kern_switch.c revision 136345
1/*
2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/***
28Here is the logic..
29
30If there are N processors, then there are at most N KSEs (kernel
31schedulable entities) working to process threads that belong to a
32KSEGROUP (kg). If there are X of these KSEs actually running at the
33moment in question, then there are at most M (N-X) of these KSEs on
34the run queue, as running KSEs are not on the queue.
35
36Runnable threads are queued off the KSEGROUP in priority order.
37If there are M or more threads runnable, the top M threads
38(by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39their priority from those threads and are put on the run queue.
40
41The last thread that had a priority high enough to have a KSE associated
42with it, AND IS ON THE RUN QUEUE is pointed to by
43kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44assigned as all the available KSEs are activly running, or because there
45are no threads queued, that pointer is NULL.
46
47When a KSE is removed from the run queue to become runnable, we know
48it was associated with the highest priority thread in the queue (at the head
49of the queue). If it is also the last assigned we know M was 1 and must
50now be 0. Since the thread is no longer queued that pointer must be
51removed from it. Since we know there were no more KSEs available,
52(M was 1 and is now 0) and since we are not FREEING our KSE
53but using it, we know there are STILL no more KSEs available, we can prove
54that the next thread in the ksegrp list will not have a KSE to assign to
55it, so we can show that the pointer must be made 'invalid' (NULL).
56
57The pointer exists so that when a new thread is made runnable, it can
58have its priority compared with the last assigned thread to see if
59it should 'steal' its KSE or not.. i.e. is it 'earlier'
60on the list than that thread or later.. If it's earlier, then the KSE is
61removed from the last assigned (which is now not assigned a KSE)
62and reassigned to the new thread, which is placed earlier in the list.
63The pointer is then backed up to the previous thread (which may or may not
64be the new thread).
65
66When a thread sleeps or is removed, the KSE becomes available and if there
67are queued threads that are not assigned KSEs, the highest priority one of
68them is assigned the KSE, which is then placed back on the run queue at
69the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70to point to it.
71
72The following diagram shows 2 KSEs and 3 threads from a single process.
73
74 RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75              \    \____
76               \        \
77    KSEGROUP---thread--thread--thread    (queued in priority order)
78        \                 /
79         \_______________/
80          (last_assigned)
81
82The result of this scheme is that the M available KSEs are always
83queued at the priorities they have inherrited from the M highest priority
84threads for that KSEGROUP. If this situation changes, the KSEs are
85reassigned to keep this true.
86***/
87
88#include <sys/cdefs.h>
89__FBSDID("$FreeBSD: head/sys/kern/kern_switch.c 136345 2004-10-10 05:19:22Z julian $");
90
91#include "opt_sched.h"
92
93#ifndef KERN_SWITCH_INCLUDE
94#include <sys/param.h>
95#include <sys/systm.h>
96#include <sys/kdb.h>
97#include <sys/kernel.h>
98#include <sys/ktr.h>
99#include <sys/lock.h>
100#include <sys/mutex.h>
101#include <sys/proc.h>
102#include <sys/queue.h>
103#include <sys/sched.h>
104#else  /* KERN_SWITCH_INCLUDE */
105#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106#include <sys/smp.h>
107#endif
108#include <machine/critical.h>
109#if defined(SMP) && defined(SCHED_4BSD)
110#include <sys/sysctl.h>
111#endif
112
113#ifdef FULL_PREEMPTION
114#ifndef PREEMPTION
115#error "The FULL_PREEMPTION option requires the PREEMPTION option"
116#endif
117#endif
118
119CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
120
121#define td_kse td_sched
122
123/************************************************************************
124 * Functions that manipulate runnability from a thread perspective.	*
125 ************************************************************************/
126/*
127 * Select the KSE that will be run next.  From that find the thread, and
128 * remove it from the KSEGRP's run queue.  If there is thread clustering,
129 * this will be what does it.
130 */
131struct thread *
132choosethread(void)
133{
134	struct kse *ke;
135	struct thread *td;
136	struct ksegrp *kg;
137
138#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
139	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
140		/* Shutting down, run idlethread on AP's */
141		td = PCPU_GET(idlethread);
142		ke = td->td_kse;
143		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
144		ke->ke_flags |= KEF_DIDRUN;
145		TD_SET_RUNNING(td);
146		return (td);
147	}
148#endif
149
150retry:
151	ke = sched_choose();
152	if (ke) {
153		td = ke->ke_thread;
154		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
155		kg = ke->ke_ksegrp;
156		if (td->td_proc->p_flag & P_HADTHREADS) {
157			if (kg->kg_last_assigned == td) {
158				kg->kg_last_assigned = TAILQ_PREV(td,
159				    threadqueue, td_runq);
160			}
161			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
162			kg->kg_runnable--;
163		}
164		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
165		    td, td->td_priority);
166	} else {
167		/* Simulate runq_choose() having returned the idle thread */
168		td = PCPU_GET(idlethread);
169		ke = td->td_kse;
170		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
171	}
172	ke->ke_flags |= KEF_DIDRUN;
173
174	/*
175	 * If we are in panic, only allow system threads,
176	 * plus the one we are running in, to be run.
177	 */
178	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
179	    (td->td_flags & TDF_INPANIC) == 0)) {
180		/* note that it is no longer on the run queue */
181		TD_SET_CAN_RUN(td);
182		goto retry;
183	}
184
185	TD_SET_RUNNING(td);
186	return (td);
187}
188
189/*
190 * Given a surplus system slot, try assign a new runnable thread to it.
191 * Called from:
192 *  sched_thread_exit()  (local)
193 *  sched_switch()  (local)
194 *  sched_thread_exit()  (local)
195 *  remrunqueue()  (local)  (not at the moment)
196 */
197static void
198slot_fill(struct ksegrp *kg)
199{
200	struct thread *td;
201
202	mtx_assert(&sched_lock, MA_OWNED);
203	while (kg->kg_avail_opennings > 0) {
204		/*
205		 * Find the first unassigned thread
206		 */
207		if ((td = kg->kg_last_assigned) != NULL)
208			td = TAILQ_NEXT(td, td_runq);
209		else
210			td = TAILQ_FIRST(&kg->kg_runq);
211
212		/*
213		 * If we found one, send it to the system scheduler.
214		 */
215		if (td) {
216			kg->kg_last_assigned = td;
217			sched_add(td, SRQ_BORING);
218			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
219		} else {
220			/* no threads to use up the slots. quit now */
221			break;
222		}
223	}
224}
225
226#ifdef	SCHED_4BSD
227/*
228 * Remove a thread from its KSEGRP's run queue.
229 * This in turn may remove it from a KSE if it was already assigned
230 * to one, possibly causing a new thread to be assigned to the KSE
231 * and the KSE getting a new priority.
232 */
233static void
234remrunqueue(struct thread *td)
235{
236	struct thread *td2, *td3;
237	struct ksegrp *kg;
238	struct kse *ke;
239
240	mtx_assert(&sched_lock, MA_OWNED);
241	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
242	kg = td->td_ksegrp;
243	ke = td->td_kse;
244	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
245	TD_SET_CAN_RUN(td);
246	/*
247	 * If it is not a threaded process, take the shortcut.
248	 */
249	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
250		/* remve from sys run queue and free up a slot */
251		sched_rem(td);
252		ke->ke_state = KES_THREAD;
253		return;
254	}
255   	td3 = TAILQ_PREV(td, threadqueue, td_runq);
256	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
257	kg->kg_runnable--;
258	if (ke->ke_state == KES_ONRUNQ) {
259		/*
260		 * This thread has been assigned to the system run queue.
261		 * We need to dissociate it and try assign the
262		 * KSE to the next available thread. Then, we should
263		 * see if we need to move the KSE in the run queues.
264		 */
265		sched_rem(td);
266		ke->ke_state = KES_THREAD;
267		td2 = kg->kg_last_assigned;
268		KASSERT((td2 != NULL), ("last assigned has wrong value"));
269		if (td2 == td)
270			kg->kg_last_assigned = td3;
271		/* slot_fill(kg); */ /* will replace it with another */
272	}
273}
274#endif
275
276/*
277 * Change the priority of a thread that is on the run queue.
278 */
279void
280adjustrunqueue( struct thread *td, int newpri)
281{
282	struct ksegrp *kg;
283	struct kse *ke;
284
285	mtx_assert(&sched_lock, MA_OWNED);
286	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
287
288	ke = td->td_kse;
289	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
290	/*
291	 * If it is not a threaded process, take the shortcut.
292	 */
293	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
294		/* We only care about the kse in the run queue. */
295		td->td_priority = newpri;
296		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
297			sched_rem(td);
298			sched_add(td, SRQ_BORING);
299		}
300		return;
301	}
302
303	/* It is a threaded process */
304	kg = td->td_ksegrp;
305	if (ke->ke_state == KES_ONRUNQ) {
306		if (kg->kg_last_assigned == td) {
307			kg->kg_last_assigned =
308			    TAILQ_PREV(td, threadqueue, td_runq);
309		}
310		sched_rem(td);
311	}
312	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
313	kg->kg_runnable--;
314	TD_SET_CAN_RUN(td);
315	td->td_priority = newpri;
316	setrunqueue(td, SRQ_BORING);
317}
318int limitcount;
319void
320setrunqueue(struct thread *td, int flags)
321{
322	struct ksegrp *kg;
323	struct thread *td2;
324	struct thread *tda;
325
326	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
327	    td, td->td_ksegrp, td->td_proc->p_pid);
328	mtx_assert(&sched_lock, MA_OWNED);
329	KASSERT((td->td_inhibitors == 0),
330			("setrunqueue: trying to run inhibitted thread"));
331	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
332	    ("setrunqueue: bad thread state"));
333	TD_SET_RUNQ(td);
334	kg = td->td_ksegrp;
335	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
336		/*
337		 * Common path optimisation: Only one of everything
338		 * and the KSE is always already attached.
339		 * Totally ignore the ksegrp run queue.
340		 */
341		if (kg->kg_avail_opennings != 1) {
342			if (limitcount < 1) {
343				limitcount++;
344				printf("pid %d: corrected slot count (%d->1)\n",
345				    td->td_proc->p_pid, kg->kg_avail_opennings);
346
347			}
348			kg->kg_avail_opennings = 1;
349		}
350		sched_add(td, flags);
351		return;
352	}
353
354	/*
355	 * If the concurrency has reduced, and we would go in the
356	 * assigned section, then keep removing entries from the
357	 * system run queue, until we are not in that section
358	 * or there is room for us to be put in that section.
359	 * What we MUST avoid is the case where there are threads of less
360	 * priority than the new one scheduled, but it can not
361	 * be scheduled itself. That would lead to a non contiguous set
362	 * of scheduled threads, and everything would break.
363	 */
364	tda = kg->kg_last_assigned;
365	while ((kg->kg_avail_opennings <= 0) &&
366	    (tda && (tda->td_priority > td->td_priority))) {
367		/*
368		 * None free, but there is one we can commandeer.
369		 */
370		CTR2(KTR_RUNQ,
371		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
372		sched_rem(tda);
373		tda = kg->kg_last_assigned =
374		    TAILQ_PREV(tda, threadqueue, td_runq);
375	}
376
377	/*
378	 * Add the thread to the ksegrp's run queue at
379	 * the appropriate place.
380	 */
381	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
382		if (td2->td_priority > td->td_priority) {
383			kg->kg_runnable++;
384			TAILQ_INSERT_BEFORE(td2, td, td_runq);
385			break;
386		}
387	}
388	if (td2 == NULL) {
389		/* We ran off the end of the TAILQ or it was empty. */
390		kg->kg_runnable++;
391		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
392	}
393
394	/*
395	 * If we have a slot to use, then put the thread on the system
396	 * run queue and if needed, readjust the last_assigned pointer.
397	 * it may be that we need to schedule something anyhow
398	 * even if the availabel slots are -ve so that
399	 * all the items < last_assigned are scheduled.
400	 */
401	if (kg->kg_avail_opennings > 0) {
402		if (tda == NULL) {
403			/*
404			 * No pre-existing last assigned so whoever is first
405			 * gets the slot.. (maybe us)
406			 */
407			td2 = TAILQ_FIRST(&kg->kg_runq);
408			kg->kg_last_assigned = td2;
409		} else if (tda->td_priority > td->td_priority) {
410			td2 = td;
411		} else {
412			/*
413			 * We are past last_assigned, so
414			 * give the next slot to whatever is next,
415			 * which may or may not be us.
416			 */
417			td2 = TAILQ_NEXT(tda, td_runq);
418			kg->kg_last_assigned = td2;
419		}
420		sched_add(td2, flags);
421	} else {
422		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
423			td, td->td_ksegrp, td->td_proc->p_pid);
424	}
425}
426
427/*
428 * Kernel thread preemption implementation.  Critical sections mark
429 * regions of code in which preemptions are not allowed.
430 */
431void
432critical_enter(void)
433{
434	struct thread *td;
435
436	td = curthread;
437	if (td->td_critnest == 0)
438		cpu_critical_enter(td);
439	td->td_critnest++;
440}
441
442void
443critical_exit(void)
444{
445	struct thread *td;
446
447	td = curthread;
448	KASSERT(td->td_critnest != 0,
449	    ("critical_exit: td_critnest == 0"));
450	if (td->td_critnest == 1) {
451#ifdef PREEMPTION
452		mtx_assert(&sched_lock, MA_NOTOWNED);
453		if (td->td_pflags & TDP_OWEPREEMPT) {
454			mtx_lock_spin(&sched_lock);
455			mi_switch(SW_INVOL, NULL);
456			mtx_unlock_spin(&sched_lock);
457		}
458#endif
459		td->td_critnest = 0;
460		cpu_critical_exit(td);
461	} else {
462		td->td_critnest--;
463	}
464}
465
466/*
467 * This function is called when a thread is about to be put on run queue
468 * because it has been made runnable or its priority has been adjusted.  It
469 * determines if the new thread should be immediately preempted to.  If so,
470 * it switches to it and eventually returns true.  If not, it returns false
471 * so that the caller may place the thread on an appropriate run queue.
472 */
473int
474maybe_preempt(struct thread *td)
475{
476#ifdef PREEMPTION
477	struct thread *ctd;
478	int cpri, pri;
479#endif
480
481	mtx_assert(&sched_lock, MA_OWNED);
482#ifdef PREEMPTION
483	/*
484	 * The new thread should not preempt the current thread if any of the
485	 * following conditions are true:
486	 *
487	 *  - The current thread has a higher (numerically lower) or
488	 *    equivalent priority.  Note that this prevents curthread from
489	 *    trying to preempt to itself.
490	 *  - It is too early in the boot for context switches (cold is set).
491	 *  - The current thread has an inhibitor set or is in the process of
492	 *    exiting.  In this case, the current thread is about to switch
493	 *    out anyways, so there's no point in preempting.  If we did,
494	 *    the current thread would not be properly resumed as well, so
495	 *    just avoid that whole landmine.
496	 *  - If the new thread's priority is not a realtime priority and
497	 *    the current thread's priority is not an idle priority and
498	 *    FULL_PREEMPTION is disabled.
499	 *
500	 * If all of these conditions are false, but the current thread is in
501	 * a nested critical section, then we have to defer the preemption
502	 * until we exit the critical section.  Otherwise, switch immediately
503	 * to the new thread.
504	 */
505	ctd = curthread;
506	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
507	  ("thread has no (or wrong) sched-private part."));
508	KASSERT((td->td_inhibitors == 0),
509			("maybe_preempt: trying to run inhibitted thread"));
510	pri = td->td_priority;
511	cpri = ctd->td_priority;
512	if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
513	    td->td_kse->ke_state != KES_THREAD)
514		return (0);
515#ifndef FULL_PREEMPTION
516	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
517	    !(cpri >= PRI_MIN_IDLE))
518		return (0);
519#endif
520	if (ctd->td_critnest > 1) {
521		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
522		    ctd->td_critnest);
523		ctd->td_pflags |= TDP_OWEPREEMPT;
524		return (0);
525	}
526
527	/*
528	 * Thread is runnable but not yet put on system run queue.
529	 */
530	MPASS(TD_ON_RUNQ(td));
531	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
532	if (td->td_proc->p_flag & P_HADTHREADS) {
533		/*
534		 * If this is a threaded process we actually ARE on the
535		 * ksegrp run queue so take it off that first.
536		 * Also undo any damage done to the last_assigned pointer.
537		 * XXX Fix setrunqueue so this isn't needed
538		 */
539		struct ksegrp *kg;
540
541		kg = td->td_ksegrp;
542		if (kg->kg_last_assigned == td)
543			kg->kg_last_assigned =
544			    TAILQ_PREV(td, threadqueue, td_runq);
545		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
546	}
547
548	TD_SET_RUNNING(td);
549	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
550	    td->td_proc->p_pid, td->td_proc->p_comm);
551	mi_switch(SW_INVOL|SW_PREEMPT, td);
552	return (1);
553#else
554	return (0);
555#endif
556}
557
558#if 0
559#ifndef PREEMPTION
560/* XXX: There should be a non-static version of this. */
561static void
562printf_caddr_t(void *data)
563{
564	printf("%s", (char *)data);
565}
566static char preempt_warning[] =
567    "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
568SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
569    preempt_warning)
570#endif
571#endif
572
573/************************************************************************
574 * SYSTEM RUN QUEUE manipulations and tests				*
575 ************************************************************************/
576/*
577 * Initialize a run structure.
578 */
579void
580runq_init(struct runq *rq)
581{
582	int i;
583
584	bzero(rq, sizeof *rq);
585	for (i = 0; i < RQ_NQS; i++)
586		TAILQ_INIT(&rq->rq_queues[i]);
587}
588
589/*
590 * Clear the status bit of the queue corresponding to priority level pri,
591 * indicating that it is empty.
592 */
593static __inline void
594runq_clrbit(struct runq *rq, int pri)
595{
596	struct rqbits *rqb;
597
598	rqb = &rq->rq_status;
599	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
600	    rqb->rqb_bits[RQB_WORD(pri)],
601	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
602	    RQB_BIT(pri), RQB_WORD(pri));
603	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
604}
605
606/*
607 * Find the index of the first non-empty run queue.  This is done by
608 * scanning the status bits, a set bit indicates a non-empty queue.
609 */
610static __inline int
611runq_findbit(struct runq *rq)
612{
613	struct rqbits *rqb;
614	int pri;
615	int i;
616
617	rqb = &rq->rq_status;
618	for (i = 0; i < RQB_LEN; i++)
619		if (rqb->rqb_bits[i]) {
620			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
621			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
622			    rqb->rqb_bits[i], i, pri);
623			return (pri);
624		}
625
626	return (-1);
627}
628
629/*
630 * Set the status bit of the queue corresponding to priority level pri,
631 * indicating that it is non-empty.
632 */
633static __inline void
634runq_setbit(struct runq *rq, int pri)
635{
636	struct rqbits *rqb;
637
638	rqb = &rq->rq_status;
639	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
640	    rqb->rqb_bits[RQB_WORD(pri)],
641	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
642	    RQB_BIT(pri), RQB_WORD(pri));
643	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
644}
645
646/*
647 * Add the KSE to the queue specified by its priority, and set the
648 * corresponding status bit.
649 */
650void
651runq_add(struct runq *rq, struct kse *ke, int flags)
652{
653	struct rqhead *rqh;
654	int pri;
655
656	pri = ke->ke_thread->td_priority / RQ_PPQ;
657	ke->ke_rqindex = pri;
658	runq_setbit(rq, pri);
659	rqh = &rq->rq_queues[pri];
660	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
661	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
662	if (flags & SRQ_PREEMPTED) {
663		TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
664	} else {
665		TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
666	}
667}
668
669/*
670 * Return true if there are runnable processes of any priority on the run
671 * queue, false otherwise.  Has no side effects, does not modify the run
672 * queue structure.
673 */
674int
675runq_check(struct runq *rq)
676{
677	struct rqbits *rqb;
678	int i;
679
680	rqb = &rq->rq_status;
681	for (i = 0; i < RQB_LEN; i++)
682		if (rqb->rqb_bits[i]) {
683			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
684			    rqb->rqb_bits[i], i);
685			return (1);
686		}
687	CTR0(KTR_RUNQ, "runq_check: empty");
688
689	return (0);
690}
691
692#if defined(SMP) && defined(SCHED_4BSD)
693int runq_fuzz = 1;
694SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
695#endif
696
697/*
698 * Find the highest priority process on the run queue.
699 */
700struct kse *
701runq_choose(struct runq *rq)
702{
703	struct rqhead *rqh;
704	struct kse *ke;
705	int pri;
706
707	mtx_assert(&sched_lock, MA_OWNED);
708	while ((pri = runq_findbit(rq)) != -1) {
709		rqh = &rq->rq_queues[pri];
710#if defined(SMP) && defined(SCHED_4BSD)
711		/* fuzz == 1 is normal.. 0 or less are ignored */
712		if (runq_fuzz > 1) {
713			/*
714			 * In the first couple of entries, check if
715			 * there is one for our CPU as a preference.
716			 */
717			int count = runq_fuzz;
718			int cpu = PCPU_GET(cpuid);
719			struct kse *ke2;
720			ke2 = ke = TAILQ_FIRST(rqh);
721
722			while (count-- && ke2) {
723				if (ke->ke_thread->td_lastcpu == cpu) {
724					ke = ke2;
725					break;
726				}
727				ke2 = TAILQ_NEXT(ke2, ke_procq);
728			}
729		} else
730#endif
731			ke = TAILQ_FIRST(rqh);
732		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
733		CTR3(KTR_RUNQ,
734		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
735		return (ke);
736	}
737	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
738
739	return (NULL);
740}
741
742/*
743 * Remove the KSE from the queue specified by its priority, and clear the
744 * corresponding status bit if the queue becomes empty.
745 * Caller must set ke->ke_state afterwards.
746 */
747void
748runq_remove(struct runq *rq, struct kse *ke)
749{
750	struct rqhead *rqh;
751	int pri;
752
753	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
754		("runq_remove: process swapped out"));
755	pri = ke->ke_rqindex;
756	rqh = &rq->rq_queues[pri];
757	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
758	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
759	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
760	TAILQ_REMOVE(rqh, ke, ke_procq);
761	if (TAILQ_EMPTY(rqh)) {
762		CTR0(KTR_RUNQ, "runq_remove: empty");
763		runq_clrbit(rq, pri);
764	}
765}
766
767/****** functions that are temporarily here ***********/
768#include <vm/uma.h>
769#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
770extern struct mtx kse_zombie_lock;
771
772/*
773 *  Allocate scheduler specific per-process resources.
774 * The thread and ksegrp have already been linked in.
775 * In this case just set the default concurrency value.
776 *
777 * Called from:
778 *  proc_init() (UMA init method)
779 */
780void
781sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
782{
783
784	/* This can go in sched_fork */
785	sched_init_concurrency(kg);
786}
787
788#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
789/*
790 * thread is being either created or recycled.
791 * Fix up the per-scheduler resources associated with it.
792 * Called from:
793 *  sched_fork_thread()
794 *  thread_dtor()  (*may go away)
795 *  thread_init()  (*may go away)
796 */
797void
798sched_newthread(struct thread *td)
799{
800	struct td_sched *ke;
801
802	ke = (struct td_sched *) (td + 1);
803	bzero(ke, sizeof(*ke));
804	td->td_sched     = ke;
805	ke->ke_thread	= td;
806	ke->ke_oncpu	= NOCPU;
807	ke->ke_state	= KES_THREAD;
808}
809
810/*
811 * Set up an initial concurrency of 1
812 * and set the given thread (if given) to be using that
813 * concurrency slot.
814 * May be used "offline"..before the ksegrp is attached to the world
815 * and thus wouldn't need schedlock in that case.
816 * Called from:
817 *  thr_create()
818 *  proc_init() (UMA) via sched_newproc()
819 */
820void
821sched_init_concurrency(struct ksegrp *kg)
822{
823
824	CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
825	kg->kg_concurrency = 1;
826	kg->kg_avail_opennings = 1;
827}
828
829/*
830 * Change the concurrency of an existing ksegrp to N
831 * Called from:
832 *  kse_create()
833 *  kse_exit()
834 *  thread_exit()
835 *  thread_single()
836 */
837void
838sched_set_concurrency(struct ksegrp *kg, int concurrency)
839{
840
841	CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
842	    kg,
843	    concurrency,
844	    kg->kg_avail_opennings,
845	    kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
846	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
847	kg->kg_concurrency = concurrency;
848}
849
850/*
851 * Called from thread_exit() for all exiting thread
852 *
853 * Not to be confused with sched_exit_thread()
854 * that is only called from thread_exit() for threads exiting
855 * without the rest of the process exiting because it is also called from
856 * sched_exit() and we wouldn't want to call it twice.
857 * XXX This can probably be fixed.
858 */
859void
860sched_thread_exit(struct thread *td)
861{
862
863	SLOT_RELEASE(td->td_ksegrp);
864	slot_fill(td->td_ksegrp);
865}
866
867#endif /* KERN_SWITCH_INCLUDE */
868