if_vlan.c revision 152209
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/net/if_vlan.c 152209 2005-11-08 20:08:34Z thompsa $
30 */
31
32/*
33 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34 * Might be extended some day to also handle IEEE 802.1p priority
35 * tagging.  This is sort of sneaky in the implementation, since
36 * we need to pretend to be enough of an Ethernet implementation
37 * to make arp work.  The way we do this is by telling everyone
38 * that we are an Ethernet, and then catch the packets that
39 * ether_output() left on our output queue when it calls
40 * if_start(), rewrite them for use by the real outgoing interface,
41 * and ask it to send them.
42 */
43
44#include "opt_inet.h"
45
46#include <sys/param.h>
47#include <sys/kernel.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/module.h>
51#include <sys/queue.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/sysctl.h>
55#include <sys/systm.h>
56
57#include <net/bpf.h>
58#include <net/ethernet.h>
59#include <net/if.h>
60#include <net/if_clone.h>
61#include <net/if_arp.h>
62#include <net/if_dl.h>
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef INET
67#include <netinet/in.h>
68#include <netinet/if_ether.h>
69#endif
70
71#define VLANNAME	"vlan"
72
73struct vlan_mc_entry {
74	struct ether_addr		mc_addr;
75	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
76};
77
78struct	ifvlan {
79	struct	ifnet *ifv_ifp;
80	struct	ifnet *ifv_p;	/* parent inteface of this vlan */
81	int	ifv_pflags;	/* special flags we have set on parent */
82	struct	ifv_linkmib {
83		int	ifvm_parent;
84		int	ifvm_encaplen;	/* encapsulation length */
85		int	ifvm_mtufudge;	/* MTU fudged by this much */
86		int	ifvm_mintu;	/* min transmission unit */
87		u_int16_t ifvm_proto; /* encapsulation ethertype */
88		u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
89	}	ifv_mib;
90	SLIST_HEAD(__vlan_mchead, vlan_mc_entry)	vlan_mc_listhead;
91	LIST_ENTRY(ifvlan) ifv_list;
92};
93#define	ifv_tag	ifv_mib.ifvm_tag
94#define	ifv_encaplen	ifv_mib.ifvm_encaplen
95#define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
96#define	ifv_mintu	ifv_mib.ifvm_mintu
97
98/* Special flags we should propagate to parent */
99static struct {
100	int flag;
101	int (*func)(struct ifnet *, int);
102} vlan_pflags[] = {
103	{IFF_PROMISC, ifpromisc},
104	{IFF_ALLMULTI, if_allmulti},
105	{0, NULL}
106};
107
108SYSCTL_DECL(_net_link);
109SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
110SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
111
112static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
113static LIST_HEAD(, ifvlan) ifv_list;
114
115/*
116 * Locking: one lock is used to guard both the ifv_list and modification
117 * to vlan data structures.  We are rather conservative here; probably
118 * more than necessary.
119 */
120static struct mtx ifv_mtx;
121#define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, VLANNAME, NULL, MTX_DEF)
122#define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
123#define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
124#define	VLAN_LOCK()	mtx_lock(&ifv_mtx)
125#define	VLAN_UNLOCK()	mtx_unlock(&ifv_mtx)
126
127static	void vlan_start(struct ifnet *ifp);
128static	void vlan_ifinit(void *foo);
129static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
130static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
131static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
132    int (*func)(struct ifnet *, int));
133static	int vlan_setflags(struct ifnet *ifp, int status);
134static	int vlan_setmulti(struct ifnet *ifp);
135static	int vlan_unconfig(struct ifnet *ifp);
136static	int vlan_config(struct ifvlan *ifv, struct ifnet *p);
137static	void vlan_link_state(struct ifnet *ifp, int link);
138
139static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
140    const char *, int *);
141static	int vlan_clone_match(struct if_clone *, const char *);
142static	int vlan_clone_create(struct if_clone *, char *, size_t);
143static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
144
145static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
146    IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
147
148/*
149 * Program our multicast filter. What we're actually doing is
150 * programming the multicast filter of the parent. This has the
151 * side effect of causing the parent interface to receive multicast
152 * traffic that it doesn't really want, which ends up being discarded
153 * later by the upper protocol layers. Unfortunately, there's no way
154 * to avoid this: there really is only one physical interface.
155 *
156 * XXX: There is a possible race here if more than one thread is
157 *      modifying the multicast state of the vlan interface at the same time.
158 */
159static int
160vlan_setmulti(struct ifnet *ifp)
161{
162	struct ifnet		*ifp_p;
163	struct ifmultiaddr	*ifma, *rifma = NULL;
164	struct ifvlan		*sc;
165	struct vlan_mc_entry	*mc = NULL;
166	struct sockaddr_dl	sdl;
167	int			error;
168
169	/*VLAN_LOCK_ASSERT();*/
170
171	/* Find the parent. */
172	sc = ifp->if_softc;
173	ifp_p = sc->ifv_p;
174
175	/*
176	 * If we don't have a parent, just remember the membership for
177	 * when we do.
178	 */
179	if (ifp_p == NULL)
180		return (0);
181
182	bzero((char *)&sdl, sizeof(sdl));
183	sdl.sdl_len = sizeof(sdl);
184	sdl.sdl_family = AF_LINK;
185	sdl.sdl_index = ifp_p->if_index;
186	sdl.sdl_type = IFT_ETHER;
187	sdl.sdl_alen = ETHER_ADDR_LEN;
188
189	/* First, remove any existing filter entries. */
190	while (SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
191		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
192		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
193		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
194		if (error)
195			return (error);
196		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
197		free(mc, M_VLAN);
198	}
199
200	/* Now program new ones. */
201	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
202		if (ifma->ifma_addr->sa_family != AF_LINK)
203			continue;
204		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
205		if (mc == NULL)
206			return (ENOMEM);
207		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
208		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
209		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
210		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
211		    LLADDR(&sdl), ETHER_ADDR_LEN);
212		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
213		if (error)
214			return (error);
215	}
216
217	return (0);
218}
219
220/*
221 * VLAN support can be loaded as a module.  The only place in the
222 * system that's intimately aware of this is ether_input.  We hook
223 * into this code through vlan_input_p which is defined there and
224 * set here.  Noone else in the system should be aware of this so
225 * we use an explicit reference here.
226 *
227 * NB: Noone should ever need to check if vlan_input_p is null or
228 *     not.  This is because interfaces have a count of the number
229 *     of active vlans (if_nvlans) and this should never be bumped
230 *     except by vlan_config--which is in this module so therefore
231 *     the module must be loaded and vlan_input_p must be non-NULL.
232 */
233extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
234
235/* For if_link_state_change() eyes only... */
236extern	void (*vlan_link_state_p)(struct ifnet *, int);
237
238static int
239vlan_modevent(module_t mod, int type, void *data)
240{
241
242	switch (type) {
243	case MOD_LOAD:
244		LIST_INIT(&ifv_list);
245		VLAN_LOCK_INIT();
246		vlan_input_p = vlan_input;
247		vlan_link_state_p = vlan_link_state;
248		if_clone_attach(&vlan_cloner);
249		break;
250	case MOD_UNLOAD:
251		if_clone_detach(&vlan_cloner);
252		vlan_input_p = NULL;
253		vlan_link_state_p = NULL;
254		VLAN_LOCK_DESTROY();
255		break;
256	default:
257		return (EOPNOTSUPP);
258	}
259	return (0);
260}
261
262static moduledata_t vlan_mod = {
263	"if_vlan",
264	vlan_modevent,
265	0
266};
267
268DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
269MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
270
271static struct ifnet *
272vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
273{
274	const char *cp;
275	struct ifnet *ifp;
276	int t = 0;
277
278	/* Check for <etherif>.<vlan> style interface names. */
279	IFNET_RLOCK();
280	TAILQ_FOREACH(ifp, &ifnet, if_link) {
281		if (ifp->if_type != IFT_ETHER)
282			continue;
283		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
284			continue;
285		cp = name + strlen(ifp->if_xname);
286		if (*cp != '.')
287			continue;
288		for(; *cp != '\0'; cp++) {
289			if (*cp < '0' || *cp > '9')
290				continue;
291			t = (t * 10) + (*cp - '0');
292		}
293		if (tag != NULL)
294			*tag = t;
295		break;
296	}
297	IFNET_RUNLOCK();
298
299	return (ifp);
300}
301
302static int
303vlan_clone_match(struct if_clone *ifc, const char *name)
304{
305	const char *cp;
306
307	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
308		return (1);
309
310	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
311		return (0);
312	for (cp = name + 4; *cp != '\0'; cp++) {
313		if (*cp < '0' || *cp > '9')
314			return (0);
315	}
316
317	return (1);
318}
319
320static int
321vlan_clone_create(struct if_clone *ifc, char *name, size_t len)
322{
323	char *dp;
324	int wildcard;
325	int unit;
326	int error;
327	int tag;
328	int ethertag;
329	struct ifvlan *ifv;
330	struct ifnet *ifp;
331	struct ifnet *p;
332	u_char eaddr[6] = {0,0,0,0,0,0};
333
334	if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
335		ethertag = 1;
336		unit = -1;
337		wildcard = 0;
338
339		/*
340		 * Don't let the caller set up a VLAN tag with
341		 * anything except VLID bits.
342		 */
343		if (tag & ~EVL_VLID_MASK)
344			return (EINVAL);
345	} else {
346		ethertag = 0;
347
348		error = ifc_name2unit(name, &unit);
349		if (error != 0)
350			return (error);
351
352		wildcard = (unit < 0);
353	}
354
355	error = ifc_alloc_unit(ifc, &unit);
356	if (error != 0)
357		return (error);
358
359	/* In the wildcard case, we need to update the name. */
360	if (wildcard) {
361		for (dp = name; *dp != '\0'; dp++);
362		if (snprintf(dp, len - (dp-name), "%d", unit) >
363		    len - (dp-name) - 1) {
364			panic("%s: interface name too long", __func__);
365		}
366	}
367
368	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
369	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
370	if (ifp == NULL) {
371		ifc_free_unit(ifc, unit);
372		free(ifv, M_VLAN);
373		return (ENOSPC);
374	}
375	SLIST_INIT(&ifv->vlan_mc_listhead);
376
377	ifp->if_softc = ifv;
378	/*
379	 * Set the name manually rather than using if_initname because
380	 * we don't conform to the default naming convention for interfaces.
381	 */
382	strlcpy(ifp->if_xname, name, IFNAMSIZ);
383	ifp->if_dname = ifc->ifc_name;
384	ifp->if_dunit = unit;
385	/* NB: flags are not set here */
386	ifp->if_linkmib = &ifv->ifv_mib;
387	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
388	/* NB: mtu is not set here */
389
390	ifp->if_init = vlan_ifinit;
391	ifp->if_start = vlan_start;
392	ifp->if_ioctl = vlan_ioctl;
393	ifp->if_snd.ifq_maxlen = ifqmaxlen;
394	ether_ifattach(ifp, eaddr);
395	/* Now undo some of the damage... */
396	ifp->if_baudrate = 0;
397	ifp->if_type = IFT_L2VLAN;
398	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
399
400	VLAN_LOCK();
401	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
402	VLAN_UNLOCK();
403
404	if (ethertag) {
405		VLAN_LOCK();
406		error = vlan_config(ifv, p);
407		if (error != 0) {
408			/*
409			 * Since we've partialy failed, we need to back
410			 * out all the way, otherwise userland could get
411			 * confused.  Thus, we destroy the interface.
412			 */
413			LIST_REMOVE(ifv, ifv_list);
414			vlan_unconfig(ifp);
415			VLAN_UNLOCK();
416			ether_ifdetach(ifp);
417			if_free_type(ifp, IFT_ETHER);
418			free(ifv, M_VLAN);
419
420			return (error);
421		}
422		ifv->ifv_tag = tag;
423		ifp->if_drv_flags |= IFF_DRV_RUNNING;
424		VLAN_UNLOCK();
425
426		/* Update flags on the parent, if necessary. */
427		vlan_setflags(ifp, 1);
428	}
429
430	return (0);
431}
432
433static int
434vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
435{
436	int unit;
437	struct ifvlan *ifv = ifp->if_softc;
438
439	unit = ifp->if_dunit;
440
441	VLAN_LOCK();
442	LIST_REMOVE(ifv, ifv_list);
443	vlan_unconfig(ifp);
444	VLAN_UNLOCK();
445
446	ether_ifdetach(ifp);
447	if_free_type(ifp, IFT_ETHER);
448
449	free(ifv, M_VLAN);
450
451	ifc_free_unit(ifc, unit);
452
453	return (0);
454}
455
456/*
457 * The ifp->if_init entry point for vlan(4) is a no-op.
458 */
459static void
460vlan_ifinit(void *foo)
461{
462
463}
464
465/*
466 * The if_start method for vlan(4) interface. It doesn't
467 * raises the IFF_DRV_OACTIVE flag, since it is called
468 * only from IFQ_HANDOFF() macro in ether_output_frame().
469 * If the interface queue is full, and vlan_start() is
470 * not called, the queue would never get emptied and
471 * interface would stall forever.
472 */
473static void
474vlan_start(struct ifnet *ifp)
475{
476	struct ifvlan *ifv;
477	struct ifnet *p;
478	struct ether_vlan_header *evl;
479	struct mbuf *m;
480	int error;
481
482	ifv = ifp->if_softc;
483	p = ifv->ifv_p;
484
485	for (;;) {
486		IF_DEQUEUE(&ifp->if_snd, m);
487		if (m == 0)
488			break;
489		BPF_MTAP(ifp, m);
490
491		/*
492		 * Do not run parent's if_start() if the parent is not up,
493		 * or parent's driver will cause a system crash.
494		 */
495		if (!((p->if_flags & IFF_UP) &&
496		    (p->if_drv_flags & IFF_DRV_RUNNING))) {
497			m_freem(m);
498			ifp->if_collisions++;
499			continue;
500		}
501
502		/*
503		 * If underlying interface can do VLAN tag insertion itself,
504		 * just pass the packet along. However, we need some way to
505		 * tell the interface where the packet came from so that it
506		 * knows how to find the VLAN tag to use, so we attach a
507		 * packet tag that holds it.
508		 */
509		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
510			struct m_tag *mtag = m_tag_alloc(MTAG_VLAN,
511							 MTAG_VLAN_TAG,
512							 sizeof(u_int),
513							 M_NOWAIT);
514			if (mtag == NULL) {
515				ifp->if_oerrors++;
516				m_freem(m);
517				continue;
518			}
519			VLAN_TAG_VALUE(mtag) = ifv->ifv_tag;
520			m_tag_prepend(m, mtag);
521			m->m_flags |= M_VLANTAG;
522		} else {
523			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
524			if (m == NULL) {
525				if_printf(ifp,
526				    "unable to prepend VLAN header\n");
527				ifp->if_oerrors++;
528				continue;
529			}
530			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
531
532			if (m->m_len < sizeof(*evl)) {
533				m = m_pullup(m, sizeof(*evl));
534				if (m == NULL) {
535					if_printf(ifp,
536					    "cannot pullup VLAN header\n");
537					ifp->if_oerrors++;
538					continue;
539				}
540			}
541
542			/*
543			 * Transform the Ethernet header into an Ethernet header
544			 * with 802.1Q encapsulation.
545			 */
546			bcopy(mtod(m, char *) + ifv->ifv_encaplen,
547			      mtod(m, char *), ETHER_HDR_LEN);
548			evl = mtod(m, struct ether_vlan_header *);
549			evl->evl_proto = evl->evl_encap_proto;
550			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
551			evl->evl_tag = htons(ifv->ifv_tag);
552#ifdef DEBUG
553			printf("%s: %*D\n", __func__, (int)sizeof(*evl),
554			    (unsigned char *)evl, ":");
555#endif
556		}
557
558		/*
559		 * Send it, precisely as ether_output() would have.
560		 * We are already running at splimp.
561		 */
562		IFQ_HANDOFF(p, m, error);
563		if (!error)
564			ifp->if_opackets++;
565		else
566			ifp->if_oerrors++;
567	}
568}
569
570static void
571vlan_input(struct ifnet *ifp, struct mbuf *m)
572{
573	struct ether_vlan_header *evl;
574	struct ifvlan *ifv;
575	struct m_tag *mtag;
576	u_int tag;
577
578	if (m->m_flags & M_VLANTAG) {
579		/*
580		 * Packet is tagged, but m contains a normal
581		 * Ethernet frame; the tag is stored out-of-band.
582		 */
583		mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
584		KASSERT(mtag != NULL,
585			("%s: M_VLANTAG without m_tag", __func__));
586		tag = EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag));
587		m_tag_delete(m, mtag);
588		m->m_flags &= ~M_VLANTAG;
589	} else {
590		/*
591		 * Packet is tagged in-band as specified by 802.1q.
592		 */
593		mtag = NULL;
594		switch (ifp->if_type) {
595		case IFT_ETHER:
596			if (m->m_len < sizeof(*evl) &&
597			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
598				if_printf(ifp, "cannot pullup VLAN header\n");
599				return;
600			}
601			evl = mtod(m, struct ether_vlan_header *);
602			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
603				("%s: bad encapsulation protocol (%u)",
604				 __func__, ntohs(evl->evl_encap_proto)));
605
606			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
607
608			/*
609			 * Restore the original ethertype.  We'll remove
610			 * the encapsulation after we've found the vlan
611			 * interface corresponding to the tag.
612			 */
613			evl->evl_encap_proto = evl->evl_proto;
614			break;
615		default:
616			tag = (u_int) -1;
617#ifdef INVARIANTS
618			panic("%s: unsupported if_type (%u)",
619			      __func__, ifp->if_type);
620#endif
621			break;
622		}
623	}
624
625	VLAN_LOCK();
626	LIST_FOREACH(ifv, &ifv_list, ifv_list)
627		if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
628			break;
629
630	if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
631		VLAN_UNLOCK();
632		m_freem(m);
633		ifp->if_noproto++;
634#ifdef DEBUG
635		printf("%s: tag %d, no interface\n", __func__, tag);
636#endif
637		return;
638	}
639	VLAN_UNLOCK();		/* XXX extend below? */
640#ifdef DEBUG
641	printf("%s: tag %d, parent %s\n", __func__, tag, ifv->ifv_p->if_xname);
642#endif
643
644	if (mtag == NULL) {
645		/*
646		 * Packet had an in-line encapsulation header;
647		 * remove it.  The original header has already
648		 * been fixed up above.
649		 */
650		bcopy(mtod(m, caddr_t),
651		      mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
652		      ETHER_HDR_LEN);
653		m_adj(m, ETHER_VLAN_ENCAP_LEN);
654	}
655
656	m->m_pkthdr.rcvif = ifv->ifv_ifp;
657	ifv->ifv_ifp->if_ipackets++;
658
659	/* Pass it back through the parent's input routine. */
660	(*ifp->if_input)(ifv->ifv_ifp, m);
661}
662
663static int
664vlan_config(struct ifvlan *ifv, struct ifnet *p)
665{
666	struct ifaddr *ifa1, *ifa2;
667	struct ifnet *ifp;
668	struct sockaddr_dl *sdl1, *sdl2;
669
670	VLAN_LOCK_ASSERT();
671
672	if (p->if_type != IFT_ETHER)
673		return (EPROTONOSUPPORT);
674	if (ifv->ifv_p)
675		return (EBUSY);
676
677	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
678	ifv->ifv_mintu = ETHERMIN;
679	ifv->ifv_pflags = 0;
680
681	/*
682	 * The active VLAN counter on the parent is used
683	 * at various places to see if there is a vlan(4)
684	 * attached to this physical interface.
685	 */
686	p->if_nvlans++;
687
688	/*
689	 * If the parent supports the VLAN_MTU capability,
690	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
691	 * use it.
692	 */
693	if (p->if_capenable & IFCAP_VLAN_MTU) {
694		/*
695		 * No need to fudge the MTU since the parent can
696		 * handle extended frames.
697		 */
698		ifv->ifv_mtufudge = 0;
699	} else {
700		/*
701		 * Fudge the MTU by the encapsulation size.  This
702		 * makes us incompatible with strictly compliant
703		 * 802.1Q implementations, but allows us to use
704		 * the feature with other NetBSD implementations,
705		 * which might still be useful.
706		 */
707		ifv->ifv_mtufudge = ifv->ifv_encaplen;
708	}
709
710	ifv->ifv_p = p;
711	ifp = ifv->ifv_ifp;
712	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
713	/*
714	 * Copy only a selected subset of flags from the parent.
715	 * Other flags are none of our business.
716	 */
717#define VLAN_COPY_FLAGS \
718    (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT)
719	ifp->if_flags &= ~VLAN_COPY_FLAGS;
720	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
721#undef VLAN_COPY_FLAGS
722
723	ifp->if_link_state = p->if_link_state;
724
725#if 0
726	/*
727	 * Not ready yet.  We need notification from the parent
728	 * when hw checksumming flags in its if_capenable change.
729	 * Flags set in if_capabilities only are useless.
730	 */
731	/*
732	 * If the parent interface can do hardware-assisted
733	 * VLAN encapsulation, then propagate its hardware-
734	 * assisted checksumming flags.
735	 */
736	if (p->if_capabilities & IFCAP_VLAN_HWTAGGING)
737		ifp->if_capabilities |= p->if_capabilities & IFCAP_HWCSUM;
738#endif
739
740	/*
741	 * Set up our ``Ethernet address'' to reflect the underlying
742	 * physical interface's.
743	 */
744	ifa1 = ifaddr_byindex(ifp->if_index);
745	ifa2 = ifaddr_byindex(p->if_index);
746	sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
747	sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
748	sdl1->sdl_type = IFT_ETHER;
749	sdl1->sdl_alen = ETHER_ADDR_LEN;
750	bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
751	bcopy(LLADDR(sdl2), IFP2ENADDR(ifp), ETHER_ADDR_LEN);
752
753	/*
754	 * Configure multicast addresses that may already be
755	 * joined on the vlan device.
756	 */
757	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
758
759	return (0);
760}
761
762static int
763vlan_unconfig(struct ifnet *ifp)
764{
765	struct ifaddr *ifa;
766	struct sockaddr_dl *sdl;
767	struct vlan_mc_entry *mc;
768	struct ifvlan *ifv;
769	struct ifnet *p;
770	int error;
771
772	VLAN_LOCK_ASSERT();
773
774	ifv = ifp->if_softc;
775	p = ifv->ifv_p;
776
777	if (p) {
778		struct sockaddr_dl sdl;
779
780		/*
781		 * Since the interface is being unconfigured, we need to
782		 * empty the list of multicast groups that we may have joined
783		 * while we were alive from the parent's list.
784		 */
785		bzero((char *)&sdl, sizeof(sdl));
786		sdl.sdl_len = sizeof(sdl);
787		sdl.sdl_family = AF_LINK;
788		sdl.sdl_index = p->if_index;
789		sdl.sdl_type = IFT_ETHER;
790		sdl.sdl_alen = ETHER_ADDR_LEN;
791
792		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
793			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
794			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
795			    ETHER_ADDR_LEN);
796			error = if_delmulti(p, (struct sockaddr *)&sdl);
797			if (error)
798				return (error);
799			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
800			free(mc, M_VLAN);
801		}
802
803		vlan_setflags(ifp, 0); /* clear special flags on parent */
804		p->if_nvlans--;
805	}
806
807	/* Disconnect from parent. */
808	if (ifv->ifv_pflags)
809		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
810	ifv->ifv_p = NULL;
811	ifv->ifv_ifp->if_mtu = ETHERMTU;		/* XXX why not 0? */
812	ifv->ifv_ifp->if_link_state = LINK_STATE_UNKNOWN;
813
814	/* Clear our MAC address. */
815	ifa = ifaddr_byindex(ifv->ifv_ifp->if_index);
816	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
817	sdl->sdl_type = IFT_ETHER;
818	sdl->sdl_alen = ETHER_ADDR_LEN;
819	bzero(LLADDR(sdl), ETHER_ADDR_LEN);
820	bzero(IFP2ENADDR(ifv->ifv_ifp), ETHER_ADDR_LEN);
821
822	return (0);
823}
824
825/* Handle a reference counted flag that should be set on the parent as well */
826static int
827vlan_setflag(struct ifnet *ifp, int flag, int status,
828	     int (*func)(struct ifnet *, int))
829{
830	struct ifvlan *ifv;
831	int error;
832
833	/* XXX VLAN_LOCK_ASSERT(); */
834
835	ifv = ifp->if_softc;
836	status = status ? (ifp->if_flags & flag) : 0;
837	/* Now "status" contains the flag value or 0 */
838
839	/*
840	 * See if recorded parent's status is different from what
841	 * we want it to be.  If it is, flip it.  We record parent's
842	 * status in ifv_pflags so that we won't clear parent's flag
843	 * we haven't set.  In fact, we don't clear or set parent's
844	 * flags directly, but get or release references to them.
845	 * That's why we can be sure that recorded flags still are
846	 * in accord with actual parent's flags.
847	 */
848	if (status != (ifv->ifv_pflags & flag)) {
849		error = (*func)(ifv->ifv_p, status);
850		if (error)
851			return (error);
852		ifv->ifv_pflags &= ~flag;
853		ifv->ifv_pflags |= status;
854	}
855	return (0);
856}
857
858/*
859 * Handle IFF_* flags that require certain changes on the parent:
860 * if "status" is true, update parent's flags respective to our if_flags;
861 * if "status" is false, forcedly clear the flags set on parent.
862 */
863static int
864vlan_setflags(struct ifnet *ifp, int status)
865{
866	int error, i;
867
868	for (i = 0; vlan_pflags[i].flag; i++) {
869		error = vlan_setflag(ifp, vlan_pflags[i].flag,
870				     status, vlan_pflags[i].func);
871		if (error)
872			return (error);
873	}
874	return (0);
875}
876
877/* Inform all vlans that their parent has changed link state */
878static void
879vlan_link_state(struct ifnet *ifp, int link)
880{
881	struct ifvlan *ifv;
882
883	VLAN_LOCK();
884	LIST_FOREACH(ifv, &ifv_list, ifv_list) {
885		if (ifv->ifv_p == ifp)
886			if_link_state_change(ifv->ifv_ifp,
887			    ifv->ifv_p->if_link_state);
888	}
889	VLAN_UNLOCK();
890}
891
892static int
893vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
894{
895	struct ifaddr *ifa;
896	struct ifnet *p;
897	struct ifreq *ifr;
898	struct ifvlan *ifv;
899	struct vlanreq vlr;
900	int error = 0;
901
902	ifr = (struct ifreq *)data;
903	ifa = (struct ifaddr *)data;
904	ifv = ifp->if_softc;
905
906	switch (cmd) {
907	case SIOCSIFADDR:
908		ifp->if_flags |= IFF_UP;
909
910		switch (ifa->ifa_addr->sa_family) {
911#ifdef INET
912		case AF_INET:
913			arp_ifinit(ifv->ifv_ifp, ifa);
914			break;
915#endif
916		default:
917			break;
918		}
919		break;
920
921	case SIOCGIFADDR:
922		{
923			struct sockaddr *sa;
924
925			sa = (struct sockaddr *) &ifr->ifr_data;
926			bcopy(IFP2ENADDR(ifp), (caddr_t)sa->sa_data,
927			    ETHER_ADDR_LEN);
928		}
929		break;
930
931	case SIOCGIFMEDIA:
932		VLAN_LOCK();
933		if (ifv->ifv_p != NULL) {
934			error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
935					SIOCGIFMEDIA, data);
936			VLAN_UNLOCK();
937			/* Limit the result to the parent's current config. */
938			if (error == 0) {
939				struct ifmediareq *ifmr;
940
941				ifmr = (struct ifmediareq *)data;
942				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
943					ifmr->ifm_count = 1;
944					error = copyout(&ifmr->ifm_current,
945						ifmr->ifm_ulist,
946						sizeof(int));
947				}
948			}
949		} else {
950			VLAN_UNLOCK();
951			error = EINVAL;
952		}
953		break;
954
955	case SIOCSIFMEDIA:
956		error = EINVAL;
957		break;
958
959	case SIOCSIFMTU:
960		/*
961		 * Set the interface MTU.
962		 */
963		VLAN_LOCK();
964		if (ifv->ifv_p != NULL) {
965			if (ifr->ifr_mtu >
966			     (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
967			    ifr->ifr_mtu <
968			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
969				error = EINVAL;
970			else
971				ifp->if_mtu = ifr->ifr_mtu;
972		} else
973			error = EINVAL;
974		VLAN_UNLOCK();
975		break;
976
977	case SIOCSETVLAN:
978		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
979		if (error)
980			break;
981		if (vlr.vlr_parent[0] == '\0') {
982			VLAN_LOCK();
983			vlan_unconfig(ifp);
984			if (ifp->if_flags & IFF_UP)
985				if_down(ifp);
986			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
987			VLAN_UNLOCK();
988			break;
989		}
990		p = ifunit(vlr.vlr_parent);
991		if (p == 0) {
992			error = ENOENT;
993			break;
994		}
995		/*
996		 * Don't let the caller set up a VLAN tag with
997		 * anything except VLID bits.
998		 */
999		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1000			error = EINVAL;
1001			break;
1002		}
1003		VLAN_LOCK();
1004		error = vlan_config(ifv, p);
1005		if (error) {
1006			VLAN_UNLOCK();
1007			break;
1008		}
1009		ifv->ifv_tag = vlr.vlr_tag;
1010		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1011		VLAN_UNLOCK();
1012
1013		/* Update flags on the parent, if necessary. */
1014		vlan_setflags(ifp, 1);
1015		break;
1016
1017	case SIOCGETVLAN:
1018		bzero(&vlr, sizeof(vlr));
1019		VLAN_LOCK();
1020		if (ifv->ifv_p) {
1021			strlcpy(vlr.vlr_parent, ifv->ifv_p->if_xname,
1022			    sizeof(vlr.vlr_parent));
1023			vlr.vlr_tag = ifv->ifv_tag;
1024		}
1025		VLAN_UNLOCK();
1026		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1027		break;
1028
1029	case SIOCSIFFLAGS:
1030		/*
1031		 * We should propagate selected flags to the parent,
1032		 * e.g., promiscuous mode.
1033		 */
1034		if (ifv->ifv_p != NULL)
1035			error = vlan_setflags(ifp, 1);
1036		break;
1037
1038	case SIOCADDMULTI:
1039	case SIOCDELMULTI:
1040		/*VLAN_LOCK();*/
1041		error = vlan_setmulti(ifp);
1042		/*VLAN_UNLOCK();*/
1043		break;
1044	default:
1045		error = EINVAL;
1046	}
1047
1048	return (error);
1049}
1050