subr_blist.c revision 76827
1
2/*
3 * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
4 *
5 *	(c)Copyright 1998, Matthew Dillon.  Terms for use and redistribution
6 *	are covered by the BSD Copyright as found in /usr/src/COPYRIGHT.
7 *
8 *	This module implements a general bitmap allocator/deallocator.  The
9 *	allocator eats around 2 bits per 'block'.  The module does not
10 *	try to interpret the meaning of a 'block' other then to return
11 *	SWAPBLK_NONE on an allocation failure.
12 *
13 *	A radix tree is used to maintain the bitmap.  Two radix constants are
14 *	involved:  One for the bitmaps contained in the leaf nodes (typically
15 *	32), and one for the meta nodes (typically 16).  Both meta and leaf
16 *	nodes have a hint field.  This field gives us a hint as to the largest
17 *	free contiguous range of blocks under the node.  It may contain a
18 *	value that is too high, but will never contain a value that is too
19 *	low.  When the radix tree is searched, allocation failures in subtrees
20 *	update the hint.
21 *
22 *	The radix tree also implements two collapsed states for meta nodes:
23 *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
24 *	in either of these two states, all information contained underneath
25 *	the node is considered stale.  These states are used to optimize
26 *	allocation and freeing operations.
27 *
28 * 	The hinting greatly increases code efficiency for allocations while
29 *	the general radix structure optimizes both allocations and frees.  The
30 *	radix tree should be able to operate well no matter how much
31 *	fragmentation there is and no matter how large a bitmap is used.
32 *
33 *	Unlike the rlist code, the blist code wires all necessary memory at
34 *	creation time.  Neither allocations nor frees require interaction with
35 *	the memory subsystem.  In contrast, the rlist code may allocate memory
36 *	on an rlist_free() call.  The non-blocking features of the blist code
37 *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
38 *	rlist code uses a little less overall memory then the blist code (but
39 *	due to swap interleaving not all that much less), but the blist code
40 *	scales much, much better.
41 *
42 *	LAYOUT: The radix tree is layed out recursively using a
43 *	linear array.  Each meta node is immediately followed (layed out
44 *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
45 *	is a recursive structure but one that can be easily scanned through
46 *	a very simple 'skip' calculation.  In order to support large radixes,
47 *	portions of the tree may reside outside our memory allocation.  We
48 *	handle this with an early-termination optimization (when bighint is
49 *	set to -1) on the scan.  The memory allocation is only large enough
50 *	to cover the number of blocks requested at creation time even if it
51 *	must be encompassed in larger root-node radix.
52 *
53 *	NOTE: the allocator cannot currently allocate more then
54 *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
55 *	large' if you try.  This is an area that could use improvement.  The
56 *	radix is large enough that this restriction does not effect the swap
57 *	system, though.  Currently only the allocation code is effected by
58 *	this algorithmic unfeature.  The freeing code can handle arbitrary
59 *	ranges.
60 *
61 *	This code can be compiled stand-alone for debugging.
62 *
63 * $FreeBSD: head/sys/kern/subr_blist.c 76827 2001-05-19 01:28:09Z alfred $
64 */
65
66#ifdef _KERNEL
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/lock.h>
71#include <sys/kernel.h>
72#include <sys/blist.h>
73#include <sys/malloc.h>
74#include <sys/mutex.h>
75#include <vm/vm.h>
76#include <vm/vm_object.h>
77#include <vm/vm_kern.h>
78#include <vm/vm_extern.h>
79#include <vm/vm_page.h>
80
81#else
82
83#ifndef BLIST_NO_DEBUG
84#define BLIST_DEBUG
85#endif
86
87#define SWAPBLK_NONE ((daddr_t)-1)
88
89#include <sys/types.h>
90#include <stdio.h>
91#include <string.h>
92#include <stdlib.h>
93#include <stdarg.h>
94
95#define malloc(a,b,c)	malloc(a)
96#define free(a,b)	free(a)
97
98typedef unsigned int u_daddr_t;
99
100#include <sys/blist.h>
101
102void panic(const char *ctl, ...);
103
104#endif
105
106/*
107 * static support functions
108 */
109
110static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
111static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
112				daddr_t count, daddr_t radix, int skip);
113static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
114static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
115					daddr_t radix, int skip, daddr_t blk);
116static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
117				daddr_t skip, blist_t dest, daddr_t count);
118static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
119						int skip, daddr_t count);
120#ifndef _KERNEL
121static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
122					daddr_t radix, int skip, int tab);
123#endif
124
125#ifdef _KERNEL
126static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
127#endif
128
129/*
130 * blist_create() - create a blist capable of handling up to the specified
131 *		    number of blocks
132 *
133 *	blocks must be greater then 0
134 *
135 *	The smallest blist consists of a single leaf node capable of
136 *	managing BLIST_BMAP_RADIX blocks.
137 */
138
139blist_t
140blist_create(daddr_t blocks)
141{
142	blist_t bl;
143	int radix;
144	int skip = 0;
145
146	/*
147	 * Calculate radix and skip field used for scanning.
148	 */
149	radix = BLIST_BMAP_RADIX;
150
151	while (radix < blocks) {
152		radix <<= BLIST_META_RADIX_SHIFT;
153		skip = (skip + 1) << BLIST_META_RADIX_SHIFT;
154	}
155
156	bl = malloc(sizeof(struct blist), M_SWAP, M_WAITOK | M_ZERO);
157
158	bl->bl_blocks = blocks;
159	bl->bl_radix = radix;
160	bl->bl_skip = skip;
161	bl->bl_rootblks = 1 +
162	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
163	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
164
165#if defined(BLIST_DEBUG)
166	printf(
167		"BLIST representing %d blocks (%d MB of swap)"
168		", requiring %dK of ram\n",
169		bl->bl_blocks,
170		bl->bl_blocks * 4 / 1024,
171		(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
172	);
173	printf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
174#endif
175	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
176
177	return(bl);
178}
179
180void
181blist_destroy(blist_t bl)
182{
183	free(bl->bl_root, M_SWAP);
184	free(bl, M_SWAP);
185}
186
187/*
188 * blist_alloc() - reserve space in the block bitmap.  Return the base
189 *		     of a contiguous region or SWAPBLK_NONE if space could
190 *		     not be allocated.
191 */
192
193daddr_t
194blist_alloc(blist_t bl, daddr_t count)
195{
196	daddr_t blk = SWAPBLK_NONE;
197
198	if (bl) {
199		if (bl->bl_radix == BLIST_BMAP_RADIX)
200			blk = blst_leaf_alloc(bl->bl_root, 0, count);
201		else
202			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
203		if (blk != SWAPBLK_NONE)
204			bl->bl_free -= count;
205	}
206	return(blk);
207}
208
209/*
210 * blist_free() -	free up space in the block bitmap.  Return the base
211 *		     	of a contiguous region.  Panic if an inconsistancy is
212 *			found.
213 */
214
215void
216blist_free(blist_t bl, daddr_t blkno, daddr_t count)
217{
218	if (bl) {
219		if (bl->bl_radix == BLIST_BMAP_RADIX)
220			blst_leaf_free(bl->bl_root, blkno, count);
221		else
222			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
223		bl->bl_free += count;
224	}
225}
226
227/*
228 * blist_resize() -	resize an existing radix tree to handle the
229 *			specified number of blocks.  This will reallocate
230 *			the tree and transfer the previous bitmap to the new
231 *			one.  When extending the tree you can specify whether
232 *			the new blocks are to left allocated or freed.
233 */
234
235void
236blist_resize(blist_t *pbl, daddr_t count, int freenew)
237{
238    blist_t newbl = blist_create(count);
239    blist_t save = *pbl;
240
241    *pbl = newbl;
242    if (count > save->bl_blocks)
243	    count = save->bl_blocks;
244    blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
245
246    /*
247     * If resizing upwards, should we free the new space or not?
248     */
249    if (freenew && count < newbl->bl_blocks) {
250	    blist_free(newbl, count, newbl->bl_blocks - count);
251    }
252    blist_destroy(save);
253}
254
255#ifdef BLIST_DEBUG
256
257/*
258 * blist_print()    - dump radix tree
259 */
260
261void
262blist_print(blist_t bl)
263{
264	printf("BLIST {\n");
265	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
266	printf("}\n");
267}
268
269#endif
270
271/************************************************************************
272 *			  ALLOCATION SUPPORT FUNCTIONS			*
273 ************************************************************************
274 *
275 *	These support functions do all the actual work.  They may seem
276 *	rather longish, but that's because I've commented them up.  The
277 *	actual code is straight forward.
278 *
279 */
280
281/*
282 * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
283 *
284 *	This is the core of the allocator and is optimized for the 1 block
285 *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
286 *	somewhat slower.  The 1 block allocation case is log2 and extremely
287 *	quick.
288 */
289
290static daddr_t
291blst_leaf_alloc(
292	blmeta_t *scan,
293	daddr_t blk,
294	int count
295) {
296	u_daddr_t orig = scan->u.bmu_bitmap;
297
298	if (orig == 0) {
299		/*
300		 * Optimize bitmap all-allocated case.  Also, count = 1
301		 * case assumes at least 1 bit is free in the bitmap, so
302		 * we have to take care of this case here.
303		 */
304		scan->bm_bighint = 0;
305		return(SWAPBLK_NONE);
306	}
307	if (count == 1) {
308		/*
309		 * Optimized code to allocate one bit out of the bitmap
310		 */
311		u_daddr_t mask;
312		int j = BLIST_BMAP_RADIX/2;
313		int r = 0;
314
315		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
316
317		while (j) {
318			if ((orig & mask) == 0) {
319			    r += j;
320			    orig >>= j;
321			}
322			j >>= 1;
323			mask >>= j;
324		}
325		scan->u.bmu_bitmap &= ~(1 << r);
326		return(blk + r);
327	}
328	if (count <= BLIST_BMAP_RADIX) {
329		/*
330		 * non-optimized code to allocate N bits out of the bitmap.
331		 * The more bits, the faster the code runs.  It will run
332		 * the slowest allocating 2 bits, but since there aren't any
333		 * memory ops in the core loop (or shouldn't be, anyway),
334		 * you probably won't notice the difference.
335		 */
336		int j;
337		int n = BLIST_BMAP_RADIX - count;
338		u_daddr_t mask;
339
340		mask = (u_daddr_t)-1 >> n;
341
342		for (j = 0; j <= n; ++j) {
343			if ((orig & mask) == mask) {
344				scan->u.bmu_bitmap &= ~mask;
345				return(blk + j);
346			}
347			mask = (mask << 1);
348		}
349	}
350	/*
351	 * We couldn't allocate count in this subtree, update bighint.
352	 */
353	scan->bm_bighint = count - 1;
354	return(SWAPBLK_NONE);
355}
356
357/*
358 * blist_meta_alloc() -	allocate at a meta in the radix tree.
359 *
360 *	Attempt to allocate at a meta node.  If we can't, we update
361 *	bighint and return a failure.  Updating bighint optimize future
362 *	calls that hit this node.  We have to check for our collapse cases
363 *	and we have a few optimizations strewn in as well.
364 */
365
366static daddr_t
367blst_meta_alloc(
368	blmeta_t *scan,
369	daddr_t blk,
370	daddr_t count,
371	daddr_t radix,
372	int skip
373) {
374	int i;
375	int next_skip = (skip >> BLIST_META_RADIX_SHIFT);
376
377	if (scan->u.bmu_avail == 0)  {
378		/*
379		 * ALL-ALLOCATED special case
380		 */
381		scan->bm_bighint = count;
382		return(SWAPBLK_NONE);
383	}
384
385	if (scan->u.bmu_avail == radix) {
386		radix >>= BLIST_META_RADIX_SHIFT;
387
388		/*
389		 * ALL-FREE special case, initialize uninitialize
390		 * sublevel.
391		 */
392		for (i = 1; i <= skip; i += next_skip) {
393			if (scan[i].bm_bighint == (daddr_t)-1)
394				break;
395			if (next_skip == 1) {
396				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
397				scan[i].bm_bighint = BLIST_BMAP_RADIX;
398			} else {
399				scan[i].bm_bighint = radix;
400				scan[i].u.bmu_avail = radix;
401			}
402		}
403	} else {
404		radix >>= BLIST_META_RADIX_SHIFT;
405	}
406
407	for (i = 1; i <= skip; i += next_skip) {
408		if (count <= scan[i].bm_bighint) {
409			/*
410			 * count fits in object
411			 */
412			daddr_t r;
413			if (next_skip == 1) {
414				r = blst_leaf_alloc(&scan[i], blk, count);
415			} else {
416				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
417			}
418			if (r != SWAPBLK_NONE) {
419				scan->u.bmu_avail -= count;
420				if (scan->bm_bighint > scan->u.bmu_avail)
421					scan->bm_bighint = scan->u.bmu_avail;
422				return(r);
423			}
424		} else if (scan[i].bm_bighint == (daddr_t)-1) {
425			/*
426			 * Terminator
427			 */
428			break;
429		} else if (count > radix) {
430			/*
431			 * count does not fit in object even if it were
432			 * complete free.
433			 */
434			panic("blist_meta_alloc: allocation too large");
435		}
436		blk += radix;
437	}
438
439	/*
440	 * We couldn't allocate count in this subtree, update bighint.
441	 */
442	if (scan->bm_bighint >= count)
443		scan->bm_bighint = count - 1;
444	return(SWAPBLK_NONE);
445}
446
447/*
448 * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
449 *
450 */
451
452static void
453blst_leaf_free(
454	blmeta_t *scan,
455	daddr_t blk,
456	int count
457) {
458	/*
459	 * free some data in this bitmap
460	 *
461	 * e.g.
462	 *	0000111111111110000
463	 *          \_________/\__/
464	 *		v        n
465	 */
466	int n = blk & (BLIST_BMAP_RADIX - 1);
467	u_daddr_t mask;
468
469	mask = ((u_daddr_t)-1 << n) &
470	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
471
472	if (scan->u.bmu_bitmap & mask)
473		panic("blst_radix_free: freeing free block");
474	scan->u.bmu_bitmap |= mask;
475
476	/*
477	 * We could probably do a better job here.  We are required to make
478	 * bighint at least as large as the biggest contiguous block of
479	 * data.  If we just shoehorn it, a little extra overhead will
480	 * be incured on the next allocation (but only that one typically).
481	 */
482	scan->bm_bighint = BLIST_BMAP_RADIX;
483}
484
485/*
486 * BLST_META_FREE() - free allocated blocks from radix tree meta info
487 *
488 *	This support routine frees a range of blocks from the bitmap.
489 *	The range must be entirely enclosed by this radix node.  If a
490 *	meta node, we break the range down recursively to free blocks
491 *	in subnodes (which means that this code can free an arbitrary
492 *	range whereas the allocation code cannot allocate an arbitrary
493 *	range).
494 */
495
496static void
497blst_meta_free(
498	blmeta_t *scan,
499	daddr_t freeBlk,
500	daddr_t count,
501	daddr_t radix,
502	int skip,
503	daddr_t blk
504) {
505	int i;
506	int next_skip = (skip >> BLIST_META_RADIX_SHIFT);
507
508#if 0
509	printf("FREE (%x,%d) FROM (%x,%d)\n",
510	    freeBlk, count,
511	    blk, radix
512	);
513#endif
514
515	if (scan->u.bmu_avail == 0) {
516		/*
517		 * ALL-ALLOCATED special case, with possible
518		 * shortcut to ALL-FREE special case.
519		 */
520		scan->u.bmu_avail = count;
521		scan->bm_bighint = count;
522
523		if (count != radix)  {
524			for (i = 1; i <= skip; i += next_skip) {
525				if (scan[i].bm_bighint == (daddr_t)-1)
526					break;
527				scan[i].bm_bighint = 0;
528				if (next_skip == 1) {
529					scan[i].u.bmu_bitmap = 0;
530				} else {
531					scan[i].u.bmu_avail = 0;
532				}
533			}
534			/* fall through */
535		}
536	} else {
537		scan->u.bmu_avail += count;
538		/* scan->bm_bighint = radix; */
539	}
540
541	/*
542	 * ALL-FREE special case.
543	 */
544
545	if (scan->u.bmu_avail == radix)
546		return;
547	if (scan->u.bmu_avail > radix)
548		panic("blst_meta_free: freeing already free blocks (%d) %d/%d", count, scan->u.bmu_avail, radix);
549
550	/*
551	 * Break the free down into its components
552	 */
553
554	radix >>= BLIST_META_RADIX_SHIFT;
555
556	i = (freeBlk - blk) / radix;
557	blk += i * radix;
558	i = i * next_skip + 1;
559
560	while (i <= skip && blk < freeBlk + count) {
561		daddr_t v;
562
563		v = blk + radix - freeBlk;
564		if (v > count)
565			v = count;
566
567		if (scan->bm_bighint == (daddr_t)-1)
568			panic("blst_meta_free: freeing unexpected range");
569
570		if (next_skip == 1) {
571			blst_leaf_free(&scan[i], freeBlk, v);
572		} else {
573			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
574		}
575		if (scan->bm_bighint < scan[i].bm_bighint)
576		    scan->bm_bighint = scan[i].bm_bighint;
577		count -= v;
578		freeBlk += v;
579		blk += radix;
580		i += next_skip;
581	}
582}
583
584/*
585 * BLIST_RADIX_COPY() - copy one radix tree to another
586 *
587 *	Locates free space in the source tree and frees it in the destination
588 *	tree.  The space may not already be free in the destination.
589 */
590
591static void blst_copy(
592	blmeta_t *scan,
593	daddr_t blk,
594	daddr_t radix,
595	daddr_t skip,
596	blist_t dest,
597	daddr_t count
598) {
599	int next_skip;
600	int i;
601
602	/*
603	 * Leaf node
604	 */
605
606	if (radix == BLIST_BMAP_RADIX) {
607		u_daddr_t v = scan->u.bmu_bitmap;
608
609		if (v == (u_daddr_t)-1) {
610			blist_free(dest, blk, count);
611		} else if (v != 0) {
612			int i;
613
614			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
615				if (v & (1 << i))
616					blist_free(dest, blk + i, 1);
617			}
618		}
619		return;
620	}
621
622	/*
623	 * Meta node
624	 */
625
626	if (scan->u.bmu_avail == 0) {
627		/*
628		 * Source all allocated, leave dest allocated
629		 */
630		return;
631	}
632	if (scan->u.bmu_avail == radix) {
633		/*
634		 * Source all free, free entire dest
635		 */
636		if (count < radix)
637			blist_free(dest, blk, count);
638		else
639			blist_free(dest, blk, radix);
640		return;
641	}
642
643
644	radix >>= BLIST_META_RADIX_SHIFT;
645	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
646
647	for (i = 1; count && i <= skip; i += next_skip) {
648		if (scan[i].bm_bighint == (daddr_t)-1)
649			break;
650
651		if (count >= radix) {
652			blst_copy(
653			    &scan[i],
654			    blk,
655			    radix,
656			    next_skip - 1,
657			    dest,
658			    radix
659			);
660			count -= radix;
661		} else {
662			if (count) {
663				blst_copy(
664				    &scan[i],
665				    blk,
666				    radix,
667				    next_skip - 1,
668				    dest,
669				    count
670				);
671			}
672			count = 0;
673		}
674		blk += radix;
675	}
676}
677
678/*
679 * BLST_RADIX_INIT() - initialize radix tree
680 *
681 *	Initialize our meta structures and bitmaps and calculate the exact
682 *	amount of space required to manage 'count' blocks - this space may
683 *	be considerably less then the calculated radix due to the large
684 *	RADIX values we use.
685 */
686
687static daddr_t
688blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
689{
690	int i;
691	int next_skip;
692	daddr_t memindex = 0;
693
694	/*
695	 * Leaf node
696	 */
697
698	if (radix == BLIST_BMAP_RADIX) {
699		if (scan) {
700			scan->bm_bighint = 0;
701			scan->u.bmu_bitmap = 0;
702		}
703		return(memindex);
704	}
705
706	/*
707	 * Meta node.  If allocating the entire object we can special
708	 * case it.  However, we need to figure out how much memory
709	 * is required to manage 'count' blocks, so we continue on anyway.
710	 */
711
712	if (scan) {
713		scan->bm_bighint = 0;
714		scan->u.bmu_avail = 0;
715	}
716
717	radix >>= BLIST_META_RADIX_SHIFT;
718	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
719
720	for (i = 1; i <= skip; i += next_skip) {
721		if (count >= radix) {
722			/*
723			 * Allocate the entire object
724			 */
725			memindex = i + blst_radix_init(
726			    ((scan) ? &scan[i] : NULL),
727			    radix,
728			    next_skip - 1,
729			    radix
730			);
731			count -= radix;
732		} else if (count > 0) {
733			/*
734			 * Allocate a partial object
735			 */
736			memindex = i + blst_radix_init(
737			    ((scan) ? &scan[i] : NULL),
738			    radix,
739			    next_skip - 1,
740			    count
741			);
742			count = 0;
743		} else {
744			/*
745			 * Add terminator and break out
746			 */
747			if (scan)
748				scan[i].bm_bighint = (daddr_t)-1;
749			break;
750		}
751	}
752	if (memindex < i)
753		memindex = i;
754	return(memindex);
755}
756
757#ifdef BLIST_DEBUG
758
759static void
760blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
761{
762	int i;
763	int next_skip;
764	int lastState = 0;
765
766	if (radix == BLIST_BMAP_RADIX) {
767		printf(
768		    "%*.*s(%04x,%d): bitmap %08x big=%d\n",
769		    tab, tab, "",
770		    blk, radix,
771		    scan->u.bmu_bitmap,
772		    scan->bm_bighint
773		);
774		return;
775	}
776
777	if (scan->u.bmu_avail == 0) {
778		printf(
779		    "%*.*s(%04x,%d) ALL ALLOCATED\n",
780		    tab, tab, "",
781		    blk,
782		    radix
783		);
784		return;
785	}
786	if (scan->u.bmu_avail == radix) {
787		printf(
788		    "%*.*s(%04x,%d) ALL FREE\n",
789		    tab, tab, "",
790		    blk,
791		    radix
792		);
793		return;
794	}
795
796	printf(
797	    "%*.*s(%04x,%d): subtree (%d/%d) big=%d {\n",
798	    tab, tab, "",
799	    blk, radix,
800	    scan->u.bmu_avail,
801	    radix,
802	    scan->bm_bighint
803	);
804
805	radix >>= BLIST_META_RADIX_SHIFT;
806	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
807	tab += 4;
808
809	for (i = 1; i <= skip; i += next_skip) {
810		if (scan[i].bm_bighint == (daddr_t)-1) {
811			printf(
812			    "%*.*s(%04x,%d): Terminator\n",
813			    tab, tab, "",
814			    blk, radix
815			);
816			lastState = 0;
817			break;
818		}
819		blst_radix_print(
820		    &scan[i],
821		    blk,
822		    radix,
823		    next_skip - 1,
824		    tab
825		);
826		blk += radix;
827	}
828	tab -= 4;
829
830	printf(
831	    "%*.*s}\n",
832	    tab, tab, ""
833	);
834}
835
836#endif
837
838#ifdef BLIST_DEBUG
839
840int
841main(int ac, char **av)
842{
843	int size = 1024;
844	int i;
845	blist_t bl;
846
847	for (i = 1; i < ac; ++i) {
848		const char *ptr = av[i];
849		if (*ptr != '-') {
850			size = strtol(ptr, NULL, 0);
851			continue;
852		}
853		ptr += 2;
854		fprintf(stderr, "Bad option: %s\n", ptr - 2);
855		exit(1);
856	}
857	bl = blist_create(size);
858	blist_free(bl, 0, size);
859
860	for (;;) {
861		char buf[1024];
862		daddr_t da = 0;
863		daddr_t count = 0;
864
865
866		printf("%d/%d/%d> ", bl->bl_free, size, bl->bl_radix);
867		fflush(stdout);
868		if (fgets(buf, sizeof(buf), stdin) == NULL)
869			break;
870		switch(buf[0]) {
871		case 'r':
872			if (sscanf(buf + 1, "%d", &count) == 1) {
873				blist_resize(&bl, count, 1);
874			} else {
875				printf("?\n");
876			}
877		case 'p':
878			blist_print(bl);
879			break;
880		case 'a':
881			if (sscanf(buf + 1, "%d", &count) == 1) {
882				daddr_t blk = blist_alloc(bl, count);
883				printf("    R=%04x\n", blk);
884			} else {
885				printf("?\n");
886			}
887			break;
888		case 'f':
889			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
890				blist_free(bl, da, count);
891			} else {
892				printf("?\n");
893			}
894			break;
895		case '?':
896		case 'h':
897			puts(
898			    "p          -print\n"
899			    "a %d       -allocate\n"
900			    "f %x %d    -free\n"
901			    "r %d       -resize\n"
902			    "h/?        -help"
903			);
904			break;
905		default:
906			printf("?\n");
907			break;
908		}
909	}
910	return(0);
911}
912
913void
914panic(const char *ctl, ...)
915{
916	va_list va;
917
918	va_start(va, ctl);
919	vfprintf(stderr, ctl, va);
920	fprintf(stderr, "\n");
921	va_end(va);
922	exit(1);
923}
924
925#endif
926
927