if_vlan.c revision 128871
1/*
2 * Copyright 1998 Massachusetts Institute of Technology
3 *
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission.  M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose.  It is provided "as is" without express or implied
14 * warranty.
15 *
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/net/if_vlan.c 128871 2004-05-03 13:48:35Z andre $
30 */
31
32/*
33 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
34 * Might be extended some day to also handle IEEE 802.1p priority
35 * tagging.  This is sort of sneaky in the implementation, since
36 * we need to pretend to be enough of an Ethernet implementation
37 * to make arp work.  The way we do this is by telling everyone
38 * that we are an Ethernet, and then catch the packets that
39 * ether_output() left on our output queue when it calls
40 * if_start(), rewrite them for use by the real outgoing interface,
41 * and ask it to send them.
42 */
43
44#include "opt_inet.h"
45
46#include <sys/param.h>
47#include <sys/kernel.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/module.h>
51#include <sys/queue.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/sysctl.h>
55#include <sys/systm.h>
56
57#include <net/bpf.h>
58#include <net/ethernet.h>
59#include <net/if.h>
60#include <net/if_arp.h>
61#include <net/if_dl.h>
62#include <net/if_types.h>
63#include <net/if_vlan_var.h>
64
65#ifdef INET
66#include <netinet/in.h>
67#include <netinet/if_ether.h>
68#endif
69
70#define VLANNAME	"vlan"
71
72struct vlan_mc_entry {
73	struct ether_addr		mc_addr;
74	SLIST_ENTRY(vlan_mc_entry)	mc_entries;
75};
76
77struct	ifvlan {
78	struct	arpcom ifv_ac;	/* make this an interface */
79	struct	ifnet *ifv_p;	/* parent inteface of this vlan */
80	struct	ifv_linkmib {
81		int	ifvm_parent;
82		int	ifvm_encaplen;	/* encapsulation length */
83		int	ifvm_mtufudge;	/* MTU fudged by this much */
84		int	ifvm_mintu;	/* min transmission unit */
85		u_int16_t ifvm_proto; /* encapsulation ethertype */
86		u_int16_t ifvm_tag; /* tag to apply on packets leaving if */
87	}	ifv_mib;
88	SLIST_HEAD(__vlan_mchead, vlan_mc_entry)	vlan_mc_listhead;
89	LIST_ENTRY(ifvlan) ifv_list;
90	int	ifv_flags;
91};
92#define	ifv_if	ifv_ac.ac_if
93#define	ifv_tag	ifv_mib.ifvm_tag
94#define	ifv_encaplen	ifv_mib.ifvm_encaplen
95#define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
96#define	ifv_mintu	ifv_mib.ifvm_mintu
97
98#define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
99
100SYSCTL_DECL(_net_link);
101SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW, 0, "IEEE 802.1Q VLAN");
102SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW, 0, "for consistency");
103
104static MALLOC_DEFINE(M_VLAN, VLANNAME, "802.1Q Virtual LAN Interface");
105static LIST_HEAD(, ifvlan) ifv_list;
106
107/*
108 * Locking: one lock is used to guard both the ifv_list and modification
109 * to vlan data structures.  We are rather conservative here; probably
110 * more than necessary.
111 */
112static struct mtx ifv_mtx;
113#define	VLAN_LOCK_INIT()	mtx_init(&ifv_mtx, VLANNAME, NULL, MTX_DEF)
114#define	VLAN_LOCK_DESTROY()	mtx_destroy(&ifv_mtx)
115#define	VLAN_LOCK_ASSERT()	mtx_assert(&ifv_mtx, MA_OWNED)
116#define	VLAN_LOCK()	mtx_lock(&ifv_mtx)
117#define	VLAN_UNLOCK()	mtx_unlock(&ifv_mtx)
118
119static	int vlan_clone_create(struct if_clone *, int);
120static	void vlan_clone_destroy(struct ifnet *);
121static	void vlan_start(struct ifnet *ifp);
122static	void vlan_ifinit(void *foo);
123static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
124static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
125static	int vlan_setmulti(struct ifnet *ifp);
126static	int vlan_unconfig(struct ifnet *ifp);
127static	int vlan_config(struct ifvlan *ifv, struct ifnet *p);
128static	void vlan_link_state(struct ifnet *ifp, int link);
129
130struct if_clone vlan_cloner = IF_CLONE_INITIALIZER(VLANNAME,
131    vlan_clone_create, vlan_clone_destroy, 0, IF_MAXUNIT);
132
133/*
134 * Program our multicast filter. What we're actually doing is
135 * programming the multicast filter of the parent. This has the
136 * side effect of causing the parent interface to receive multicast
137 * traffic that it doesn't really want, which ends up being discarded
138 * later by the upper protocol layers. Unfortunately, there's no way
139 * to avoid this: there really is only one physical interface.
140 */
141static int
142vlan_setmulti(struct ifnet *ifp)
143{
144	struct ifnet		*ifp_p;
145	struct ifmultiaddr	*ifma, *rifma = NULL;
146	struct ifvlan		*sc;
147	struct vlan_mc_entry	*mc = NULL;
148	struct sockaddr_dl	sdl;
149	int			error;
150
151	/* Find the parent. */
152	sc = ifp->if_softc;
153	ifp_p = sc->ifv_p;
154
155	/*
156	 * If we don't have a parent, just remember the membership for
157	 * when we do.
158	 */
159	if (ifp_p == NULL)
160		return(0);
161
162	bzero((char *)&sdl, sizeof sdl);
163	sdl.sdl_len = sizeof sdl;
164	sdl.sdl_family = AF_LINK;
165	sdl.sdl_index = ifp_p->if_index;
166	sdl.sdl_type = IFT_ETHER;
167	sdl.sdl_alen = ETHER_ADDR_LEN;
168
169	/* First, remove any existing filter entries. */
170	while(SLIST_FIRST(&sc->vlan_mc_listhead) != NULL) {
171		mc = SLIST_FIRST(&sc->vlan_mc_listhead);
172		bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
173		error = if_delmulti(ifp_p, (struct sockaddr *)&sdl);
174		if (error)
175			return(error);
176		SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
177		free(mc, M_VLAN);
178	}
179
180	/* Now program new ones. */
181	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
182		if (ifma->ifma_addr->sa_family != AF_LINK)
183			continue;
184		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_WAITOK);
185		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
186		    (char *)&mc->mc_addr, ETHER_ADDR_LEN);
187		SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
188		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
189		    LLADDR(&sdl), ETHER_ADDR_LEN);
190		error = if_addmulti(ifp_p, (struct sockaddr *)&sdl, &rifma);
191		if (error)
192			return(error);
193	}
194
195	return(0);
196}
197
198/*
199 * VLAN support can be loaded as a module.  The only place in the
200 * system that's intimately aware of this is ether_input.  We hook
201 * into this code through vlan_input_p which is defined there and
202 * set here.  Noone else in the system should be aware of this so
203 * we use an explicit reference here.
204 *
205 * NB: Noone should ever need to check if vlan_input_p is null or
206 *     not.  This is because interfaces have a count of the number
207 *     of active vlans (if_nvlans) and this should never be bumped
208 *     except by vlan_config--which is in this module so therefore
209 *     the module must be loaded and vlan_input_p must be non-NULL.
210 */
211extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
212
213/* For MII eyes only... */
214extern	void (*vlan_link_state_p)(struct ifnet *, int);
215
216static int
217vlan_modevent(module_t mod, int type, void *data)
218{
219
220	switch (type) {
221	case MOD_LOAD:
222		LIST_INIT(&ifv_list);
223		VLAN_LOCK_INIT();
224		vlan_input_p = vlan_input;
225		vlan_link_state_p = vlan_link_state;
226		if_clone_attach(&vlan_cloner);
227		break;
228	case MOD_UNLOAD:
229		if_clone_detach(&vlan_cloner);
230		vlan_input_p = NULL;
231		vlan_link_state_p = NULL;
232		while (!LIST_EMPTY(&ifv_list))
233			vlan_clone_destroy(&LIST_FIRST(&ifv_list)->ifv_if);
234		VLAN_LOCK_DESTROY();
235		break;
236	}
237	return 0;
238}
239
240static moduledata_t vlan_mod = {
241	"if_vlan",
242	vlan_modevent,
243	0
244};
245
246DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
247
248static int
249vlan_clone_create(struct if_clone *ifc, int unit)
250{
251	struct ifvlan *ifv;
252	struct ifnet *ifp;
253
254	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
255	ifp = &ifv->ifv_if;
256	SLIST_INIT(&ifv->vlan_mc_listhead);
257
258	ifp->if_softc = ifv;
259	if_initname(ifp, ifc->ifc_name, unit);
260	/* NB: flags are not set here */
261	ifp->if_linkmib = &ifv->ifv_mib;
262	ifp->if_linkmiblen = sizeof ifv->ifv_mib;
263	/* NB: mtu is not set here */
264
265	ifp->if_init = vlan_ifinit;
266	ifp->if_start = vlan_start;
267	ifp->if_ioctl = vlan_ioctl;
268	ifp->if_snd.ifq_maxlen = ifqmaxlen;
269	ether_ifattach(ifp, ifv->ifv_ac.ac_enaddr);
270	/* Now undo some of the damage... */
271	ifp->if_baudrate = 0;
272	ifp->if_type = IFT_L2VLAN;
273	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
274
275	VLAN_LOCK();
276	LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list);
277	VLAN_UNLOCK();
278
279	return (0);
280}
281
282static void
283vlan_clone_destroy(struct ifnet *ifp)
284{
285	struct ifvlan *ifv = ifp->if_softc;
286
287	VLAN_LOCK();
288	LIST_REMOVE(ifv, ifv_list);
289	vlan_unconfig(ifp);
290	VLAN_UNLOCK();
291
292	ether_ifdetach(ifp);
293
294	free(ifv, M_VLAN);
295}
296
297static void
298vlan_ifinit(void *foo)
299{
300	return;
301}
302
303static void
304vlan_start(struct ifnet *ifp)
305{
306	struct ifvlan *ifv;
307	struct ifnet *p;
308	struct ether_vlan_header *evl;
309	struct mbuf *m;
310
311	ifv = ifp->if_softc;
312	p = ifv->ifv_p;
313
314	ifp->if_flags |= IFF_OACTIVE;
315	for (;;) {
316		IF_DEQUEUE(&ifp->if_snd, m);
317		if (m == 0)
318			break;
319		BPF_MTAP(ifp, m);
320
321		/*
322		 * Do not run parent's if_start() if the parent is not up,
323		 * or parent's driver will cause a system crash.
324		 */
325		if ((p->if_flags & (IFF_UP | IFF_RUNNING)) !=
326					(IFF_UP | IFF_RUNNING)) {
327			m_freem(m);
328			ifp->if_collisions++;
329			continue;
330		}
331
332		/*
333		 * If underlying interface can do VLAN tag insertion itself,
334		 * just pass the packet along. However, we need some way to
335		 * tell the interface where the packet came from so that it
336		 * knows how to find the VLAN tag to use, so we attach a
337		 * packet tag that holds it.
338		 */
339		if (p->if_capabilities & IFCAP_VLAN_HWTAGGING) {
340			struct m_tag *mtag = m_tag_alloc(MTAG_VLAN,
341							 MTAG_VLAN_TAG,
342							 sizeof (u_int),
343							 M_NOWAIT);
344			if (mtag == NULL) {
345				ifp->if_oerrors++;
346				m_freem(m);
347				continue;
348			}
349			*(u_int*)(mtag+1) = ifv->ifv_tag;
350			m_tag_prepend(m, mtag);
351		} else {
352			M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT);
353			if (m == NULL) {
354				if_printf(ifp, "unable to prepend VLAN header");
355				ifp->if_oerrors++;
356				continue;
357			}
358			/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
359
360			if (m->m_len < sizeof(*evl)) {
361				m = m_pullup(m, sizeof(*evl));
362				if (m == NULL) {
363					if_printf(ifp,
364					    "cannot pullup VLAN header");
365					ifp->if_oerrors++;
366					continue;
367				}
368			}
369
370			/*
371			 * Transform the Ethernet header into an Ethernet header
372			 * with 802.1Q encapsulation.
373			 */
374			bcopy(mtod(m, char *) + ifv->ifv_encaplen,
375			      mtod(m, char *), ETHER_HDR_LEN);
376			evl = mtod(m, struct ether_vlan_header *);
377			evl->evl_proto = evl->evl_encap_proto;
378			evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
379			evl->evl_tag = htons(ifv->ifv_tag);
380#ifdef DEBUG
381			printf("vlan_start: %*D\n", (int)sizeof *evl,
382			    (unsigned char *)evl, ":");
383#endif
384		}
385
386		/*
387		 * Send it, precisely as ether_output() would have.
388		 * We are already running at splimp.
389		 */
390		if (IF_HANDOFF(&p->if_snd, m, p))
391			ifp->if_opackets++;
392		else
393			ifp->if_oerrors++;
394	}
395	ifp->if_flags &= ~IFF_OACTIVE;
396
397	return;
398}
399
400static void
401vlan_input(struct ifnet *ifp, struct mbuf *m)
402{
403	struct ether_vlan_header *evl;
404	struct ifvlan *ifv;
405	struct m_tag *mtag;
406	u_int tag;
407
408	mtag = m_tag_locate(m, MTAG_VLAN, MTAG_VLAN_TAG, NULL);
409	if (mtag != NULL) {
410		/*
411		 * Packet is tagged, m contains a normal
412		 * Ethernet frame; the tag is stored out-of-band.
413		 */
414		tag = EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag));
415		m_tag_delete(m, mtag);
416	} else {
417		switch (ifp->if_type) {
418		case IFT_ETHER:
419			if (m->m_len < sizeof (*evl) &&
420			    (m = m_pullup(m, sizeof (*evl))) == NULL) {
421				if_printf(ifp, "cannot pullup VLAN header\n");
422				return;
423			}
424			evl = mtod(m, struct ether_vlan_header *);
425			KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN,
426				("vlan_input: bad encapsulated protocols (%u)",
427				 ntohs(evl->evl_encap_proto)));
428
429			tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
430
431			/*
432			 * Restore the original ethertype.  We'll remove
433			 * the encapsulation after we've found the vlan
434			 * interface corresponding to the tag.
435			 */
436			evl->evl_encap_proto = evl->evl_proto;
437			break;
438		default:
439			tag = (u_int) -1;
440#ifdef DIAGNOSTIC
441			panic("vlan_input: unsupported if type %u", ifp->if_type);
442#endif
443			break;
444		}
445	}
446
447	VLAN_LOCK();
448	LIST_FOREACH(ifv, &ifv_list, ifv_list)
449		if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
450			break;
451
452	if (ifv == NULL || (ifv->ifv_if.if_flags & IFF_UP) == 0) {
453		VLAN_UNLOCK();
454		m_freem(m);
455		ifp->if_noproto++;
456		return;
457	}
458	VLAN_UNLOCK();		/* XXX extend below? */
459
460	if (mtag == NULL) {
461		/*
462		 * Packet had an in-line encapsulation header;
463		 * remove it.  The original header has already
464		 * been fixed up above.
465		 */
466		bcopy(mtod(m, caddr_t),
467		      mtod(m, caddr_t) + ETHER_VLAN_ENCAP_LEN,
468		      ETHER_HDR_LEN);
469		m_adj(m, ETHER_VLAN_ENCAP_LEN);
470	}
471
472	m->m_pkthdr.rcvif = &ifv->ifv_if;
473	ifv->ifv_if.if_ipackets++;
474
475	/* Pass it back through the parent's input routine. */
476	(*ifp->if_input)(&ifv->ifv_if, m);
477}
478
479static int
480vlan_config(struct ifvlan *ifv, struct ifnet *p)
481{
482	struct ifaddr *ifa1, *ifa2;
483	struct sockaddr_dl *sdl1, *sdl2;
484
485	VLAN_LOCK_ASSERT();
486
487	if (p->if_data.ifi_type != IFT_ETHER)
488		return EPROTONOSUPPORT;
489	if (ifv->ifv_p)
490		return EBUSY;
491
492	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
493	ifv->ifv_mintu = ETHERMIN;
494	ifv->ifv_flags = 0;
495
496	/*
497	 * If the parent supports the VLAN_MTU capability,
498	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
499	 * enable it.
500	 */
501	p->if_nvlans++;
502	if (p->if_nvlans == 1 && (p->if_capabilities & IFCAP_VLAN_MTU) != 0) {
503		/*
504		 * Enable Tx/Rx of VLAN-sized frames.
505		 */
506		p->if_capenable |= IFCAP_VLAN_MTU;
507		if (p->if_flags & IFF_UP) {
508			struct ifreq ifr;
509			int error;
510
511			ifr.ifr_flags = p->if_flags;
512			error = (*p->if_ioctl)(p, SIOCSIFFLAGS,
513			    (caddr_t) &ifr);
514			if (error) {
515				p->if_nvlans--;
516				if (p->if_nvlans == 0)
517					p->if_capenable &= ~IFCAP_VLAN_MTU;
518				return (error);
519			}
520		}
521		ifv->ifv_mtufudge = 0;
522	} else if ((p->if_capabilities & IFCAP_VLAN_MTU) == 0) {
523		/*
524		 * Fudge the MTU by the encapsulation size.  This
525		 * makes us incompatible with strictly compliant
526		 * 802.1Q implementations, but allows us to use
527		 * the feature with other NetBSD implementations,
528		 * which might still be useful.
529		 */
530		ifv->ifv_mtufudge = ifv->ifv_encaplen;
531	}
532
533	ifv->ifv_p = p;
534	ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge;
535	/*
536	 * Copy only a selected subset of flags from the parent.
537	 * Other flags are none of our business.
538	 */
539	ifv->ifv_if.if_flags = (p->if_flags &
540	    (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_POINTOPOINT));
541	ifv->ifv_if.if_link_state = p->if_link_state;
542
543	/*
544	 * If the parent interface can do hardware-assisted
545	 * VLAN encapsulation, then propagate its hardware-
546	 * assisted checksumming flags.
547	 */
548	if (p->if_capabilities & IFCAP_VLAN_HWTAGGING)
549		ifv->ifv_if.if_capabilities |= p->if_capabilities & IFCAP_HWCSUM;
550
551	/*
552	 * Set up our ``Ethernet address'' to reflect the underlying
553	 * physical interface's.
554	 */
555	ifa1 = ifaddr_byindex(ifv->ifv_if.if_index);
556	ifa2 = ifaddr_byindex(p->if_index);
557	sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr;
558	sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr;
559	sdl1->sdl_type = IFT_ETHER;
560	sdl1->sdl_alen = ETHER_ADDR_LEN;
561	bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN);
562	bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
563
564	/*
565	 * Configure multicast addresses that may already be
566	 * joined on the vlan device.
567	 */
568	(void)vlan_setmulti(&ifv->ifv_if);
569
570	return 0;
571}
572
573static int
574vlan_unconfig(struct ifnet *ifp)
575{
576	struct ifaddr *ifa;
577	struct sockaddr_dl *sdl;
578	struct vlan_mc_entry *mc;
579	struct ifvlan *ifv;
580	struct ifnet *p;
581	int error;
582
583	VLAN_LOCK_ASSERT();
584
585	ifv = ifp->if_softc;
586	p = ifv->ifv_p;
587
588	if (p) {
589		struct sockaddr_dl sdl;
590
591		/*
592		 * Since the interface is being unconfigured, we need to
593		 * empty the list of multicast groups that we may have joined
594		 * while we were alive from the parent's list.
595		 */
596		bzero((char *)&sdl, sizeof sdl);
597		sdl.sdl_len = sizeof sdl;
598		sdl.sdl_family = AF_LINK;
599		sdl.sdl_index = p->if_index;
600		sdl.sdl_type = IFT_ETHER;
601		sdl.sdl_alen = ETHER_ADDR_LEN;
602
603		while(SLIST_FIRST(&ifv->vlan_mc_listhead) != NULL) {
604			mc = SLIST_FIRST(&ifv->vlan_mc_listhead);
605			bcopy((char *)&mc->mc_addr, LLADDR(&sdl), ETHER_ADDR_LEN);
606			error = if_delmulti(p, (struct sockaddr *)&sdl);
607			if (error)
608				return(error);
609			SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
610			free(mc, M_VLAN);
611		}
612
613		p->if_nvlans--;
614		if (p->if_nvlans == 0) {
615			/*
616			 * Disable Tx/Rx of VLAN-sized frames.
617			 */
618			p->if_capenable &= ~IFCAP_VLAN_MTU;
619			if (p->if_flags & IFF_UP) {
620				struct ifreq ifr;
621
622				ifr.ifr_flags = p->if_flags;
623				(*p->if_ioctl)(p, SIOCSIFFLAGS, (caddr_t) &ifr);
624			}
625		}
626	}
627
628	/* Disconnect from parent. */
629	ifv->ifv_p = NULL;
630	ifv->ifv_if.if_mtu = ETHERMTU;		/* XXX why not 0? */
631	ifv->ifv_flags = 0;
632	ifv->ifv_if.if_link_state = LINK_STATE_UNKNOWN;
633
634	/* Clear our MAC address. */
635	ifa = ifaddr_byindex(ifv->ifv_if.if_index);
636	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
637	sdl->sdl_type = IFT_ETHER;
638	sdl->sdl_alen = ETHER_ADDR_LEN;
639	bzero(LLADDR(sdl), ETHER_ADDR_LEN);
640	bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN);
641
642	return 0;
643}
644
645static int
646vlan_set_promisc(struct ifnet *ifp)
647{
648	struct ifvlan *ifv = ifp->if_softc;
649	int error = 0;
650
651	if ((ifp->if_flags & IFF_PROMISC) != 0) {
652		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
653			error = ifpromisc(ifv->ifv_p, 1);
654			if (error == 0)
655				ifv->ifv_flags |= IFVF_PROMISC;
656		}
657	} else {
658		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
659			error = ifpromisc(ifv->ifv_p, 0);
660			if (error == 0)
661				ifv->ifv_flags &= ~IFVF_PROMISC;
662		}
663	}
664
665	return (error);
666}
667
668/* Inform all vlans that their parent has changed link state */
669static void
670vlan_link_state(struct ifnet *ifp, int link)
671{
672	struct ifvlan *ifv;
673
674	VLAN_LOCK();
675	LIST_FOREACH(ifv, &ifv_list, ifv_list) {
676		if (ifv->ifv_p == ifp) {
677			ifv->ifv_if.if_link_state = ifv->ifv_p->if_link_state;
678			rt_ifmsg(&(ifv->ifv_if));
679			KNOTE(&ifp->if_klist, link);
680		}
681	}
682	VLAN_UNLOCK();
683}
684
685static int
686vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
687{
688	struct ifaddr *ifa;
689	struct ifnet *p;
690	struct ifreq *ifr;
691	struct ifvlan *ifv;
692	struct vlanreq vlr;
693	int error = 0;
694
695	ifr = (struct ifreq *)data;
696	ifa = (struct ifaddr *)data;
697	ifv = ifp->if_softc;
698
699	switch (cmd) {
700	case SIOCSIFADDR:
701		ifp->if_flags |= IFF_UP;
702
703		switch (ifa->ifa_addr->sa_family) {
704#ifdef INET
705		case AF_INET:
706			arp_ifinit(&ifv->ifv_if, ifa);
707			break;
708#endif
709		default:
710			break;
711		}
712		break;
713
714	case SIOCGIFADDR:
715		{
716			struct sockaddr *sa;
717
718			sa = (struct sockaddr *) &ifr->ifr_data;
719			bcopy(IFP2AC(ifp)->ac_enaddr,
720			      (caddr_t) sa->sa_data, ETHER_ADDR_LEN);
721		}
722		break;
723
724	case SIOCGIFMEDIA:
725		VLAN_LOCK();
726		if (ifv->ifv_p != NULL) {
727			error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p,
728					SIOCGIFMEDIA, data);
729			VLAN_UNLOCK();
730			/* Limit the result to the parent's current config. */
731			if (error == 0) {
732				struct ifmediareq *ifmr;
733
734				ifmr = (struct ifmediareq *) data;
735				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
736					ifmr->ifm_count = 1;
737					error = copyout(&ifmr->ifm_current,
738						ifmr->ifm_ulist,
739						sizeof(int));
740				}
741			}
742		} else {
743			VLAN_UNLOCK();
744			error = EINVAL;
745		}
746		break;
747
748	case SIOCSIFMEDIA:
749		error = EINVAL;
750		break;
751
752	case SIOCSIFMTU:
753		/*
754		 * Set the interface MTU.
755		 */
756		VLAN_LOCK();
757		if (ifv->ifv_p != NULL) {
758			if (ifr->ifr_mtu >
759			     (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) ||
760			    ifr->ifr_mtu <
761			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
762				error = EINVAL;
763			else
764				ifp->if_mtu = ifr->ifr_mtu;
765		} else
766			error = EINVAL;
767		VLAN_UNLOCK();
768		break;
769
770	case SIOCSETVLAN:
771		error = copyin(ifr->ifr_data, &vlr, sizeof vlr);
772		if (error)
773			break;
774		if (vlr.vlr_parent[0] == '\0') {
775			VLAN_LOCK();
776			vlan_unconfig(ifp);
777			if (ifp->if_flags & IFF_UP)
778				if_down(ifp);
779			ifp->if_flags &= ~IFF_RUNNING;
780			VLAN_UNLOCK();
781			break;
782		}
783		p = ifunit(vlr.vlr_parent);
784		if (p == 0) {
785			error = ENOENT;
786			break;
787		}
788		/*
789		 * Don't let the caller set up a VLAN tag with
790		 * anything except VLID bits.
791		 */
792		if (vlr.vlr_tag & ~EVL_VLID_MASK) {
793			error = EINVAL;
794			break;
795		}
796		VLAN_LOCK();
797		error = vlan_config(ifv, p);
798		if (error) {
799			VLAN_UNLOCK();
800			break;
801		}
802		ifv->ifv_tag = vlr.vlr_tag;
803		ifp->if_flags |= IFF_RUNNING;
804		VLAN_UNLOCK();
805
806		/* Update promiscuous mode, if necessary. */
807		vlan_set_promisc(ifp);
808		break;
809
810	case SIOCGETVLAN:
811		bzero(&vlr, sizeof vlr);
812		VLAN_LOCK();
813		if (ifv->ifv_p) {
814			strlcpy(vlr.vlr_parent, ifv->ifv_p->if_xname,
815			    sizeof(vlr.vlr_parent));
816			vlr.vlr_tag = ifv->ifv_tag;
817		}
818		VLAN_UNLOCK();
819		error = copyout(&vlr, ifr->ifr_data, sizeof vlr);
820		break;
821
822	case SIOCSIFFLAGS:
823		/*
824		 * For promiscuous mode, we enable promiscuous mode on
825		 * the parent if we need promiscuous on the VLAN interface.
826		 */
827		if (ifv->ifv_p != NULL)
828			error = vlan_set_promisc(ifp);
829		break;
830
831	case SIOCADDMULTI:
832	case SIOCDELMULTI:
833		error = vlan_setmulti(ifp);
834		break;
835	default:
836		error = EINVAL;
837	}
838	return error;
839}
840