kern_switch.c revision 133404
1/*
2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/***
28Here is the logic..
29
30If there are N processors, then there are at most N KSEs (kernel
31schedulable entities) working to process threads that belong to a
32KSEGROUP (kg). If there are X of these KSEs actually running at the
33moment in question, then there are at most M (N-X) of these KSEs on
34the run queue, as running KSEs are not on the queue.
35
36Runnable threads are queued off the KSEGROUP in priority order.
37If there are M or more threads runnable, the top M threads
38(by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39their priority from those threads and are put on the run queue.
40
41The last thread that had a priority high enough to have a KSE associated
42with it, AND IS ON THE RUN QUEUE is pointed to by
43kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44assigned as all the available KSEs are activly running, or because there
45are no threads queued, that pointer is NULL.
46
47When a KSE is removed from the run queue to become runnable, we know
48it was associated with the highest priority thread in the queue (at the head
49of the queue). If it is also the last assigned we know M was 1 and must
50now be 0. Since the thread is no longer queued that pointer must be
51removed from it. Since we know there were no more KSEs available,
52(M was 1 and is now 0) and since we are not FREEING our KSE
53but using it, we know there are STILL no more KSEs available, we can prove
54that the next thread in the ksegrp list will not have a KSE to assign to
55it, so we can show that the pointer must be made 'invalid' (NULL).
56
57The pointer exists so that when a new thread is made runnable, it can
58have its priority compared with the last assigned thread to see if
59it should 'steal' its KSE or not.. i.e. is it 'earlier'
60on the list than that thread or later.. If it's earlier, then the KSE is
61removed from the last assigned (which is now not assigned a KSE)
62and reassigned to the new thread, which is placed earlier in the list.
63The pointer is then backed up to the previous thread (which may or may not
64be the new thread).
65
66When a thread sleeps or is removed, the KSE becomes available and if there
67are queued threads that are not assigned KSEs, the highest priority one of
68them is assigned the KSE, which is then placed back on the run queue at
69the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70to point to it.
71
72The following diagram shows 2 KSEs and 3 threads from a single process.
73
74 RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75              \    \____
76               \        \
77    KSEGROUP---thread--thread--thread    (queued in priority order)
78        \                 /
79         \_______________/
80          (last_assigned)
81
82The result of this scheme is that the M available KSEs are always
83queued at the priorities they have inherrited from the M highest priority
84threads for that KSEGROUP. If this situation changes, the KSEs are
85reassigned to keep this true.
86***/
87
88#include <sys/cdefs.h>
89__FBSDID("$FreeBSD: head/sys/kern/kern_switch.c 133404 2004-08-09 20:36:03Z julian $");
90
91#include "opt_full_preemption.h"
92
93#include <sys/param.h>
94#include <sys/systm.h>
95#include <sys/kdb.h>
96#include <sys/kernel.h>
97#include <sys/ktr.h>
98#include <sys/lock.h>
99#include <sys/mutex.h>
100#include <sys/proc.h>
101#include <sys/queue.h>
102#include <sys/sched.h>
103#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
104#include <sys/smp.h>
105#endif
106#include <machine/critical.h>
107
108CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
109
110void panc(char *string1, char *string2);
111
112#if 0
113static void runq_readjust(struct runq *rq, struct kse *ke);
114#endif
115/************************************************************************
116 * Functions that manipulate runnability from a thread perspective.	*
117 ************************************************************************/
118/*
119 * Select the KSE that will be run next.  From that find the thread, and
120 * remove it from the KSEGRP's run queue.  If there is thread clustering,
121 * this will be what does it.
122 */
123struct thread *
124choosethread(void)
125{
126	struct kse *ke;
127	struct thread *td;
128	struct ksegrp *kg;
129
130#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
131	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
132		/* Shutting down, run idlethread on AP's */
133		td = PCPU_GET(idlethread);
134		ke = td->td_kse;
135		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
136		ke->ke_flags |= KEF_DIDRUN;
137		TD_SET_RUNNING(td);
138		return (td);
139	}
140#endif
141
142retry:
143	ke = sched_choose();
144	if (ke) {
145		td = ke->ke_thread;
146		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
147		kg = ke->ke_ksegrp;
148		if (td->td_proc->p_flag & P_SA) {
149			if (kg->kg_last_assigned == td) {
150				kg->kg_last_assigned = TAILQ_PREV(td,
151				    threadqueue, td_runq);
152			}
153			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
154			kg->kg_runnable--;
155		}
156		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
157		    td, td->td_priority);
158	} else {
159		/* Simulate runq_choose() having returned the idle thread */
160		td = PCPU_GET(idlethread);
161		ke = td->td_kse;
162		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
163	}
164	ke->ke_flags |= KEF_DIDRUN;
165
166	/*
167	 * If we are in panic, only allow system threads,
168	 * plus the one we are running in, to be run.
169	 */
170	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
171	    (td->td_flags & TDF_INPANIC) == 0)) {
172		/* note that it is no longer on the run queue */
173		TD_SET_CAN_RUN(td);
174		goto retry;
175	}
176
177	TD_SET_RUNNING(td);
178	return (td);
179}
180
181/*
182 * Given a surplus KSE, either assign a new runable thread to it
183 * (and put it in the run queue) or put it in the ksegrp's idle KSE list.
184 * Assumes that the original thread is not runnable.
185 */
186void
187kse_reassign(struct kse *ke)
188{
189	struct ksegrp *kg;
190	struct thread *td;
191	struct thread *original;
192
193	mtx_assert(&sched_lock, MA_OWNED);
194	original = ke->ke_thread;
195	KASSERT(original == NULL || TD_IS_INHIBITED(original),
196    	    ("reassigning KSE with runnable thread"));
197	kg = ke->ke_ksegrp;
198	if (original)
199		original->td_kse = NULL;
200
201	/*
202	 * Find the first unassigned thread
203	 */
204	if ((td = kg->kg_last_assigned) != NULL)
205		td = TAILQ_NEXT(td, td_runq);
206	else
207		td = TAILQ_FIRST(&kg->kg_runq);
208
209	/*
210	 * If we found one, assign it the kse, otherwise idle the kse.
211	 */
212	if (td) {
213		kg->kg_last_assigned = td;
214		td->td_kse = ke;
215		ke->ke_thread = td;
216		CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td);
217		sched_add(td);
218		return;
219	}
220
221	ke->ke_state = KES_IDLE;
222	ke->ke_thread = NULL;
223	TAILQ_INSERT_TAIL(&kg->kg_iq, ke, ke_kgrlist);
224	kg->kg_idle_kses++;
225	CTR1(KTR_RUNQ, "kse_reassign: ke%p on idle queue", ke);
226	return;
227}
228
229#if 0
230/*
231 * Remove a thread from its KSEGRP's run queue.
232 * This in turn may remove it from a KSE if it was already assigned
233 * to one, possibly causing a new thread to be assigned to the KSE
234 * and the KSE getting a new priority.
235 */
236static void
237remrunqueue(struct thread *td)
238{
239	struct thread *td2, *td3;
240	struct ksegrp *kg;
241	struct kse *ke;
242
243	mtx_assert(&sched_lock, MA_OWNED);
244	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
245	kg = td->td_ksegrp;
246	ke = td->td_kse;
247	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
248	TD_SET_CAN_RUN(td);
249	/*
250	 * If it is not a threaded process, take the shortcut.
251	 */
252	if ((td->td_proc->p_flag & P_SA) == 0) {
253		/* Bring its kse with it, leave the thread attached */
254		sched_rem(td);
255		ke->ke_state = KES_THREAD;
256		return;
257	}
258   	td3 = TAILQ_PREV(td, threadqueue, td_runq);
259	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
260	kg->kg_runnable--;
261	if (ke) {
262		/*
263		 * This thread has been assigned to a KSE.
264		 * We need to dissociate it and try assign the
265		 * KSE to the next available thread. Then, we should
266		 * see if we need to move the KSE in the run queues.
267		 */
268		sched_rem(td);
269		ke->ke_state = KES_THREAD;
270		td2 = kg->kg_last_assigned;
271		KASSERT((td2 != NULL), ("last assigned has wrong value"));
272		if (td2 == td)
273			kg->kg_last_assigned = td3;
274		kse_reassign(ke);
275	}
276}
277#endif
278
279/*
280 * Change the priority of a thread that is on the run queue.
281 */
282void
283adjustrunqueue( struct thread *td, int newpri)
284{
285	struct ksegrp *kg;
286	struct kse *ke;
287
288	mtx_assert(&sched_lock, MA_OWNED);
289	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
290
291	ke = td->td_kse;
292	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
293	/*
294	 * If it is not a threaded process, take the shortcut.
295	 */
296	if ((td->td_proc->p_flag & P_SA) == 0) {
297		/* We only care about the kse in the run queue. */
298		td->td_priority = newpri;
299		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
300			sched_rem(td);
301			sched_add(td);
302		}
303		return;
304	}
305
306	/* It is a threaded process */
307	kg = td->td_ksegrp;
308	TD_SET_CAN_RUN(td);
309	if (ke) {
310		if (kg->kg_last_assigned == td) {
311			kg->kg_last_assigned =
312			    TAILQ_PREV(td, threadqueue, td_runq);
313		}
314		sched_rem(td);
315	}
316	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
317	kg->kg_runnable--;
318	td->td_priority = newpri;
319	setrunqueue(td);
320}
321
322void
323setrunqueue(struct thread *td)
324{
325	struct kse *ke;
326	struct ksegrp *kg;
327	struct thread *td2;
328	struct thread *tda;
329
330	CTR4(KTR_RUNQ, "setrunqueue: td:%p ke:%p kg:%p pid:%d",
331	    td, td->td_kse, td->td_ksegrp, td->td_proc->p_pid);
332	mtx_assert(&sched_lock, MA_OWNED);
333	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
334	    ("setrunqueue: bad thread state"));
335	TD_SET_RUNQ(td);
336	kg = td->td_ksegrp;
337	if ((td->td_proc->p_flag & P_SA) == 0) {
338		/*
339		 * Common path optimisation: Only one of everything
340		 * and the KSE is always already attached.
341		 * Totally ignore the ksegrp run queue.
342		 */
343		sched_add(td);
344		return;
345	}
346
347	tda = kg->kg_last_assigned;
348	if ((ke = td->td_kse) == NULL) {
349		if (kg->kg_idle_kses) {
350			/*
351			 * There is a free one so it's ours for the asking..
352			 */
353			ke = TAILQ_FIRST(&kg->kg_iq);
354			CTR2(KTR_RUNQ, "setrunqueue: kg:%p: Use free ke:%p",
355			    kg, ke);
356			TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
357			ke->ke_state = KES_THREAD;
358			kg->kg_idle_kses--;
359		} else if (tda && (tda->td_priority > td->td_priority)) {
360			/*
361			 * None free, but there is one we can commandeer.
362			 */
363			ke = tda->td_kse;
364			CTR3(KTR_RUNQ,
365			    "setrunqueue: kg:%p: take ke:%p from td: %p",
366			    kg, ke, tda);
367			sched_rem(tda);
368			tda->td_kse = NULL;
369			ke->ke_thread = NULL;
370			tda = kg->kg_last_assigned =
371		    	    TAILQ_PREV(tda, threadqueue, td_runq);
372		}
373	} else {
374		/*
375		 * Temporarily disassociate so it looks like the other cases.
376		 */
377		ke->ke_thread = NULL;
378		td->td_kse = NULL;
379	}
380
381	/*
382	 * Add the thread to the ksegrp's run queue at
383	 * the appropriate place.
384	 */
385	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
386		if (td2->td_priority > td->td_priority) {
387			kg->kg_runnable++;
388			TAILQ_INSERT_BEFORE(td2, td, td_runq);
389			break;
390		}
391	}
392	if (td2 == NULL) {
393		/* We ran off the end of the TAILQ or it was empty. */
394		kg->kg_runnable++;
395		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
396	}
397
398	/*
399	 * If we have a ke to use, then put it on the run queue and
400	 * If needed, readjust the last_assigned pointer.
401	 */
402	if (ke) {
403		if (tda == NULL) {
404			/*
405			 * No pre-existing last assigned so whoever is first
406			 * gets the KSE we brought in.. (maybe us)
407			 */
408			td2 = TAILQ_FIRST(&kg->kg_runq);
409			KASSERT((td2->td_kse == NULL),
410			    ("unexpected ke present"));
411			td2->td_kse = ke;
412			ke->ke_thread = td2;
413			kg->kg_last_assigned = td2;
414		} else if (tda->td_priority > td->td_priority) {
415			/*
416			 * It's ours, grab it, but last_assigned is past us
417			 * so don't change it.
418			 */
419			td->td_kse = ke;
420			ke->ke_thread = td;
421		} else {
422			/*
423			 * We are past last_assigned, so
424			 * put the new kse on whatever is next,
425			 * which may or may not be us.
426			 */
427			td2 = TAILQ_NEXT(tda, td_runq);
428			kg->kg_last_assigned = td2;
429			td2->td_kse = ke;
430			ke->ke_thread = td2;
431		}
432		sched_add(ke->ke_thread);
433	} else {
434		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
435			td, td->td_ksegrp, td->td_proc->p_pid);
436	}
437}
438
439/*
440 * Kernel thread preemption implementation.  Critical sections mark
441 * regions of code in which preemptions are not allowed.
442 */
443void
444critical_enter(void)
445{
446	struct thread *td;
447
448	td = curthread;
449	if (td->td_critnest == 0)
450		cpu_critical_enter(td);
451	td->td_critnest++;
452}
453
454void
455critical_exit(void)
456{
457	struct thread *td;
458
459	td = curthread;
460	KASSERT(td->td_critnest != 0,
461	    ("critical_exit: td_critnest == 0"));
462	if (td->td_critnest == 1) {
463#ifdef PREEMPTION
464		mtx_assert(&sched_lock, MA_NOTOWNED);
465		if (td->td_pflags & TDP_OWEPREEMPT) {
466			mtx_lock_spin(&sched_lock);
467			mi_switch(SW_INVOL, NULL);
468			mtx_unlock_spin(&sched_lock);
469		}
470#endif
471		td->td_critnest = 0;
472		cpu_critical_exit(td);
473	} else {
474		td->td_critnest--;
475	}
476}
477
478/*
479 * This function is called when a thread is about to be put on run queue
480 * because it has been made runnable or its priority has been adjusted.  It
481 * determines if the new thread should be immediately preempted to.  If so,
482 * it switches to it and eventually returns true.  If not, it returns false
483 * so that the caller may place the thread on an appropriate run queue.
484 */
485int
486maybe_preempt(struct thread *td)
487{
488#ifdef PREEMPTION
489	struct thread *ctd;
490	int cpri, pri;
491#endif
492
493	mtx_assert(&sched_lock, MA_OWNED);
494#ifdef PREEMPTION
495	/*
496	 * The new thread should not preempt the current thread if any of the
497	 * following conditions are true:
498	 *
499	 *  - The current thread has a higher (numerically lower) or
500	 *    equivalent priority.  Note that this prevents curthread from
501	 *    trying to preempt to itself.
502	 *  - It is too early in the boot for context switches (cold is set).
503	 *  - The current thread has an inhibitor set or is in the process of
504	 *    exiting.  In this case, the current thread is about to switch
505	 *    out anyways, so there's no point in preempting.  If we did,
506	 *    the current thread would not be properly resumed as well, so
507	 *    just avoid that whole landmine.
508	 *  - If the new thread's priority is not a realtime priority and
509	 *    the current thread's priority is not an idle priority and
510	 *    FULL_PREEMPTION is disabled.
511	 *
512	 * If all of these conditions are false, but the current thread is in
513	 * a nested critical section, then we have to defer the preemption
514	 * until we exit the critical section.  Otherwise, switch immediately
515	 * to the new thread.
516	 */
517	ctd = curthread;
518	pri = td->td_priority;
519	cpri = ctd->td_priority;
520	if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
521	    td->td_kse->ke_state != KES_THREAD)
522		return (0);
523#ifndef FULL_PREEMPTION
524	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
525	    !(cpri >= PRI_MIN_IDLE))
526		return (0);
527#endif
528	if (ctd->td_critnest > 1) {
529		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
530		    ctd->td_critnest);
531		ctd->td_pflags |= TDP_OWEPREEMPT;
532		return (0);
533	}
534
535	/*
536	 * Our thread state says that we are already on a run queue, so
537	 * update our state as if we had been dequeued by choosethread().
538	 */
539	MPASS(TD_ON_RUNQ(td));
540	TD_SET_RUNNING(td);
541	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
542	    td->td_proc->p_pid, td->td_proc->p_comm);
543	mi_switch(SW_INVOL, td);
544	return (1);
545#else
546	return (0);
547#endif
548}
549
550#if 0
551#ifndef PREEMPTION
552/* XXX: There should be a non-static version of this. */
553static void
554printf_caddr_t(void *data)
555{
556	printf("%s", (char *)data);
557}
558static char preempt_warning[] =
559    "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
560SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
561    preempt_warning)
562#endif
563#endif
564
565/************************************************************************
566 * SYSTEM RUN QUEUE manipulations and tests				*
567 ************************************************************************/
568/*
569 * Initialize a run structure.
570 */
571void
572runq_init(struct runq *rq)
573{
574	int i;
575
576	bzero(rq, sizeof *rq);
577	for (i = 0; i < RQ_NQS; i++)
578		TAILQ_INIT(&rq->rq_queues[i]);
579}
580
581/*
582 * Clear the status bit of the queue corresponding to priority level pri,
583 * indicating that it is empty.
584 */
585static __inline void
586runq_clrbit(struct runq *rq, int pri)
587{
588	struct rqbits *rqb;
589
590	rqb = &rq->rq_status;
591	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
592	    rqb->rqb_bits[RQB_WORD(pri)],
593	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
594	    RQB_BIT(pri), RQB_WORD(pri));
595	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
596}
597
598/*
599 * Find the index of the first non-empty run queue.  This is done by
600 * scanning the status bits, a set bit indicates a non-empty queue.
601 */
602static __inline int
603runq_findbit(struct runq *rq)
604{
605	struct rqbits *rqb;
606	int pri;
607	int i;
608
609	rqb = &rq->rq_status;
610	for (i = 0; i < RQB_LEN; i++)
611		if (rqb->rqb_bits[i]) {
612			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
613			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
614			    rqb->rqb_bits[i], i, pri);
615			return (pri);
616		}
617
618	return (-1);
619}
620
621/*
622 * Set the status bit of the queue corresponding to priority level pri,
623 * indicating that it is non-empty.
624 */
625static __inline void
626runq_setbit(struct runq *rq, int pri)
627{
628	struct rqbits *rqb;
629
630	rqb = &rq->rq_status;
631	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
632	    rqb->rqb_bits[RQB_WORD(pri)],
633	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
634	    RQB_BIT(pri), RQB_WORD(pri));
635	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
636}
637
638/*
639 * Add the KSE to the queue specified by its priority, and set the
640 * corresponding status bit.
641 */
642void
643runq_add(struct runq *rq, struct kse *ke)
644{
645	struct rqhead *rqh;
646	int pri;
647
648	pri = ke->ke_thread->td_priority / RQ_PPQ;
649	ke->ke_rqindex = pri;
650	runq_setbit(rq, pri);
651	rqh = &rq->rq_queues[pri];
652	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
653	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
654	TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
655}
656
657/*
658 * Return true if there are runnable processes of any priority on the run
659 * queue, false otherwise.  Has no side effects, does not modify the run
660 * queue structure.
661 */
662int
663runq_check(struct runq *rq)
664{
665	struct rqbits *rqb;
666	int i;
667
668	rqb = &rq->rq_status;
669	for (i = 0; i < RQB_LEN; i++)
670		if (rqb->rqb_bits[i]) {
671			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
672			    rqb->rqb_bits[i], i);
673			return (1);
674		}
675	CTR0(KTR_RUNQ, "runq_check: empty");
676
677	return (0);
678}
679
680/*
681 * Find the highest priority process on the run queue.
682 */
683struct kse *
684runq_choose(struct runq *rq)
685{
686	struct rqhead *rqh;
687	struct kse *ke;
688	int pri;
689
690	mtx_assert(&sched_lock, MA_OWNED);
691	while ((pri = runq_findbit(rq)) != -1) {
692		rqh = &rq->rq_queues[pri];
693		ke = TAILQ_FIRST(rqh);
694		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
695		CTR3(KTR_RUNQ,
696		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
697		return (ke);
698	}
699	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
700
701	return (NULL);
702}
703
704/*
705 * Remove the KSE from the queue specified by its priority, and clear the
706 * corresponding status bit if the queue becomes empty.
707 * Caller must set ke->ke_state afterwards.
708 */
709void
710runq_remove(struct runq *rq, struct kse *ke)
711{
712	struct rqhead *rqh;
713	int pri;
714
715	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
716		("runq_remove: process swapped out"));
717	pri = ke->ke_rqindex;
718	rqh = &rq->rq_queues[pri];
719	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
720	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
721	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
722	TAILQ_REMOVE(rqh, ke, ke_procq);
723	if (TAILQ_EMPTY(rqh)) {
724		CTR0(KTR_RUNQ, "runq_remove: empty");
725		runq_clrbit(rq, pri);
726	}
727}
728
729#if 0
730void
731panc(char *string1, char *string2)
732{
733	printf("%s", string1);
734	kdb_enter(string2);
735}
736
737void
738thread_sanity_check(struct thread *td, char *string)
739{
740	struct proc *p;
741	struct ksegrp *kg;
742	struct kse *ke;
743	struct thread *td2 = NULL;
744	unsigned int prevpri;
745	int	saw_lastassigned = 0;
746	int unassigned = 0;
747	int assigned = 0;
748
749	p = td->td_proc;
750	kg = td->td_ksegrp;
751	ke = td->td_kse;
752
753
754	if (ke) {
755		if (p != ke->ke_proc) {
756			panc(string, "wrong proc");
757		}
758		if (ke->ke_thread != td) {
759			panc(string, "wrong thread");
760		}
761	}
762
763	if ((p->p_flag & P_SA) == 0) {
764		if (ke == NULL) {
765			panc(string, "non KSE thread lost kse");
766		}
767	} else {
768		prevpri = 0;
769		saw_lastassigned = 0;
770		unassigned = 0;
771		assigned = 0;
772		TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
773			if (td2->td_priority < prevpri) {
774				panc(string, "thread runqueue unosorted");
775			}
776			if ((td2->td_state == TDS_RUNQ) &&
777			    td2->td_kse &&
778			    (td2->td_kse->ke_state != KES_ONRUNQ)) {
779				panc(string, "KSE wrong state");
780			}
781			prevpri = td2->td_priority;
782			if (td2->td_kse) {
783				assigned++;
784				if (unassigned) {
785					panc(string, "unassigned before assigned");
786				}
787 				if  (kg->kg_last_assigned == NULL) {
788					panc(string, "lastassigned corrupt");
789				}
790				if (saw_lastassigned) {
791					panc(string, "last assigned not last");
792				}
793				if (td2->td_kse->ke_thread != td2) {
794					panc(string, "mismatched kse/thread");
795				}
796			} else {
797				unassigned++;
798			}
799			if (td2 == kg->kg_last_assigned) {
800				saw_lastassigned = 1;
801				if (td2->td_kse == NULL) {
802					panc(string, "last assigned not assigned");
803				}
804			}
805		}
806		if (kg->kg_last_assigned && (saw_lastassigned == 0)) {
807			panc(string, "where on earth does lastassigned point?");
808		}
809#if 0
810		FOREACH_THREAD_IN_GROUP(kg, td2) {
811			if (((td2->td_flags & TDF_UNBOUND) == 0) &&
812			    (TD_ON_RUNQ(td2))) {
813				assigned++;
814				if (td2->td_kse == NULL) {
815					panc(string, "BOUND thread with no KSE");
816				}
817			}
818		}
819#endif
820#if 0
821		if ((unassigned + assigned) != kg->kg_runnable) {
822			panc(string, "wrong number in runnable");
823		}
824#endif
825	}
826	if (assigned == 12345) {
827		printf("%p %p %p %p %p %d, %d",
828		    td, td2, ke, kg, p, assigned, saw_lastassigned);
829	}
830}
831#endif
832
833