kern_switch.c revision 148661
1/*-
2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/***
28Here is the logic..
29
30If there are N processors, then there are at most N KSEs (kernel
31schedulable entities) working to process threads that belong to a
32KSEGROUP (kg). If there are X of these KSEs actually running at the
33moment in question, then there are at most M (N-X) of these KSEs on
34the run queue, as running KSEs are not on the queue.
35
36Runnable threads are queued off the KSEGROUP in priority order.
37If there are M or more threads runnable, the top M threads
38(by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39their priority from those threads and are put on the run queue.
40
41The last thread that had a priority high enough to have a KSE associated
42with it, AND IS ON THE RUN QUEUE is pointed to by
43kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44assigned as all the available KSEs are activly running, or because there
45are no threads queued, that pointer is NULL.
46
47When a KSE is removed from the run queue to become runnable, we know
48it was associated with the highest priority thread in the queue (at the head
49of the queue). If it is also the last assigned we know M was 1 and must
50now be 0. Since the thread is no longer queued that pointer must be
51removed from it. Since we know there were no more KSEs available,
52(M was 1 and is now 0) and since we are not FREEING our KSE
53but using it, we know there are STILL no more KSEs available, we can prove
54that the next thread in the ksegrp list will not have a KSE to assign to
55it, so we can show that the pointer must be made 'invalid' (NULL).
56
57The pointer exists so that when a new thread is made runnable, it can
58have its priority compared with the last assigned thread to see if
59it should 'steal' its KSE or not.. i.e. is it 'earlier'
60on the list than that thread or later.. If it's earlier, then the KSE is
61removed from the last assigned (which is now not assigned a KSE)
62and reassigned to the new thread, which is placed earlier in the list.
63The pointer is then backed up to the previous thread (which may or may not
64be the new thread).
65
66When a thread sleeps or is removed, the KSE becomes available and if there
67are queued threads that are not assigned KSEs, the highest priority one of
68them is assigned the KSE, which is then placed back on the run queue at
69the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70to point to it.
71
72The following diagram shows 2 KSEs and 3 threads from a single process.
73
74 RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75              \    \____
76               \        \
77    KSEGROUP---thread--thread--thread    (queued in priority order)
78        \                 /
79         \_______________/
80          (last_assigned)
81
82The result of this scheme is that the M available KSEs are always
83queued at the priorities they have inherrited from the M highest priority
84threads for that KSEGROUP. If this situation changes, the KSEs are
85reassigned to keep this true.
86***/
87
88#include <sys/cdefs.h>
89__FBSDID("$FreeBSD: head/sys/kern/kern_switch.c 148661 2005-08-03 01:23:45Z davidxu $");
90
91#include "opt_sched.h"
92
93#ifndef KERN_SWITCH_INCLUDE
94#include <sys/param.h>
95#include <sys/systm.h>
96#include <sys/kdb.h>
97#include <sys/kernel.h>
98#include <sys/ktr.h>
99#include <sys/lock.h>
100#include <sys/mutex.h>
101#include <sys/proc.h>
102#include <sys/queue.h>
103#include <sys/sched.h>
104#else  /* KERN_SWITCH_INCLUDE */
105#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106#include <sys/smp.h>
107#endif
108#if defined(SMP) && defined(SCHED_4BSD)
109#include <sys/sysctl.h>
110#endif
111
112#ifdef FULL_PREEMPTION
113#ifndef PREEMPTION
114#error "The FULL_PREEMPTION option requires the PREEMPTION option"
115#endif
116#endif
117
118CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
119
120#define td_kse td_sched
121
122/*
123 * kern.sched.preemption allows user space to determine if preemption support
124 * is compiled in or not.  It is not currently a boot or runtime flag that
125 * can be changed.
126 */
127#ifdef PREEMPTION
128static int kern_sched_preemption = 1;
129#else
130static int kern_sched_preemption = 0;
131#endif
132SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
133    &kern_sched_preemption, 0, "Kernel preemption enabled");
134
135/************************************************************************
136 * Functions that manipulate runnability from a thread perspective.	*
137 ************************************************************************/
138/*
139 * Select the KSE that will be run next.  From that find the thread, and
140 * remove it from the KSEGRP's run queue.  If there is thread clustering,
141 * this will be what does it.
142 */
143struct thread *
144choosethread(void)
145{
146	struct kse *ke;
147	struct thread *td;
148	struct ksegrp *kg;
149
150#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
151	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
152		/* Shutting down, run idlethread on AP's */
153		td = PCPU_GET(idlethread);
154		ke = td->td_kse;
155		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
156		ke->ke_flags |= KEF_DIDRUN;
157		TD_SET_RUNNING(td);
158		return (td);
159	}
160#endif
161
162retry:
163	ke = sched_choose();
164	if (ke) {
165		td = ke->ke_thread;
166		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
167		kg = ke->ke_ksegrp;
168		if (td->td_proc->p_flag & P_HADTHREADS) {
169			if (kg->kg_last_assigned == td) {
170				kg->kg_last_assigned = TAILQ_PREV(td,
171				    threadqueue, td_runq);
172			}
173			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
174		}
175		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
176		    td, td->td_priority);
177	} else {
178		/* Simulate runq_choose() having returned the idle thread */
179		td = PCPU_GET(idlethread);
180		ke = td->td_kse;
181		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
182	}
183	ke->ke_flags |= KEF_DIDRUN;
184
185	/*
186	 * If we are in panic, only allow system threads,
187	 * plus the one we are running in, to be run.
188	 */
189	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
190	    (td->td_flags & TDF_INPANIC) == 0)) {
191		/* note that it is no longer on the run queue */
192		TD_SET_CAN_RUN(td);
193		goto retry;
194	}
195
196	TD_SET_RUNNING(td);
197	return (td);
198}
199
200/*
201 * Given a surplus system slot, try assign a new runnable thread to it.
202 * Called from:
203 *  sched_thread_exit()  (local)
204 *  sched_switch()  (local)
205 *  sched_thread_exit()  (local)
206 *  remrunqueue()  (local)  (not at the moment)
207 */
208static void
209slot_fill(struct ksegrp *kg)
210{
211	struct thread *td;
212
213	mtx_assert(&sched_lock, MA_OWNED);
214	while (kg->kg_avail_opennings > 0) {
215		/*
216		 * Find the first unassigned thread
217		 */
218		if ((td = kg->kg_last_assigned) != NULL)
219			td = TAILQ_NEXT(td, td_runq);
220		else
221			td = TAILQ_FIRST(&kg->kg_runq);
222
223		/*
224		 * If we found one, send it to the system scheduler.
225		 */
226		if (td) {
227			kg->kg_last_assigned = td;
228			sched_add(td, SRQ_YIELDING);
229			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
230		} else {
231			/* no threads to use up the slots. quit now */
232			break;
233		}
234	}
235}
236
237#ifdef	SCHED_4BSD
238/*
239 * Remove a thread from its KSEGRP's run queue.
240 * This in turn may remove it from a KSE if it was already assigned
241 * to one, possibly causing a new thread to be assigned to the KSE
242 * and the KSE getting a new priority.
243 */
244static void
245remrunqueue(struct thread *td)
246{
247	struct thread *td2, *td3;
248	struct ksegrp *kg;
249	struct kse *ke;
250
251	mtx_assert(&sched_lock, MA_OWNED);
252	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
253	kg = td->td_ksegrp;
254	ke = td->td_kse;
255	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
256	TD_SET_CAN_RUN(td);
257	/*
258	 * If it is not a threaded process, take the shortcut.
259	 */
260	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
261		/* remve from sys run queue and free up a slot */
262		sched_rem(td);
263		ke->ke_state = KES_THREAD;
264		return;
265	}
266   	td3 = TAILQ_PREV(td, threadqueue, td_runq);
267	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
268	if (ke->ke_state == KES_ONRUNQ) {
269		/*
270		 * This thread has been assigned to the system run queue.
271		 * We need to dissociate it and try assign the
272		 * KSE to the next available thread. Then, we should
273		 * see if we need to move the KSE in the run queues.
274		 */
275		sched_rem(td);
276		ke->ke_state = KES_THREAD;
277		td2 = kg->kg_last_assigned;
278		KASSERT((td2 != NULL), ("last assigned has wrong value"));
279		if (td2 == td)
280			kg->kg_last_assigned = td3;
281		/* slot_fill(kg); */ /* will replace it with another */
282	}
283}
284#endif
285
286/*
287 * Change the priority of a thread that is on the run queue.
288 */
289void
290adjustrunqueue( struct thread *td, int newpri)
291{
292	struct ksegrp *kg;
293	struct kse *ke;
294
295	mtx_assert(&sched_lock, MA_OWNED);
296	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
297
298	ke = td->td_kse;
299	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
300	/*
301	 * If it is not a threaded process, take the shortcut.
302	 */
303	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
304		/* We only care about the kse in the run queue. */
305		td->td_priority = newpri;
306		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
307			sched_rem(td);
308			sched_add(td, SRQ_BORING);
309		}
310		return;
311	}
312
313	/* It is a threaded process */
314	kg = td->td_ksegrp;
315	if (ke->ke_state == KES_ONRUNQ
316#ifdef SCHED_ULE
317	 || ((ke->ke_flags & KEF_ASSIGNED) != 0 &&
318	     (ke->ke_flags & KEF_REMOVED) == 0)
319#endif
320	   ) {
321		if (kg->kg_last_assigned == td) {
322			kg->kg_last_assigned =
323			    TAILQ_PREV(td, threadqueue, td_runq);
324		}
325		sched_rem(td);
326	}
327	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
328	TD_SET_CAN_RUN(td);
329	td->td_priority = newpri;
330	setrunqueue(td, SRQ_BORING);
331}
332
333/*
334 * This function is called when a thread is about to be put on a
335 * ksegrp run queue because it has been made runnable or its
336 * priority has been adjusted and the ksegrp does not have a
337 * free kse slot.  It determines if a thread from the same ksegrp
338 * should be preempted.  If so, it tries to switch threads
339 * if the thread is on the same cpu or notifies another cpu that
340 * it should switch threads.
341 */
342
343static void
344maybe_preempt_in_ksegrp(struct thread *td)
345#if  !defined(SMP)
346{
347	struct thread *running_thread;
348
349	mtx_assert(&sched_lock, MA_OWNED);
350	running_thread = curthread;
351
352	if (running_thread->td_ksegrp != td->td_ksegrp)
353		return;
354
355	if (td->td_priority >= running_thread->td_priority)
356		return;
357#ifdef PREEMPTION
358#ifndef FULL_PREEMPTION
359	if (td->td_priority > PRI_MAX_ITHD) {
360		running_thread->td_flags |= TDF_NEEDRESCHED;
361		return;
362	}
363#endif /* FULL_PREEMPTION */
364
365	if (running_thread->td_critnest > 1)
366		running_thread->td_owepreempt = 1;
367	 else
368		 mi_switch(SW_INVOL, NULL);
369
370#else /* PREEMPTION */
371	running_thread->td_flags |= TDF_NEEDRESCHED;
372#endif /* PREEMPTION */
373	return;
374}
375
376#else /* SMP */
377{
378	struct thread *running_thread;
379	int worst_pri;
380	struct ksegrp *kg;
381	cpumask_t cpumask,dontuse;
382	struct pcpu *pc;
383	struct pcpu *best_pcpu;
384	struct thread *cputhread;
385
386	mtx_assert(&sched_lock, MA_OWNED);
387
388	running_thread = curthread;
389
390#if !defined(KSEG_PEEMPT_BEST_CPU)
391	if (running_thread->td_ksegrp != td->td_ksegrp) {
392#endif
393		kg = td->td_ksegrp;
394
395		/* if someone is ahead of this thread, wait our turn */
396		if (td != TAILQ_FIRST(&kg->kg_runq))
397			return;
398
399		worst_pri = td->td_priority;
400		best_pcpu = NULL;
401		dontuse   = stopped_cpus | idle_cpus_mask;
402
403		/*
404		 * Find a cpu with the worst priority that runs at thread from
405		 * the same  ksegrp - if multiple exist give first the last run
406		 * cpu and then the current cpu priority
407		 */
408
409		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
410			cpumask   = pc->pc_cpumask;
411			cputhread = pc->pc_curthread;
412
413			if ((cpumask & dontuse)  ||
414			    cputhread->td_ksegrp != kg)
415				continue;
416
417			if (cputhread->td_priority > worst_pri) {
418				worst_pri = cputhread->td_priority;
419				best_pcpu = pc;
420				continue;
421			}
422
423			if (cputhread->td_priority == worst_pri &&
424			    best_pcpu != NULL &&
425			    (td->td_lastcpu == pc->pc_cpuid ||
426				(PCPU_GET(cpumask) == cpumask &&
427				    td->td_lastcpu != best_pcpu->pc_cpuid)))
428			    best_pcpu = pc;
429		}
430
431		/* Check if we need to preempt someone */
432		if (best_pcpu == NULL)
433			return;
434
435#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
436#if !defined(FULL_PREEMPTION)
437		if (td->td_priority <= PRI_MAX_ITHD)
438#endif /* ! FULL_PREEMPTION */
439			{
440				ipi_selected(best_pcpu->pc_cpumask, IPI_PREEMPT);
441				return;
442			}
443#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
444
445		if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
446			best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
447			ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
448			return;
449		}
450#if !defined(KSEG_PEEMPT_BEST_CPU)
451	}
452#endif
453
454	if (td->td_priority >= running_thread->td_priority)
455		return;
456#ifdef PREEMPTION
457
458#if !defined(FULL_PREEMPTION)
459	if (td->td_priority > PRI_MAX_ITHD) {
460		running_thread->td_flags |= TDF_NEEDRESCHED;
461	}
462#endif /* ! FULL_PREEMPTION */
463
464	if (running_thread->td_critnest > 1)
465		running_thread->td_owepreempt = 1;
466	 else
467		 mi_switch(SW_INVOL, NULL);
468
469#else /* PREEMPTION */
470	running_thread->td_flags |= TDF_NEEDRESCHED;
471#endif /* PREEMPTION */
472	return;
473}
474#endif /* !SMP */
475
476
477int limitcount;
478void
479setrunqueue(struct thread *td, int flags)
480{
481	struct ksegrp *kg;
482	struct thread *td2;
483	struct thread *tda;
484
485	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
486	    td, td->td_ksegrp, td->td_proc->p_pid);
487	CTR5(KTR_SCHED, "setrunqueue: %p(%s) prio %d by %p(%s)",
488            td, td->td_proc->p_comm, td->td_priority, curthread,
489            curthread->td_proc->p_comm);
490	mtx_assert(&sched_lock, MA_OWNED);
491	KASSERT((td->td_inhibitors == 0),
492			("setrunqueue: trying to run inhibitted thread"));
493	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
494	    ("setrunqueue: bad thread state"));
495	TD_SET_RUNQ(td);
496	kg = td->td_ksegrp;
497	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
498		/*
499		 * Common path optimisation: Only one of everything
500		 * and the KSE is always already attached.
501		 * Totally ignore the ksegrp run queue.
502		 */
503		if (kg->kg_avail_opennings != 1) {
504			if (limitcount < 1) {
505				limitcount++;
506				printf("pid %d: corrected slot count (%d->1)\n",
507				    td->td_proc->p_pid, kg->kg_avail_opennings);
508
509			}
510			kg->kg_avail_opennings = 1;
511		}
512		sched_add(td, flags);
513		return;
514	}
515
516	/*
517	 * If the concurrency has reduced, and we would go in the
518	 * assigned section, then keep removing entries from the
519	 * system run queue, until we are not in that section
520	 * or there is room for us to be put in that section.
521	 * What we MUST avoid is the case where there are threads of less
522	 * priority than the new one scheduled, but it can not
523	 * be scheduled itself. That would lead to a non contiguous set
524	 * of scheduled threads, and everything would break.
525	 */
526	tda = kg->kg_last_assigned;
527	while ((kg->kg_avail_opennings <= 0) &&
528	    (tda && (tda->td_priority > td->td_priority))) {
529		/*
530		 * None free, but there is one we can commandeer.
531		 */
532		CTR2(KTR_RUNQ,
533		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
534		sched_rem(tda);
535		tda = kg->kg_last_assigned =
536		    TAILQ_PREV(tda, threadqueue, td_runq);
537	}
538
539	/*
540	 * Add the thread to the ksegrp's run queue at
541	 * the appropriate place.
542	 */
543	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
544		if (td2->td_priority > td->td_priority) {
545			TAILQ_INSERT_BEFORE(td2, td, td_runq);
546			break;
547		}
548	}
549	if (td2 == NULL) {
550		/* We ran off the end of the TAILQ or it was empty. */
551		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
552	}
553
554	/*
555	 * If we have a slot to use, then put the thread on the system
556	 * run queue and if needed, readjust the last_assigned pointer.
557	 * it may be that we need to schedule something anyhow
558	 * even if the availabel slots are -ve so that
559	 * all the items < last_assigned are scheduled.
560	 */
561	if (kg->kg_avail_opennings > 0) {
562		if (tda == NULL) {
563			/*
564			 * No pre-existing last assigned so whoever is first
565			 * gets the slot.. (maybe us)
566			 */
567			td2 = TAILQ_FIRST(&kg->kg_runq);
568			kg->kg_last_assigned = td2;
569		} else if (tda->td_priority > td->td_priority) {
570			td2 = td;
571		} else {
572			/*
573			 * We are past last_assigned, so
574			 * give the next slot to whatever is next,
575			 * which may or may not be us.
576			 */
577			td2 = TAILQ_NEXT(tda, td_runq);
578			kg->kg_last_assigned = td2;
579		}
580		sched_add(td2, flags);
581	} else {
582		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
583			td, td->td_ksegrp, td->td_proc->p_pid);
584		if ((flags & SRQ_YIELDING) == 0)
585			maybe_preempt_in_ksegrp(td);
586	}
587}
588
589/*
590 * Kernel thread preemption implementation.  Critical sections mark
591 * regions of code in which preemptions are not allowed.
592 */
593void
594critical_enter(void)
595{
596	struct thread *td;
597
598	td = curthread;
599	td->td_critnest++;
600	CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
601	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
602}
603
604void
605critical_exit(void)
606{
607	struct thread *td;
608
609	td = curthread;
610	KASSERT(td->td_critnest != 0,
611	    ("critical_exit: td_critnest == 0"));
612#ifdef PREEMPTION
613	if (td->td_critnest == 1) {
614		td->td_critnest = 0;
615		mtx_assert(&sched_lock, MA_NOTOWNED);
616		if (td->td_owepreempt) {
617			td->td_critnest = 1;
618			mtx_lock_spin(&sched_lock);
619			td->td_critnest--;
620			mi_switch(SW_INVOL, NULL);
621			mtx_unlock_spin(&sched_lock);
622		}
623	} else
624#endif
625		td->td_critnest--;
626
627
628	CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
629	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
630}
631
632/*
633 * This function is called when a thread is about to be put on run queue
634 * because it has been made runnable or its priority has been adjusted.  It
635 * determines if the new thread should be immediately preempted to.  If so,
636 * it switches to it and eventually returns true.  If not, it returns false
637 * so that the caller may place the thread on an appropriate run queue.
638 */
639int
640maybe_preempt(struct thread *td)
641{
642#ifdef PREEMPTION
643	struct thread *ctd;
644	int cpri, pri;
645#endif
646
647	mtx_assert(&sched_lock, MA_OWNED);
648#ifdef PREEMPTION
649	/*
650	 * The new thread should not preempt the current thread if any of the
651	 * following conditions are true:
652	 *
653	 *  - The kernel is in the throes of crashing (panicstr).
654	 *  - The current thread has a higher (numerically lower) or
655	 *    equivalent priority.  Note that this prevents curthread from
656	 *    trying to preempt to itself.
657	 *  - It is too early in the boot for context switches (cold is set).
658	 *  - The current thread has an inhibitor set or is in the process of
659	 *    exiting.  In this case, the current thread is about to switch
660	 *    out anyways, so there's no point in preempting.  If we did,
661	 *    the current thread would not be properly resumed as well, so
662	 *    just avoid that whole landmine.
663	 *  - If the new thread's priority is not a realtime priority and
664	 *    the current thread's priority is not an idle priority and
665	 *    FULL_PREEMPTION is disabled.
666	 *
667	 * If all of these conditions are false, but the current thread is in
668	 * a nested critical section, then we have to defer the preemption
669	 * until we exit the critical section.  Otherwise, switch immediately
670	 * to the new thread.
671	 */
672	ctd = curthread;
673	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
674	  ("thread has no (or wrong) sched-private part."));
675	KASSERT((td->td_inhibitors == 0),
676			("maybe_preempt: trying to run inhibitted thread"));
677	pri = td->td_priority;
678	cpri = ctd->td_priority;
679	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
680	    TD_IS_INHIBITED(ctd) || td->td_kse->ke_state != KES_THREAD)
681		return (0);
682#ifndef FULL_PREEMPTION
683	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
684		return (0);
685#endif
686
687	if (ctd->td_critnest > 1) {
688		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
689		    ctd->td_critnest);
690		ctd->td_owepreempt = 1;
691		return (0);
692	}
693
694	/*
695	 * Thread is runnable but not yet put on system run queue.
696	 */
697	MPASS(TD_ON_RUNQ(td));
698	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
699	if (td->td_proc->p_flag & P_HADTHREADS) {
700		/*
701		 * If this is a threaded process we actually ARE on the
702		 * ksegrp run queue so take it off that first.
703		 * Also undo any damage done to the last_assigned pointer.
704		 * XXX Fix setrunqueue so this isn't needed
705		 */
706		struct ksegrp *kg;
707
708		kg = td->td_ksegrp;
709		if (kg->kg_last_assigned == td)
710			kg->kg_last_assigned =
711			    TAILQ_PREV(td, threadqueue, td_runq);
712		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
713	}
714
715	TD_SET_RUNNING(td);
716	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
717	    td->td_proc->p_pid, td->td_proc->p_comm);
718	mi_switch(SW_INVOL|SW_PREEMPT, td);
719	return (1);
720#else
721	return (0);
722#endif
723}
724
725#if 0
726#ifndef PREEMPTION
727/* XXX: There should be a non-static version of this. */
728static void
729printf_caddr_t(void *data)
730{
731	printf("%s", (char *)data);
732}
733static char preempt_warning[] =
734    "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
735SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
736    preempt_warning)
737#endif
738#endif
739
740/************************************************************************
741 * SYSTEM RUN QUEUE manipulations and tests				*
742 ************************************************************************/
743/*
744 * Initialize a run structure.
745 */
746void
747runq_init(struct runq *rq)
748{
749	int i;
750
751	bzero(rq, sizeof *rq);
752	for (i = 0; i < RQ_NQS; i++)
753		TAILQ_INIT(&rq->rq_queues[i]);
754}
755
756/*
757 * Clear the status bit of the queue corresponding to priority level pri,
758 * indicating that it is empty.
759 */
760static __inline void
761runq_clrbit(struct runq *rq, int pri)
762{
763	struct rqbits *rqb;
764
765	rqb = &rq->rq_status;
766	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
767	    rqb->rqb_bits[RQB_WORD(pri)],
768	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
769	    RQB_BIT(pri), RQB_WORD(pri));
770	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
771}
772
773/*
774 * Find the index of the first non-empty run queue.  This is done by
775 * scanning the status bits, a set bit indicates a non-empty queue.
776 */
777static __inline int
778runq_findbit(struct runq *rq)
779{
780	struct rqbits *rqb;
781	int pri;
782	int i;
783
784	rqb = &rq->rq_status;
785	for (i = 0; i < RQB_LEN; i++)
786		if (rqb->rqb_bits[i]) {
787			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
788			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
789			    rqb->rqb_bits[i], i, pri);
790			return (pri);
791		}
792
793	return (-1);
794}
795
796/*
797 * Set the status bit of the queue corresponding to priority level pri,
798 * indicating that it is non-empty.
799 */
800static __inline void
801runq_setbit(struct runq *rq, int pri)
802{
803	struct rqbits *rqb;
804
805	rqb = &rq->rq_status;
806	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
807	    rqb->rqb_bits[RQB_WORD(pri)],
808	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
809	    RQB_BIT(pri), RQB_WORD(pri));
810	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
811}
812
813/*
814 * Add the KSE to the queue specified by its priority, and set the
815 * corresponding status bit.
816 */
817void
818runq_add(struct runq *rq, struct kse *ke, int flags)
819{
820	struct rqhead *rqh;
821	int pri;
822
823	pri = ke->ke_thread->td_priority / RQ_PPQ;
824	ke->ke_rqindex = pri;
825	runq_setbit(rq, pri);
826	rqh = &rq->rq_queues[pri];
827	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
828	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
829	if (flags & SRQ_PREEMPTED) {
830		TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
831	} else {
832		TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
833	}
834}
835
836/*
837 * Return true if there are runnable processes of any priority on the run
838 * queue, false otherwise.  Has no side effects, does not modify the run
839 * queue structure.
840 */
841int
842runq_check(struct runq *rq)
843{
844	struct rqbits *rqb;
845	int i;
846
847	rqb = &rq->rq_status;
848	for (i = 0; i < RQB_LEN; i++)
849		if (rqb->rqb_bits[i]) {
850			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
851			    rqb->rqb_bits[i], i);
852			return (1);
853		}
854	CTR0(KTR_RUNQ, "runq_check: empty");
855
856	return (0);
857}
858
859#if defined(SMP) && defined(SCHED_4BSD)
860int runq_fuzz = 1;
861SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
862#endif
863
864/*
865 * Find the highest priority process on the run queue.
866 */
867struct kse *
868runq_choose(struct runq *rq)
869{
870	struct rqhead *rqh;
871	struct kse *ke;
872	int pri;
873
874	mtx_assert(&sched_lock, MA_OWNED);
875	while ((pri = runq_findbit(rq)) != -1) {
876		rqh = &rq->rq_queues[pri];
877#if defined(SMP) && defined(SCHED_4BSD)
878		/* fuzz == 1 is normal.. 0 or less are ignored */
879		if (runq_fuzz > 1) {
880			/*
881			 * In the first couple of entries, check if
882			 * there is one for our CPU as a preference.
883			 */
884			int count = runq_fuzz;
885			int cpu = PCPU_GET(cpuid);
886			struct kse *ke2;
887			ke2 = ke = TAILQ_FIRST(rqh);
888
889			while (count-- && ke2) {
890				if (ke->ke_thread->td_lastcpu == cpu) {
891					ke = ke2;
892					break;
893				}
894				ke2 = TAILQ_NEXT(ke2, ke_procq);
895			}
896		} else
897#endif
898			ke = TAILQ_FIRST(rqh);
899		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
900		CTR3(KTR_RUNQ,
901		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
902		return (ke);
903	}
904	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
905
906	return (NULL);
907}
908
909/*
910 * Remove the KSE from the queue specified by its priority, and clear the
911 * corresponding status bit if the queue becomes empty.
912 * Caller must set ke->ke_state afterwards.
913 */
914void
915runq_remove(struct runq *rq, struct kse *ke)
916{
917	struct rqhead *rqh;
918	int pri;
919
920	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
921		("runq_remove: process swapped out"));
922	pri = ke->ke_rqindex;
923	rqh = &rq->rq_queues[pri];
924	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
925	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
926	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
927	TAILQ_REMOVE(rqh, ke, ke_procq);
928	if (TAILQ_EMPTY(rqh)) {
929		CTR0(KTR_RUNQ, "runq_remove: empty");
930		runq_clrbit(rq, pri);
931	}
932}
933
934/****** functions that are temporarily here ***********/
935#include <vm/uma.h>
936extern struct mtx kse_zombie_lock;
937
938/*
939 *  Allocate scheduler specific per-process resources.
940 * The thread and ksegrp have already been linked in.
941 * In this case just set the default concurrency value.
942 *
943 * Called from:
944 *  proc_init() (UMA init method)
945 */
946void
947sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
948{
949
950	/* This can go in sched_fork */
951	sched_init_concurrency(kg);
952}
953
954/*
955 * thread is being either created or recycled.
956 * Fix up the per-scheduler resources associated with it.
957 * Called from:
958 *  sched_fork_thread()
959 *  thread_dtor()  (*may go away)
960 *  thread_init()  (*may go away)
961 */
962void
963sched_newthread(struct thread *td)
964{
965	struct td_sched *ke;
966
967	ke = (struct td_sched *) (td + 1);
968	bzero(ke, sizeof(*ke));
969	td->td_sched     = ke;
970	ke->ke_thread	= td;
971	ke->ke_state	= KES_THREAD;
972}
973
974/*
975 * Set up an initial concurrency of 1
976 * and set the given thread (if given) to be using that
977 * concurrency slot.
978 * May be used "offline"..before the ksegrp is attached to the world
979 * and thus wouldn't need schedlock in that case.
980 * Called from:
981 *  thr_create()
982 *  proc_init() (UMA) via sched_newproc()
983 */
984void
985sched_init_concurrency(struct ksegrp *kg)
986{
987
988	CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
989	kg->kg_concurrency = 1;
990	kg->kg_avail_opennings = 1;
991}
992
993/*
994 * Change the concurrency of an existing ksegrp to N
995 * Called from:
996 *  kse_create()
997 *  kse_exit()
998 *  thread_exit()
999 *  thread_single()
1000 */
1001void
1002sched_set_concurrency(struct ksegrp *kg, int concurrency)
1003{
1004
1005	CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
1006	    kg,
1007	    concurrency,
1008	    kg->kg_avail_opennings,
1009	    kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
1010	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
1011	kg->kg_concurrency = concurrency;
1012}
1013
1014/*
1015 * Called from thread_exit() for all exiting thread
1016 *
1017 * Not to be confused with sched_exit_thread()
1018 * that is only called from thread_exit() for threads exiting
1019 * without the rest of the process exiting because it is also called from
1020 * sched_exit() and we wouldn't want to call it twice.
1021 * XXX This can probably be fixed.
1022 */
1023void
1024sched_thread_exit(struct thread *td)
1025{
1026
1027	SLOT_RELEASE(td->td_ksegrp);
1028	slot_fill(td->td_ksegrp);
1029}
1030
1031#endif /* KERN_SWITCH_INCLUDE */
1032