULL) {
918			/* A race that that is very unlikely to be hit. */
919			free(trunk, M_VLAN);
920			goto exists;
921		}
922#ifndef VLAN_ARRAY
923		vlan_inithash(trunk);
924#endif
925		TRUNK_LOCK_INIT(trunk);
926		LIST_INSERT_HEAD(&trunk_list, trunk, trunk_entry);
927		TRUNK_LOCK(trunk);
928		p->if_vlantrunk = trunk;
929		trunk->parent = p;
930	} else {
931		VLAN_LOCK();
932exists:
933		trunk = p->if_vlantrunk;
934		TRUNK_LOCK(trunk);
935	}
936
937	ifv->ifv_tag = tag;
938#ifdef VLAN_ARRAY
939	if (trunk->vlans[tag] != NULL)
940		error = EEXIST;
941#else
942	error = vlan_inshash(trunk, ifv);
943#endif
944	if (error)
945		goto done;
946
947	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
948	ifv->ifv_mintu = ETHERMIN;
949	ifv->ifv_pflags = 0;
950
951	/*
952	 * If the parent supports the VLAN_MTU capability,
953	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
954	 * use it.
955	 */
956	if (p->if_capenable & IFCAP_VLAN_MTU) {
957		/*
958		 * No need to fudge the MTU since the parent can
959		 * handle extended frames.
960		 */
961		ifv->ifv_mtufudge = 0;
962	} else {
963		/*
964		 * Fudge the MTU by the encapsulation size.  This
965		 * makes us incompatible with strictly compliant
966		 * 802.1Q implementations, but allows us to use
967		 * the feature with other NetBSD implementations,
968		 * which might still be useful.
969		 */
970		ifv->ifv_mtufudge = ifv->ifv_encaplen;
971	}
972
973	ifv->ifv_trunk = trunk;
974	ifp = ifv->ifv_ifp;
975	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
976	ifp->if_baudrate = p->if_baudrate;
977	/*
978	 * Copy only a selected subset of flags from the parent.
979	 * Other flags are none of our business.
980	 */
981#define VLAN_COPY_FLAGS (IFF_SIMPLEX)
982	ifp->if_flags &= ~VLAN_COPY_FLAGS;
983	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
984#undef VLAN_COPY_FLAGS
985
986	ifp->if_link_state = p->if_link_state;
987
988	vlan_capabilities(ifv);
989
990	/*
991	 * Set up our ``Ethernet address'' to reflect the underlying
992	 * physical interface's.
993	 */
994	bcopy(IF_LLADDR(p), IF_LLADDR(ifp), ETHER_ADDR_LEN);
995
996	/*
997	 * Configure multicast addresses that may already be
998	 * joined on the vlan device.
999	 */
1000	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
1001
1002#ifdef VLAN_ARRAY
1003	atomic_store_rel_ptr((uintptr_t *)&trunk->vlans[tag], (uintptr_t)ifv);
1004	trunk->refcnt++;
1005#endif
1006done:
1007	TRUNK_UNLOCK(trunk);
1008	VLAN_UNLOCK();
1009
1010	return (error);
1011}
1012
1013static int
1014vlan_unconfig(struct ifnet *ifp)
1015{
1016	struct ifvlantrunk *trunk;
1017	struct vlan_mc_entry *mc;
1018	struct ifvlan *ifv;
1019	int error;
1020
1021	VLAN_LOCK();
1022
1023	ifv = ifp->if_softc;
1024	trunk = ifv->ifv_trunk;
1025
1026	if (trunk) {
1027		struct sockaddr_dl sdl;
1028		struct ifnet *p = trunk->parent;
1029
1030		TRUNK_LOCK(trunk);
1031#ifdef VLAN_ARRAY
1032		atomic_store_rel_ptr((uintptr_t *)&trunk->vlans[ifv->ifv_tag],
1033		    (uintptr_t)NULL);
1034		trunk->refcnt--;
1035#endif
1036
1037		/*
1038		 * Since the interface is being unconfigured, we need to
1039		 * empty the list of multicast groups that we may have joined
1040		 * while we were alive from the parent's list.
1041		 */
1042		bzero((char *)&sdl, sizeof(sdl));
1043		sdl.sdl_len = sizeof(sdl);
1044		sdl.sdl_family = AF_LINK;
1045		sdl.sdl_index = p->if_index;
1046		sdl.sdl_type = IFT_ETHER;
1047		sdl.sdl_alen = ETHER_ADDR_LEN;
1048
1049		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
1050			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
1051			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
1052			    ETHER_ADDR_LEN);
1053			error = if_delmulti(p, (struct sockaddr *)&sdl);
1054			if (error)
1055				return (error);
1056			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1057			free(mc, M_VLAN);
1058		}
1059
1060		vlan_setflags(ifp, 0); /* clear special flags on parent */
1061#ifndef VLAN_ARRAY
1062		vlan_remhash(trunk, ifv);
1063#endif
1064		ifv->ifv_trunk = NULL;
1065
1066		/*
1067		 * Check if we were the last.
1068		 */
1069		if (trunk->refcnt == 0) {
1070			atomic_store_rel_ptr((uintptr_t *)
1071			    &trunk->parent->if_vlantrunk,
1072			    (uintptr_t)NULL);
1073			/*
1074			 * XXXGL: If some ithread has already entered
1075			 * vlan_input() and is now blocked on the trunk
1076			 * lock, then it should preempt us right after
1077			 * unlock and finish its work. Then we will acquire
1078			 * lock again in trunk_destroy().
1079			 * XXX: not true in case of VLAN_ARRAY
1080			 */
1081			TRUNK_UNLOCK(trunk);
1082			trunk_destroy(trunk);
1083		} else
1084			TRUNK_UNLOCK(trunk);
1085	}
1086
1087	/* Disconnect from parent. */
1088	if (ifv->ifv_pflags)
1089		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1090	ifv->ifv_ifp->if_mtu = ETHERMTU;		/* XXX why not 0? */
1091	ifv->ifv_ifp->if_link_state = LINK_STATE_UNKNOWN;
1092
1093	/* Clear our MAC address. */
1094	bzero(IF_LLADDR(ifv->ifv_ifp), ETHER_ADDR_LEN);
1095
1096	VLAN_UNLOCK();
1097
1098	return (0);
1099}
1100
1101/* Handle a reference counted flag that should be set on the parent as well */
1102static int
1103vlan_setflag(struct ifnet *ifp, int flag, int status,
1104	     int (*func)(struct ifnet *, int))
1105{
1106	struct ifvlan *ifv;
1107	int error;
1108
1109	/* XXX VLAN_LOCK_ASSERT(); */
1110
1111	ifv = ifp->if_softc;
1112	status = status ? (ifp->if_flags & flag) : 0;
1113	/* Now "status" contains the flag value or 0 */
1114
1115	/*
1116	 * See if recorded parent's status is different from what
1117	 * we want it to be.  If it is, flip it.  We record parent's
1118	 * status in ifv_pflags so that we won't clear parent's flag
1119	 * we haven't set.  In fact, we don't clear or set parent's
1120	 * flags directly, but get or release references to them.
1121	 * That's why we can be sure that recorded flags still are
1122	 * in accord with actual parent's flags.
1123	 */
1124	if (status != (ifv->ifv_pflags & flag)) {
1125		error = (*func)(PARENT(ifv), status);
1126		if (error)
1127			return (error);
1128		ifv->ifv_pflags &= ~flag;
1129		ifv->ifv_pflags |= status;
1130	}
1131	return (0);
1132}
1133
1134/*
1135 * Handle IFF_* flags that require certain changes on the parent:
1136 * if "status" is true, update parent's flags respective to our if_flags;
1137 * if "status" is false, forcedly clear the flags set on parent.
1138 */
1139static int
1140vlan_setflags(struct ifnet *ifp, int status)
1141{
1142	int error, i;
1143
1144	for (i = 0; vlan_pflags[i].flag; i++) {
1145		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1146				     status, vlan_pflags[i].func);
1147		if (error)
1148			return (error);
1149	}
1150	return (0);
1151}
1152
1153/* Inform all vlans that their parent has changed link state */
1154static void
1155vlan_link_state(struct ifnet *ifp, int link)
1156{
1157	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1158	struct ifvlan *ifv;
1159	int i;
1160
1161	TRUNK_LOCK(trunk);
1162#ifdef VLAN_ARRAY
1163	for (i = 0; i < EVL_VLID_MASK+1; i++)
1164		if (trunk->vlans[i] != NULL) {
1165			ifv = trunk->vlans[i];
1166#else
1167	for (i = 0; i < (1 << trunk->hwidth); i++) {
1168		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1169#endif
1170			if_link_state_change(ifv->ifv_ifp,
1171			    trunk->parent->if_link_state);
1172	}
1173	TRUNK_UNLOCK(trunk);
1174}
1175
1176static void
1177vlan_capabilities(struct ifvlan *ifv)
1178{
1179	struct ifnet *p = PARENT(ifv);
1180	struct ifnet *ifp = ifv->ifv_ifp;
1181
1182	TRUNK_LOCK_ASSERT(TRUNK(ifv));
1183
1184	/*
1185	 * If the parent interface can do checksum offloading
1186	 * on VLANs, then propagate its hardware-assisted
1187	 * checksumming flags. Also assert that checksum
1188	 * offloading requires hardware VLAN tagging.
1189	 */
1190	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1191		ifp->if_capabilities = p->if_capabilities & IFCAP_HWCSUM;
1192
1193	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1194	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1195		ifp->if_capenable = p->if_capenable & IFCAP_HWCSUM;
1196		ifp->if_hwassist = p->if_hwassist;
1197	} else {
1198		ifp->if_capenable = 0;
1199		ifp->if_hwassist = 0;
1200	}
1201}
1202
1203static void
1204vlan_trunk_capabilities(struct ifnet *ifp)
1205{
1206	struct ifvlantrunk *trunk = ifp->if_vlantrunk;
1207	struct ifvlan *ifv;
1208	int i;
1209
1210	TRUNK_LOCK(trunk);
1211#ifdef VLAN_ARRAY
1212	for (i = 0; i < EVL_VLID_MASK+1; i++)
1213		if (trunk->vlans[i] != NULL) {
1214			ifv = trunk->vlans[i];
1215#else
1216	for (i = 0; i < (1 << trunk->hwidth); i++) {
1217		LIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
1218#endif
1219			vlan_capabilities(ifv);
1220	}
1221	TRUNK_UNLOCK(trunk);
1222}
1223
1224static int
1225vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1226{
1227	struct ifaddr *ifa;
1228	struct ifnet *p;
1229	struct ifreq *ifr;
1230	struct ifvlan *ifv;
1231	struct vlanreq vlr;
1232	int error = 0;
1233
1234	ifr = (struct ifreq *)data;
1235	ifa = (struct ifaddr *)data;
1236	ifv = ifp->if_softc;
1237
1238	switch (cmd) {
1239	case SIOCSIFADDR:
1240		ifp->if_flags |= IFF_UP;
1241
1242		switch (ifa->ifa_addr->sa_family) {
1243#ifdef INET
1244		case AF_INET:
1245			arp_ifinit(ifv->ifv_ifp, ifa);
1246			break;
1247#endif
1248		default:
1249			break;
1250		}
1251		break;
1252
1253	case SIOCGIFADDR:
1254		{
1255			struct sockaddr *sa;
1256
1257			sa = (struct sockaddr *) &ifr->ifr_data;
1258			bcopy(IF_LLADDR(ifp), (caddr_t)sa->sa_data,
1259			    ETHER_ADDR_LEN);
1260		}
1261		break;
1262
1263	case SIOCGIFMEDIA:
1264		VLAN_LOCK();
1265		if (TRUNK(ifv) != NULL) {
1266			error = (*PARENT(ifv)->if_ioctl)(PARENT(ifv),
1267					SIOCGIFMEDIA, data);
1268			VLAN_UNLOCK();
1269			/* Limit the result to the parent's current config. */
1270			if (error == 0) {
1271				struct ifmediareq *ifmr;
1272
1273				ifmr = (struct ifmediareq *)data;
1274				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1275					ifmr->ifm_count = 1;
1276					error = copyout(&ifmr->ifm_current,
1277						ifmr->ifm_ulist,
1278						sizeof(int));
1279				}
1280			}
1281		} else {
1282			VLAN_UNLOCK();
1283			error = EINVAL;
1284		}
1285		break;
1286
1287	case SIOCSIFMEDIA:
1288		error = EINVAL;
1289		break;
1290
1291	case SIOCSIFMTU:
1292		/*
1293		 * Set the interface MTU.
1294		 */
1295		VLAN_LOCK();
1296		if (TRUNK(ifv) != NULL) {
1297			if (ifr->ifr_mtu >
1298			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1299			    ifr->ifr_mtu <
1300			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1301				error = EINVAL;
1302			else
1303				ifp->if_mtu = ifr->ifr_mtu;
1304		} else
1305			error = EINVAL;
1306		VLAN_UNLOCK();
1307		break;
1308
1309	case SIOCSETVLAN:
1310		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
1311		if (error)
1312			break;
1313		if (vlr.vlr_parent[0] == '\0') {
1314			VLAN_LOCK();
1315			vlan_unconfig(ifp);
1316			if (ifp->if_flags & IFF_UP)
1317				if_down(ifp);
1318			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1319			VLAN_UNLOCK();
1320			break;
1321		}
1322		p = ifunit(vlr.vlr_parent);
1323		if (p == 0) {
1324			error = ENOENT;
1325			break;
1326		}
1327		/*
1328		 * Don't let the caller set up a VLAN tag with
1329		 * anything except VLID bits.
1330		 */
1331		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1332			error = EINVAL;
1333			break;
1334		}
1335		error = vlan_config(ifv, p, vlr.vlr_tag);
1336		if (error)
1337			break;
1338		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1339
1340		/* Update flags on the parent, if necessary. */
1341		vlan_setflags(ifp, 1);
1342		break;
1343
1344	case SIOCGETVLAN:
1345		bzero(&vlr, sizeof(vlr));
1346		VLAN_LOCK();
1347		if (TRUNK(ifv) != NULL) {
1348			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1349			    sizeof(vlr.vlr_parent));
1350			vlr.vlr_tag = ifv->ifv_tag;
1351		}
1352		VLAN_UNLOCK();
1353		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1354		break;
1355
1356	case SIOCSIFFLAGS:
1357		/*
1358		 * We should propagate selected flags to the parent,
1359		 * e.g., promiscuous mode.
1360		 */
1361		if (TRUNK(ifv) != NULL)
1362			error = vlan_setflags(ifp, 1);
1363		break;
1364
1365	case SIOCADDMULTI:
1366	case SIOCDELMULTI:
1367		/*
1368		 * If we don't have a parent, just remember the membership for
1369		 * when we do.
1370		 */
1371		if (TRUNK(ifv) != NULL)
1372			error = vlan_setmulti(ifp);
1373		break;
1374
1375	default:
1376		error = EINVAL;
1377	}
1378
1379	return (error);
1380}
1381