kern_switch.c revision 135182
1129198Scognet/*
2129198Scognet * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/***
28Here is the logic..
29
30If there are N processors, then there are at most N KSEs (kernel
31schedulable entities) working to process threads that belong to a
32KSEGROUP (kg). If there are X of these KSEs actually running at the
33moment in question, then there are at most M (N-X) of these KSEs on
34the run queue, as running KSEs are not on the queue.
35
36Runnable threads are queued off the KSEGROUP in priority order.
37If there are M or more threads runnable, the top M threads
38(by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39their priority from those threads and are put on the run queue.
40
41The last thread that had a priority high enough to have a KSE associated
42with it, AND IS ON THE RUN QUEUE is pointed to by
43kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44assigned as all the available KSEs are activly running, or because there
45are no threads queued, that pointer is NULL.
46
47When a KSE is removed from the run queue to become runnable, we know
48it was associated with the highest priority thread in the queue (at the head
49of the queue). If it is also the last assigned we know M was 1 and must
50now be 0. Since the thread is no longer queued that pointer must be
51removed from it. Since we know there were no more KSEs available,
52(M was 1 and is now 0) and since we are not FREEING our KSE
53but using it, we know there are STILL no more KSEs available, we can prove
54that the next thread in the ksegrp list will not have a KSE to assign to
55it, so we can show that the pointer must be made 'invalid' (NULL).
56
57The pointer exists so that when a new thread is made runnable, it can
58have its priority compared with the last assigned thread to see if
59it should 'steal' its KSE or not.. i.e. is it 'earlier'
60on the list than that thread or later.. If it's earlier, then the KSE is
61removed from the last assigned (which is now not assigned a KSE)
62and reassigned to the new thread, which is placed earlier in the list.
63The pointer is then backed up to the previous thread (which may or may not
64be the new thread).
65
66When a thread sleeps or is removed, the KSE becomes available and if there
67are queued threads that are not assigned KSEs, the highest priority one of
68them is assigned the KSE, which is then placed back on the run queue at
69the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70to point to it.
71
72The following diagram shows 2 KSEs and 3 threads from a single process.
73
74 RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75              \    \____
76               \        \
77    KSEGROUP---thread--thread--thread    (queued in priority order)
78        \                 /
79         \_______________/
80          (last_assigned)
81
82The result of this scheme is that the M available KSEs are always
83queued at the priorities they have inherrited from the M highest priority
84threads for that KSEGROUP. If this situation changes, the KSEs are
85reassigned to keep this true.
86***/
87
88#include <sys/cdefs.h>
89__FBSDID("$FreeBSD: head/sys/kern/kern_switch.c 135182 2004-09-13 23:06:39Z julian $");
90
91#include "opt_sched.h"
92
93#ifndef KERN_SWITCH_INCLUDE
94#include <sys/param.h>
95#include <sys/systm.h>
96#include <sys/kdb.h>
97#include <sys/kernel.h>
98#include <sys/ktr.h>
99#include <sys/lock.h>
100#include <sys/mutex.h>
101#include <sys/proc.h>
102#include <sys/queue.h>
103#include <sys/sched.h>
104#else  /* KERN_SWITCH_INCLUDE */
105#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106#include <sys/smp.h>
107#endif
108#include <machine/critical.h>
109#if defined(SMP) && defined(SCHED_4BSD)
110#include <sys/sysctl.h>
111#endif
112
113#ifdef FULL_PREEMPTION
114#ifndef PREEMPTION
115#error "The FULL_PREEMPTION option requires the PREEMPTION option"
116#endif
117#endif
118
119CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
120
121#define td_kse td_sched
122
123/************************************************************************
124 * Functions that manipulate runnability from a thread perspective.	*
125 ************************************************************************/
126/*
127 * Select the KSE that will be run next.  From that find the thread, and
128 * remove it from the KSEGRP's run queue.  If there is thread clustering,
129 * this will be what does it.
130 */
131struct thread *
132choosethread(void)
133{
134	struct kse *ke;
135	struct thread *td;
136	struct ksegrp *kg;
137
138#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
139	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
140		/* Shutting down, run idlethread on AP's */
141		td = PCPU_GET(idlethread);
142		ke = td->td_kse;
143		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
144		ke->ke_flags |= KEF_DIDRUN;
145		TD_SET_RUNNING(td);
146		return (td);
147	}
148#endif
149
150retry:
151	ke = sched_choose();
152	if (ke) {
153		td = ke->ke_thread;
154		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
155		kg = ke->ke_ksegrp;
156		if (td->td_proc->p_flag & P_HADTHREADS) {
157			if (kg->kg_last_assigned == td) {
158				kg->kg_last_assigned = TAILQ_PREV(td,
159				    threadqueue, td_runq);
160			}
161			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
162			kg->kg_runnable--;
163		}
164		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
165		    td, td->td_priority);
166	} else {
167		/* Simulate runq_choose() having returned the idle thread */
168		td = PCPU_GET(idlethread);
169		ke = td->td_kse;
170		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
171	}
172	ke->ke_flags |= KEF_DIDRUN;
173
174	/*
175	 * If we are in panic, only allow system threads,
176	 * plus the one we are running in, to be run.
177	 */
178	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
179	    (td->td_flags & TDF_INPANIC) == 0)) {
180		/* note that it is no longer on the run queue */
181		TD_SET_CAN_RUN(td);
182		goto retry;
183	}
184
185	TD_SET_RUNNING(td);
186	return (td);
187}
188
189/*
190 * Given a surplus system slot, try assign a new runnable thread to it.
191 * Called from:
192 *  sched_thread_exit()  (local)
193 *  sched_switch()  (local)
194 *  sched_thread_exit()  (local)
195 *  remrunqueue()  (local)
196 */
197static void
198slot_fill(struct ksegrp *kg)
199{
200	struct thread *td;
201
202	mtx_assert(&sched_lock, MA_OWNED);
203	while (kg->kg_avail_opennings > 0) {
204		/*
205		 * Find the first unassigned thread
206		 */
207		if ((td = kg->kg_last_assigned) != NULL)
208			td = TAILQ_NEXT(td, td_runq);
209		else
210			td = TAILQ_FIRST(&kg->kg_runq);
211
212		/*
213		 * If we found one, send it to the system scheduler.
214		 */
215		if (td) {
216			kg->kg_last_assigned = td;
217			kg->kg_avail_opennings--;
218			sched_add(td, SRQ_BORING);
219			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
220		} else {
221			/* no threads to use up the slots. quit now */
222			break;
223		}
224	}
225}
226
227/*
228 * Remove a thread from its KSEGRP's run queue.
229 * This in turn may remove it from a KSE if it was already assigned
230 * to one, possibly causing a new thread to be assigned to the KSE
231 * and the KSE getting a new priority.
232 */
233static void
234remrunqueue(struct thread *td)
235{
236	struct thread *td2, *td3;
237	struct ksegrp *kg;
238	struct kse *ke;
239
240	mtx_assert(&sched_lock, MA_OWNED);
241	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
242	kg = td->td_ksegrp;
243	ke = td->td_kse;
244	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
245	TD_SET_CAN_RUN(td);
246	/*
247	 * If it is not a threaded process, take the shortcut.
248	 */
249	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
250		/* remve from sys run queue and free up a slot */
251		sched_rem(td);
252		kg->kg_avail_opennings++;
253		ke->ke_state = KES_THREAD;
254		return;
255	}
256   	td3 = TAILQ_PREV(td, threadqueue, td_runq);
257	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
258	kg->kg_runnable--;
259	if (ke->ke_state == KES_ONRUNQ) {
260		/*
261		 * This thread has been assigned to the system run queue.
262		 * We need to dissociate it and try assign the
263		 * KSE to the next available thread. Then, we should
264		 * see if we need to move the KSE in the run queues.
265		 */
266		sched_rem(td);
267		kg->kg_avail_opennings++;
268		ke->ke_state = KES_THREAD;
269		td2 = kg->kg_last_assigned;
270		KASSERT((td2 != NULL), ("last assigned has wrong value"));
271		if (td2 == td)
272			kg->kg_last_assigned = td3;
273		/* slot_fill(kg); */ /* will replace it with another */
274	}
275}
276
277/*
278 * Change the priority of a thread that is on the run queue.
279 */
280void
281adjustrunqueue( struct thread *td, int newpri)
282{
283	struct ksegrp *kg;
284	struct kse *ke;
285
286	mtx_assert(&sched_lock, MA_OWNED);
287	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
288
289	ke = td->td_kse;
290	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
291	/*
292	 * If it is not a threaded process, take the shortcut.
293	 */
294	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
295		/* We only care about the kse in the run queue. */
296		td->td_priority = newpri;
297		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
298			sched_rem(td);
299			sched_add(td, SRQ_BORING);
300		}
301		return;
302	}
303
304	/* It is a threaded process */
305	kg = td->td_ksegrp;
306	TD_SET_CAN_RUN(td);
307	if (ke->ke_state == KES_ONRUNQ) {
308		if (kg->kg_last_assigned == td) {
309			kg->kg_last_assigned =
310			    TAILQ_PREV(td, threadqueue, td_runq);
311		}
312		sched_rem(td);
313		kg->kg_avail_opennings++;
314	}
315	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
316	kg->kg_runnable--;
317	td->td_priority = newpri;
318	setrunqueue(td, SRQ_BORING);
319}
320int limitcount;
321void
322setrunqueue(struct thread *td, int flags)
323{
324	struct ksegrp *kg;
325	struct thread *td2;
326	struct thread *tda;
327	int count;
328
329	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
330	    td, td->td_ksegrp, td->td_proc->p_pid);
331	mtx_assert(&sched_lock, MA_OWNED);
332	KASSERT((td->td_inhibitors == 0),
333			("setrunqueue: trying to run inhibitted thread"));
334	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
335	    ("setrunqueue: bad thread state"));
336	TD_SET_RUNQ(td);
337	kg = td->td_ksegrp;
338	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
339		/*
340		 * Common path optimisation: Only one of everything
341		 * and the KSE is always already attached.
342		 * Totally ignore the ksegrp run queue.
343		 */
344		if (kg->kg_avail_opennings != 1) {
345			if (limitcount < 1) {
346				limitcount++;
347				printf("pid %d: corrected slot count (%d->1)\n",
348				    td->td_proc->p_pid, kg->kg_avail_opennings);
349
350			}
351			kg->kg_avail_opennings = 1;
352		}
353		kg->kg_avail_opennings--;
354		sched_add(td, flags);
355		return;
356	}
357
358	tda = kg->kg_last_assigned;
359	if ((kg->kg_avail_opennings <= 0) &&
360	(tda && (tda->td_priority > td->td_priority))) {
361		/*
362		 * None free, but there is one we can commandeer.
363		 */
364		CTR2(KTR_RUNQ,
365		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
366		sched_rem(tda);
367		tda = kg->kg_last_assigned =
368		    TAILQ_PREV(tda, threadqueue, td_runq);
369		kg->kg_avail_opennings++;
370	}
371
372	/*
373	 * Add the thread to the ksegrp's run queue at
374	 * the appropriate place.
375	 */
376	count = 0;
377	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
378		if (td2->td_priority > td->td_priority) {
379			kg->kg_runnable++;
380			TAILQ_INSERT_BEFORE(td2, td, td_runq);
381			break;
382		}
383		/* XXX Debugging hack */
384		if (++count > 10000) {
385			printf("setrunqueue(): corrupt kq_runq, td= %p\n", td);
386			panic("deadlock in setrunqueue");
387		}
388	}
389	if (td2 == NULL) {
390		/* We ran off the end of the TAILQ or it was empty. */
391		kg->kg_runnable++;
392		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
393	}
394
395	/*
396	 * If we have a slot to use, then put the thread on the system
397	 * run queue and if needed, readjust the last_assigned pointer.
398	 */
399	if (kg->kg_avail_opennings > 0) {
400		if (tda == NULL) {
401			/*
402			 * No pre-existing last assigned so whoever is first
403			 * gets the KSE we brought in.. (maybe us)
404			 */
405			td2 = TAILQ_FIRST(&kg->kg_runq);
406			kg->kg_last_assigned = td2;
407		} else if (tda->td_priority > td->td_priority) {
408			td2 = td;
409		} else {
410			/*
411			 * We are past last_assigned, so
412			 * gave the next slot to whatever is next,
413			 * which may or may not be us.
414			 */
415			td2 = TAILQ_NEXT(tda, td_runq);
416			kg->kg_last_assigned = td2;
417		}
418		kg->kg_avail_opennings--;
419		sched_add(td2, flags);
420	} else {
421		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
422			td, td->td_ksegrp, td->td_proc->p_pid);
423	}
424}
425
426/*
427 * Kernel thread preemption implementation.  Critical sections mark
428 * regions of code in which preemptions are not allowed.
429 */
430void
431critical_enter(void)
432{
433	struct thread *td;
434
435	td = curthread;
436	if (td->td_critnest == 0)
437		cpu_critical_enter(td);
438	td->td_critnest++;
439}
440
441void
442critical_exit(void)
443{
444	struct thread *td;
445
446	td = curthread;
447	KASSERT(td->td_critnest != 0,
448	    ("critical_exit: td_critnest == 0"));
449	if (td->td_critnest == 1) {
450#ifdef PREEMPTION
451		mtx_assert(&sched_lock, MA_NOTOWNED);
452		if (td->td_pflags & TDP_OWEPREEMPT) {
453			mtx_lock_spin(&sched_lock);
454			mi_switch(SW_INVOL, NULL);
455			mtx_unlock_spin(&sched_lock);
456		}
457#endif
458		td->td_critnest = 0;
459		cpu_critical_exit(td);
460	} else {
461		td->td_critnest--;
462	}
463}
464
465/*
466 * This function is called when a thread is about to be put on run queue
467 * because it has been made runnable or its priority has been adjusted.  It
468 * determines if the new thread should be immediately preempted to.  If so,
469 * it switches to it and eventually returns true.  If not, it returns false
470 * so that the caller may place the thread on an appropriate run queue.
471 */
472int
473maybe_preempt(struct thread *td)
474{
475#ifdef PREEMPTION
476	struct thread *ctd;
477	int cpri, pri;
478#endif
479
480	mtx_assert(&sched_lock, MA_OWNED);
481#ifdef PREEMPTION
482	/*
483	 * The new thread should not preempt the current thread if any of the
484	 * following conditions are true:
485	 *
486	 *  - The current thread has a higher (numerically lower) or
487	 *    equivalent priority.  Note that this prevents curthread from
488	 *    trying to preempt to itself.
489	 *  - It is too early in the boot for context switches (cold is set).
490	 *  - The current thread has an inhibitor set or is in the process of
491	 *    exiting.  In this case, the current thread is about to switch
492	 *    out anyways, so there's no point in preempting.  If we did,
493	 *    the current thread would not be properly resumed as well, so
494	 *    just avoid that whole landmine.
495	 *  - If the new thread's priority is not a realtime priority and
496	 *    the current thread's priority is not an idle priority and
497	 *    FULL_PREEMPTION is disabled.
498	 *
499	 * If all of these conditions are false, but the current thread is in
500	 * a nested critical section, then we have to defer the preemption
501	 * until we exit the critical section.  Otherwise, switch immediately
502	 * to the new thread.
503	 */
504	ctd = curthread;
505	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
506	  ("thread has no (or wrong) sched-private part."));
507	KASSERT((td->td_inhibitors == 0),
508			("maybe_preempt: trying to run inhibitted thread"));
509	pri = td->td_priority;
510	cpri = ctd->td_priority;
511	if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
512	    td->td_kse->ke_state != KES_THREAD)
513		return (0);
514#ifndef FULL_PREEMPTION
515	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
516	    !(cpri >= PRI_MIN_IDLE))
517		return (0);
518#endif
519	if (ctd->td_critnest > 1) {
520		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
521		    ctd->td_critnest);
522		ctd->td_pflags |= TDP_OWEPREEMPT;
523		return (0);
524	}
525
526	/*
527	 * Our thread state says that we are already on a run queue, so
528	 * update our state as if we had been dequeued by choosethread().
529	 * However we must not actually be on the system run queue yet.
530	 */
531	MPASS(TD_ON_RUNQ(td));
532	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
533	if (td->td_proc->p_flag & P_HADTHREADS) {
534		/*
535		 * If this is a threaded process we actually ARE on the
536		 * ksegrp run queue so take it off that first.
537		 */
538		remrunqueue(td); /* maybe use a simpler version */
539	}
540
541	TD_SET_RUNNING(td);
542	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
543	    td->td_proc->p_pid, td->td_proc->p_comm);
544	mi_switch(SW_INVOL, td);
545	return (1);
546#else
547	return (0);
548#endif
549}
550
551#if 0
552#ifndef PREEMPTION
553/* XXX: There should be a non-static version of this. */
554static void
555printf_caddr_t(void *data)
556{
557	printf("%s", (char *)data);
558}
559static char preempt_warning[] =
560    "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
561SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
562    preempt_warning)
563#endif
564#endif
565
566/************************************************************************
567 * SYSTEM RUN QUEUE manipulations and tests				*
568 ************************************************************************/
569/*
570 * Initialize a run structure.
571 */
572void
573runq_init(struct runq *rq)
574{
575	int i;
576
577	bzero(rq, sizeof *rq);
578	for (i = 0; i < RQ_NQS; i++)
579		TAILQ_INIT(&rq->rq_queues[i]);
580}
581
582/*
583 * Clear the status bit of the queue corresponding to priority level pri,
584 * indicating that it is empty.
585 */
586static __inline void
587runq_clrbit(struct runq *rq, int pri)
588{
589	struct rqbits *rqb;
590
591	rqb = &rq->rq_status;
592	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
593	    rqb->rqb_bits[RQB_WORD(pri)],
594	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
595	    RQB_BIT(pri), RQB_WORD(pri));
596	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
597}
598
599/*
600 * Find the index of the first non-empty run queue.  This is done by
601 * scanning the status bits, a set bit indicates a non-empty queue.
602 */
603static __inline int
604runq_findbit(struct runq *rq)
605{
606	struct rqbits *rqb;
607	int pri;
608	int i;
609
610	rqb = &rq->rq_status;
611	for (i = 0; i < RQB_LEN; i++)
612		if (rqb->rqb_bits[i]) {
613			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
614			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
615			    rqb->rqb_bits[i], i, pri);
616			return (pri);
617		}
618
619	return (-1);
620}
621
622/*
623 * Set the status bit of the queue corresponding to priority level pri,
624 * indicating that it is non-empty.
625 */
626static __inline void
627runq_setbit(struct runq *rq, int pri)
628{
629	struct rqbits *rqb;
630
631	rqb = &rq->rq_status;
632	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
633	    rqb->rqb_bits[RQB_WORD(pri)],
634	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
635	    RQB_BIT(pri), RQB_WORD(pri));
636	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
637}
638
639/*
640 * Add the KSE to the queue specified by its priority, and set the
641 * corresponding status bit.
642 */
643void
644runq_add(struct runq *rq, struct kse *ke)
645{
646	struct rqhead *rqh;
647	int pri;
648
649	pri = ke->ke_thread->td_priority / RQ_PPQ;
650	ke->ke_rqindex = pri;
651	runq_setbit(rq, pri);
652	rqh = &rq->rq_queues[pri];
653	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
654	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
655	TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
656}
657
658/*
659 * Return true if there are runnable processes of any priority on the run
660 * queue, false otherwise.  Has no side effects, does not modify the run
661 * queue structure.
662 */
663int
664runq_check(struct runq *rq)
665{
666	struct rqbits *rqb;
667	int i;
668
669	rqb = &rq->rq_status;
670	for (i = 0; i < RQB_LEN; i++)
671		if (rqb->rqb_bits[i]) {
672			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
673			    rqb->rqb_bits[i], i);
674			return (1);
675		}
676	CTR0(KTR_RUNQ, "runq_check: empty");
677
678	return (0);
679}
680
681#if defined(SMP) && defined(SCHED_4BSD)
682int runq_fuzz = 1;
683SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
684#endif
685
686/*
687 * Find the highest priority process on the run queue.
688 */
689struct kse *
690runq_choose(struct runq *rq)
691{
692	struct rqhead *rqh;
693	struct kse *ke;
694	int pri;
695
696	mtx_assert(&sched_lock, MA_OWNED);
697	while ((pri = runq_findbit(rq)) != -1) {
698		rqh = &rq->rq_queues[pri];
699#if defined(SMP) && defined(SCHED_4BSD)
700		/* fuzz == 1 is normal.. 0 or less are ignored */
701		if (runq_fuzz > 1) {
702			/*
703			 * In the first couple of entries, check if
704			 * there is one for our CPU as a preference.
705			 */
706			int count = runq_fuzz;
707			int cpu = PCPU_GET(cpuid);
708			struct kse *ke2;
709			ke2 = ke = TAILQ_FIRST(rqh);
710
711			while (count-- && ke2) {
712				if (ke->ke_thread->td_lastcpu == cpu) {
713					ke = ke2;
714					break;
715				}
716				ke2 = TAILQ_NEXT(ke2, ke_procq);
717			}
718		} else
719#endif
720			ke = TAILQ_FIRST(rqh);
721		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
722		CTR3(KTR_RUNQ,
723		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
724		return (ke);
725	}
726	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
727
728	return (NULL);
729}
730
731/*
732 * Remove the KSE from the queue specified by its priority, and clear the
733 * corresponding status bit if the queue becomes empty.
734 * Caller must set ke->ke_state afterwards.
735 */
736void
737runq_remove(struct runq *rq, struct kse *ke)
738{
739	struct rqhead *rqh;
740	int pri;
741
742	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
743		("runq_remove: process swapped out"));
744	pri = ke->ke_rqindex;
745	rqh = &rq->rq_queues[pri];
746	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
747	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
748	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
749	TAILQ_REMOVE(rqh, ke, ke_procq);
750	if (TAILQ_EMPTY(rqh)) {
751		CTR0(KTR_RUNQ, "runq_remove: empty");
752		runq_clrbit(rq, pri);
753	}
754}
755
756/****** functions that are temporarily here ***********/
757#include <vm/uma.h>
758#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
759extern struct mtx kse_zombie_lock;
760
761/*
762 *  Allocate scheduler specific per-process resources.
763 * The thread and ksegrp have already been linked in.
764 * In this case just set the default concurrency value.
765 *
766 * Called from:
767 *  proc_init() (UMA init method)
768 */
769void
770sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
771{
772
773	/* This can go in sched_fork */
774	sched_init_concurrency(kg);
775}
776
777/*
778 * Called by the uma process fini routine..
779 * undo anything we may have done in the uma_init method.
780 * Panic if it's not all 1:1:1:1
781 * Called from:
782 *  proc_fini() (UMA method)
783 */
784void
785sched_destroyproc(struct proc *p)
786{
787
788	/* this function slated for destruction */
789	KASSERT((p->p_numthreads == 1), ("Cached proc with > 1 thread "));
790	KASSERT((p->p_numksegrps == 1), ("Cached proc with > 1 ksegrp "));
791}
792
793#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
794/*
795 * thread is being either created or recycled.
796 * Fix up the per-scheduler resources associated with it.
797 * Called from:
798 *  sched_fork_thread()
799 *  thread_dtor()  (*may go away)
800 *  thread_init()  (*may go away)
801 */
802void
803sched_newthread(struct thread *td)
804{
805	struct td_sched *ke;
806
807	ke = (struct td_sched *) (td + 1);
808	bzero(ke, sizeof(*ke));
809	td->td_sched     = ke;
810	ke->ke_thread	= td;
811	ke->ke_oncpu	= NOCPU;
812	ke->ke_state	= KES_THREAD;
813}
814
815/*
816 * Set up an initial concurrency of 1
817 * and set the given thread (if given) to be using that
818 * concurrency slot.
819 * May be used "offline"..before the ksegrp is attached to the world
820 * and thus wouldn't need schedlock in that case.
821 * Called from:
822 *  thr_create()
823 *  proc_init() (UMA) via sched_newproc()
824 */
825void
826sched_init_concurrency(struct ksegrp *kg)
827{
828
829	kg->kg_concurrency = 1;
830	kg->kg_avail_opennings = 1;
831}
832
833/*
834 * Change the concurrency of an existing ksegrp to N
835 * Called from:
836 *  kse_create()
837 *  kse_exit()
838 *  thread_exit()
839 *  thread_single()
840 */
841void
842sched_set_concurrency(struct ksegrp *kg, int concurrency)
843{
844
845	/* Handle the case for a declining concurrency */
846	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
847	kg->kg_concurrency = concurrency;
848}
849
850/*
851 * Called from thread_exit() for all exiting thread
852 *
853 * Not to be confused with sched_exit_thread()
854 * that is only called from thread_exit() for threads exiting
855 * without the rest of the process exiting because it is also called from
856 * sched_exit() and we wouldn't want to call it twice.
857 * XXX This can probably be fixed.
858 */
859void
860sched_thread_exit(struct thread *td)
861{
862
863	td->td_ksegrp->kg_avail_opennings++;
864	slot_fill(td->td_ksegrp);
865}
866
867#endif /* KERN_SWITCH_INCLUDE */
868