subr_blist.c revision 225736
1/*-
2 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
3 * Redistribution and use in source and binary forms, with or without
4 * modification, are permitted provided that the following conditions
5 * are met:
6 * 1. Redistributions of source code must retain the above copyright
7 *    notice, this list of conditions and the following disclaimer.
8 * 2. Redistributions in binary form must reproduce the above copyright
9 *    notice, this list of conditions and the following disclaimer in the
10 *    documentation and/or other materials provided with the distribution.
11 * 4. Neither the name of the University nor the names of its contributors
12 *    may be used to endorse or promote products derived from this software
13 *    without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
19 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
21 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27/*
28 * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
29 *
30 *	This module implements a general bitmap allocator/deallocator.  The
31 *	allocator eats around 2 bits per 'block'.  The module does not
32 *	try to interpret the meaning of a 'block' other then to return
33 *	SWAPBLK_NONE on an allocation failure.
34 *
35 *	A radix tree is used to maintain the bitmap.  Two radix constants are
36 *	involved:  One for the bitmaps contained in the leaf nodes (typically
37 *	32), and one for the meta nodes (typically 16).  Both meta and leaf
38 *	nodes have a hint field.  This field gives us a hint as to the largest
39 *	free contiguous range of blocks under the node.  It may contain a
40 *	value that is too high, but will never contain a value that is too
41 *	low.  When the radix tree is searched, allocation failures in subtrees
42 *	update the hint.
43 *
44 *	The radix tree also implements two collapsed states for meta nodes:
45 *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
46 *	in either of these two states, all information contained underneath
47 *	the node is considered stale.  These states are used to optimize
48 *	allocation and freeing operations.
49 *
50 * 	The hinting greatly increases code efficiency for allocations while
51 *	the general radix structure optimizes both allocations and frees.  The
52 *	radix tree should be able to operate well no matter how much
53 *	fragmentation there is and no matter how large a bitmap is used.
54 *
55 *	Unlike the rlist code, the blist code wires all necessary memory at
56 *	creation time.  Neither allocations nor frees require interaction with
57 *	the memory subsystem.  In contrast, the rlist code may allocate memory
58 *	on an rlist_free() call.  The non-blocking features of the blist code
59 *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
60 *	rlist code uses a little less overall memory then the blist code (but
61 *	due to swap interleaving not all that much less), but the blist code
62 *	scales much, much better.
63 *
64 *	LAYOUT: The radix tree is layed out recursively using a
65 *	linear array.  Each meta node is immediately followed (layed out
66 *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
67 *	is a recursive structure but one that can be easily scanned through
68 *	a very simple 'skip' calculation.  In order to support large radixes,
69 *	portions of the tree may reside outside our memory allocation.  We
70 *	handle this with an early-termination optimization (when bighint is
71 *	set to -1) on the scan.  The memory allocation is only large enough
72 *	to cover the number of blocks requested at creation time even if it
73 *	must be encompassed in larger root-node radix.
74 *
75 *	NOTE: the allocator cannot currently allocate more then
76 *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
77 *	large' if you try.  This is an area that could use improvement.  The
78 *	radix is large enough that this restriction does not effect the swap
79 *	system, though.  Currently only the allocation code is effected by
80 *	this algorithmic unfeature.  The freeing code can handle arbitrary
81 *	ranges.
82 *
83 *	This code can be compiled stand-alone for debugging.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD: stable/9/sys/kern/subr_blist.c 184205 2008-10-23 15:53:51Z des $");
88
89#ifdef _KERNEL
90
91#include <sys/param.h>
92#include <sys/systm.h>
93#include <sys/lock.h>
94#include <sys/kernel.h>
95#include <sys/blist.h>
96#include <sys/malloc.h>
97#include <sys/proc.h>
98#include <sys/mutex.h>
99
100#else
101
102#ifndef BLIST_NO_DEBUG
103#define BLIST_DEBUG
104#endif
105
106#define SWAPBLK_NONE ((daddr_t)-1)
107
108#include <sys/types.h>
109#include <stdio.h>
110#include <string.h>
111#include <stdlib.h>
112#include <stdarg.h>
113
114#define malloc(a,b,c)	calloc(a, 1)
115#define free(a,b)	free(a)
116
117typedef unsigned int u_daddr_t;
118
119#include <sys/blist.h>
120
121void panic(const char *ctl, ...);
122
123#endif
124
125/*
126 * static support functions
127 */
128
129static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
130static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
131				daddr_t count, daddr_t radix, int skip);
132static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
133static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
134					daddr_t radix, int skip, daddr_t blk);
135static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
136				daddr_t skip, blist_t dest, daddr_t count);
137static int blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
138static int blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
139				daddr_t radix, int skip, daddr_t blk);
140static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
141						int skip, daddr_t count);
142#ifndef _KERNEL
143static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
144					daddr_t radix, int skip, int tab);
145#endif
146
147#ifdef _KERNEL
148static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
149#endif
150
151/*
152 * blist_create() - create a blist capable of handling up to the specified
153 *		    number of blocks
154 *
155 *	blocks - must be greater then 0
156 * 	flags  - malloc flags
157 *
158 *	The smallest blist consists of a single leaf node capable of
159 *	managing BLIST_BMAP_RADIX blocks.
160 */
161
162blist_t
163blist_create(daddr_t blocks, int flags)
164{
165	blist_t bl;
166	int radix;
167	int skip = 0;
168
169	/*
170	 * Calculate radix and skip field used for scanning.
171	 */
172	radix = BLIST_BMAP_RADIX;
173
174	while (radix < blocks) {
175		radix *= BLIST_META_RADIX;
176		skip = (skip + 1) * BLIST_META_RADIX;
177	}
178
179	bl = malloc(sizeof(struct blist), M_SWAP, flags | M_ZERO);
180
181	bl->bl_blocks = blocks;
182	bl->bl_radix = radix;
183	bl->bl_skip = skip;
184	bl->bl_rootblks = 1 +
185	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
186	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, flags);
187
188#if defined(BLIST_DEBUG)
189	printf(
190		"BLIST representing %lld blocks (%lld MB of swap)"
191		", requiring %lldK of ram\n",
192		(long long)bl->bl_blocks,
193		(long long)bl->bl_blocks * 4 / 1024,
194		(long long)(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
195	);
196	printf("BLIST raw radix tree contains %lld records\n",
197	    (long long)bl->bl_rootblks);
198#endif
199	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
200
201	return(bl);
202}
203
204void
205blist_destroy(blist_t bl)
206{
207	free(bl->bl_root, M_SWAP);
208	free(bl, M_SWAP);
209}
210
211/*
212 * blist_alloc() - reserve space in the block bitmap.  Return the base
213 *		     of a contiguous region or SWAPBLK_NONE if space could
214 *		     not be allocated.
215 */
216
217daddr_t
218blist_alloc(blist_t bl, daddr_t count)
219{
220	daddr_t blk = SWAPBLK_NONE;
221
222	if (bl) {
223		if (bl->bl_radix == BLIST_BMAP_RADIX)
224			blk = blst_leaf_alloc(bl->bl_root, 0, count);
225		else
226			blk = blst_meta_alloc(bl->bl_root, 0, count, bl->bl_radix, bl->bl_skip);
227		if (blk != SWAPBLK_NONE)
228			bl->bl_free -= count;
229	}
230	return(blk);
231}
232
233/*
234 * blist_free() -	free up space in the block bitmap.  Return the base
235 *		     	of a contiguous region.  Panic if an inconsistancy is
236 *			found.
237 */
238
239void
240blist_free(blist_t bl, daddr_t blkno, daddr_t count)
241{
242	if (bl) {
243		if (bl->bl_radix == BLIST_BMAP_RADIX)
244			blst_leaf_free(bl->bl_root, blkno, count);
245		else
246			blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix, bl->bl_skip, 0);
247		bl->bl_free += count;
248	}
249}
250
251/*
252 * blist_fill() -	mark a region in the block bitmap as off-limits
253 *			to the allocator (i.e. allocate it), ignoring any
254 *			existing allocations.  Return the number of blocks
255 *			actually filled that were free before the call.
256 */
257
258int
259blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
260{
261	int filled;
262
263	if (bl) {
264		if (bl->bl_radix == BLIST_BMAP_RADIX)
265			filled = blst_leaf_fill(bl->bl_root, blkno, count);
266		else
267			filled = blst_meta_fill(bl->bl_root, blkno, count,
268			    bl->bl_radix, bl->bl_skip, 0);
269		bl->bl_free -= filled;
270		return filled;
271	} else
272		return 0;
273}
274
275/*
276 * blist_resize() -	resize an existing radix tree to handle the
277 *			specified number of blocks.  This will reallocate
278 *			the tree and transfer the previous bitmap to the new
279 *			one.  When extending the tree you can specify whether
280 *			the new blocks are to left allocated or freed.
281 */
282
283void
284blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
285{
286    blist_t newbl = blist_create(count, flags);
287    blist_t save = *pbl;
288
289    *pbl = newbl;
290    if (count > save->bl_blocks)
291	    count = save->bl_blocks;
292    blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
293
294    /*
295     * If resizing upwards, should we free the new space or not?
296     */
297    if (freenew && count < newbl->bl_blocks) {
298	    blist_free(newbl, count, newbl->bl_blocks - count);
299    }
300    blist_destroy(save);
301}
302
303#ifdef BLIST_DEBUG
304
305/*
306 * blist_print()    - dump radix tree
307 */
308
309void
310blist_print(blist_t bl)
311{
312	printf("BLIST {\n");
313	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
314	printf("}\n");
315}
316
317#endif
318
319/************************************************************************
320 *			  ALLOCATION SUPPORT FUNCTIONS			*
321 ************************************************************************
322 *
323 *	These support functions do all the actual work.  They may seem
324 *	rather longish, but that's because I've commented them up.  The
325 *	actual code is straight forward.
326 *
327 */
328
329/*
330 * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
331 *
332 *	This is the core of the allocator and is optimized for the 1 block
333 *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
334 *	somewhat slower.  The 1 block allocation case is log2 and extremely
335 *	quick.
336 */
337
338static daddr_t
339blst_leaf_alloc(
340	blmeta_t *scan,
341	daddr_t blk,
342	int count
343) {
344	u_daddr_t orig = scan->u.bmu_bitmap;
345
346	if (orig == 0) {
347		/*
348		 * Optimize bitmap all-allocated case.  Also, count = 1
349		 * case assumes at least 1 bit is free in the bitmap, so
350		 * we have to take care of this case here.
351		 */
352		scan->bm_bighint = 0;
353		return(SWAPBLK_NONE);
354	}
355	if (count == 1) {
356		/*
357		 * Optimized code to allocate one bit out of the bitmap
358		 */
359		u_daddr_t mask;
360		int j = BLIST_BMAP_RADIX/2;
361		int r = 0;
362
363		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
364
365		while (j) {
366			if ((orig & mask) == 0) {
367			    r += j;
368			    orig >>= j;
369			}
370			j >>= 1;
371			mask >>= j;
372		}
373		scan->u.bmu_bitmap &= ~(1 << r);
374		return(blk + r);
375	}
376	if (count <= BLIST_BMAP_RADIX) {
377		/*
378		 * non-optimized code to allocate N bits out of the bitmap.
379		 * The more bits, the faster the code runs.  It will run
380		 * the slowest allocating 2 bits, but since there aren't any
381		 * memory ops in the core loop (or shouldn't be, anyway),
382		 * you probably won't notice the difference.
383		 */
384		int j;
385		int n = BLIST_BMAP_RADIX - count;
386		u_daddr_t mask;
387
388		mask = (u_daddr_t)-1 >> n;
389
390		for (j = 0; j <= n; ++j) {
391			if ((orig & mask) == mask) {
392				scan->u.bmu_bitmap &= ~mask;
393				return(blk + j);
394			}
395			mask = (mask << 1);
396		}
397	}
398	/*
399	 * We couldn't allocate count in this subtree, update bighint.
400	 */
401	scan->bm_bighint = count - 1;
402	return(SWAPBLK_NONE);
403}
404
405/*
406 * blist_meta_alloc() -	allocate at a meta in the radix tree.
407 *
408 *	Attempt to allocate at a meta node.  If we can't, we update
409 *	bighint and return a failure.  Updating bighint optimize future
410 *	calls that hit this node.  We have to check for our collapse cases
411 *	and we have a few optimizations strewn in as well.
412 */
413
414static daddr_t
415blst_meta_alloc(
416	blmeta_t *scan,
417	daddr_t blk,
418	daddr_t count,
419	daddr_t radix,
420	int skip
421) {
422	int i;
423	int next_skip = ((u_int)skip / BLIST_META_RADIX);
424
425	if (scan->u.bmu_avail == 0)  {
426		/*
427		 * ALL-ALLOCATED special case
428		 */
429		scan->bm_bighint = count;
430		return(SWAPBLK_NONE);
431	}
432
433	if (scan->u.bmu_avail == radix) {
434		radix /= BLIST_META_RADIX;
435
436		/*
437		 * ALL-FREE special case, initialize uninitialize
438		 * sublevel.
439		 */
440		for (i = 1; i <= skip; i += next_skip) {
441			if (scan[i].bm_bighint == (daddr_t)-1)
442				break;
443			if (next_skip == 1) {
444				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
445				scan[i].bm_bighint = BLIST_BMAP_RADIX;
446			} else {
447				scan[i].bm_bighint = radix;
448				scan[i].u.bmu_avail = radix;
449			}
450		}
451	} else {
452		radix /= BLIST_META_RADIX;
453	}
454
455	for (i = 1; i <= skip; i += next_skip) {
456		if (count <= scan[i].bm_bighint) {
457			/*
458			 * count fits in object
459			 */
460			daddr_t r;
461			if (next_skip == 1) {
462				r = blst_leaf_alloc(&scan[i], blk, count);
463			} else {
464				r = blst_meta_alloc(&scan[i], blk, count, radix, next_skip - 1);
465			}
466			if (r != SWAPBLK_NONE) {
467				scan->u.bmu_avail -= count;
468				if (scan->bm_bighint > scan->u.bmu_avail)
469					scan->bm_bighint = scan->u.bmu_avail;
470				return(r);
471			}
472		} else if (scan[i].bm_bighint == (daddr_t)-1) {
473			/*
474			 * Terminator
475			 */
476			break;
477		} else if (count > radix) {
478			/*
479			 * count does not fit in object even if it were
480			 * complete free.
481			 */
482			panic("blist_meta_alloc: allocation too large");
483		}
484		blk += radix;
485	}
486
487	/*
488	 * We couldn't allocate count in this subtree, update bighint.
489	 */
490	if (scan->bm_bighint >= count)
491		scan->bm_bighint = count - 1;
492	return(SWAPBLK_NONE);
493}
494
495/*
496 * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
497 *
498 */
499
500static void
501blst_leaf_free(
502	blmeta_t *scan,
503	daddr_t blk,
504	int count
505) {
506	/*
507	 * free some data in this bitmap
508	 *
509	 * e.g.
510	 *	0000111111111110000
511	 *          \_________/\__/
512	 *		v        n
513	 */
514	int n = blk & (BLIST_BMAP_RADIX - 1);
515	u_daddr_t mask;
516
517	mask = ((u_daddr_t)-1 << n) &
518	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
519
520	if (scan->u.bmu_bitmap & mask)
521		panic("blst_radix_free: freeing free block");
522	scan->u.bmu_bitmap |= mask;
523
524	/*
525	 * We could probably do a better job here.  We are required to make
526	 * bighint at least as large as the biggest contiguous block of
527	 * data.  If we just shoehorn it, a little extra overhead will
528	 * be incured on the next allocation (but only that one typically).
529	 */
530	scan->bm_bighint = BLIST_BMAP_RADIX;
531}
532
533/*
534 * BLST_META_FREE() - free allocated blocks from radix tree meta info
535 *
536 *	This support routine frees a range of blocks from the bitmap.
537 *	The range must be entirely enclosed by this radix node.  If a
538 *	meta node, we break the range down recursively to free blocks
539 *	in subnodes (which means that this code can free an arbitrary
540 *	range whereas the allocation code cannot allocate an arbitrary
541 *	range).
542 */
543
544static void
545blst_meta_free(
546	blmeta_t *scan,
547	daddr_t freeBlk,
548	daddr_t count,
549	daddr_t radix,
550	int skip,
551	daddr_t blk
552) {
553	int i;
554	int next_skip = ((u_int)skip / BLIST_META_RADIX);
555
556#if 0
557	printf("free (%llx,%lld) FROM (%llx,%lld)\n",
558	    (long long)freeBlk, (long long)count,
559	    (long long)blk, (long long)radix
560	);
561#endif
562
563	if (scan->u.bmu_avail == 0) {
564		/*
565		 * ALL-ALLOCATED special case, with possible
566		 * shortcut to ALL-FREE special case.
567		 */
568		scan->u.bmu_avail = count;
569		scan->bm_bighint = count;
570
571		if (count != radix)  {
572			for (i = 1; i <= skip; i += next_skip) {
573				if (scan[i].bm_bighint == (daddr_t)-1)
574					break;
575				scan[i].bm_bighint = 0;
576				if (next_skip == 1) {
577					scan[i].u.bmu_bitmap = 0;
578				} else {
579					scan[i].u.bmu_avail = 0;
580				}
581			}
582			/* fall through */
583		}
584	} else {
585		scan->u.bmu_avail += count;
586		/* scan->bm_bighint = radix; */
587	}
588
589	/*
590	 * ALL-FREE special case.
591	 */
592
593	if (scan->u.bmu_avail == radix)
594		return;
595	if (scan->u.bmu_avail > radix)
596		panic("blst_meta_free: freeing already free blocks (%lld) %lld/%lld",
597		    (long long)count, (long long)scan->u.bmu_avail,
598		    (long long)radix);
599
600	/*
601	 * Break the free down into its components
602	 */
603
604	radix /= BLIST_META_RADIX;
605
606	i = (freeBlk - blk) / radix;
607	blk += i * radix;
608	i = i * next_skip + 1;
609
610	while (i <= skip && blk < freeBlk + count) {
611		daddr_t v;
612
613		v = blk + radix - freeBlk;
614		if (v > count)
615			v = count;
616
617		if (scan->bm_bighint == (daddr_t)-1)
618			panic("blst_meta_free: freeing unexpected range");
619
620		if (next_skip == 1) {
621			blst_leaf_free(&scan[i], freeBlk, v);
622		} else {
623			blst_meta_free(&scan[i], freeBlk, v, radix, next_skip - 1, blk);
624		}
625		if (scan->bm_bighint < scan[i].bm_bighint)
626		    scan->bm_bighint = scan[i].bm_bighint;
627		count -= v;
628		freeBlk += v;
629		blk += radix;
630		i += next_skip;
631	}
632}
633
634/*
635 * BLIST_RADIX_COPY() - copy one radix tree to another
636 *
637 *	Locates free space in the source tree and frees it in the destination
638 *	tree.  The space may not already be free in the destination.
639 */
640
641static void blst_copy(
642	blmeta_t *scan,
643	daddr_t blk,
644	daddr_t radix,
645	daddr_t skip,
646	blist_t dest,
647	daddr_t count
648) {
649	int next_skip;
650	int i;
651
652	/*
653	 * Leaf node
654	 */
655
656	if (radix == BLIST_BMAP_RADIX) {
657		u_daddr_t v = scan->u.bmu_bitmap;
658
659		if (v == (u_daddr_t)-1) {
660			blist_free(dest, blk, count);
661		} else if (v != 0) {
662			int i;
663
664			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i) {
665				if (v & (1 << i))
666					blist_free(dest, blk + i, 1);
667			}
668		}
669		return;
670	}
671
672	/*
673	 * Meta node
674	 */
675
676	if (scan->u.bmu_avail == 0) {
677		/*
678		 * Source all allocated, leave dest allocated
679		 */
680		return;
681	}
682	if (scan->u.bmu_avail == radix) {
683		/*
684		 * Source all free, free entire dest
685		 */
686		if (count < radix)
687			blist_free(dest, blk, count);
688		else
689			blist_free(dest, blk, radix);
690		return;
691	}
692
693
694	radix /= BLIST_META_RADIX;
695	next_skip = ((u_int)skip / BLIST_META_RADIX);
696
697	for (i = 1; count && i <= skip; i += next_skip) {
698		if (scan[i].bm_bighint == (daddr_t)-1)
699			break;
700
701		if (count >= radix) {
702			blst_copy(
703			    &scan[i],
704			    blk,
705			    radix,
706			    next_skip - 1,
707			    dest,
708			    radix
709			);
710			count -= radix;
711		} else {
712			if (count) {
713				blst_copy(
714				    &scan[i],
715				    blk,
716				    radix,
717				    next_skip - 1,
718				    dest,
719				    count
720				);
721			}
722			count = 0;
723		}
724		blk += radix;
725	}
726}
727
728/*
729 * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
730 *
731 *	This routine allocates all blocks in the specified range
732 *	regardless of any existing allocations in that range.  Returns
733 *	the number of blocks allocated by the call.
734 */
735
736static int
737blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
738{
739	int n = blk & (BLIST_BMAP_RADIX - 1);
740	int nblks;
741	u_daddr_t mask, bitmap;
742
743	mask = ((u_daddr_t)-1 << n) &
744	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
745
746	/* Count the number of blocks we're about to allocate */
747	bitmap = scan->u.bmu_bitmap & mask;
748	for (nblks = 0; bitmap != 0; nblks++)
749		bitmap &= bitmap - 1;
750
751	scan->u.bmu_bitmap &= ~mask;
752	return nblks;
753}
754
755/*
756 * BLIST_META_FILL() -	allocate specific blocks at a meta node
757 *
758 *	This routine allocates the specified range of blocks,
759 *	regardless of any existing allocations in the range.  The
760 *	range must be within the extent of this node.  Returns the
761 *	number of blocks allocated by the call.
762 */
763static int
764blst_meta_fill(
765	blmeta_t *scan,
766	daddr_t allocBlk,
767	daddr_t count,
768	daddr_t radix,
769	int skip,
770	daddr_t blk
771) {
772	int i;
773	int next_skip = ((u_int)skip / BLIST_META_RADIX);
774	int nblks = 0;
775
776	if (count == radix || scan->u.bmu_avail == 0)  {
777		/*
778		 * ALL-ALLOCATED special case
779		 */
780		nblks = scan->u.bmu_avail;
781		scan->u.bmu_avail = 0;
782		scan->bm_bighint = count;
783		return nblks;
784	}
785
786	if (scan->u.bmu_avail == radix) {
787		radix /= BLIST_META_RADIX;
788
789		/*
790		 * ALL-FREE special case, initialize sublevel
791		 */
792		for (i = 1; i <= skip; i += next_skip) {
793			if (scan[i].bm_bighint == (daddr_t)-1)
794				break;
795			if (next_skip == 1) {
796				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
797				scan[i].bm_bighint = BLIST_BMAP_RADIX;
798			} else {
799				scan[i].bm_bighint = radix;
800				scan[i].u.bmu_avail = radix;
801			}
802		}
803	} else {
804		radix /= BLIST_META_RADIX;
805	}
806
807	if (count > radix)
808		panic("blist_meta_fill: allocation too large");
809
810	i = (allocBlk - blk) / radix;
811	blk += i * radix;
812	i = i * next_skip + 1;
813
814	while (i <= skip && blk < allocBlk + count) {
815		daddr_t v;
816
817		v = blk + radix - allocBlk;
818		if (v > count)
819			v = count;
820
821		if (scan->bm_bighint == (daddr_t)-1)
822			panic("blst_meta_fill: filling unexpected range");
823
824		if (next_skip == 1) {
825			nblks += blst_leaf_fill(&scan[i], allocBlk, v);
826		} else {
827			nblks += blst_meta_fill(&scan[i], allocBlk, v,
828			    radix, next_skip - 1, blk);
829		}
830		count -= v;
831		allocBlk += v;
832		blk += radix;
833		i += next_skip;
834	}
835	scan->u.bmu_avail -= nblks;
836	return nblks;
837}
838
839/*
840 * BLST_RADIX_INIT() - initialize radix tree
841 *
842 *	Initialize our meta structures and bitmaps and calculate the exact
843 *	amount of space required to manage 'count' blocks - this space may
844 *	be considerably less then the calculated radix due to the large
845 *	RADIX values we use.
846 */
847
848static daddr_t
849blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
850{
851	int i;
852	int next_skip;
853	daddr_t memindex = 0;
854
855	/*
856	 * Leaf node
857	 */
858
859	if (radix == BLIST_BMAP_RADIX) {
860		if (scan) {
861			scan->bm_bighint = 0;
862			scan->u.bmu_bitmap = 0;
863		}
864		return(memindex);
865	}
866
867	/*
868	 * Meta node.  If allocating the entire object we can special
869	 * case it.  However, we need to figure out how much memory
870	 * is required to manage 'count' blocks, so we continue on anyway.
871	 */
872
873	if (scan) {
874		scan->bm_bighint = 0;
875		scan->u.bmu_avail = 0;
876	}
877
878	radix /= BLIST_META_RADIX;
879	next_skip = ((u_int)skip / BLIST_META_RADIX);
880
881	for (i = 1; i <= skip; i += next_skip) {
882		if (count >= radix) {
883			/*
884			 * Allocate the entire object
885			 */
886			memindex = i + blst_radix_init(
887			    ((scan) ? &scan[i] : NULL),
888			    radix,
889			    next_skip - 1,
890			    radix
891			);
892			count -= radix;
893		} else if (count > 0) {
894			/*
895			 * Allocate a partial object
896			 */
897			memindex = i + blst_radix_init(
898			    ((scan) ? &scan[i] : NULL),
899			    radix,
900			    next_skip - 1,
901			    count
902			);
903			count = 0;
904		} else {
905			/*
906			 * Add terminator and break out
907			 */
908			if (scan)
909				scan[i].bm_bighint = (daddr_t)-1;
910			break;
911		}
912	}
913	if (memindex < i)
914		memindex = i;
915	return(memindex);
916}
917
918#ifdef BLIST_DEBUG
919
920static void
921blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
922{
923	int i;
924	int next_skip;
925	int lastState = 0;
926
927	if (radix == BLIST_BMAP_RADIX) {
928		printf(
929		    "%*.*s(%08llx,%lld): bitmap %08llx big=%lld\n",
930		    tab, tab, "",
931		    (long long)blk, (long long)radix,
932		    (long long)scan->u.bmu_bitmap,
933		    (long long)scan->bm_bighint
934		);
935		return;
936	}
937
938	if (scan->u.bmu_avail == 0) {
939		printf(
940		    "%*.*s(%08llx,%lld) ALL ALLOCATED\n",
941		    tab, tab, "",
942		    (long long)blk,
943		    (long long)radix
944		);
945		return;
946	}
947	if (scan->u.bmu_avail == radix) {
948		printf(
949		    "%*.*s(%08llx,%lld) ALL FREE\n",
950		    tab, tab, "",
951		    (long long)blk,
952		    (long long)radix
953		);
954		return;
955	}
956
957	printf(
958	    "%*.*s(%08llx,%lld): subtree (%lld/%lld) big=%lld {\n",
959	    tab, tab, "",
960	    (long long)blk, (long long)radix,
961	    (long long)scan->u.bmu_avail,
962	    (long long)radix,
963	    (long long)scan->bm_bighint
964	);
965
966	radix /= BLIST_META_RADIX;
967	next_skip = ((u_int)skip / BLIST_META_RADIX);
968	tab += 4;
969
970	for (i = 1; i <= skip; i += next_skip) {
971		if (scan[i].bm_bighint == (daddr_t)-1) {
972			printf(
973			    "%*.*s(%08llx,%lld): Terminator\n",
974			    tab, tab, "",
975			    (long long)blk, (long long)radix
976			);
977			lastState = 0;
978			break;
979		}
980		blst_radix_print(
981		    &scan[i],
982		    blk,
983		    radix,
984		    next_skip - 1,
985		    tab
986		);
987		blk += radix;
988	}
989	tab -= 4;
990
991	printf(
992	    "%*.*s}\n",
993	    tab, tab, ""
994	);
995}
996
997#endif
998
999#ifdef BLIST_DEBUG
1000
1001int
1002main(int ac, char **av)
1003{
1004	int size = 1024;
1005	int i;
1006	blist_t bl;
1007
1008	for (i = 1; i < ac; ++i) {
1009		const char *ptr = av[i];
1010		if (*ptr != '-') {
1011			size = strtol(ptr, NULL, 0);
1012			continue;
1013		}
1014		ptr += 2;
1015		fprintf(stderr, "Bad option: %s\n", ptr - 2);
1016		exit(1);
1017	}
1018	bl = blist_create(size, M_WAITOK);
1019	blist_free(bl, 0, size);
1020
1021	for (;;) {
1022		char buf[1024];
1023		daddr_t da = 0;
1024		daddr_t count = 0;
1025
1026
1027		printf("%lld/%lld/%lld> ", (long long)bl->bl_free,
1028		    (long long)size, (long long)bl->bl_radix);
1029		fflush(stdout);
1030		if (fgets(buf, sizeof(buf), stdin) == NULL)
1031			break;
1032		switch(buf[0]) {
1033		case 'r':
1034			if (sscanf(buf + 1, "%lld", &count) == 1) {
1035				blist_resize(&bl, count, 1);
1036			} else {
1037				printf("?\n");
1038			}
1039		case 'p':
1040			blist_print(bl);
1041			break;
1042		case 'a':
1043			if (sscanf(buf + 1, "%lld", &count) == 1) {
1044				daddr_t blk = blist_alloc(bl, count);
1045				printf("    R=%08llx\n", (long long)blk);
1046			} else {
1047				printf("?\n");
1048			}
1049			break;
1050		case 'f':
1051			if (sscanf(buf + 1, "%llx %lld",
1052			    (long long *)&da, (long long *)&count) == 2) {
1053				blist_free(bl, da, count);
1054			} else {
1055				printf("?\n");
1056			}
1057			break;
1058		case 'l':
1059			if (sscanf(buf + 1, "%llx %lld",
1060			    (long long *)&da, (long long *)&count) == 2) {
1061				printf("    n=%d\n",
1062				    blist_fill(bl, da, count));
1063			} else {
1064				printf("?\n");
1065			}
1066			break;
1067		case '?':
1068		case 'h':
1069			puts(
1070			    "p          -print\n"
1071			    "a %d       -allocate\n"
1072			    "f %x %d    -free\n"
1073			    "l %x %d    -fill\n"
1074			    "r %d       -resize\n"
1075			    "h/?        -help"
1076			);
1077			break;
1078		default:
1079			printf("?\n");
1080			break;
1081		}
1082	}
1083	return(0);
1084}
1085
1086void
1087panic(const char *ctl, ...)
1088{
1089	va_list va;
1090
1091	va_start(va, ctl);
1092	vfprintf(stderr, ctl, va);
1093	fprintf(stderr, "\n");
1094	va_end(va);
1095	exit(1);
1096}
1097
1098#endif
1099
1100