kern_switch.c revision 147182
1/*-
2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/***
28Here is the logic..
29
30If there are N processors, then there are at most N KSEs (kernel
31schedulable entities) working to process threads that belong to a
32KSEGROUP (kg). If there are X of these KSEs actually running at the
33moment in question, then there are at most M (N-X) of these KSEs on
34the run queue, as running KSEs are not on the queue.
35
36Runnable threads are queued off the KSEGROUP in priority order.
37If there are M or more threads runnable, the top M threads
38(by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39their priority from those threads and are put on the run queue.
40
41The last thread that had a priority high enough to have a KSE associated
42with it, AND IS ON THE RUN QUEUE is pointed to by
43kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44assigned as all the available KSEs are activly running, or because there
45are no threads queued, that pointer is NULL.
46
47When a KSE is removed from the run queue to become runnable, we know
48it was associated with the highest priority thread in the queue (at the head
49of the queue). If it is also the last assigned we know M was 1 and must
50now be 0. Since the thread is no longer queued that pointer must be
51removed from it. Since we know there were no more KSEs available,
52(M was 1 and is now 0) and since we are not FREEING our KSE
53but using it, we know there are STILL no more KSEs available, we can prove
54that the next thread in the ksegrp list will not have a KSE to assign to
55it, so we can show that the pointer must be made 'invalid' (NULL).
56
57The pointer exists so that when a new thread is made runnable, it can
58have its priority compared with the last assigned thread to see if
59it should 'steal' its KSE or not.. i.e. is it 'earlier'
60on the list than that thread or later.. If it's earlier, then the KSE is
61removed from the last assigned (which is now not assigned a KSE)
62and reassigned to the new thread, which is placed earlier in the list.
63The pointer is then backed up to the previous thread (which may or may not
64be the new thread).
65
66When a thread sleeps or is removed, the KSE becomes available and if there
67are queued threads that are not assigned KSEs, the highest priority one of
68them is assigned the KSE, which is then placed back on the run queue at
69the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70to point to it.
71
72The following diagram shows 2 KSEs and 3 threads from a single process.
73
74 RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75              \    \____
76               \        \
77    KSEGROUP---thread--thread--thread    (queued in priority order)
78        \                 /
79         \_______________/
80          (last_assigned)
81
82The result of this scheme is that the M available KSEs are always
83queued at the priorities they have inherrited from the M highest priority
84threads for that KSEGROUP. If this situation changes, the KSEs are
85reassigned to keep this true.
86***/
87
88#include <sys/cdefs.h>
89__FBSDID("$FreeBSD: head/sys/kern/kern_switch.c 147182 2005-06-09 18:26:31Z ups $");
90
91#include "opt_sched.h"
92
93#ifndef KERN_SWITCH_INCLUDE
94#include <sys/param.h>
95#include <sys/systm.h>
96#include <sys/kdb.h>
97#include <sys/kernel.h>
98#include <sys/ktr.h>
99#include <sys/lock.h>
100#include <sys/mutex.h>
101#include <sys/proc.h>
102#include <sys/queue.h>
103#include <sys/sched.h>
104#else  /* KERN_SWITCH_INCLUDE */
105#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106#include <sys/smp.h>
107#endif
108#if defined(SMP) && defined(SCHED_4BSD)
109#include <sys/sysctl.h>
110#endif
111
112#ifdef FULL_PREEMPTION
113#ifndef PREEMPTION
114#error "The FULL_PREEMPTION option requires the PREEMPTION option"
115#endif
116#endif
117
118CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
119
120#define td_kse td_sched
121
122/*
123 * kern.sched.preemption allows user space to determine if preemption support
124 * is compiled in or not.  It is not currently a boot or runtime flag that
125 * can be changed.
126 */
127#ifdef PREEMPTION
128static int kern_sched_preemption = 1;
129#else
130static int kern_sched_preemption = 0;
131#endif
132SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
133    &kern_sched_preemption, 0, "Kernel preemption enabled");
134
135/************************************************************************
136 * Functions that manipulate runnability from a thread perspective.	*
137 ************************************************************************/
138/*
139 * Select the KSE that will be run next.  From that find the thread, and
140 * remove it from the KSEGRP's run queue.  If there is thread clustering,
141 * this will be what does it.
142 */
143struct thread *
144choosethread(void)
145{
146	struct kse *ke;
147	struct thread *td;
148	struct ksegrp *kg;
149
150#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
151	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
152		/* Shutting down, run idlethread on AP's */
153		td = PCPU_GET(idlethread);
154		ke = td->td_kse;
155		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
156		ke->ke_flags |= KEF_DIDRUN;
157		TD_SET_RUNNING(td);
158		return (td);
159	}
160#endif
161
162retry:
163	ke = sched_choose();
164	if (ke) {
165		td = ke->ke_thread;
166		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
167		kg = ke->ke_ksegrp;
168		if (td->td_proc->p_flag & P_HADTHREADS) {
169			if (kg->kg_last_assigned == td) {
170				kg->kg_last_assigned = TAILQ_PREV(td,
171				    threadqueue, td_runq);
172			}
173			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
174		}
175		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
176		    td, td->td_priority);
177	} else {
178		/* Simulate runq_choose() having returned the idle thread */
179		td = PCPU_GET(idlethread);
180		ke = td->td_kse;
181		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
182	}
183	ke->ke_flags |= KEF_DIDRUN;
184
185	/*
186	 * If we are in panic, only allow system threads,
187	 * plus the one we are running in, to be run.
188	 */
189	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
190	    (td->td_flags & TDF_INPANIC) == 0)) {
191		/* note that it is no longer on the run queue */
192		TD_SET_CAN_RUN(td);
193		goto retry;
194	}
195
196	TD_SET_RUNNING(td);
197	return (td);
198}
199
200/*
201 * Given a surplus system slot, try assign a new runnable thread to it.
202 * Called from:
203 *  sched_thread_exit()  (local)
204 *  sched_switch()  (local)
205 *  sched_thread_exit()  (local)
206 *  remrunqueue()  (local)  (not at the moment)
207 */
208static void
209slot_fill(struct ksegrp *kg)
210{
211	struct thread *td;
212
213	mtx_assert(&sched_lock, MA_OWNED);
214	while (kg->kg_avail_opennings > 0) {
215		/*
216		 * Find the first unassigned thread
217		 */
218		if ((td = kg->kg_last_assigned) != NULL)
219			td = TAILQ_NEXT(td, td_runq);
220		else
221			td = TAILQ_FIRST(&kg->kg_runq);
222
223		/*
224		 * If we found one, send it to the system scheduler.
225		 */
226		if (td) {
227			kg->kg_last_assigned = td;
228			sched_add(td, SRQ_YIELDING);
229			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
230		} else {
231			/* no threads to use up the slots. quit now */
232			break;
233		}
234	}
235}
236
237#ifdef	SCHED_4BSD
238/*
239 * Remove a thread from its KSEGRP's run queue.
240 * This in turn may remove it from a KSE if it was already assigned
241 * to one, possibly causing a new thread to be assigned to the KSE
242 * and the KSE getting a new priority.
243 */
244static void
245remrunqueue(struct thread *td)
246{
247	struct thread *td2, *td3;
248	struct ksegrp *kg;
249	struct kse *ke;
250
251	mtx_assert(&sched_lock, MA_OWNED);
252	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
253	kg = td->td_ksegrp;
254	ke = td->td_kse;
255	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
256	TD_SET_CAN_RUN(td);
257	/*
258	 * If it is not a threaded process, take the shortcut.
259	 */
260	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
261		/* remve from sys run queue and free up a slot */
262		sched_rem(td);
263		ke->ke_state = KES_THREAD;
264		return;
265	}
266   	td3 = TAILQ_PREV(td, threadqueue, td_runq);
267	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
268	if (ke->ke_state == KES_ONRUNQ) {
269		/*
270		 * This thread has been assigned to the system run queue.
271		 * We need to dissociate it and try assign the
272		 * KSE to the next available thread. Then, we should
273		 * see if we need to move the KSE in the run queues.
274		 */
275		sched_rem(td);
276		ke->ke_state = KES_THREAD;
277		td2 = kg->kg_last_assigned;
278		KASSERT((td2 != NULL), ("last assigned has wrong value"));
279		if (td2 == td)
280			kg->kg_last_assigned = td3;
281		/* slot_fill(kg); */ /* will replace it with another */
282	}
283}
284#endif
285
286/*
287 * Change the priority of a thread that is on the run queue.
288 */
289void
290adjustrunqueue( struct thread *td, int newpri)
291{
292	struct ksegrp *kg;
293	struct kse *ke;
294
295	mtx_assert(&sched_lock, MA_OWNED);
296	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
297
298	ke = td->td_kse;
299	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
300	/*
301	 * If it is not a threaded process, take the shortcut.
302	 */
303	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
304		/* We only care about the kse in the run queue. */
305		td->td_priority = newpri;
306		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
307			sched_rem(td);
308			sched_add(td, SRQ_BORING);
309		}
310		return;
311	}
312
313	/* It is a threaded process */
314	kg = td->td_ksegrp;
315	if (ke->ke_state == KES_ONRUNQ) {
316		if (kg->kg_last_assigned == td) {
317			kg->kg_last_assigned =
318			    TAILQ_PREV(td, threadqueue, td_runq);
319		}
320		sched_rem(td);
321	}
322	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
323	TD_SET_CAN_RUN(td);
324	td->td_priority = newpri;
325	setrunqueue(td, SRQ_BORING);
326}
327
328/*
329 * This function is called when a thread is about to be put on a
330 * ksegrp run queue because it has been made runnable or its
331 * priority has been adjusted and the ksegrp does not have a
332 * free kse slot.  It determines if a thread from the same ksegrp
333 * should be preempted.  If so, it tries to switch threads
334 * if the thread is on the same cpu or notifies another cpu that
335 * it should switch threads.
336 */
337
338static void
339maybe_preempt_in_ksegrp(struct thread *td)
340#if  !defined(SMP)
341{
342	struct thread *running_thread;
343
344	mtx_assert(&sched_lock, MA_OWNED);
345	running_thread = curthread;
346
347	if (running_thread->td_ksegrp != td->td_ksegrp)
348		return;
349
350	if (td->td_priority >= running_thread->td_priority)
351		return;
352#ifdef PREEMPTION
353#ifndef FULL_PREEMPTION
354	if (td->td_priority > PRI_MAX_ITHD) {
355		running_thread->td_flags |= TDF_NEEDRESCHED;
356		return;
357	}
358#endif /* FULL_PREEMPTION */
359
360	if (running_thread->td_critnest > 1)
361		running_thread->td_owepreempt = 1;
362	 else
363		 mi_switch(SW_INVOL, NULL);
364
365#else /* PREEMPTION */
366	running_thread->td_flags |= TDF_NEEDRESCHED;
367#endif /* PREEMPTION */
368	return;
369}
370
371#else /* SMP */
372{
373	struct thread *running_thread;
374	int worst_pri;
375	struct ksegrp *kg;
376	cpumask_t cpumask,dontuse;
377	struct pcpu *pc;
378	struct pcpu *best_pcpu;
379	struct thread *cputhread;
380
381	mtx_assert(&sched_lock, MA_OWNED);
382
383	running_thread = curthread;
384
385#if !defined(KSEG_PEEMPT_BEST_CPU)
386	if (running_thread->td_ksegrp != td->td_ksegrp) {
387#endif
388		kg = td->td_ksegrp;
389
390		/* if someone is ahead of this thread, wait our turn */
391		if (td != TAILQ_FIRST(&kg->kg_runq))
392			return;
393
394		worst_pri = td->td_priority;
395		best_pcpu = NULL;
396		dontuse   = stopped_cpus | idle_cpus_mask;
397
398		/*
399		 * Find a cpu with the worst priority that runs at thread from
400		 * the same  ksegrp - if multiple exist give first the last run
401		 * cpu and then the current cpu priority
402		 */
403
404		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
405			cpumask   = pc->pc_cpumask;
406			cputhread = pc->pc_curthread;
407
408			if ((cpumask & dontuse)  ||
409			    cputhread->td_ksegrp != kg)
410				continue;
411
412			if (cputhread->td_priority > worst_pri) {
413				worst_pri = cputhread->td_priority;
414				best_pcpu = pc;
415				continue;
416			}
417
418			if (cputhread->td_priority == worst_pri &&
419			    best_pcpu != NULL &&
420			    (td->td_lastcpu == pc->pc_cpuid ||
421				(PCPU_GET(cpumask) == cpumask &&
422				    td->td_lastcpu != best_pcpu->pc_cpuid)))
423			    best_pcpu = pc;
424		}
425
426		/* Check if we need to preempt someone */
427		if (best_pcpu == NULL)
428			return;
429
430#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
431
432#if !defined(FULL_PREEMPTION)
433		if (td->td_priority  <=  PRI_MAX_ITHD)
434#endif /* ! FULL_PREEMPTION */
435			{
436				ipi_selected(best_pcpu->pc_cpumask, IPI_PREEMPT);
437				return;
438			}
439#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
440
441		if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
442			best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
443			ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
444			return;
445		}
446#if !defined(KSEG_PEEMPT_BEST_CPU)
447	}
448#endif
449
450	if (td->td_priority >= running_thread->td_priority)
451		return;
452#ifdef PREEMPTION
453
454#if !defined(FULL_PREEMPTION)
455	if (td->td_priority  >  PRI_MAX_ITHD) {
456		running_thread->td_flags |= TDF_NEEDRESCHED;
457	}
458#endif /* ! FULL_PREEMPTION */
459
460	if (running_thread->td_critnest > 1)
461		running_thread->td_owepreempt = 1;
462	 else
463		 mi_switch(SW_INVOL, NULL);
464
465#else /* PREEMPTION */
466	running_thread->td_flags |= TDF_NEEDRESCHED;
467#endif /* PREEMPTION */
468	return;
469}
470#endif /* !SMP */
471
472
473int limitcount;
474void
475setrunqueue(struct thread *td, int flags)
476{
477	struct ksegrp *kg;
478	struct thread *td2;
479	struct thread *tda;
480
481	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
482	    td, td->td_ksegrp, td->td_proc->p_pid);
483	CTR5(KTR_SCHED, "setrunqueue: %p(%s) prio %d by %p(%s)",
484            td, td->td_proc->p_comm, td->td_priority, curthread,
485            curthread->td_proc->p_comm);
486	mtx_assert(&sched_lock, MA_OWNED);
487	KASSERT((td->td_inhibitors == 0),
488			("setrunqueue: trying to run inhibitted thread"));
489	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
490	    ("setrunqueue: bad thread state"));
491	TD_SET_RUNQ(td);
492	kg = td->td_ksegrp;
493	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
494		/*
495		 * Common path optimisation: Only one of everything
496		 * and the KSE is always already attached.
497		 * Totally ignore the ksegrp run queue.
498		 */
499		if (kg->kg_avail_opennings != 1) {
500			if (limitcount < 1) {
501				limitcount++;
502				printf("pid %d: corrected slot count (%d->1)\n",
503				    td->td_proc->p_pid, kg->kg_avail_opennings);
504
505			}
506			kg->kg_avail_opennings = 1;
507		}
508		sched_add(td, flags);
509		return;
510	}
511
512	/*
513	 * If the concurrency has reduced, and we would go in the
514	 * assigned section, then keep removing entries from the
515	 * system run queue, until we are not in that section
516	 * or there is room for us to be put in that section.
517	 * What we MUST avoid is the case where there are threads of less
518	 * priority than the new one scheduled, but it can not
519	 * be scheduled itself. That would lead to a non contiguous set
520	 * of scheduled threads, and everything would break.
521	 */
522	tda = kg->kg_last_assigned;
523	while ((kg->kg_avail_opennings <= 0) &&
524	    (tda && (tda->td_priority > td->td_priority))) {
525		/*
526		 * None free, but there is one we can commandeer.
527		 */
528		CTR2(KTR_RUNQ,
529		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
530		sched_rem(tda);
531		tda = kg->kg_last_assigned =
532		    TAILQ_PREV(tda, threadqueue, td_runq);
533	}
534
535	/*
536	 * Add the thread to the ksegrp's run queue at
537	 * the appropriate place.
538	 */
539	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
540		if (td2->td_priority > td->td_priority) {
541			TAILQ_INSERT_BEFORE(td2, td, td_runq);
542			break;
543		}
544	}
545	if (td2 == NULL) {
546		/* We ran off the end of the TAILQ or it was empty. */
547		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
548	}
549
550	/*
551	 * If we have a slot to use, then put the thread on the system
552	 * run queue and if needed, readjust the last_assigned pointer.
553	 * it may be that we need to schedule something anyhow
554	 * even if the availabel slots are -ve so that
555	 * all the items < last_assigned are scheduled.
556	 */
557	if (kg->kg_avail_opennings > 0) {
558		if (tda == NULL) {
559			/*
560			 * No pre-existing last assigned so whoever is first
561			 * gets the slot.. (maybe us)
562			 */
563			td2 = TAILQ_FIRST(&kg->kg_runq);
564			kg->kg_last_assigned = td2;
565		} else if (tda->td_priority > td->td_priority) {
566			td2 = td;
567		} else {
568			/*
569			 * We are past last_assigned, so
570			 * give the next slot to whatever is next,
571			 * which may or may not be us.
572			 */
573			td2 = TAILQ_NEXT(tda, td_runq);
574			kg->kg_last_assigned = td2;
575		}
576		sched_add(td2, flags);
577	} else {
578		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
579			td, td->td_ksegrp, td->td_proc->p_pid);
580		if ((flags & SRQ_YIELDING) == 0)
581			maybe_preempt_in_ksegrp(td);
582	}
583}
584
585/*
586 * Kernel thread preemption implementation.  Critical sections mark
587 * regions of code in which preemptions are not allowed.
588 */
589void
590critical_enter(void)
591{
592	struct thread *td;
593
594	td = curthread;
595	td->td_critnest++;
596	CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
597	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
598}
599
600void
601critical_exit(void)
602{
603	struct thread *td;
604
605	td = curthread;
606	KASSERT(td->td_critnest != 0,
607	    ("critical_exit: td_critnest == 0"));
608#ifdef PREEMPTION
609	if (td->td_critnest == 1) {
610		td->td_critnest = 0;
611		mtx_assert(&sched_lock, MA_NOTOWNED);
612		if (td->td_owepreempt) {
613			td->td_critnest = 1;
614			mtx_lock_spin(&sched_lock);
615			td->td_critnest--;
616			mi_switch(SW_INVOL, NULL);
617			mtx_unlock_spin(&sched_lock);
618		}
619	} else
620#endif
621		td->td_critnest--;
622
623
624	CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
625	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
626}
627
628/*
629 * This function is called when a thread is about to be put on run queue
630 * because it has been made runnable or its priority has been adjusted.  It
631 * determines if the new thread should be immediately preempted to.  If so,
632 * it switches to it and eventually returns true.  If not, it returns false
633 * so that the caller may place the thread on an appropriate run queue.
634 */
635int
636maybe_preempt(struct thread *td)
637{
638#ifdef PREEMPTION
639	struct thread *ctd;
640	int cpri, pri;
641#endif
642
643	mtx_assert(&sched_lock, MA_OWNED);
644#ifdef PREEMPTION
645	/*
646	 * The new thread should not preempt the current thread if any of the
647	 * following conditions are true:
648	 *
649	 *  - The kernel is in the throes of crashing (panicstr).
650	 *  - The current thread has a higher (numerically lower) or
651	 *    equivalent priority.  Note that this prevents curthread from
652	 *    trying to preempt to itself.
653	 *  - It is too early in the boot for context switches (cold is set).
654	 *  - The current thread has an inhibitor set or is in the process of
655	 *    exiting.  In this case, the current thread is about to switch
656	 *    out anyways, so there's no point in preempting.  If we did,
657	 *    the current thread would not be properly resumed as well, so
658	 *    just avoid that whole landmine.
659	 *  - If the new thread's priority is not a realtime priority and
660	 *    the current thread's priority is not an idle priority and
661	 *    FULL_PREEMPTION is disabled.
662	 *
663	 * If all of these conditions are false, but the current thread is in
664	 * a nested critical section, then we have to defer the preemption
665	 * until we exit the critical section.  Otherwise, switch immediately
666	 * to the new thread.
667	 */
668	ctd = curthread;
669	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
670	  ("thread has no (or wrong) sched-private part."));
671	KASSERT((td->td_inhibitors == 0),
672			("maybe_preempt: trying to run inhibitted thread"));
673	pri = td->td_priority;
674	cpri = ctd->td_priority;
675	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
676	    TD_IS_INHIBITED(ctd) || td->td_kse->ke_state != KES_THREAD)
677		return (0);
678#ifndef FULL_PREEMPTION
679	if ((pri > PRI_MAX_ITHD) &&
680	    !(cpri >= PRI_MIN_IDLE))
681		return (0);
682#endif
683	if (ctd->td_critnest > 1) {
684		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
685		    ctd->td_critnest);
686		ctd->td_owepreempt = 1;
687		return (0);
688	}
689
690	/*
691	 * Thread is runnable but not yet put on system run queue.
692	 */
693	MPASS(TD_ON_RUNQ(td));
694	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
695	if (td->td_proc->p_flag & P_HADTHREADS) {
696		/*
697		 * If this is a threaded process we actually ARE on the
698		 * ksegrp run queue so take it off that first.
699		 * Also undo any damage done to the last_assigned pointer.
700		 * XXX Fix setrunqueue so this isn't needed
701		 */
702		struct ksegrp *kg;
703
704		kg = td->td_ksegrp;
705		if (kg->kg_last_assigned == td)
706			kg->kg_last_assigned =
707			    TAILQ_PREV(td, threadqueue, td_runq);
708		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
709	}
710
711	TD_SET_RUNNING(td);
712	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
713	    td->td_proc->p_pid, td->td_proc->p_comm);
714	mi_switch(SW_INVOL|SW_PREEMPT, td);
715	return (1);
716#else
717	return (0);
718#endif
719}
720
721#if 0
722#ifndef PREEMPTION
723/* XXX: There should be a non-static version of this. */
724static void
725printf_caddr_t(void *data)
726{
727	printf("%s", (char *)data);
728}
729static char preempt_warning[] =
730    "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
731SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
732    preempt_warning)
733#endif
734#endif
735
736/************************************************************************
737 * SYSTEM RUN QUEUE manipulations and tests				*
738 ************************************************************************/
739/*
740 * Initialize a run structure.
741 */
742void
743runq_init(struct runq *rq)
744{
745	int i;
746
747	bzero(rq, sizeof *rq);
748	for (i = 0; i < RQ_NQS; i++)
749		TAILQ_INIT(&rq->rq_queues[i]);
750}
751
752/*
753 * Clear the status bit of the queue corresponding to priority level pri,
754 * indicating that it is empty.
755 */
756static __inline void
757runq_clrbit(struct runq *rq, int pri)
758{
759	struct rqbits *rqb;
760
761	rqb = &rq->rq_status;
762	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
763	    rqb->rqb_bits[RQB_WORD(pri)],
764	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
765	    RQB_BIT(pri), RQB_WORD(pri));
766	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
767}
768
769/*
770 * Find the index of the first non-empty run queue.  This is done by
771 * scanning the status bits, a set bit indicates a non-empty queue.
772 */
773static __inline int
774runq_findbit(struct runq *rq)
775{
776	struct rqbits *rqb;
777	int pri;
778	int i;
779
780	rqb = &rq->rq_status;
781	for (i = 0; i < RQB_LEN; i++)
782		if (rqb->rqb_bits[i]) {
783			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
784			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
785			    rqb->rqb_bits[i], i, pri);
786			return (pri);
787		}
788
789	return (-1);
790}
791
792/*
793 * Set the status bit of the queue corresponding to priority level pri,
794 * indicating that it is non-empty.
795 */
796static __inline void
797runq_setbit(struct runq *rq, int pri)
798{
799	struct rqbits *rqb;
800
801	rqb = &rq->rq_status;
802	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
803	    rqb->rqb_bits[RQB_WORD(pri)],
804	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
805	    RQB_BIT(pri), RQB_WORD(pri));
806	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
807}
808
809/*
810 * Add the KSE to the queue specified by its priority, and set the
811 * corresponding status bit.
812 */
813void
814runq_add(struct runq *rq, struct kse *ke, int flags)
815{
816	struct rqhead *rqh;
817	int pri;
818
819	pri = ke->ke_thread->td_priority / RQ_PPQ;
820	ke->ke_rqindex = pri;
821	runq_setbit(rq, pri);
822	rqh = &rq->rq_queues[pri];
823	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
824	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
825	if (flags & SRQ_PREEMPTED) {
826		TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
827	} else {
828		TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
829	}
830}
831
832/*
833 * Return true if there are runnable processes of any priority on the run
834 * queue, false otherwise.  Has no side effects, does not modify the run
835 * queue structure.
836 */
837int
838runq_check(struct runq *rq)
839{
840	struct rqbits *rqb;
841	int i;
842
843	rqb = &rq->rq_status;
844	for (i = 0; i < RQB_LEN; i++)
845		if (rqb->rqb_bits[i]) {
846			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
847			    rqb->rqb_bits[i], i);
848			return (1);
849		}
850	CTR0(KTR_RUNQ, "runq_check: empty");
851
852	return (0);
853}
854
855#if defined(SMP) && defined(SCHED_4BSD)
856int runq_fuzz = 1;
857SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
858#endif
859
860/*
861 * Find the highest priority process on the run queue.
862 */
863struct kse *
864runq_choose(struct runq *rq)
865{
866	struct rqhead *rqh;
867	struct kse *ke;
868	int pri;
869
870	mtx_assert(&sched_lock, MA_OWNED);
871	while ((pri = runq_findbit(rq)) != -1) {
872		rqh = &rq->rq_queues[pri];
873#if defined(SMP) && defined(SCHED_4BSD)
874		/* fuzz == 1 is normal.. 0 or less are ignored */
875		if (runq_fuzz > 1) {
876			/*
877			 * In the first couple of entries, check if
878			 * there is one for our CPU as a preference.
879			 */
880			int count = runq_fuzz;
881			int cpu = PCPU_GET(cpuid);
882			struct kse *ke2;
883			ke2 = ke = TAILQ_FIRST(rqh);
884
885			while (count-- && ke2) {
886				if (ke->ke_thread->td_lastcpu == cpu) {
887					ke = ke2;
888					break;
889				}
890				ke2 = TAILQ_NEXT(ke2, ke_procq);
891			}
892		} else
893#endif
894			ke = TAILQ_FIRST(rqh);
895		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
896		CTR3(KTR_RUNQ,
897		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
898		return (ke);
899	}
900	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
901
902	return (NULL);
903}
904
905/*
906 * Remove the KSE from the queue specified by its priority, and clear the
907 * corresponding status bit if the queue becomes empty.
908 * Caller must set ke->ke_state afterwards.
909 */
910void
911runq_remove(struct runq *rq, struct kse *ke)
912{
913	struct rqhead *rqh;
914	int pri;
915
916	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
917		("runq_remove: process swapped out"));
918	pri = ke->ke_rqindex;
919	rqh = &rq->rq_queues[pri];
920	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
921	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
922	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
923	TAILQ_REMOVE(rqh, ke, ke_procq);
924	if (TAILQ_EMPTY(rqh)) {
925		CTR0(KTR_RUNQ, "runq_remove: empty");
926		runq_clrbit(rq, pri);
927	}
928}
929
930/****** functions that are temporarily here ***********/
931#include <vm/uma.h>
932extern struct mtx kse_zombie_lock;
933
934/*
935 *  Allocate scheduler specific per-process resources.
936 * The thread and ksegrp have already been linked in.
937 * In this case just set the default concurrency value.
938 *
939 * Called from:
940 *  proc_init() (UMA init method)
941 */
942void
943sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
944{
945
946	/* This can go in sched_fork */
947	sched_init_concurrency(kg);
948}
949
950/*
951 * thread is being either created or recycled.
952 * Fix up the per-scheduler resources associated with it.
953 * Called from:
954 *  sched_fork_thread()
955 *  thread_dtor()  (*may go away)
956 *  thread_init()  (*may go away)
957 */
958void
959sched_newthread(struct thread *td)
960{
961	struct td_sched *ke;
962
963	ke = (struct td_sched *) (td + 1);
964	bzero(ke, sizeof(*ke));
965	td->td_sched     = ke;
966	ke->ke_thread	= td;
967	ke->ke_state	= KES_THREAD;
968}
969
970/*
971 * Set up an initial concurrency of 1
972 * and set the given thread (if given) to be using that
973 * concurrency slot.
974 * May be used "offline"..before the ksegrp is attached to the world
975 * and thus wouldn't need schedlock in that case.
976 * Called from:
977 *  thr_create()
978 *  proc_init() (UMA) via sched_newproc()
979 */
980void
981sched_init_concurrency(struct ksegrp *kg)
982{
983
984	CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
985	kg->kg_concurrency = 1;
986	kg->kg_avail_opennings = 1;
987}
988
989/*
990 * Change the concurrency of an existing ksegrp to N
991 * Called from:
992 *  kse_create()
993 *  kse_exit()
994 *  thread_exit()
995 *  thread_single()
996 */
997void
998sched_set_concurrency(struct ksegrp *kg, int concurrency)
999{
1000
1001	CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
1002	    kg,
1003	    concurrency,
1004	    kg->kg_avail_opennings,
1005	    kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
1006	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
1007	kg->kg_concurrency = concurrency;
1008}
1009
1010/*
1011 * Called from thread_exit() for all exiting thread
1012 *
1013 * Not to be confused with sched_exit_thread()
1014 * that is only called from thread_exit() for threads exiting
1015 * without the rest of the process exiting because it is also called from
1016 * sched_exit() and we wouldn't want to call it twice.
1017 * XXX This can probably be fixed.
1018 */
1019void
1020sched_thread_exit(struct thread *td)
1021{
1022
1023	SLOT_RELEASE(td->td_ksegrp);
1024	slot_fill(td->td_ksegrp);
1025}
1026
1027#endif /* KERN_SWITCH_INCLUDE */
1028