if_vlan.c revision 152139
1/*-
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/net/if_vlan.c 152139 2005-11-06 19:43:04Z glebius $
30 */
31
32/*
33 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34 * Might be extended some day to also handle IEEE 802.1p priority
35 * tagging.  This is sort of sneaky in the implementation, since
36 * we need to pretend to be enough of an Ethernet implementation
37 * to make arp work.  The way we do this is by telling everyone
38 * that we are an Ethernet, and then catch the packets that
39 * ether_output() left on our output queue when it calls
40 * if_start(), rewrite them for use by the real outgoing interface,
41 * and ask it to send them.
42 */
43
44#include "opt_inet.h"
45
46#include <sys/param.h>
47#include <sys/kernel.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/module.h>
51#include <sys/queue.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/sysctl.h>
55#include <sys/systm.h>
56
57#include <net/bpf.h>
58#include <net/ethernet.h>
59#include <net/if.h>
60#include <net/if_clone.h>
61#include <net/if_arp.h>
62#include <net/if_dl.h>
63#include <net/if_types.h>
64#include <net/if_vlan_var.h>
65
66#ifdef INET
67#include <netinet/in.h>
68#include <netinet/if_ether.h>
69#endif
70
71#define VLANNAME	"vlan"
72
73struct vlan_mc_entry {
74	struct ether_addr		mc_addr;
75	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
76};
77
78struct	ifvlan {
79	struct	ifnet *ifv_ifp;
80	struct	ifnet *ifv_p;	/* parent inteface of this vlan */
81	int	ifv_pflags;	/* special flags we have set on parent */
82	struct	ifv_linkmib {
83		int	ifvm_parent;
84		int	ifvm_encaplen;	/* encapsulation length */
85		int	ifvm_mtufudge;	/* MTU fudged by this much */
86		int	ifvm_mintu;	/* min transmission unit */
87		u_int16_t ifvm_proto; /* encapsulation ethertype */
88		u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
89	}	ifv_mib;
90	SLIST_HEAD(__vlan_mchead, vlan_mc_entry)	vlan_mc_listhead;
91	LIST_ENTRY(ifvlan) ifv_list;
92};
93#define	ifv_tag	ifv_mib.ifvm_tag
94#define	ifv_encaplen	ifv_mib.ifvm_encaplen
95#define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
96#define	ifv_mintu	ifv_mib.ifvm_mintu
97
98/* Special flags we should propagate to parent */
99static struct {
100	int flag;
101	int (*func)(struct ifnet *, int);
102} vlan_pflags[] = {
103	{IFF_PROMISC, ifpromisc},
104	{IFF_ALLMULTI, if_allmulti},
105	{0, NULL}
106};
107
108SYSCTL_DECL(_net_link);
109SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
110SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
111
112static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
113static LIST_HEAD(, ifvlan) ifv_list;
114
115/*
116 * Locking: one lock is used to guard both the ifv_list and modification
117 * to vlan data structures.  We are rather conservative here; probably
118 * more than necessary.
119 */
120static struct mtx ifv_mtx;
121#define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, VLANNAME, NULL, MTX_DEF)
122#define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
123#define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
124#define	VLAN_LOCK()	mtx_lock(&ifv_mtx)
125#define	VLAN_UNLOCK()	mtx_unlock(&ifv_mtx)
126
127static	void vlan_start(struct ifnet *ifp);
128static	void vlan_ifinit(void *foo);
129static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
130static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
131static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
132    int (*func)(struct ifnet *, int));
133static	int vlan_setflags(struct ifnet *ifp, int status);
134static	int vlan_setmulti(struct ifnet *ifp);
135static	int vlan_unconfig(struct ifnet *ifp);
136static	int vlan_config(struct ifvlan *ifv, struct ifnet *p);
137static	void vlan_link_state(struct ifnet *ifp, int link);
138
139static	struct ifnet *vlan_clone_match_ethertag(struct if_clone *,
140    const char *, int *);
141static	int vlan_clone_match(struct if_clone *, const char *);
142static	int vlan_clone_create(struct if_clone *, char *, size_t);
143static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
144
145static	struct if_clone vlan_cloner = IFC_CLONE_INITIALIZER(VLANNAME, NULL,
146    IF_MAXUNIT, NULL, vlan_clone_match, vlan_clone_create, vlan_clone_destroy);
147
148/*
149 * Program our multicast filter. What we're actually doing is
150 * programming the multicast filter of the parent. This has the
151 * side effect of causing the parent interface to receive multicast
152 * traffic that it doesn't really want, which ends up being discarded
153 * later by the upper protocol layers. Unfortunately, there's no way
154 * to avoid this: there really is only one physical interface.
155 *
156 * XXX: There is a possible race here if more than one thread is
157 *      modifying the multicast state of the vlan interface at the same time.
158 */
159static int
160vlan_setmulti(struct ifnet *ifp)
161{
162	struct ifnet		*ifp_p;
163	struct ifmultiaddr	*ifma, *rifma = NULL;
164	struct ifvlan		*sc;
165	struct vlan_mc_entry	*mc = NULL;
166	struct sockaddr_dl	sdl;
167	int			error;
168
169	/*VLAN_LOCK_ASSERT();*/
170
171	/* Find the parent. */
172	sc = ifp->if_softc;
173	ifp_p = sc->ifv_p;
174
175	/*
176	 * If we don't have a parent, just remember the membership for
177	 * when we do.
178	 */
179	if (ifp_p == NULL)
180		return (0);
181
182	bzero((char *)&sdl, sizeof(sdl));
183	sdl.sdl_len = sizeof(sdl);
184	sdl.sdl_family = AF_LINK;
185	sdl.sdl_index = ifp_p->if_index;
186	sdl.sdl_type = IFT_ETHER;
187	sdl.sdl_alen = ETHER_ADDR_LEN;
188
189	/* First, remove any existing filter entries. */
190	while (SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
191		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
192		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
193		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
194		if (error)
195			return (error);
196		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
197		free(mc, M_VLAN);
198	}
199
200	/* Now program new ones. */
201	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
202		if (ifma->ifma_addr->sa_family != AF_LINK)
203			continue;
204		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
205		if (mc == NULL)
206			return (ENOMEM);
207		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
208		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
209		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
210		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
211		    LLADDR(&sdl), ETHER_ADDR_LEN);
212		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
213		if (error)
214			return (error);
215	}
216
217	return (0);
218}
219
220/*
221 * VLAN support can be loaded as a module.  The only place in the
222 * system that's intimately aware of this is ether_input.  We hook
223 * into this code through vlan_input_p which is defined there and
224 * set here.  Noone else in the system should be aware of this so
225 * we use an explicit reference here.
226 *
227 * NB: Noone should ever need to check if vlan_input_p is null or
228 *     not.  This is because interfaces have a count of the number
229 *     of active vlans (if_nvlans) and this should never be bumped
230 *     except by vlan_config--which is in this module so therefore
231 *     the module must be loaded and vlan_input_p must be non-NULL.
232 */
233extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
234
235/* For if_link_state_change() eyes only... */
236extern	void (*vlan_link_state_p)(struct ifnet *, int);
237
238static int
239vlan_modevent(module_t mod, int type, void *data)
240{
241
242	switch (type) {
243	case MOD_LOAD:
244		LIST_INIT(&ifv_list);
245		VLAN_LOCK_INIT();
246		vlan_input_p = vlan_input;
247		vlan_link_state_p = vlan_link_state;
248		if_clone_attach(&vlan_cloner);
249		break;
250	case MOD_UNLOAD:
251		if_clone_detach(&vlan_cloner);
252		vlan_input_p = NULL;
253		vlan_link_state_p = NULL;
254		while (!LIST_EMPTY(&ifv_list))
255			vlan_clone_destroy(&vlan_cloner,
256			    LIST_FIRST(&ifv_list)->ifv_ifp);
257		VLAN_LOCK_DESTROY();
258		break;
259	default:
260		return (EOPNOTSUPP);
261	}
262	return (0);
263}
264
265static moduledata_t vlan_mod = {
266	"if_vlan",
267	vlan_modevent,
268	0
269};
270
271DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
272MODULE_DEPEND(if_vlan, miibus, 1, 1, 1);
273
274static struct ifnet *
275vlan_clone_match_ethertag(struct if_clone *ifc, const char *name, int *tag)
276{
277	const char *cp;
278	struct ifnet *ifp;
279	int t = 0;
280
281	/* Check for <etherif>.<vlan> style interface names. */
282	IFNET_RLOCK();
283	TAILQ_FOREACH(ifp, &ifnet, if_link) {
284		if (ifp->if_type != IFT_ETHER)
285			continue;
286		if (strncmp(ifp->if_xname, name, strlen(ifp->if_xname)) != 0)
287			continue;
288		cp = name + strlen(ifp->if_xname);
289		if (*cp != '.')
290			continue;
291		for(; *cp != '\0'; cp++) {
292			if (*cp < '0' || *cp > '9')
293				continue;
294			t = (t * 10) + (*cp - '0');
295		}
296		if (tag != NULL)
297			*tag = t;
298		break;
299	}
300	IFNET_RUNLOCK();
301
302	return (ifp);
303}
304
305static int
306vlan_clone_match(struct if_clone *ifc, const char *name)
307{
308	const char *cp;
309
310	if (vlan_clone_match_ethertag(ifc, name, NULL) != NULL)
311		return (1);
312
313	if (strncmp(VLANNAME, name, strlen(VLANNAME)) != 0)
314		return (0);
315	for (cp = name + 4; *cp != '\0'; cp++) {
316		if (*cp < '0' || *cp > '9')
317			return (0);
318	}
319
320	return (1);
321}
322
323static int
324vlan_clone_create(struct if_clone *ifc, char *name, size_t len)
325{
326	char *dp;
327	int wildcard;
328	int unit;
329	int error;
330	int tag;
331	int ethertag;
332	struct ifvlan *ifv;
333	struct ifnet *ifp;
334	struct ifnet *p;
335	u_char eaddr[6] = {0,0,0,0,0,0};
336
337	if ((p = vlan_clone_match_ethertag(ifc, name, &tag)) != NULL) {
338		ethertag = 1;
339		unit = -1;
340		wildcard = 0;
341
342		/*
343		 * Don't let the caller set up a VLAN tag with
344		 * anything except VLID bits.
345		 */
346		if (tag & ~EVL_VLID_MASK)
347			return (EINVAL);
348	} else {
349		ethertag = 0;
350
351		error = ifc_name2unit(name, &unit);
352		if (error != 0)
353			return (error);
354
355		wildcard = (unit < 0);
356	}
357
358	error = ifc_alloc_unit(ifc, &unit);
359	if (error != 0)
360		return (error);
361
362	/* In the wildcard case, we need to update the name. */
363	if (wildcard) {
364		for (dp = name; *dp != '\0'; dp++);
365		if (snprintf(dp, len - (dp-name), "%d", unit) >
366		    len - (dp-name) - 1) {
367			panic("%s: interface name too long", __func__);
368		}
369	}
370
371	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
372	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
373	if (ifp == NULL) {
374		ifc_free_unit(ifc, unit);
375		free(ifv, M_VLAN);
376		return (ENOSPC);
377	}
378	SLIST_INIT(&ifv->vlan_mc_listhead);
379
380	ifp->if_softc = ifv;
381	/*
382	 * Set the name manually rather than using if_initname because
383	 * we don't conform to the default naming convention for interfaces.
384	 */
385	strlcpy(ifp->if_xname, name, IFNAMSIZ);
386	ifp->if_dname = ifc->ifc_name;
387	ifp->if_dunit = unit;
388	/* NB: flags are not set here */
389	ifp->if_linkmib = &ifv->ifv_mib;
390	ifp->if_linkmiblen = sizeof(ifv->ifv_mib);
391	/* NB: mtu is not set here */
392
393	ifp->if_init = vlan_ifinit;
394	ifp->if_start = vlan_start;
395	ifp->if_ioctl = vlan_ioctl;
396	ifp->if_snd.ifq_maxlen = ifqmaxlen;
397	ether_ifattach(ifp, eaddr);
398	/* Now undo some of the damage... */
399	ifp->if_baudrate = 0;
400	ifp->if_type = IFT_L2VLAN;
401	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
402
403	VLAN_LOCK();
404	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
405	VLAN_UNLOCK();
406
407	if (ethertag) {
408		VLAN_LOCK();
409		error = vlan_config(ifv, p);
410		if (error != 0) {
411			/*
412			 * Since we've partialy failed, we need to back
413			 * out all the way, otherwise userland could get
414			 * confused.  Thus, we destroy the interface.
415			 */
416			LIST_REMOVE(ifv, ifv_list);
417			vlan_unconfig(ifp);
418			VLAN_UNLOCK();
419			ether_ifdetach(ifp);
420			if_free_type(ifp, IFT_ETHER);
421			free(ifv, M_VLAN);
422
423			return (error);
424		}
425		ifv->ifv_tag = tag;
426		ifp->if_drv_flags |= IFF_DRV_RUNNING;
427		VLAN_UNLOCK();
428
429		/* Update flags on the parent, if necessary. */
430		vlan_setflags(ifp, 1);
431	}
432
433	return (0);
434}
435
436static int
437vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
438{
439	int unit;
440	struct ifvlan *ifv = ifp->if_softc;
441
442	unit = ifp->if_dunit;
443
444	VLAN_LOCK();
445	LIST_REMOVE(ifv, ifv_list);
446	vlan_unconfig(ifp);
447	VLAN_UNLOCK();
448
449	ether_ifdetach(ifp);
450	if_free_type(ifp, IFT_ETHER);
451
452	free(ifv, M_VLAN);
453
454	ifc_free_unit(ifc, unit);
455
456	return (0);
457}
458
459/*
460 * The ifp->if_init entry point for vlan(4) is a no-op.
461 */
462static void
463vlan_ifinit(void *foo)
464{
465
466}
467
468/*
469 * The if_start method for vlan(4) interface. It doesn't
470 * raises the IFF_DRV_OACTIVE flag, since it is called
471 * only from IFQ_HANDOFF() macro in ether_output_frame().
472 * If the interface queue is full, and vlan_start() is
473 * not called, the queue would never get emptied and
474 * interface would stall forever.
475 */
476static void
477vlan_start(struct ifnet *ifp)
478{
479	struct ifvlan *ifv;
480	struct ifnet *p;
481	struct ether_vlan_header *evl;
482	struct mbuf *m;
483	int error;
484
485	ifv = ifp->if_softc;
486	p = ifv->ifv_p;
487
488	for (;;) {
489		IF_DEQUEUE(&ifp->if_snd, m);
490		if (m == 0)
491			break;
492		BPF_MTAP(ifp, m);
493
494		/*
495		 * Do not run parent's if_start() if the parent is not up,
496		 * or parent's driver will cause a system crash.
497		 */
498		if (!((p->if_flags & IFF_UP) &&
499		    (p->if_drv_flags & IFF_DRV_RUNNING))) {
500			m_freem(m);
501			ifp->if_collisions++;
502			continue;
503		}
504
505		/*
506		 * If underlying interface can do VLAN tag insertion itself,
507		 * just pass the packet along. However, we need some way to
508		 * tell the interface where the packet came from so that it
509		 * knows how to find the VLAN tag to use, so we attach a
510		 * packet tag that holds it.
511		 */
512		if (p->if_capenable & IFCAP_VLAN_HWTAGGING) {
513			struct m_tag *mtag = m_tag_alloc(MTAG_VLAN,
514							 MTAG_VLAN_TAG,
515							 sizeof(u_int),
516							 M_NOWAIT);
517			if (mtag == NULL) {
518				ifp->if_oerrors++;
519				m_freem(m);
520				continue;
521			}
522			VLAN_TAG_VALUE(mtag) = ifv->ifv_tag;
523			m_tag_prepend(m, mtag);
524			m->m_flags |= M_VLANTAG;
525		} else {
526			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
527			if (m == NULL) {
528				if_printf(ifp,
529				    "unable to prepend VLAN header\n");
530				ifp->if_oerrors++;
531				continue;
532			}
533			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
534
535			if (m->m_len < sizeof(*evl)) {
536				m = m_pullup(m, sizeof(*evl));
537				if (m == NULL) {
538					if_printf(ifp,
539					    "cannot pullup VLAN header\n");
540					ifp->if_oerrors++;
541					continue;
542				}
543			}
544
545			/*
546			 * Transform the Ethernet header into an Ethernet header
547			 * with 802.1Q encapsulation.
548			 */
549			bcopy(mtod(m, char *) + ifv->ifv_encaplen,
550			      mtod(m, char *), ETHER_HDR_LEN);
551			evl = mtod(m, struct ether_vlan_header *);
552			evl->evl_proto = evl->evl_encap_proto;
553			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
554			evl->evl_tag = htons(ifv->ifv_tag);
555#ifdef DEBUG
556			printf("%s: %*D\n", __func__, (int)sizeof(*evl),
557			    (unsigned char *)evl, ":");
558#endif
559		}
560
561		/*
562		 * Send it, precisely as ether_output() would have.
563		 * We are already running at splimp.
564		 */
565		IFQ_HANDOFF(p, m, error);
566		if (!error)
567			ifp->if_opackets++;
568		else
569			ifp->if_oerrors++;
570	}
571}
572
573static void
574vlan_input(struct ifnet *ifp, struct mbuf *m)
575{
576	struct ether_vlan_header *evl;
577	struct ifvlan *ifv;
578	struct m_tag *mtag;
579	u_int tag;
580
581	if (m->m_flags & M_VLANTAG) {
582		/*
583		 * Packet is tagged, but m contains a normal
584		 * Ethernet frame; the tag is stored out-of-band.
585		 */
586		mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
587		KASSERT(mtag != NULL,
588			("%s: M_VLANTAG without m_tag", __func__));
589		tag = EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag));
590		m_tag_delete(m, mtag);
591		m->m_flags &= ~M_VLANTAG;
592	} else {
593		/*
594		 * Packet is tagged in-band as specified by 802.1q.
595		 */
596		mtag = NULL;
597		switch (ifp->if_type) {
598		case IFT_ETHER:
599			if (m->m_len < sizeof(*evl) &&
600			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
601				if_printf(ifp, "cannot pullup VLAN header\n");
602				return;
603			}
604			evl = mtod(m, struct ether_vlan_header *);
605			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
606				("%s: bad encapsulation protocol (%u)",
607				 __func__, ntohs(evl->evl_encap_proto)));
608
609			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
610
611			/*
612			 * Restore the original ethertype.  We'll remove
613			 * the encapsulation after we've found the vlan
614			 * interface corresponding to the tag.
615			 */
616			evl->evl_encap_proto = evl->evl_proto;
617			break;
618		default:
619			tag = (u_int) -1;
620#ifdef INVARIANTS
621			panic("%s: unsupported if_type (%u)",
622			      __func__, ifp->if_type);
623#endif
624			break;
625		}
626	}
627
628	VLAN_LOCK();
629	LIST_FOREACH(ifv, &ifv_list, ifv_list)
630		if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
631			break;
632
633	if (ifv == NULL || (ifv->ifv_ifp->if_flags & IFF_UP) == 0) {
634		VLAN_UNLOCK();
635		m_freem(m);
636		ifp->if_noproto++;
637#ifdef DEBUG
638		printf("%s: tag %d, no interface\n", __func__, tag);
639#endif
640		return;
641	}
642	VLAN_UNLOCK();		/* XXX extend below? */
643#ifdef DEBUG
644	printf("%s: tag %d, parent %s\n", __func__, tag, ifv->ifv_p->if_xname);
645#endif
646
647	if (mtag == NULL) {
648		/*
649		 * Packet had an in-line encapsulation header;
650		 * remove it.  The original header has already
651		 * been fixed up above.
652		 */
653		bcopy(mtod(m, caddr_t),
654		      mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
655		      ETHER_HDR_LEN);
656		m_adj(m, ETHER_VLAN_ENCAP_LEN);
657	}
658
659	m->m_pkthdr.rcvif = ifv->ifv_ifp;
660	ifv->ifv_ifp->if_ipackets++;
661
662	/* Pass it back through the parent's input routine. */
663	(*ifp->if_input)(ifv->ifv_ifp, m);
664}
665
666static int
667vlan_config(struct ifvlan *ifv, struct ifnet *p)
668{
669	struct ifaddr *ifa1, *ifa2;
670	struct ifnet *ifp;
671	struct sockaddr_dl *sdl1, *sdl2;
672
673	VLAN_LOCK_ASSERT();
674
675	if (p->if_type != IFT_ETHER)
676		return (EPROTONOSUPPORT);
677	if (ifv->ifv_p)
678		return (EBUSY);
679
680	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
681	ifv->ifv_mintu = ETHERMIN;
682	ifv->ifv_pflags = 0;
683
684	/*
685	 * The active VLAN counter on the parent is used
686	 * at various places to see if there is a vlan(4)
687	 * attached to this physical interface.
688	 */
689	p->if_nvlans++;
690
691	/*
692	 * If the parent supports the VLAN_MTU capability,
693	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
694	 * use it.
695	 */
696	if (p->if_capenable & IFCAP_VLAN_MTU) {
697		/*
698		 * No need to fudge the MTU since the parent can
699		 * handle extended frames.
700		 */
701		ifv->ifv_mtufudge = 0;
702	} else {
703		/*
704		 * Fudge the MTU by the encapsulation size.  This
705		 * makes us incompatible with strictly compliant
706		 * 802.1Q implementations, but allows us to use
707		 * the feature with other NetBSD implementations,
708		 * which might still be useful.
709		 */
710		ifv->ifv_mtufudge = ifv->ifv_encaplen;
711	}
712
713	ifv->ifv_p = p;
714	ifp = ifv->ifv_ifp;
715	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
716	/*
717	 * Copy only a selected subset of flags from the parent.
718	 * Other flags are none of our business.
719	 */
720#define VLAN_COPY_FLAGS \
721    (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT)
722	ifp->if_flags &= ~VLAN_COPY_FLAGS;
723	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
724#undef VLAN_COPY_FLAGS
725
726	ifp->if_link_state = p->if_link_state;
727
728#if 0
729	/*
730	 * Not ready yet.  We need notification from the parent
731	 * when hw checksumming flags in its if_capenable change.
732	 * Flags set in if_capabilities only are useless.
733	 */
734	/*
735	 * If the parent interface can do hardware-assisted
736	 * VLAN encapsulation, then propagate its hardware-
737	 * assisted checksumming flags.
738	 */
739	if (p->if_capabilities & IFCAP_VLAN_HWTAGGING)
740		ifp->if_capabilities |= p->if_capabilities & IFCAP_HWCSUM;
741#endif
742
743	/*
744	 * Set up our ``Ethernet address'' to reflect the underlying
745	 * physical interface's.
746	 */
747	ifa1 = ifaddr_byindex(ifp->if_index);
748	ifa2 = ifaddr_byindex(p->if_index);
749	sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
750	sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
751	sdl1->sdl_type = IFT_ETHER;
752	sdl1->sdl_alen = ETHER_ADDR_LEN;
753	bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
754	bcopy(LLADDR(sdl2), IFP2ENADDR(ifp), ETHER_ADDR_LEN);
755
756	/*
757	 * Configure multicast addresses that may already be
758	 * joined on the vlan device.
759	 */
760	(void)vlan_setmulti(ifp); /* XXX: VLAN lock held */
761
762	return (0);
763}
764
765static int
766vlan_unconfig(struct ifnet *ifp)
767{
768	struct ifaddr *ifa;
769	struct sockaddr_dl *sdl;
770	struct vlan_mc_entry *mc;
771	struct ifvlan *ifv;
772	struct ifnet *p;
773	int error;
774
775	VLAN_LOCK_ASSERT();
776
777	ifv = ifp->if_softc;
778	p = ifv->ifv_p;
779
780	if (p) {
781		struct sockaddr_dl sdl;
782
783		/*
784		 * Since the interface is being unconfigured, we need to
785		 * empty the list of multicast groups that we may have joined
786		 * while we were alive from the parent's list.
787		 */
788		bzero((char *)&sdl, sizeof(sdl));
789		sdl.sdl_len = sizeof(sdl);
790		sdl.sdl_family = AF_LINK;
791		sdl.sdl_index = p->if_index;
792		sdl.sdl_type = IFT_ETHER;
793		sdl.sdl_alen = ETHER_ADDR_LEN;
794
795		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
796			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
797			bcopy((char *)&mc->mc_addr, LLADDR(&sdl),
798			    ETHER_ADDR_LEN);
799			error = if_delmulti(p, (struct sockaddr *)&sdl);
800			if (error)
801				return (error);
802			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
803			free(mc, M_VLAN);
804		}
805
806		vlan_setflags(ifp, 0); /* clear special flags on parent */
807		p->if_nvlans--;
808	}
809
810	/* Disconnect from parent. */
811	if (ifv->ifv_pflags)
812		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
813	ifv->ifv_p = NULL;
814	ifv->ifv_ifp->if_mtu = ETHERMTU;		/* XXX why not 0? */
815	ifv->ifv_ifp->if_link_state = LINK_STATE_UNKNOWN;
816
817	/* Clear our MAC address. */
818	ifa = ifaddr_byindex(ifv->ifv_ifp->if_index);
819	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
820	sdl->sdl_type = IFT_ETHER;
821	sdl->sdl_alen = ETHER_ADDR_LEN;
822	bzero(LLADDR(sdl), ETHER_ADDR_LEN);
823	bzero(IFP2ENADDR(ifv->ifv_ifp), ETHER_ADDR_LEN);
824
825	return (0);
826}
827
828/* Handle a reference counted flag that should be set on the parent as well */
829static int
830vlan_setflag(struct ifnet *ifp, int flag, int status,
831	     int (*func)(struct ifnet *, int))
832{
833	struct ifvlan *ifv;
834	int error;
835
836	/* XXX VLAN_LOCK_ASSERT(); */
837
838	ifv = ifp->if_softc;
839	status = status ? (ifp->if_flags & flag) : 0;
840	/* Now "status" contains the flag value or 0 */
841
842	/*
843	 * See if recorded parent's status is different from what
844	 * we want it to be.  If it is, flip it.  We record parent's
845	 * status in ifv_pflags so that we won't clear parent's flag
846	 * we haven't set.  In fact, we don't clear or set parent's
847	 * flags directly, but get or release references to them.
848	 * That's why we can be sure that recorded flags still are
849	 * in accord with actual parent's flags.
850	 */
851	if (status != (ifv->ifv_pflags & flag)) {
852		error = (*func)(ifv->ifv_p, status);
853		if (error)
854			return (error);
855		ifv->ifv_pflags &= ~flag;
856		ifv->ifv_pflags |= status;
857	}
858	return (0);
859}
860
861/*
862 * Handle IFF_* flags that require certain changes on the parent:
863 * if "status" is true, update parent's flags respective to our if_flags;
864 * if "status" is false, forcedly clear the flags set on parent.
865 */
866static int
867vlan_setflags(struct ifnet *ifp, int status)
868{
869	int error, i;
870
871	for (i = 0; vlan_pflags[i].flag; i++) {
872		error = vlan_setflag(ifp, vlan_pflags[i].flag,
873				     status, vlan_pflags[i].func);
874		if (error)
875			return (error);
876	}
877	return (0);
878}
879
880/* Inform all vlans that their parent has changed link state */
881static void
882vlan_link_state(struct ifnet *ifp, int link)
883{
884	struct ifvlan *ifv;
885
886	VLAN_LOCK();
887	LIST_FOREACH(ifv, &ifv_list, ifv_list) {
888		if (ifv->ifv_p == ifp)
889			if_link_state_change(ifv->ifv_ifp,
890			    ifv->ifv_p->if_link_state);
891	}
892	VLAN_UNLOCK();
893}
894
895static int
896vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
897{
898	struct ifaddr *ifa;
899	struct ifnet *p;
900	struct ifreq *ifr;
901	struct ifvlan *ifv;
902	struct vlanreq vlr;
903	int error = 0;
904
905	ifr = (struct ifreq *)data;
906	ifa = (struct ifaddr *)data;
907	ifv = ifp->if_softc;
908
909	switch (cmd) {
910	case SIOCSIFADDR:
911		ifp->if_flags |= IFF_UP;
912
913		switch (ifa->ifa_addr->sa_family) {
914#ifdef INET
915		case AF_INET:
916			arp_ifinit(ifv->ifv_ifp, ifa);
917			break;
918#endif
919		default:
920			break;
921		}
922		break;
923
924	case SIOCGIFADDR:
925		{
926			struct sockaddr *sa;
927
928			sa = (struct sockaddr *) &ifr->ifr_data;
929			bcopy(IFP2ENADDR(ifp), (caddr_t)sa->sa_data,
930			    ETHER_ADDR_LEN);
931		}
932		break;
933
934	case SIOCGIFMEDIA:
935		VLAN_LOCK();
936		if (ifv->ifv_p != NULL) {
937			error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
938					SIOCGIFMEDIA, data);
939			VLAN_UNLOCK();
940			/* Limit the result to the parent's current config. */
941			if (error == 0) {
942				struct ifmediareq *ifmr;
943
944				ifmr = (struct ifmediareq *)data;
945				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
946					ifmr->ifm_count = 1;
947					error = copyout(&ifmr->ifm_current,
948						ifmr->ifm_ulist,
949						sizeof(int));
950				}
951			}
952		} else {
953			VLAN_UNLOCK();
954			error = EINVAL;
955		}
956		break;
957
958	case SIOCSIFMEDIA:
959		error = EINVAL;
960		break;
961
962	case SIOCSIFMTU:
963		/*
964		 * Set the interface MTU.
965		 */
966		VLAN_LOCK();
967		if (ifv->ifv_p != NULL) {
968			if (ifr->ifr_mtu >
969			     (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
970			    ifr->ifr_mtu <
971			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
972				error = EINVAL;
973			else
974				ifp->if_mtu = ifr->ifr_mtu;
975		} else
976			error = EINVAL;
977		VLAN_UNLOCK();
978		break;
979
980	case SIOCSETVLAN:
981		error = copyin(ifr->ifr_data, &vlr, sizeof(vlr));
982		if (error)
983			break;
984		if (vlr.vlr_parent[0] == '\0') {
985			VLAN_LOCK();
986			vlan_unconfig(ifp);
987			if (ifp->if_flags & IFF_UP)
988				if_down(ifp);
989			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
990			VLAN_UNLOCK();
991			break;
992		}
993		p = ifunit(vlr.vlr_parent);
994		if (p == 0) {
995			error = ENOENT;
996			break;
997		}
998		/*
999		 * Don't let the caller set up a VLAN tag with
1000		 * anything except VLID bits.
1001		 */
1002		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1003			error = EINVAL;
1004			break;
1005		}
1006		VLAN_LOCK();
1007		error = vlan_config(ifv, p);
1008		if (error) {
1009			VLAN_UNLOCK();
1010			break;
1011		}
1012		ifv->ifv_tag = vlr.vlr_tag;
1013		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1014		VLAN_UNLOCK();
1015
1016		/* Update flags on the parent, if necessary. */
1017		vlan_setflags(ifp, 1);
1018		break;
1019
1020	case SIOCGETVLAN:
1021		bzero(&vlr, sizeof(vlr));
1022		VLAN_LOCK();
1023		if (ifv->ifv_p) {
1024			strlcpy(vlr.vlr_parent, ifv->ifv_p->if_xname,
1025			    sizeof(vlr.vlr_parent));
1026			vlr.vlr_tag = ifv->ifv_tag;
1027		}
1028		VLAN_UNLOCK();
1029		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
1030		break;
1031
1032	case SIOCSIFFLAGS:
1033		/*
1034		 * We should propagate selected flags to the parent,
1035		 * e.g., promiscuous mode.
1036		 */
1037		if (ifv->ifv_p != NULL)
1038			error = vlan_setflags(ifp, 1);
1039		break;
1040
1041	case SIOCADDMULTI:
1042	case SIOCDELMULTI:
1043		/*VLAN_LOCK();*/
1044		error = vlan_setmulti(ifp);
1045		/*VLAN_UNLOCK();*/
1046		break;
1047	default:
1048		error = EINVAL;
1049	}
1050
1051	return (error);
1052}
1053