uipc_socket.c revision 131999
1/*
2 * Copyright (c) 2004 The FreeBSD Foundation
3 * Copyright (c) 2004 Robert Watson
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/kern/uipc_socket.c 131999 2004-07-11 23:13:14Z rwatson $");
36
37#include "opt_inet.h"
38#include "opt_mac.h"
39#include "opt_zero.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/fcntl.h>
44#include <sys/limits.h>
45#include <sys/lock.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/mutex.h>
50#include <sys/domain.h>
51#include <sys/file.h>			/* for struct knote */
52#include <sys/kernel.h>
53#include <sys/event.h>
54#include <sys/poll.h>
55#include <sys/proc.h>
56#include <sys/protosw.h>
57#include <sys/socket.h>
58#include <sys/socketvar.h>
59#include <sys/resourcevar.h>
60#include <sys/signalvar.h>
61#include <sys/sysctl.h>
62#include <sys/uio.h>
63#include <sys/jail.h>
64
65#include <vm/uma.h>
66
67
68static int	soreceive_rcvoob(struct socket *so, struct uio *uio,
69		    int flags);
70
71#ifdef INET
72static int	 do_setopt_accept_filter(struct socket *so, struct sockopt *sopt);
73#endif
74
75static void	filt_sordetach(struct knote *kn);
76static int	filt_soread(struct knote *kn, long hint);
77static void	filt_sowdetach(struct knote *kn);
78static int	filt_sowrite(struct knote *kn, long hint);
79static int	filt_solisten(struct knote *kn, long hint);
80
81static struct filterops solisten_filtops =
82	{ 1, NULL, filt_sordetach, filt_solisten };
83static struct filterops soread_filtops =
84	{ 1, NULL, filt_sordetach, filt_soread };
85static struct filterops sowrite_filtops =
86	{ 1, NULL, filt_sowdetach, filt_sowrite };
87
88uma_zone_t socket_zone;
89so_gen_t	so_gencnt;	/* generation count for sockets */
90
91MALLOC_DEFINE(M_SONAME, "soname", "socket name");
92MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
93
94SYSCTL_DECL(_kern_ipc);
95
96static int somaxconn = SOMAXCONN;
97SYSCTL_INT(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLFLAG_RW,
98    &somaxconn, 0, "Maximum pending socket connection queue size");
99static int numopensockets;
100SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
101    &numopensockets, 0, "Number of open sockets");
102#ifdef ZERO_COPY_SOCKETS
103/* These aren't static because they're used in other files. */
104int so_zero_copy_send = 1;
105int so_zero_copy_receive = 1;
106SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
107    "Zero copy controls");
108SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
109    &so_zero_copy_receive, 0, "Enable zero copy receive");
110SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
111    &so_zero_copy_send, 0, "Enable zero copy send");
112#endif /* ZERO_COPY_SOCKETS */
113
114/*
115 * accept_mtx locks down per-socket fields relating to accept queues.  See
116 * socketvar.h for an annotation of the protected fields of struct socket.
117 */
118struct mtx accept_mtx;
119MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
120
121/*
122 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
123 * so_gencnt field.
124 *
125 * XXXRW: These variables might be better manipulated using atomic operations
126 * for improved efficiency.
127 */
128static struct mtx so_global_mtx;
129MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
130
131/*
132 * Socket operation routines.
133 * These routines are called by the routines in
134 * sys_socket.c or from a system process, and
135 * implement the semantics of socket operations by
136 * switching out to the protocol specific routines.
137 */
138
139/*
140 * Get a socket structure from our zone, and initialize it.
141 * Note that it would probably be better to allocate socket
142 * and PCB at the same time, but I'm not convinced that all
143 * the protocols can be easily modified to do this.
144 *
145 * soalloc() returns a socket with a ref count of 0.
146 */
147struct socket *
148soalloc(int mflags)
149{
150	struct socket *so;
151#ifdef MAC
152	int error;
153#endif
154
155	so = uma_zalloc(socket_zone, mflags | M_ZERO);
156	if (so != NULL) {
157#ifdef MAC
158		error = mac_init_socket(so, mflags);
159		if (error != 0) {
160			uma_zfree(socket_zone, so);
161			so = NULL;
162			return so;
163		}
164#endif
165		SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
166		SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
167		/* sx_init(&so->so_sxlock, "socket sxlock"); */
168		TAILQ_INIT(&so->so_aiojobq);
169		mtx_lock(&so_global_mtx);
170		so->so_gencnt = ++so_gencnt;
171		++numopensockets;
172		mtx_unlock(&so_global_mtx);
173	}
174	return so;
175}
176
177/*
178 * socreate returns a socket with a ref count of 1.  The socket should be
179 * closed with soclose().
180 */
181int
182socreate(dom, aso, type, proto, cred, td)
183	int dom;
184	struct socket **aso;
185	int type;
186	int proto;
187	struct ucred *cred;
188	struct thread *td;
189{
190	struct protosw *prp;
191	struct socket *so;
192	int error;
193
194	if (proto)
195		prp = pffindproto(dom, proto, type);
196	else
197		prp = pffindtype(dom, type);
198
199	if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL)
200		return (EPROTONOSUPPORT);
201
202	if (jailed(cred) && jail_socket_unixiproute_only &&
203	    prp->pr_domain->dom_family != PF_LOCAL &&
204	    prp->pr_domain->dom_family != PF_INET &&
205	    prp->pr_domain->dom_family != PF_ROUTE) {
206		return (EPROTONOSUPPORT);
207	}
208
209	if (prp->pr_type != type)
210		return (EPROTOTYPE);
211	so = soalloc(M_WAITOK);
212	if (so == NULL)
213		return (ENOBUFS);
214
215	TAILQ_INIT(&so->so_incomp);
216	TAILQ_INIT(&so->so_comp);
217	so->so_type = type;
218	so->so_cred = crhold(cred);
219	so->so_proto = prp;
220#ifdef MAC
221	mac_create_socket(cred, so);
222#endif
223	SOCK_LOCK(so);
224	soref(so);
225	SOCK_UNLOCK(so);
226	error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
227	if (error) {
228		SOCK_LOCK(so);
229		so->so_state |= SS_NOFDREF;
230		sorele(so);
231		return (error);
232	}
233	*aso = so;
234	return (0);
235}
236
237int
238sobind(so, nam, td)
239	struct socket *so;
240	struct sockaddr *nam;
241	struct thread *td;
242{
243
244	return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
245}
246
247void
248sodealloc(struct socket *so)
249{
250
251	KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
252	mtx_lock(&so_global_mtx);
253	so->so_gencnt = ++so_gencnt;
254	mtx_unlock(&so_global_mtx);
255	if (so->so_rcv.sb_hiwat)
256		(void)chgsbsize(so->so_cred->cr_uidinfo,
257		    &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
258	if (so->so_snd.sb_hiwat)
259		(void)chgsbsize(so->so_cred->cr_uidinfo,
260		    &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
261#ifdef INET
262	/* remove acccept filter if one is present. */
263	if (so->so_accf != NULL)
264		do_setopt_accept_filter(so, NULL);
265#endif
266#ifdef MAC
267	mac_destroy_socket(so);
268#endif
269	crfree(so->so_cred);
270	SOCKBUF_LOCK_DESTROY(&so->so_snd);
271	SOCKBUF_LOCK_DESTROY(&so->so_rcv);
272	/* sx_destroy(&so->so_sxlock); */
273	uma_zfree(socket_zone, so);
274	/*
275	 * XXXRW: Seems like a shame to grab the mutex again down here, but
276	 * we don't want to decrement the socket count until after we free
277	 * the socket, and we can't increment the gencnt on the socket after
278	 * we free, it so...
279	 */
280	mtx_lock(&so_global_mtx);
281	--numopensockets;
282	mtx_unlock(&so_global_mtx);
283}
284
285int
286solisten(so, backlog, td)
287	struct socket *so;
288	int backlog;
289	struct thread *td;
290{
291	int error;
292
293	/*
294	 * XXXRW: Ordering issue here -- perhaps we need to set
295	 * SO_ACCEPTCONN before the call to pru_listen()?
296	 * XXXRW: General atomic test-and-set concerns here also.
297	 */
298	if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
299			    SS_ISDISCONNECTING))
300		return (EINVAL);
301	error = (*so->so_proto->pr_usrreqs->pru_listen)(so, td);
302	if (error)
303		return (error);
304	ACCEPT_LOCK();
305	if (TAILQ_EMPTY(&so->so_comp)) {
306		SOCK_LOCK(so);
307		so->so_options |= SO_ACCEPTCONN;
308		SOCK_UNLOCK(so);
309	}
310	if (backlog < 0 || backlog > somaxconn)
311		backlog = somaxconn;
312	so->so_qlimit = backlog;
313	ACCEPT_UNLOCK();
314	return (0);
315}
316
317void
318sofree(so)
319	struct socket *so;
320{
321	struct socket *head;
322
323	KASSERT(so->so_count == 0, ("socket %p so_count not 0", so));
324	SOCK_LOCK_ASSERT(so);
325
326	if (so->so_pcb != NULL || (so->so_state & SS_NOFDREF) == 0) {
327		SOCK_UNLOCK(so);
328		return;
329	}
330
331	SOCK_UNLOCK(so);
332	ACCEPT_LOCK();
333	head = so->so_head;
334	if (head != NULL) {
335		KASSERT((so->so_qstate & SQ_COMP) != 0 ||
336		    (so->so_qstate & SQ_INCOMP) != 0,
337		    ("sofree: so_head != NULL, but neither SQ_COMP nor "
338		    "SQ_INCOMP"));
339		KASSERT((so->so_qstate & SQ_COMP) == 0 ||
340		    (so->so_qstate & SQ_INCOMP) == 0,
341		    ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
342		/*
343		 * accept(2) is responsible draining the completed
344		 * connection queue and freeing those sockets, so
345		 * we just return here if this socket is currently
346		 * on the completed connection queue.  Otherwise,
347		 * accept(2) may hang after select(2) has indicating
348		 * that a listening socket was ready.  If it's an
349		 * incomplete connection, we remove it from the queue
350		 * and free it; otherwise, it won't be released until
351		 * the listening socket is closed.
352		 */
353		if ((so->so_qstate & SQ_COMP) != 0) {
354			ACCEPT_UNLOCK();
355			return;
356		}
357		TAILQ_REMOVE(&head->so_incomp, so, so_list);
358		head->so_incqlen--;
359		so->so_qstate &= ~SQ_INCOMP;
360		so->so_head = NULL;
361	}
362	KASSERT((so->so_qstate & SQ_COMP) == 0 &&
363	    (so->so_qstate & SQ_INCOMP) == 0,
364	    ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
365	    so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
366	ACCEPT_UNLOCK();
367	SOCKBUF_LOCK(&so->so_snd);
368	so->so_snd.sb_flags |= SB_NOINTR;
369	(void)sblock(&so->so_snd, M_WAITOK);
370	/*
371	 * socantsendmore_locked() drops the socket buffer mutex so that it
372	 * can safely perform wakeups.  Re-acquire the mutex before
373	 * continuing.
374	 */
375	socantsendmore_locked(so);
376	SOCKBUF_LOCK(&so->so_snd);
377	sbunlock(&so->so_snd);
378	sbrelease_locked(&so->so_snd, so);
379	SOCKBUF_UNLOCK(&so->so_snd);
380	sorflush(so);
381	sodealloc(so);
382}
383
384/*
385 * Close a socket on last file table reference removal.
386 * Initiate disconnect if connected.
387 * Free socket when disconnect complete.
388 *
389 * This function will sorele() the socket.  Note that soclose() may be
390 * called prior to the ref count reaching zero.  The actual socket
391 * structure will not be freed until the ref count reaches zero.
392 */
393int
394soclose(so)
395	struct socket *so;
396{
397	int error = 0;
398
399	funsetown(&so->so_sigio);
400	if (so->so_options & SO_ACCEPTCONN) {
401		struct socket *sp;
402		ACCEPT_LOCK();
403		while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
404			TAILQ_REMOVE(&so->so_incomp, sp, so_list);
405			so->so_incqlen--;
406			sp->so_qstate &= ~SQ_INCOMP;
407			sp->so_head = NULL;
408			ACCEPT_UNLOCK();
409			(void) soabort(sp);
410			ACCEPT_LOCK();
411		}
412		while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
413			TAILQ_REMOVE(&so->so_comp, sp, so_list);
414			so->so_qlen--;
415			sp->so_qstate &= ~SQ_COMP;
416			sp->so_head = NULL;
417			ACCEPT_UNLOCK();
418			(void) soabort(sp);
419			ACCEPT_LOCK();
420		}
421		ACCEPT_UNLOCK();
422	}
423	if (so->so_pcb == NULL)
424		goto discard;
425	if (so->so_state & SS_ISCONNECTED) {
426		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
427			error = sodisconnect(so);
428			if (error)
429				goto drop;
430		}
431		if (so->so_options & SO_LINGER) {
432			if ((so->so_state & SS_ISDISCONNECTING) &&
433			    (so->so_state & SS_NBIO))
434				goto drop;
435			while (so->so_state & SS_ISCONNECTED) {
436				error = tsleep(&so->so_timeo,
437				    PSOCK | PCATCH, "soclos", so->so_linger * hz);
438				if (error)
439					break;
440			}
441		}
442	}
443drop:
444	if (so->so_pcb != NULL) {
445		int error2 = (*so->so_proto->pr_usrreqs->pru_detach)(so);
446		if (error == 0)
447			error = error2;
448	}
449discard:
450	SOCK_LOCK(so);
451	KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
452	so->so_state |= SS_NOFDREF;
453	sorele(so);
454	return (error);
455}
456
457/*
458 * soabort() must not be called with any socket locks held, as it calls
459 * into the protocol, which will call back into the socket code causing
460 * it to acquire additional socket locks that may cause recursion or lock
461 * order reversals.
462 */
463int
464soabort(so)
465	struct socket *so;
466{
467	int error;
468
469	error = (*so->so_proto->pr_usrreqs->pru_abort)(so);
470	if (error) {
471		SOCK_LOCK(so);
472		sotryfree(so);	/* note: does not decrement the ref count */
473		return error;
474	}
475	return (0);
476}
477
478int
479soaccept(so, nam)
480	struct socket *so;
481	struct sockaddr **nam;
482{
483	int error;
484
485	SOCK_LOCK(so);
486	KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
487	so->so_state &= ~SS_NOFDREF;
488	SOCK_UNLOCK(so);
489	error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
490	return (error);
491}
492
493int
494soconnect(so, nam, td)
495	struct socket *so;
496	struct sockaddr *nam;
497	struct thread *td;
498{
499	int error;
500
501	if (so->so_options & SO_ACCEPTCONN)
502		return (EOPNOTSUPP);
503	/*
504	 * If protocol is connection-based, can only connect once.
505	 * Otherwise, if connected, try to disconnect first.
506	 * This allows user to disconnect by connecting to, e.g.,
507	 * a null address.
508	 */
509	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
510	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
511	    (error = sodisconnect(so))))
512		error = EISCONN;
513	else
514		error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
515	return (error);
516}
517
518int
519soconnect2(so1, so2)
520	struct socket *so1;
521	struct socket *so2;
522{
523
524	return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
525}
526
527int
528sodisconnect(so)
529	struct socket *so;
530{
531	int error;
532
533	if ((so->so_state & SS_ISCONNECTED) == 0)
534		return (ENOTCONN);
535	if (so->so_state & SS_ISDISCONNECTING)
536		return (EALREADY);
537	error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
538	return (error);
539}
540
541#define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
542/*
543 * Send on a socket.
544 * If send must go all at once and message is larger than
545 * send buffering, then hard error.
546 * Lock against other senders.
547 * If must go all at once and not enough room now, then
548 * inform user that this would block and do nothing.
549 * Otherwise, if nonblocking, send as much as possible.
550 * The data to be sent is described by "uio" if nonzero,
551 * otherwise by the mbuf chain "top" (which must be null
552 * if uio is not).  Data provided in mbuf chain must be small
553 * enough to send all at once.
554 *
555 * Returns nonzero on error, timeout or signal; callers
556 * must check for short counts if EINTR/ERESTART are returned.
557 * Data and control buffers are freed on return.
558 */
559
560#ifdef ZERO_COPY_SOCKETS
561struct so_zerocopy_stats{
562	int size_ok;
563	int align_ok;
564	int found_ifp;
565};
566struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
567#include <netinet/in.h>
568#include <net/route.h>
569#include <netinet/in_pcb.h>
570#include <vm/vm.h>
571#include <vm/vm_page.h>
572#include <vm/vm_object.h>
573#endif /*ZERO_COPY_SOCKETS*/
574
575int
576sosend(so, addr, uio, top, control, flags, td)
577	struct socket *so;
578	struct sockaddr *addr;
579	struct uio *uio;
580	struct mbuf *top;
581	struct mbuf *control;
582	int flags;
583	struct thread *td;
584{
585	struct mbuf **mp;
586	struct mbuf *m;
587	long space, len = 0, resid;
588	int clen = 0, error, dontroute;
589	int atomic = sosendallatonce(so) || top;
590#ifdef ZERO_COPY_SOCKETS
591	int cow_send;
592#endif /* ZERO_COPY_SOCKETS */
593
594	if (uio != NULL)
595		resid = uio->uio_resid;
596	else
597		resid = top->m_pkthdr.len;
598	/*
599	 * In theory resid should be unsigned.
600	 * However, space must be signed, as it might be less than 0
601	 * if we over-committed, and we must use a signed comparison
602	 * of space and resid.  On the other hand, a negative resid
603	 * causes us to loop sending 0-length segments to the protocol.
604	 *
605	 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
606	 * type sockets since that's an error.
607	 */
608	if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
609		error = EINVAL;
610		goto out;
611	}
612
613	dontroute =
614	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
615	    (so->so_proto->pr_flags & PR_ATOMIC);
616	if (td != NULL)
617		td->td_proc->p_stats->p_ru.ru_msgsnd++;
618	if (control != NULL)
619		clen = control->m_len;
620#define	snderr(errno)	{ error = (errno); goto release; }
621
622	SOCKBUF_LOCK(&so->so_snd);
623restart:
624	SOCKBUF_LOCK_ASSERT(&so->so_snd);
625	error = sblock(&so->so_snd, SBLOCKWAIT(flags));
626	if (error)
627		goto out_locked;
628	do {
629		SOCKBUF_LOCK_ASSERT(&so->so_snd);
630		if (so->so_snd.sb_state & SBS_CANTSENDMORE)
631			snderr(EPIPE);
632		if (so->so_error) {
633			error = so->so_error;
634			so->so_error = 0;
635			goto release;
636		}
637		if ((so->so_state & SS_ISCONNECTED) == 0) {
638			/*
639			 * `sendto' and `sendmsg' is allowed on a connection-
640			 * based socket if it supports implied connect.
641			 * Return ENOTCONN if not connected and no address is
642			 * supplied.
643			 */
644			if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
645			    (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
646				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
647				    !(resid == 0 && clen != 0))
648					snderr(ENOTCONN);
649			} else if (addr == NULL)
650			    snderr(so->so_proto->pr_flags & PR_CONNREQUIRED ?
651				   ENOTCONN : EDESTADDRREQ);
652		}
653		space = sbspace(&so->so_snd);
654		if (flags & MSG_OOB)
655			space += 1024;
656		if ((atomic && resid > so->so_snd.sb_hiwat) ||
657		    clen > so->so_snd.sb_hiwat)
658			snderr(EMSGSIZE);
659		if (space < resid + clen &&
660		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
661			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO))
662				snderr(EWOULDBLOCK);
663			sbunlock(&so->so_snd);
664			error = sbwait(&so->so_snd);
665			if (error)
666				goto out_locked;
667			goto restart;
668		}
669		SOCKBUF_UNLOCK(&so->so_snd);
670		mp = &top;
671		space -= clen;
672		do {
673		    if (uio == NULL) {
674			/*
675			 * Data is prepackaged in "top".
676			 */
677			resid = 0;
678			if (flags & MSG_EOR)
679				top->m_flags |= M_EOR;
680		    } else do {
681#ifdef ZERO_COPY_SOCKETS
682			cow_send = 0;
683#endif /* ZERO_COPY_SOCKETS */
684			if (resid >= MINCLSIZE) {
685#ifdef ZERO_COPY_SOCKETS
686				if (top == NULL) {
687					MGETHDR(m, M_TRYWAIT, MT_DATA);
688					if (m == NULL) {
689						error = ENOBUFS;
690						SOCKBUF_LOCK(&so->so_snd);
691						goto release;
692					}
693					m->m_pkthdr.len = 0;
694					m->m_pkthdr.rcvif = (struct ifnet *)0;
695				} else {
696					MGET(m, M_TRYWAIT, MT_DATA);
697					if (m == NULL) {
698						error = ENOBUFS;
699						SOCKBUF_LOCK(&so->so_snd);
700						goto release;
701					}
702				}
703				if (so_zero_copy_send &&
704				    resid>=PAGE_SIZE &&
705				    space>=PAGE_SIZE &&
706				    uio->uio_iov->iov_len>=PAGE_SIZE) {
707					so_zerocp_stats.size_ok++;
708					if (!((vm_offset_t)
709					  uio->uio_iov->iov_base & PAGE_MASK)){
710						so_zerocp_stats.align_ok++;
711						cow_send = socow_setup(m, uio);
712					}
713				}
714				if (!cow_send) {
715					MCLGET(m, M_TRYWAIT);
716					if ((m->m_flags & M_EXT) == 0) {
717						m_free(m);
718						m = NULL;
719					} else {
720						len = min(min(MCLBYTES, resid), space);
721					}
722				} else
723					len = PAGE_SIZE;
724#else /* ZERO_COPY_SOCKETS */
725				if (top == NULL) {
726					m = m_getcl(M_TRYWAIT, MT_DATA, M_PKTHDR);
727					m->m_pkthdr.len = 0;
728					m->m_pkthdr.rcvif = (struct ifnet *)0;
729				} else
730					m = m_getcl(M_TRYWAIT, MT_DATA, 0);
731				len = min(min(MCLBYTES, resid), space);
732#endif /* ZERO_COPY_SOCKETS */
733			} else {
734				if (top == NULL) {
735					m = m_gethdr(M_TRYWAIT, MT_DATA);
736					m->m_pkthdr.len = 0;
737					m->m_pkthdr.rcvif = (struct ifnet *)0;
738
739					len = min(min(MHLEN, resid), space);
740					/*
741					 * For datagram protocols, leave room
742					 * for protocol headers in first mbuf.
743					 */
744					if (atomic && m && len < MHLEN)
745						MH_ALIGN(m, len);
746				} else {
747					m = m_get(M_TRYWAIT, MT_DATA);
748					len = min(min(MLEN, resid), space);
749				}
750			}
751			if (m == NULL) {
752				error = ENOBUFS;
753				SOCKBUF_LOCK(&so->so_snd);
754				goto release;
755			}
756
757			space -= len;
758#ifdef ZERO_COPY_SOCKETS
759			if (cow_send)
760				error = 0;
761			else
762#endif /* ZERO_COPY_SOCKETS */
763			error = uiomove(mtod(m, void *), (int)len, uio);
764			resid = uio->uio_resid;
765			m->m_len = len;
766			*mp = m;
767			top->m_pkthdr.len += len;
768			if (error) {
769				SOCKBUF_LOCK(&so->so_snd);
770				goto release;
771			}
772			mp = &m->m_next;
773			if (resid <= 0) {
774				if (flags & MSG_EOR)
775					top->m_flags |= M_EOR;
776				break;
777			}
778		    } while (space > 0 && atomic);
779		    if (dontroute) {
780			    SOCK_LOCK(so);
781			    so->so_options |= SO_DONTROUTE;
782			    SOCK_UNLOCK(so);
783		    }
784		    /*
785		     * XXX all the SBS_CANTSENDMORE checks previously
786		     * done could be out of date.  We could have recieved
787		     * a reset packet in an interrupt or maybe we slept
788		     * while doing page faults in uiomove() etc. We could
789		     * probably recheck again inside the splnet() protection
790		     * here, but there are probably other places that this
791		     * also happens.  We must rethink this.
792		     */
793		    error = (*so->so_proto->pr_usrreqs->pru_send)(so,
794			(flags & MSG_OOB) ? PRUS_OOB :
795			/*
796			 * If the user set MSG_EOF, the protocol
797			 * understands this flag and nothing left to
798			 * send then use PRU_SEND_EOF instead of PRU_SEND.
799			 */
800			((flags & MSG_EOF) &&
801			 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
802			 (resid <= 0)) ?
803				PRUS_EOF :
804			/* If there is more to send set PRUS_MORETOCOME */
805			(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
806			top, addr, control, td);
807		    if (dontroute) {
808			    SOCK_LOCK(so);
809			    so->so_options &= ~SO_DONTROUTE;
810			    SOCK_UNLOCK(so);
811		    }
812		    clen = 0;
813		    control = NULL;
814		    top = NULL;
815		    mp = &top;
816		    if (error) {
817			SOCKBUF_LOCK(&so->so_snd);
818			goto release;
819		    }
820		} while (resid && space > 0);
821		SOCKBUF_LOCK(&so->so_snd);
822	} while (resid);
823
824release:
825	SOCKBUF_LOCK_ASSERT(&so->so_snd);
826	sbunlock(&so->so_snd);
827out_locked:
828	SOCKBUF_LOCK_ASSERT(&so->so_snd);
829	SOCKBUF_UNLOCK(&so->so_snd);
830out:
831	if (top != NULL)
832		m_freem(top);
833	if (control != NULL)
834		m_freem(control);
835	return (error);
836}
837
838/*
839 * The part of soreceive() that implements reading non-inline out-of-band
840 * data from a socket.  For more complete comments, see soreceive(), from
841 * which this code originated.
842 *
843 * XXXRW: Note that soreceive_rcvoob(), unlike the remainder of soreiceve(),
844 * is unable to return an mbuf chain to the caller.
845 */
846static int
847soreceive_rcvoob(so, uio, flags)
848	struct socket *so;
849	struct uio *uio;
850	int flags;
851{
852	struct protosw *pr = so->so_proto;
853	struct mbuf *m;
854	int error;
855
856	KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
857
858	m = m_get(M_TRYWAIT, MT_DATA);
859	if (m == NULL)
860		return (ENOBUFS);
861	error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
862	if (error)
863		goto bad;
864	do {
865#ifdef ZERO_COPY_SOCKETS
866		if (so_zero_copy_receive) {
867			vm_page_t pg;
868			int disposable;
869
870			if ((m->m_flags & M_EXT)
871			 && (m->m_ext.ext_type == EXT_DISPOSABLE))
872				disposable = 1;
873			else
874				disposable = 0;
875
876			pg = PHYS_TO_VM_PAGE(vtophys(mtod(m, caddr_t)));
877			if (uio->uio_offset == -1)
878				uio->uio_offset =IDX_TO_OFF(pg->pindex);
879
880			error = uiomoveco(mtod(m, void *),
881					  min(uio->uio_resid, m->m_len),
882					  uio, pg->object,
883					  disposable);
884		} else
885#endif /* ZERO_COPY_SOCKETS */
886		error = uiomove(mtod(m, void *),
887		    (int) min(uio->uio_resid, m->m_len), uio);
888		m = m_free(m);
889	} while (uio->uio_resid && error == 0 && m);
890bad:
891	if (m != NULL)
892		m_freem(m);
893	return (error);
894}
895
896/*
897 * Following replacement or removal of the first mbuf on the first mbuf chain
898 * of a socket buffer, push necessary state changes back into the socket
899 * buffer so that other consumers see the values consistently.  'nextrecord'
900 * is the callers locally stored value of the original value of
901 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
902 * NOTE: 'nextrecord' may be NULL.
903 */
904static __inline void
905sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
906{
907
908	SOCKBUF_LOCK_ASSERT(sb);
909	/*
910	 * First, update for the new value of nextrecord.  If necessary, make
911	 * it the first record.
912	 */
913	if (sb->sb_mb != NULL)
914		sb->sb_mb->m_nextpkt = nextrecord;
915	else
916		sb->sb_mb = nextrecord;
917
918        /*
919         * Now update any dependent socket buffer fields to reflect the new
920         * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
921	 * addition of a second clause that takes care of the case where
922	 * sb_mb has been updated, but remains the last record.
923         */
924        if (sb->sb_mb == NULL) {
925                sb->sb_mbtail = NULL;
926                sb->sb_lastrecord = NULL;
927        } else if (sb->sb_mb->m_nextpkt == NULL)
928                sb->sb_lastrecord = sb->sb_mb;
929}
930
931
932/*
933 * Implement receive operations on a socket.
934 * We depend on the way that records are added to the sockbuf
935 * by sbappend*.  In particular, each record (mbufs linked through m_next)
936 * must begin with an address if the protocol so specifies,
937 * followed by an optional mbuf or mbufs containing ancillary data,
938 * and then zero or more mbufs of data.
939 * In order to avoid blocking network interrupts for the entire time here,
940 * we splx() while doing the actual copy to user space.
941 * Although the sockbuf is locked, new data may still be appended,
942 * and thus we must maintain consistency of the sockbuf during that time.
943 *
944 * The caller may receive the data as a single mbuf chain by supplying
945 * an mbuf **mp0 for use in returning the chain.  The uio is then used
946 * only for the count in uio_resid.
947 */
948int
949soreceive(so, psa, uio, mp0, controlp, flagsp)
950	struct socket *so;
951	struct sockaddr **psa;
952	struct uio *uio;
953	struct mbuf **mp0;
954	struct mbuf **controlp;
955	int *flagsp;
956{
957	struct mbuf *m, **mp;
958	int flags, len, error, offset;
959	struct protosw *pr = so->so_proto;
960	struct mbuf *nextrecord;
961	int moff, type = 0;
962	int orig_resid = uio->uio_resid;
963
964	mp = mp0;
965	if (psa != NULL)
966		*psa = NULL;
967	if (controlp != NULL)
968		*controlp = NULL;
969	if (flagsp != NULL)
970		flags = *flagsp &~ MSG_EOR;
971	else
972		flags = 0;
973	if (flags & MSG_OOB)
974		return (soreceive_rcvoob(so, uio, flags));
975	if (mp != NULL)
976		*mp = NULL;
977	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
978		(*pr->pr_usrreqs->pru_rcvd)(so, 0);
979
980	SOCKBUF_LOCK(&so->so_rcv);
981restart:
982	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
983	error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
984	if (error)
985		goto out;
986
987	m = so->so_rcv.sb_mb;
988	/*
989	 * If we have less data than requested, block awaiting more
990	 * (subject to any timeout) if:
991	 *   1. the current count is less than the low water mark, or
992	 *   2. MSG_WAITALL is set, and it is possible to do the entire
993	 *	receive operation at once if we block (resid <= hiwat).
994	 *   3. MSG_DONTWAIT is not set
995	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
996	 * we have to do the receive in sections, and thus risk returning
997	 * a short count if a timeout or signal occurs after we start.
998	 */
999	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
1000	    so->so_rcv.sb_cc < uio->uio_resid) &&
1001	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1002	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1003	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
1004		KASSERT(m != NULL || !so->so_rcv.sb_cc,
1005		    ("receive: m == %p so->so_rcv.sb_cc == %u",
1006		    m, so->so_rcv.sb_cc));
1007		if (so->so_error) {
1008			if (m != NULL)
1009				goto dontblock;
1010			error = so->so_error;
1011			if ((flags & MSG_PEEK) == 0)
1012				so->so_error = 0;
1013			goto release;
1014		}
1015		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1016		if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1017			if (m)
1018				goto dontblock;
1019			else
1020				goto release;
1021		}
1022		for (; m != NULL; m = m->m_next)
1023			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
1024				m = so->so_rcv.sb_mb;
1025				goto dontblock;
1026			}
1027		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1028		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1029			error = ENOTCONN;
1030			goto release;
1031		}
1032		if (uio->uio_resid == 0)
1033			goto release;
1034		if ((so->so_state & SS_NBIO) ||
1035		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1036			error = EWOULDBLOCK;
1037			goto release;
1038		}
1039		SBLASTRECORDCHK(&so->so_rcv);
1040		SBLASTMBUFCHK(&so->so_rcv);
1041		sbunlock(&so->so_rcv);
1042		error = sbwait(&so->so_rcv);
1043		if (error)
1044			goto out;
1045		goto restart;
1046	}
1047dontblock:
1048	/*
1049	 * From this point onward, we maintain 'nextrecord' as a cache of the
1050	 * pointer to the next record in the socket buffer.  We must keep the
1051	 * various socket buffer pointers and local stack versions of the
1052	 * pointers in sync, pushing out modifications before dropping the
1053	 * socket buffer mutex, and re-reading them when picking it up.
1054	 *
1055	 * Otherwise, we will race with the network stack appending new data
1056	 * or records onto the socket buffer by using inconsistent/stale
1057	 * versions of the field, possibly resulting in socket buffer
1058	 * corruption.
1059	 *
1060	 * By holding the high-level sblock(), we prevent simultaneous
1061	 * readers from pulling off the front of the socket buffer.
1062	 */
1063	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1064	if (uio->uio_td)
1065		uio->uio_td->td_proc->p_stats->p_ru.ru_msgrcv++;
1066	KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
1067	SBLASTRECORDCHK(&so->so_rcv);
1068	SBLASTMBUFCHK(&so->so_rcv);
1069	nextrecord = m->m_nextpkt;
1070	if (pr->pr_flags & PR_ADDR) {
1071		KASSERT(m->m_type == MT_SONAME,
1072		    ("m->m_type == %d", m->m_type));
1073		orig_resid = 0;
1074		if (psa != NULL)
1075			*psa = sodupsockaddr(mtod(m, struct sockaddr *),
1076			    M_NOWAIT);
1077		if (flags & MSG_PEEK) {
1078			m = m->m_next;
1079		} else {
1080			sbfree(&so->so_rcv, m);
1081			so->so_rcv.sb_mb = m_free(m);
1082			m = so->so_rcv.sb_mb;
1083			sockbuf_pushsync(&so->so_rcv, nextrecord);
1084		}
1085	}
1086
1087	/*
1088	 * Process one or more MT_CONTROL mbufs present before any data mbufs
1089	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
1090	 * just copy the data; if !MSG_PEEK, we call into the protocol to
1091	 * perform externalization.
1092	 */
1093	if (m != NULL && m->m_type == MT_CONTROL) {
1094		struct mbuf *cm = NULL;
1095		struct mbuf **cme = &cm;
1096
1097		do {
1098			if (flags & MSG_PEEK) {
1099				if (controlp != NULL) {
1100					*controlp = m_copy(m, 0, m->m_len);
1101					controlp = &(*controlp)->m_next;
1102				}
1103				m = m->m_next;
1104			} else {
1105				sbfree(&so->so_rcv, m);
1106				so->so_rcv.sb_mb = m->m_next;
1107				m->m_next = NULL;
1108				if (controlp) {
1109					/*
1110					 * Collect mbufs for processing below.
1111					 */
1112					*cme = m;
1113					cme = &(*cme)->m_next;
1114				} else
1115					m_free(m);
1116				m = so->so_rcv.sb_mb;
1117			}
1118		} while (m != NULL && m->m_type == MT_CONTROL);
1119		if ((flags & MSG_PEEK) == 0)
1120			sockbuf_pushsync(&so->so_rcv, nextrecord);
1121		if (cm != NULL) {
1122			if (pr->pr_domain->dom_externalize != NULL) {
1123				SOCKBUF_UNLOCK(&so->so_rcv);
1124				error = (*pr->pr_domain->dom_externalize)
1125				    (cm, controlp);
1126				SOCKBUF_LOCK(&so->so_rcv);
1127			} else
1128				m_freem(cm);
1129		}
1130		nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1131		orig_resid = 0;
1132	}
1133	if (m != NULL) {
1134		if ((flags & MSG_PEEK) == 0) {
1135			KASSERT(m->m_nextpkt == nextrecord,
1136			    ("soreceive: post-control, nextrecord !sync"));
1137			if (nextrecord == NULL) {
1138				KASSERT(so->so_rcv.sb_mb == m,
1139				    ("soreceive: post-control, sb_mb!=m"));
1140				KASSERT(so->so_rcv.sb_lastrecord == m,
1141				    ("soreceive: post-control, lastrecord!=m"));
1142			}
1143		}
1144		type = m->m_type;
1145		if (type == MT_OOBDATA)
1146			flags |= MSG_OOB;
1147	} else {
1148		if ((flags & MSG_PEEK) == 0) {
1149			KASSERT(so->so_rcv.sb_mb == nextrecord,
1150			    ("soreceive: sb_mb != nextrecord"));
1151			if (so->so_rcv.sb_mb == NULL) {
1152				KASSERT(so->so_rcv.sb_lastrecord == NULL,
1153				    ("soreceive: sb_lastercord != NULL"));
1154			}
1155		}
1156	}
1157	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1158	SBLASTRECORDCHK(&so->so_rcv);
1159	SBLASTMBUFCHK(&so->so_rcv);
1160
1161	/*
1162	 * Now continue to read any data mbufs off of the head of the socket
1163	 * buffer until the read request is satisfied.  Note that 'type' is
1164	 * used to store the type of any mbuf reads that have happened so far
1165	 * such that soreceive() can stop reading if the type changes, which
1166	 * causes soreceive() to return only one of regular data and inline
1167	 * out-of-band data in a single socket receive operation.
1168	 */
1169	moff = 0;
1170	offset = 0;
1171	while (m != NULL && uio->uio_resid > 0 && error == 0) {
1172		/*
1173		 * If the type of mbuf has changed since the last mbuf
1174		 * examined ('type'), end the receive operation.
1175	 	 */
1176		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1177		if (m->m_type == MT_OOBDATA) {
1178			if (type != MT_OOBDATA)
1179				break;
1180		} else if (type == MT_OOBDATA)
1181			break;
1182		else
1183		    KASSERT(m->m_type == MT_DATA || m->m_type == MT_HEADER,
1184			("m->m_type == %d", m->m_type));
1185		so->so_rcv.sb_state &= ~SBS_RCVATMARK;
1186		len = uio->uio_resid;
1187		if (so->so_oobmark && len > so->so_oobmark - offset)
1188			len = so->so_oobmark - offset;
1189		if (len > m->m_len - moff)
1190			len = m->m_len - moff;
1191		/*
1192		 * If mp is set, just pass back the mbufs.
1193		 * Otherwise copy them out via the uio, then free.
1194		 * Sockbuf must be consistent here (points to current mbuf,
1195		 * it points to next record) when we drop priority;
1196		 * we must note any additions to the sockbuf when we
1197		 * block interrupts again.
1198		 */
1199		if (mp == NULL) {
1200			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1201			SBLASTRECORDCHK(&so->so_rcv);
1202			SBLASTMBUFCHK(&so->so_rcv);
1203			SOCKBUF_UNLOCK(&so->so_rcv);
1204#ifdef ZERO_COPY_SOCKETS
1205			if (so_zero_copy_receive) {
1206				vm_page_t pg;
1207				int disposable;
1208
1209				if ((m->m_flags & M_EXT)
1210				 && (m->m_ext.ext_type == EXT_DISPOSABLE))
1211					disposable = 1;
1212				else
1213					disposable = 0;
1214
1215				pg = PHYS_TO_VM_PAGE(vtophys(mtod(m, caddr_t) +
1216					moff));
1217
1218				if (uio->uio_offset == -1)
1219					uio->uio_offset =IDX_TO_OFF(pg->pindex);
1220
1221				error = uiomoveco(mtod(m, char *) + moff,
1222						  (int)len, uio,pg->object,
1223						  disposable);
1224			} else
1225#endif /* ZERO_COPY_SOCKETS */
1226			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1227			SOCKBUF_LOCK(&so->so_rcv);
1228			if (error)
1229				goto release;
1230		} else
1231			uio->uio_resid -= len;
1232		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1233		if (len == m->m_len - moff) {
1234			if (m->m_flags & M_EOR)
1235				flags |= MSG_EOR;
1236			if (flags & MSG_PEEK) {
1237				m = m->m_next;
1238				moff = 0;
1239			} else {
1240				nextrecord = m->m_nextpkt;
1241				sbfree(&so->so_rcv, m);
1242				if (mp != NULL) {
1243					*mp = m;
1244					mp = &m->m_next;
1245					so->so_rcv.sb_mb = m = m->m_next;
1246					*mp = NULL;
1247				} else {
1248					so->so_rcv.sb_mb = m_free(m);
1249					m = so->so_rcv.sb_mb;
1250				}
1251				if (m != NULL) {
1252					m->m_nextpkt = nextrecord;
1253					if (nextrecord == NULL)
1254						so->so_rcv.sb_lastrecord = m;
1255				} else {
1256					so->so_rcv.sb_mb = nextrecord;
1257					SB_EMPTY_FIXUP(&so->so_rcv);
1258				}
1259				SBLASTRECORDCHK(&so->so_rcv);
1260				SBLASTMBUFCHK(&so->so_rcv);
1261			}
1262		} else {
1263			if (flags & MSG_PEEK)
1264				moff += len;
1265			else {
1266				if (mp != NULL) {
1267					SOCKBUF_UNLOCK(&so->so_rcv);
1268					*mp = m_copym(m, 0, len, M_TRYWAIT);
1269					SOCKBUF_LOCK(&so->so_rcv);
1270				}
1271				m->m_data += len;
1272				m->m_len -= len;
1273				so->so_rcv.sb_cc -= len;
1274			}
1275		}
1276		SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1277		if (so->so_oobmark) {
1278			if ((flags & MSG_PEEK) == 0) {
1279				so->so_oobmark -= len;
1280				if (so->so_oobmark == 0) {
1281					so->so_rcv.sb_state |= SBS_RCVATMARK;
1282					break;
1283				}
1284			} else {
1285				offset += len;
1286				if (offset == so->so_oobmark)
1287					break;
1288			}
1289		}
1290		if (flags & MSG_EOR)
1291			break;
1292		/*
1293		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1294		 * we must not quit until "uio->uio_resid == 0" or an error
1295		 * termination.  If a signal/timeout occurs, return
1296		 * with a short count but without error.
1297		 * Keep sockbuf locked against other readers.
1298		 */
1299		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1300		    !sosendallatonce(so) && nextrecord == NULL) {
1301			SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1302			if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
1303				break;
1304			/*
1305			 * Notify the protocol that some data has been
1306			 * drained before blocking.
1307			 */
1308			if (pr->pr_flags & PR_WANTRCVD && so->so_pcb != NULL) {
1309				SOCKBUF_UNLOCK(&so->so_rcv);
1310				(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1311				SOCKBUF_LOCK(&so->so_rcv);
1312			}
1313			SBLASTRECORDCHK(&so->so_rcv);
1314			SBLASTMBUFCHK(&so->so_rcv);
1315			error = sbwait(&so->so_rcv);
1316			if (error)
1317				goto release;
1318			m = so->so_rcv.sb_mb;
1319			if (m != NULL)
1320				nextrecord = m->m_nextpkt;
1321		}
1322	}
1323
1324	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1325	if (m != NULL && pr->pr_flags & PR_ATOMIC) {
1326		flags |= MSG_TRUNC;
1327		if ((flags & MSG_PEEK) == 0)
1328			(void) sbdroprecord_locked(&so->so_rcv);
1329	}
1330	if ((flags & MSG_PEEK) == 0) {
1331		if (m == NULL) {
1332			/*
1333			 * First part is an inline SB_EMPTY_FIXUP().  Second
1334			 * part makes sure sb_lastrecord is up-to-date if
1335			 * there is still data in the socket buffer.
1336			 */
1337			so->so_rcv.sb_mb = nextrecord;
1338			if (so->so_rcv.sb_mb == NULL) {
1339				so->so_rcv.sb_mbtail = NULL;
1340				so->so_rcv.sb_lastrecord = NULL;
1341			} else if (nextrecord->m_nextpkt == NULL)
1342				so->so_rcv.sb_lastrecord = nextrecord;
1343		}
1344		SBLASTRECORDCHK(&so->so_rcv);
1345		SBLASTMBUFCHK(&so->so_rcv);
1346		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) {
1347			SOCKBUF_UNLOCK(&so->so_rcv);
1348			(*pr->pr_usrreqs->pru_rcvd)(so, flags);
1349			SOCKBUF_LOCK(&so->so_rcv);
1350		}
1351	}
1352	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1353	if (orig_resid == uio->uio_resid && orig_resid &&
1354	    (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
1355		sbunlock(&so->so_rcv);
1356		goto restart;
1357	}
1358
1359	if (flagsp != NULL)
1360		*flagsp |= flags;
1361release:
1362	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1363	sbunlock(&so->so_rcv);
1364out:
1365	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
1366	SOCKBUF_UNLOCK(&so->so_rcv);
1367	return (error);
1368}
1369
1370int
1371soshutdown(so, how)
1372	struct socket *so;
1373	int how;
1374{
1375	struct protosw *pr = so->so_proto;
1376
1377	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1378		return (EINVAL);
1379
1380	if (how != SHUT_WR)
1381		sorflush(so);
1382	if (how != SHUT_RD)
1383		return ((*pr->pr_usrreqs->pru_shutdown)(so));
1384	return (0);
1385}
1386
1387void
1388sorflush(so)
1389	struct socket *so;
1390{
1391	struct sockbuf *sb = &so->so_rcv;
1392	struct protosw *pr = so->so_proto;
1393	struct sockbuf asb;
1394
1395	/*
1396	 * XXXRW: This is quite ugly.  The existing code made a copy of the
1397	 * socket buffer, then zero'd the original to clear the buffer
1398	 * fields.  However, with mutexes in the socket buffer, this causes
1399	 * problems.  We only clear the zeroable bits of the original;
1400	 * however, we have to initialize and destroy the mutex in the copy
1401	 * so that dom_dispose() and sbrelease() can lock t as needed.
1402	 */
1403	SOCKBUF_LOCK(sb);
1404	sb->sb_flags |= SB_NOINTR;
1405	(void) sblock(sb, M_WAITOK);
1406	/*
1407	 * socantrcvmore_locked() drops the socket buffer mutex so that it
1408	 * can safely perform wakeups.  Re-acquire the mutex before
1409	 * continuing.
1410	 */
1411	socantrcvmore_locked(so);
1412	SOCKBUF_LOCK(sb);
1413	sbunlock(sb);
1414	/*
1415	 * Invalidate/clear most of the sockbuf structure, but leave
1416	 * selinfo and mutex data unchanged.
1417	 */
1418	bzero(&asb, offsetof(struct sockbuf, sb_startzero));
1419	bcopy(&sb->sb_startzero, &asb.sb_startzero,
1420	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1421	bzero(&sb->sb_startzero,
1422	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1423	SOCKBUF_UNLOCK(sb);
1424
1425	SOCKBUF_LOCK_INIT(&asb, "so_rcv");
1426	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
1427		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1428	sbrelease(&asb, so);
1429	SOCKBUF_LOCK_DESTROY(&asb);
1430}
1431
1432#ifdef INET
1433static int
1434do_setopt_accept_filter(so, sopt)
1435	struct	socket *so;
1436	struct	sockopt *sopt;
1437{
1438	struct accept_filter_arg	*afap = NULL;
1439	struct accept_filter	*afp;
1440	struct so_accf	*af = so->so_accf;
1441	int	error = 0;
1442
1443	/* do not set/remove accept filters on non listen sockets */
1444	if ((so->so_options & SO_ACCEPTCONN) == 0) {
1445		error = EINVAL;
1446		goto out;
1447	}
1448
1449	/* removing the filter */
1450	if (sopt == NULL) {
1451		if (af != NULL) {
1452			if (af->so_accept_filter != NULL &&
1453				af->so_accept_filter->accf_destroy != NULL) {
1454				af->so_accept_filter->accf_destroy(so);
1455			}
1456			if (af->so_accept_filter_str != NULL) {
1457				FREE(af->so_accept_filter_str, M_ACCF);
1458			}
1459			FREE(af, M_ACCF);
1460			so->so_accf = NULL;
1461		}
1462		so->so_options &= ~SO_ACCEPTFILTER;
1463		return (0);
1464	}
1465	/* adding a filter */
1466	/* must remove previous filter first */
1467	if (af != NULL) {
1468		error = EINVAL;
1469		goto out;
1470	}
1471	/* don't put large objects on the kernel stack */
1472	MALLOC(afap, struct accept_filter_arg *, sizeof(*afap), M_TEMP, M_WAITOK);
1473	error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap);
1474	afap->af_name[sizeof(afap->af_name)-1] = '\0';
1475	afap->af_arg[sizeof(afap->af_arg)-1] = '\0';
1476	if (error)
1477		goto out;
1478	afp = accept_filt_get(afap->af_name);
1479	if (afp == NULL) {
1480		error = ENOENT;
1481		goto out;
1482	}
1483	MALLOC(af, struct so_accf *, sizeof(*af), M_ACCF, M_WAITOK | M_ZERO);
1484	if (afp->accf_create != NULL) {
1485		if (afap->af_name[0] != '\0') {
1486			int len = strlen(afap->af_name) + 1;
1487
1488			MALLOC(af->so_accept_filter_str, char *, len, M_ACCF, M_WAITOK);
1489			strcpy(af->so_accept_filter_str, afap->af_name);
1490		}
1491		af->so_accept_filter_arg = afp->accf_create(so, afap->af_arg);
1492		if (af->so_accept_filter_arg == NULL) {
1493			FREE(af->so_accept_filter_str, M_ACCF);
1494			FREE(af, M_ACCF);
1495			so->so_accf = NULL;
1496			error = EINVAL;
1497			goto out;
1498		}
1499	}
1500	af->so_accept_filter = afp;
1501	so->so_accf = af;
1502	so->so_options |= SO_ACCEPTFILTER;
1503out:
1504	if (afap != NULL)
1505		FREE(afap, M_TEMP);
1506	return (error);
1507}
1508#endif /* INET */
1509
1510/*
1511 * Perhaps this routine, and sooptcopyout(), below, ought to come in
1512 * an additional variant to handle the case where the option value needs
1513 * to be some kind of integer, but not a specific size.
1514 * In addition to their use here, these functions are also called by the
1515 * protocol-level pr_ctloutput() routines.
1516 */
1517int
1518sooptcopyin(sopt, buf, len, minlen)
1519	struct	sockopt *sopt;
1520	void	*buf;
1521	size_t	len;
1522	size_t	minlen;
1523{
1524	size_t	valsize;
1525
1526	/*
1527	 * If the user gives us more than we wanted, we ignore it,
1528	 * but if we don't get the minimum length the caller
1529	 * wants, we return EINVAL.  On success, sopt->sopt_valsize
1530	 * is set to however much we actually retrieved.
1531	 */
1532	if ((valsize = sopt->sopt_valsize) < minlen)
1533		return EINVAL;
1534	if (valsize > len)
1535		sopt->sopt_valsize = valsize = len;
1536
1537	if (sopt->sopt_td != NULL)
1538		return (copyin(sopt->sopt_val, buf, valsize));
1539
1540	bcopy(sopt->sopt_val, buf, valsize);
1541	return 0;
1542}
1543
1544int
1545sosetopt(so, sopt)
1546	struct socket *so;
1547	struct sockopt *sopt;
1548{
1549	int	error, optval;
1550	struct	linger l;
1551	struct	timeval tv;
1552	u_long  val;
1553#ifdef MAC
1554	struct mac extmac;
1555#endif
1556
1557	error = 0;
1558	if (sopt->sopt_level != SOL_SOCKET) {
1559		if (so->so_proto && so->so_proto->pr_ctloutput)
1560			return ((*so->so_proto->pr_ctloutput)
1561				  (so, sopt));
1562		error = ENOPROTOOPT;
1563	} else {
1564		switch (sopt->sopt_name) {
1565#ifdef INET
1566		case SO_ACCEPTFILTER:
1567			error = do_setopt_accept_filter(so, sopt);
1568			if (error)
1569				goto bad;
1570			break;
1571#endif
1572		case SO_LINGER:
1573			error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
1574			if (error)
1575				goto bad;
1576
1577			SOCK_LOCK(so);
1578			so->so_linger = l.l_linger;
1579			if (l.l_onoff)
1580				so->so_options |= SO_LINGER;
1581			else
1582				so->so_options &= ~SO_LINGER;
1583			SOCK_UNLOCK(so);
1584			break;
1585
1586		case SO_DEBUG:
1587		case SO_KEEPALIVE:
1588		case SO_DONTROUTE:
1589		case SO_USELOOPBACK:
1590		case SO_BROADCAST:
1591		case SO_REUSEADDR:
1592		case SO_REUSEPORT:
1593		case SO_OOBINLINE:
1594		case SO_TIMESTAMP:
1595		case SO_BINTIME:
1596		case SO_NOSIGPIPE:
1597			error = sooptcopyin(sopt, &optval, sizeof optval,
1598					    sizeof optval);
1599			if (error)
1600				goto bad;
1601			SOCK_LOCK(so);
1602			if (optval)
1603				so->so_options |= sopt->sopt_name;
1604			else
1605				so->so_options &= ~sopt->sopt_name;
1606			SOCK_UNLOCK(so);
1607			break;
1608
1609		case SO_SNDBUF:
1610		case SO_RCVBUF:
1611		case SO_SNDLOWAT:
1612		case SO_RCVLOWAT:
1613			error = sooptcopyin(sopt, &optval, sizeof optval,
1614					    sizeof optval);
1615			if (error)
1616				goto bad;
1617
1618			/*
1619			 * Values < 1 make no sense for any of these
1620			 * options, so disallow them.
1621			 */
1622			if (optval < 1) {
1623				error = EINVAL;
1624				goto bad;
1625			}
1626
1627			switch (sopt->sopt_name) {
1628			case SO_SNDBUF:
1629			case SO_RCVBUF:
1630				if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
1631				    &so->so_snd : &so->so_rcv, (u_long)optval,
1632				    so, curthread) == 0) {
1633					error = ENOBUFS;
1634					goto bad;
1635				}
1636				break;
1637
1638			/*
1639			 * Make sure the low-water is never greater than
1640			 * the high-water.
1641			 */
1642			case SO_SNDLOWAT:
1643				SOCKBUF_LOCK(&so->so_snd);
1644				so->so_snd.sb_lowat =
1645				    (optval > so->so_snd.sb_hiwat) ?
1646				    so->so_snd.sb_hiwat : optval;
1647				SOCKBUF_UNLOCK(&so->so_snd);
1648				break;
1649			case SO_RCVLOWAT:
1650				SOCKBUF_LOCK(&so->so_rcv);
1651				so->so_rcv.sb_lowat =
1652				    (optval > so->so_rcv.sb_hiwat) ?
1653				    so->so_rcv.sb_hiwat : optval;
1654				SOCKBUF_UNLOCK(&so->so_rcv);
1655				break;
1656			}
1657			break;
1658
1659		case SO_SNDTIMEO:
1660		case SO_RCVTIMEO:
1661			error = sooptcopyin(sopt, &tv, sizeof tv,
1662					    sizeof tv);
1663			if (error)
1664				goto bad;
1665
1666			/* assert(hz > 0); */
1667			if (tv.tv_sec < 0 || tv.tv_sec > SHRT_MAX / hz ||
1668			    tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
1669				error = EDOM;
1670				goto bad;
1671			}
1672			/* assert(tick > 0); */
1673			/* assert(ULONG_MAX - SHRT_MAX >= 1000000); */
1674			val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
1675			if (val > SHRT_MAX) {
1676				error = EDOM;
1677				goto bad;
1678			}
1679			if (val == 0 && tv.tv_usec != 0)
1680				val = 1;
1681
1682			switch (sopt->sopt_name) {
1683			case SO_SNDTIMEO:
1684				so->so_snd.sb_timeo = val;
1685				break;
1686			case SO_RCVTIMEO:
1687				so->so_rcv.sb_timeo = val;
1688				break;
1689			}
1690			break;
1691		case SO_LABEL:
1692#ifdef MAC
1693			error = sooptcopyin(sopt, &extmac, sizeof extmac,
1694			    sizeof extmac);
1695			if (error)
1696				goto bad;
1697			error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
1698			    so, &extmac);
1699#else
1700			error = EOPNOTSUPP;
1701#endif
1702			break;
1703		default:
1704			error = ENOPROTOOPT;
1705			break;
1706		}
1707		if (error == 0 && so->so_proto != NULL &&
1708		    so->so_proto->pr_ctloutput != NULL) {
1709			(void) ((*so->so_proto->pr_ctloutput)
1710				  (so, sopt));
1711		}
1712	}
1713bad:
1714	return (error);
1715}
1716
1717/* Helper routine for getsockopt */
1718int
1719sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
1720{
1721	int	error;
1722	size_t	valsize;
1723
1724	error = 0;
1725
1726	/*
1727	 * Documented get behavior is that we always return a value,
1728	 * possibly truncated to fit in the user's buffer.
1729	 * Traditional behavior is that we always tell the user
1730	 * precisely how much we copied, rather than something useful
1731	 * like the total amount we had available for her.
1732	 * Note that this interface is not idempotent; the entire answer must
1733	 * generated ahead of time.
1734	 */
1735	valsize = min(len, sopt->sopt_valsize);
1736	sopt->sopt_valsize = valsize;
1737	if (sopt->sopt_val != NULL) {
1738		if (sopt->sopt_td != NULL)
1739			error = copyout(buf, sopt->sopt_val, valsize);
1740		else
1741			bcopy(buf, sopt->sopt_val, valsize);
1742	}
1743	return error;
1744}
1745
1746int
1747sogetopt(so, sopt)
1748	struct socket *so;
1749	struct sockopt *sopt;
1750{
1751	int	error, optval;
1752	struct	linger l;
1753	struct	timeval tv;
1754#ifdef INET
1755	struct accept_filter_arg *afap;
1756#endif
1757#ifdef MAC
1758	struct mac extmac;
1759#endif
1760
1761	error = 0;
1762	if (sopt->sopt_level != SOL_SOCKET) {
1763		if (so->so_proto && so->so_proto->pr_ctloutput) {
1764			return ((*so->so_proto->pr_ctloutput)
1765				  (so, sopt));
1766		} else
1767			return (ENOPROTOOPT);
1768	} else {
1769		switch (sopt->sopt_name) {
1770#ifdef INET
1771		case SO_ACCEPTFILTER:
1772			if ((so->so_options & SO_ACCEPTCONN) == 0)
1773				return (EINVAL);
1774			MALLOC(afap, struct accept_filter_arg *, sizeof(*afap),
1775				M_TEMP, M_WAITOK | M_ZERO);
1776			if ((so->so_options & SO_ACCEPTFILTER) != 0) {
1777				strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name);
1778				if (so->so_accf->so_accept_filter_str != NULL)
1779					strcpy(afap->af_arg, so->so_accf->so_accept_filter_str);
1780			}
1781			error = sooptcopyout(sopt, afap, sizeof(*afap));
1782			FREE(afap, M_TEMP);
1783			break;
1784#endif
1785
1786		case SO_LINGER:
1787			/*
1788			 * XXXRW: We grab the lock here to get a consistent
1789			 * snapshot of both fields.  This may not really
1790			 * be necessary.
1791			 */
1792			SOCK_LOCK(so);
1793			l.l_onoff = so->so_options & SO_LINGER;
1794			l.l_linger = so->so_linger;
1795			SOCK_UNLOCK(so);
1796			error = sooptcopyout(sopt, &l, sizeof l);
1797			break;
1798
1799		case SO_USELOOPBACK:
1800		case SO_DONTROUTE:
1801		case SO_DEBUG:
1802		case SO_KEEPALIVE:
1803		case SO_REUSEADDR:
1804		case SO_REUSEPORT:
1805		case SO_BROADCAST:
1806		case SO_OOBINLINE:
1807		case SO_TIMESTAMP:
1808		case SO_BINTIME:
1809		case SO_NOSIGPIPE:
1810			optval = so->so_options & sopt->sopt_name;
1811integer:
1812			error = sooptcopyout(sopt, &optval, sizeof optval);
1813			break;
1814
1815		case SO_TYPE:
1816			optval = so->so_type;
1817			goto integer;
1818
1819		case SO_ERROR:
1820			optval = so->so_error;
1821			so->so_error = 0;
1822			goto integer;
1823
1824		case SO_SNDBUF:
1825			optval = so->so_snd.sb_hiwat;
1826			goto integer;
1827
1828		case SO_RCVBUF:
1829			optval = so->so_rcv.sb_hiwat;
1830			goto integer;
1831
1832		case SO_SNDLOWAT:
1833			optval = so->so_snd.sb_lowat;
1834			goto integer;
1835
1836		case SO_RCVLOWAT:
1837			optval = so->so_rcv.sb_lowat;
1838			goto integer;
1839
1840		case SO_SNDTIMEO:
1841		case SO_RCVTIMEO:
1842			optval = (sopt->sopt_name == SO_SNDTIMEO ?
1843				  so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1844
1845			tv.tv_sec = optval / hz;
1846			tv.tv_usec = (optval % hz) * tick;
1847			error = sooptcopyout(sopt, &tv, sizeof tv);
1848			break;
1849		case SO_LABEL:
1850#ifdef MAC
1851			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
1852			    sizeof(extmac));
1853			if (error)
1854				return (error);
1855			error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
1856			    so, &extmac);
1857			if (error)
1858				return (error);
1859			error = sooptcopyout(sopt, &extmac, sizeof extmac);
1860#else
1861			error = EOPNOTSUPP;
1862#endif
1863			break;
1864		case SO_PEERLABEL:
1865#ifdef MAC
1866			error = sooptcopyin(sopt, &extmac, sizeof(extmac),
1867			    sizeof(extmac));
1868			if (error)
1869				return (error);
1870			error = mac_getsockopt_peerlabel(
1871			    sopt->sopt_td->td_ucred, so, &extmac);
1872			if (error)
1873				return (error);
1874			error = sooptcopyout(sopt, &extmac, sizeof extmac);
1875#else
1876			error = EOPNOTSUPP;
1877#endif
1878			break;
1879		default:
1880			error = ENOPROTOOPT;
1881			break;
1882		}
1883		return (error);
1884	}
1885}
1886
1887/* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
1888int
1889soopt_getm(struct sockopt *sopt, struct mbuf **mp)
1890{
1891	struct mbuf *m, *m_prev;
1892	int sopt_size = sopt->sopt_valsize;
1893
1894	MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1895	if (m == NULL)
1896		return ENOBUFS;
1897	if (sopt_size > MLEN) {
1898		MCLGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT);
1899		if ((m->m_flags & M_EXT) == 0) {
1900			m_free(m);
1901			return ENOBUFS;
1902		}
1903		m->m_len = min(MCLBYTES, sopt_size);
1904	} else {
1905		m->m_len = min(MLEN, sopt_size);
1906	}
1907	sopt_size -= m->m_len;
1908	*mp = m;
1909	m_prev = m;
1910
1911	while (sopt_size) {
1912		MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_DATA);
1913		if (m == NULL) {
1914			m_freem(*mp);
1915			return ENOBUFS;
1916		}
1917		if (sopt_size > MLEN) {
1918			MCLGET(m, sopt->sopt_td != NULL ? M_TRYWAIT :
1919			    M_DONTWAIT);
1920			if ((m->m_flags & M_EXT) == 0) {
1921				m_freem(m);
1922				m_freem(*mp);
1923				return ENOBUFS;
1924			}
1925			m->m_len = min(MCLBYTES, sopt_size);
1926		} else {
1927			m->m_len = min(MLEN, sopt_size);
1928		}
1929		sopt_size -= m->m_len;
1930		m_prev->m_next = m;
1931		m_prev = m;
1932	}
1933	return 0;
1934}
1935
1936/* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
1937int
1938soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
1939{
1940	struct mbuf *m0 = m;
1941
1942	if (sopt->sopt_val == NULL)
1943		return 0;
1944	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
1945		if (sopt->sopt_td != NULL) {
1946			int error;
1947
1948			error = copyin(sopt->sopt_val, mtod(m, char *),
1949				       m->m_len);
1950			if (error != 0) {
1951				m_freem(m0);
1952				return(error);
1953			}
1954		} else
1955			bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
1956		sopt->sopt_valsize -= m->m_len;
1957		sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
1958		m = m->m_next;
1959	}
1960	if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
1961		panic("ip6_sooptmcopyin");
1962	return 0;
1963}
1964
1965/* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
1966int
1967soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
1968{
1969	struct mbuf *m0 = m;
1970	size_t valsize = 0;
1971
1972	if (sopt->sopt_val == NULL)
1973		return 0;
1974	while (m != NULL && sopt->sopt_valsize >= m->m_len) {
1975		if (sopt->sopt_td != NULL) {
1976			int error;
1977
1978			error = copyout(mtod(m, char *), sopt->sopt_val,
1979				       m->m_len);
1980			if (error != 0) {
1981				m_freem(m0);
1982				return(error);
1983			}
1984		} else
1985			bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
1986	       sopt->sopt_valsize -= m->m_len;
1987	       sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
1988	       valsize += m->m_len;
1989	       m = m->m_next;
1990	}
1991	if (m != NULL) {
1992		/* enough soopt buffer should be given from user-land */
1993		m_freem(m0);
1994		return(EINVAL);
1995	}
1996	sopt->sopt_valsize = valsize;
1997	return 0;
1998}
1999
2000void
2001sohasoutofband(so)
2002	struct socket *so;
2003{
2004	if (so->so_sigio != NULL)
2005		pgsigio(&so->so_sigio, SIGURG, 0);
2006	selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
2007}
2008
2009int
2010sopoll(struct socket *so, int events, struct ucred *active_cred,
2011    struct thread *td)
2012{
2013	int revents = 0;
2014
2015	if (events & (POLLIN | POLLRDNORM))
2016		if (soreadable(so))
2017			revents |= events & (POLLIN | POLLRDNORM);
2018
2019	if (events & POLLINIGNEOF)
2020		if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2021		    !TAILQ_EMPTY(&so->so_comp) || so->so_error)
2022			revents |= POLLINIGNEOF;
2023
2024	if (events & (POLLOUT | POLLWRNORM))
2025		if (sowriteable(so))
2026			revents |= events & (POLLOUT | POLLWRNORM);
2027
2028	if (events & (POLLPRI | POLLRDBAND))
2029		if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
2030			revents |= events & (POLLPRI | POLLRDBAND);
2031
2032	if (revents == 0) {
2033		if (events &
2034		    (POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
2035		     POLLRDBAND)) {
2036			SOCKBUF_LOCK(&so->so_rcv);
2037			selrecord(td, &so->so_rcv.sb_sel);
2038			so->so_rcv.sb_flags |= SB_SEL;
2039			SOCKBUF_UNLOCK(&so->so_rcv);
2040		}
2041
2042		if (events & (POLLOUT | POLLWRNORM)) {
2043			SOCKBUF_LOCK(&so->so_snd);
2044			selrecord(td, &so->so_snd.sb_sel);
2045			so->so_snd.sb_flags |= SB_SEL;
2046			SOCKBUF_UNLOCK(&so->so_snd);
2047		}
2048	}
2049
2050	return (revents);
2051}
2052
2053int
2054soo_kqfilter(struct file *fp, struct knote *kn)
2055{
2056	struct socket *so = kn->kn_fp->f_data;
2057	struct sockbuf *sb;
2058
2059	switch (kn->kn_filter) {
2060	case EVFILT_READ:
2061		if (so->so_options & SO_ACCEPTCONN)
2062			kn->kn_fop = &solisten_filtops;
2063		else
2064			kn->kn_fop = &soread_filtops;
2065		sb = &so->so_rcv;
2066		break;
2067	case EVFILT_WRITE:
2068		kn->kn_fop = &sowrite_filtops;
2069		sb = &so->so_snd;
2070		break;
2071	default:
2072		return (1);
2073	}
2074
2075	SOCKBUF_LOCK(sb);
2076	SLIST_INSERT_HEAD(&sb->sb_sel.si_note, kn, kn_selnext);
2077	sb->sb_flags |= SB_KNOTE;
2078	SOCKBUF_UNLOCK(sb);
2079	return (0);
2080}
2081
2082static void
2083filt_sordetach(struct knote *kn)
2084{
2085	struct socket *so = kn->kn_fp->f_data;
2086
2087	SOCKBUF_LOCK(&so->so_rcv);
2088	SLIST_REMOVE(&so->so_rcv.sb_sel.si_note, kn, knote, kn_selnext);
2089	if (SLIST_EMPTY(&so->so_rcv.sb_sel.si_note))
2090		so->so_rcv.sb_flags &= ~SB_KNOTE;
2091	SOCKBUF_UNLOCK(&so->so_rcv);
2092}
2093
2094/*ARGSUSED*/
2095static int
2096filt_soread(struct knote *kn, long hint)
2097{
2098	struct socket *so = kn->kn_fp->f_data;
2099	int need_lock, result;
2100
2101	/*
2102	 * XXXRW: Conditional locking because filt_soread() can be called
2103	 * either from KNOTE() in the socket context where the socket buffer
2104	 * lock is already held, or from kqueue() itself.
2105	 */
2106	need_lock = !SOCKBUF_OWNED(&so->so_rcv);
2107	if (need_lock)
2108		SOCKBUF_LOCK(&so->so_rcv);
2109	kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
2110	if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2111		kn->kn_flags |= EV_EOF;
2112		kn->kn_fflags = so->so_error;
2113		result = 1;
2114	} else if (so->so_error)	/* temporary udp error */
2115		result = 1;
2116	else if (kn->kn_sfflags & NOTE_LOWAT)
2117		result = (kn->kn_data >= kn->kn_sdata);
2118	else
2119		result = (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
2120	if (need_lock)
2121		SOCKBUF_UNLOCK(&so->so_rcv);
2122	return (result);
2123}
2124
2125static void
2126filt_sowdetach(struct knote *kn)
2127{
2128	struct socket *so = kn->kn_fp->f_data;
2129
2130	SOCKBUF_LOCK(&so->so_snd);
2131	SLIST_REMOVE(&so->so_snd.sb_sel.si_note, kn, knote, kn_selnext);
2132	if (SLIST_EMPTY(&so->so_snd.sb_sel.si_note))
2133		so->so_snd.sb_flags &= ~SB_KNOTE;
2134	SOCKBUF_UNLOCK(&so->so_snd);
2135}
2136
2137/*ARGSUSED*/
2138static int
2139filt_sowrite(struct knote *kn, long hint)
2140{
2141	struct socket *so = kn->kn_fp->f_data;
2142	int need_lock, result;
2143
2144	/*
2145	 * XXXRW: Conditional locking because filt_soread() can be called
2146	 * either from KNOTE() in the socket context where the socket buffer
2147	 * lock is already held, or from kqueue() itself.
2148	 */
2149	need_lock = !SOCKBUF_OWNED(&so->so_snd);
2150	if (need_lock)
2151		SOCKBUF_LOCK(&so->so_snd);
2152	kn->kn_data = sbspace(&so->so_snd);
2153	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2154		kn->kn_flags |= EV_EOF;
2155		kn->kn_fflags = so->so_error;
2156		result = 1;
2157	} else if (so->so_error)	/* temporary udp error */
2158		result = 1;
2159	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2160	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
2161		result = 0;
2162	else if (kn->kn_sfflags & NOTE_LOWAT)
2163		result = (kn->kn_data >= kn->kn_sdata);
2164	else
2165		result = (kn->kn_data >= so->so_snd.sb_lowat);
2166	if (need_lock)
2167		SOCKBUF_UNLOCK(&so->so_snd);
2168	return (result);
2169}
2170
2171/*ARGSUSED*/
2172static int
2173filt_solisten(struct knote *kn, long hint)
2174{
2175	struct socket *so = kn->kn_fp->f_data;
2176
2177	kn->kn_data = so->so_qlen;
2178	return (! TAILQ_EMPTY(&so->so_comp));
2179}
2180
2181int
2182socheckuid(struct socket *so, uid_t uid)
2183{
2184
2185	if (so == NULL)
2186		return (EPERM);
2187	if (so->so_cred->cr_uid == uid)
2188		return (0);
2189	return (EPERM);
2190}
2191