kern_switch.c revision 131927
1/*
2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/***
28Here is the logic..
29
30If there are N processors, then there are at most N KSEs (kernel
31schedulable entities) working to process threads that belong to a
32KSEGROUP (kg). If there are X of these KSEs actually running at the
33moment in question, then there are at most M (N-X) of these KSEs on
34the run queue, as running KSEs are not on the queue.
35
36Runnable threads are queued off the KSEGROUP in priority order.
37If there are M or more threads runnable, the top M threads
38(by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39their priority from those threads and are put on the run queue.
40
41The last thread that had a priority high enough to have a KSE associated
42with it, AND IS ON THE RUN QUEUE is pointed to by
43kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44assigned as all the available KSEs are activly running, or because there
45are no threads queued, that pointer is NULL.
46
47When a KSE is removed from the run queue to become runnable, we know
48it was associated with the highest priority thread in the queue (at the head
49of the queue). If it is also the last assigned we know M was 1 and must
50now be 0. Since the thread is no longer queued that pointer must be
51removed from it. Since we know there were no more KSEs available,
52(M was 1 and is now 0) and since we are not FREEING our KSE
53but using it, we know there are STILL no more KSEs available, we can prove
54that the next thread in the ksegrp list will not have a KSE to assign to
55it, so we can show that the pointer must be made 'invalid' (NULL).
56
57The pointer exists so that when a new thread is made runnable, it can
58have its priority compared with the last assigned thread to see if
59it should 'steal' its KSE or not.. i.e. is it 'earlier'
60on the list than that thread or later.. If it's earlier, then the KSE is
61removed from the last assigned (which is now not assigned a KSE)
62and reassigned to the new thread, which is placed earlier in the list.
63The pointer is then backed up to the previous thread (which may or may not
64be the new thread).
65
66When a thread sleeps or is removed, the KSE becomes available and if there
67are queued threads that are not assigned KSEs, the highest priority one of
68them is assigned the KSE, which is then placed back on the run queue at
69the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70to point to it.
71
72The following diagram shows 2 KSEs and 3 threads from a single process.
73
74 RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75              \    \____
76               \        \
77    KSEGROUP---thread--thread--thread    (queued in priority order)
78        \                 /
79         \_______________/
80          (last_assigned)
81
82The result of this scheme is that the M available KSEs are always
83queued at the priorities they have inherrited from the M highest priority
84threads for that KSEGROUP. If this situation changes, the KSEs are
85reassigned to keep this true.
86***/
87
88#include <sys/cdefs.h>
89__FBSDID("$FreeBSD: head/sys/kern/kern_switch.c 131927 2004-07-10 21:36:01Z marcel $");
90
91#include "opt_full_preemption.h"
92
93#include <sys/param.h>
94#include <sys/systm.h>
95#include <sys/kdb.h>
96#include <sys/kernel.h>
97#include <sys/ktr.h>
98#include <sys/lock.h>
99#include <sys/mutex.h>
100#include <sys/proc.h>
101#include <sys/queue.h>
102#include <sys/sched.h>
103#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
104#include <sys/smp.h>
105#endif
106#include <machine/critical.h>
107
108CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
109
110void panc(char *string1, char *string2);
111
112#if 0
113static void runq_readjust(struct runq *rq, struct kse *ke);
114#endif
115/************************************************************************
116 * Functions that manipulate runnability from a thread perspective.	*
117 ************************************************************************/
118/*
119 * Select the KSE that will be run next.  From that find the thread, and
120 * remove it from the KSEGRP's run queue.  If there is thread clustering,
121 * this will be what does it.
122 */
123struct thread *
124choosethread(void)
125{
126	struct kse *ke;
127	struct thread *td;
128	struct ksegrp *kg;
129
130#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
131	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
132		/* Shutting down, run idlethread on AP's */
133		td = PCPU_GET(idlethread);
134		ke = td->td_kse;
135		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
136		ke->ke_flags |= KEF_DIDRUN;
137		TD_SET_RUNNING(td);
138		return (td);
139	}
140#endif
141
142retry:
143	ke = sched_choose();
144	if (ke) {
145		td = ke->ke_thread;
146		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
147		kg = ke->ke_ksegrp;
148		if (td->td_proc->p_flag & P_SA) {
149			if (kg->kg_last_assigned == td) {
150				kg->kg_last_assigned = TAILQ_PREV(td,
151				    threadqueue, td_runq);
152			}
153			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
154		}
155		kg->kg_runnable--;
156		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
157		    td, td->td_priority);
158	} else {
159		/* Simulate runq_choose() having returned the idle thread */
160		td = PCPU_GET(idlethread);
161		ke = td->td_kse;
162		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
163	}
164	ke->ke_flags |= KEF_DIDRUN;
165
166	/*
167	 * If we are in panic, only allow system threads,
168	 * plus the one we are running in, to be run.
169	 */
170	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
171	    (td->td_flags & TDF_INPANIC) == 0)) {
172		/* note that it is no longer on the run queue */
173		TD_SET_CAN_RUN(td);
174		goto retry;
175	}
176
177	TD_SET_RUNNING(td);
178	return (td);
179}
180
181/*
182 * Given a surplus KSE, either assign a new runable thread to it
183 * (and put it in the run queue) or put it in the ksegrp's idle KSE list.
184 * Assumes that the original thread is not runnable.
185 */
186void
187kse_reassign(struct kse *ke)
188{
189	struct ksegrp *kg;
190	struct thread *td;
191	struct thread *original;
192
193	mtx_assert(&sched_lock, MA_OWNED);
194	original = ke->ke_thread;
195	KASSERT(original == NULL || TD_IS_INHIBITED(original),
196    	    ("reassigning KSE with runnable thread"));
197	kg = ke->ke_ksegrp;
198	if (original)
199		original->td_kse = NULL;
200
201	/*
202	 * Find the first unassigned thread
203	 */
204	if ((td = kg->kg_last_assigned) != NULL)
205		td = TAILQ_NEXT(td, td_runq);
206	else
207		td = TAILQ_FIRST(&kg->kg_runq);
208
209	/*
210	 * If we found one, assign it the kse, otherwise idle the kse.
211	 */
212	if (td) {
213		kg->kg_last_assigned = td;
214		td->td_kse = ke;
215		ke->ke_thread = td;
216		sched_add(td);
217		CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td);
218		return;
219	}
220
221	ke->ke_state = KES_IDLE;
222	ke->ke_thread = NULL;
223	TAILQ_INSERT_TAIL(&kg->kg_iq, ke, ke_kgrlist);
224	kg->kg_idle_kses++;
225	CTR1(KTR_RUNQ, "kse_reassign: ke%p on idle queue", ke);
226	return;
227}
228
229#if 0
230/*
231 * Remove a thread from its KSEGRP's run queue.
232 * This in turn may remove it from a KSE if it was already assigned
233 * to one, possibly causing a new thread to be assigned to the KSE
234 * and the KSE getting a new priority.
235 */
236static void
237remrunqueue(struct thread *td)
238{
239	struct thread *td2, *td3;
240	struct ksegrp *kg;
241	struct kse *ke;
242
243	mtx_assert(&sched_lock, MA_OWNED);
244	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
245	kg = td->td_ksegrp;
246	ke = td->td_kse;
247	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
248	kg->kg_runnable--;
249	TD_SET_CAN_RUN(td);
250	/*
251	 * If it is not a threaded process, take the shortcut.
252	 */
253	if ((td->td_proc->p_flag & P_SA) == 0) {
254		/* Bring its kse with it, leave the thread attached */
255		sched_rem(td);
256		ke->ke_state = KES_THREAD;
257		return;
258	}
259   	td3 = TAILQ_PREV(td, threadqueue, td_runq);
260	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
261	if (ke) {
262		/*
263		 * This thread has been assigned to a KSE.
264		 * We need to dissociate it and try assign the
265		 * KSE to the next available thread. Then, we should
266		 * see if we need to move the KSE in the run queues.
267		 */
268		sched_rem(td);
269		ke->ke_state = KES_THREAD;
270		td2 = kg->kg_last_assigned;
271		KASSERT((td2 != NULL), ("last assigned has wrong value"));
272		if (td2 == td)
273			kg->kg_last_assigned = td3;
274		kse_reassign(ke);
275	}
276}
277#endif
278
279/*
280 * Change the priority of a thread that is on the run queue.
281 */
282void
283adjustrunqueue( struct thread *td, int newpri)
284{
285	struct ksegrp *kg;
286	struct kse *ke;
287
288	mtx_assert(&sched_lock, MA_OWNED);
289	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
290
291	ke = td->td_kse;
292	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
293	/*
294	 * If it is not a threaded process, take the shortcut.
295	 */
296	if ((td->td_proc->p_flag & P_SA) == 0) {
297		/* We only care about the kse in the run queue. */
298		td->td_priority = newpri;
299		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
300			sched_rem(td);
301			sched_add(td);
302		}
303		return;
304	}
305
306	/* It is a threaded process */
307	kg = td->td_ksegrp;
308	kg->kg_runnable--;
309	TD_SET_CAN_RUN(td);
310	if (ke) {
311		if (kg->kg_last_assigned == td) {
312			kg->kg_last_assigned =
313			    TAILQ_PREV(td, threadqueue, td_runq);
314		}
315		sched_rem(td);
316	}
317	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
318	td->td_priority = newpri;
319	setrunqueue(td);
320}
321
322void
323setrunqueue(struct thread *td)
324{
325	struct kse *ke;
326	struct ksegrp *kg;
327	struct thread *td2;
328	struct thread *tda;
329
330	CTR1(KTR_RUNQ, "setrunqueue: td%p", td);
331	mtx_assert(&sched_lock, MA_OWNED);
332	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
333	    ("setrunqueue: bad thread state"));
334	TD_SET_RUNQ(td);
335	kg = td->td_ksegrp;
336	kg->kg_runnable++;
337	if ((td->td_proc->p_flag & P_SA) == 0) {
338		/*
339		 * Common path optimisation: Only one of everything
340		 * and the KSE is always already attached.
341		 * Totally ignore the ksegrp run queue.
342		 */
343		sched_add(td);
344		return;
345	}
346
347	tda = kg->kg_last_assigned;
348	if ((ke = td->td_kse) == NULL) {
349		if (kg->kg_idle_kses) {
350			/*
351			 * There is a free one so it's ours for the asking..
352			 */
353			ke = TAILQ_FIRST(&kg->kg_iq);
354			TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
355			ke->ke_state = KES_THREAD;
356			kg->kg_idle_kses--;
357		} else if (tda && (tda->td_priority > td->td_priority)) {
358			/*
359			 * None free, but there is one we can commandeer.
360			 */
361			ke = tda->td_kse;
362			sched_rem(tda);
363			tda->td_kse = NULL;
364			ke->ke_thread = NULL;
365			tda = kg->kg_last_assigned =
366		    	    TAILQ_PREV(tda, threadqueue, td_runq);
367		}
368	} else {
369		/*
370		 * Temporarily disassociate so it looks like the other cases.
371		 */
372		ke->ke_thread = NULL;
373		td->td_kse = NULL;
374	}
375
376	/*
377	 * Add the thread to the ksegrp's run queue at
378	 * the appropriate place.
379	 */
380	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
381		if (td2->td_priority > td->td_priority) {
382			TAILQ_INSERT_BEFORE(td2, td, td_runq);
383			break;
384		}
385	}
386	if (td2 == NULL) {
387		/* We ran off the end of the TAILQ or it was empty. */
388		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
389	}
390
391	/*
392	 * If we have a ke to use, then put it on the run queue and
393	 * If needed, readjust the last_assigned pointer.
394	 */
395	if (ke) {
396		if (tda == NULL) {
397			/*
398			 * No pre-existing last assigned so whoever is first
399			 * gets the KSE we brought in.. (maybe us)
400			 */
401			td2 = TAILQ_FIRST(&kg->kg_runq);
402			KASSERT((td2->td_kse == NULL),
403			    ("unexpected ke present"));
404			td2->td_kse = ke;
405			ke->ke_thread = td2;
406			kg->kg_last_assigned = td2;
407		} else if (tda->td_priority > td->td_priority) {
408			/*
409			 * It's ours, grab it, but last_assigned is past us
410			 * so don't change it.
411			 */
412			td->td_kse = ke;
413			ke->ke_thread = td;
414		} else {
415			/*
416			 * We are past last_assigned, so
417			 * put the new kse on whatever is next,
418			 * which may or may not be us.
419			 */
420			td2 = TAILQ_NEXT(tda, td_runq);
421			kg->kg_last_assigned = td2;
422			td2->td_kse = ke;
423			ke->ke_thread = td2;
424		}
425		sched_add(ke->ke_thread);
426	}
427}
428
429/*
430 * Kernel thread preemption implementation.  Critical sections mark
431 * regions of code in which preemptions are not allowed.
432 */
433void
434critical_enter(void)
435{
436	struct thread *td;
437
438	td = curthread;
439	if (td->td_critnest == 0)
440		cpu_critical_enter();
441	td->td_critnest++;
442}
443
444void
445critical_exit(void)
446{
447	struct thread *td;
448
449	td = curthread;
450	KASSERT(td->td_critnest != 0,
451	    ("critical_exit: td_critnest == 0"));
452	if (td->td_critnest == 1) {
453#ifdef PREEMPTION
454		if (td->td_flags & TDF_OWEPREEMPT) {
455			mtx_lock_spin(&sched_lock);
456			mi_switch(SW_INVOL, NULL);
457			mtx_unlock_spin(&sched_lock);
458		}
459#endif
460		td->td_critnest = 0;
461		cpu_critical_exit();
462	} else {
463		td->td_critnest--;
464	}
465}
466
467/*
468 * This function is called when a thread is about to be put on run queue
469 * because it has been made runnable or its priority has been adjusted.  It
470 * determines if the new thread should be immediately preempted to.  If so,
471 * it switches to it and eventually returns true.  If not, it returns false
472 * so that the caller may place the thread on an appropriate run queue.
473 */
474int
475maybe_preempt(struct thread *td)
476{
477#ifdef PREEMPTION
478	struct thread *ctd;
479	int cpri, pri;
480#endif
481
482	mtx_assert(&sched_lock, MA_OWNED);
483#ifdef PREEMPTION
484	/*
485	 * The new thread should not preempt the current thread if any of the
486	 * following conditions are true:
487	 *
488	 *  - The current thread has a higher (numerically lower) priority.
489	 *  - It is too early in the boot for context switches (cold is set).
490	 *  - The current thread has an inhibitor set or is in the process of
491	 *    exiting.  In this case, the current thread is about to switch
492	 *    out anyways, so there's no point in preempting.  If we did,
493	 *    the current thread would not be properly resumed as well, so
494	 *    just avoid that whole landmine.
495	 *  - If the new thread's priority is not a realtime priority and
496	 *    the current thread's priority is not an idle priority and
497	 *    FULL_PREEMPTION is disabled.
498	 *
499	 * If all of these conditions are false, but the current thread is in
500	 * a nested critical section, then we have to defer the preemption
501	 * until we exit the critical section.  Otherwise, switch immediately
502	 * to the new thread.
503	 */
504	ctd = curthread;
505	pri = td->td_priority;
506	cpri = ctd->td_priority;
507	if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
508	    td->td_kse->ke_state != KES_THREAD)
509		return (0);
510#ifndef FULL_PREEMPTION
511	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
512	    !(cpri >= PRI_MIN_IDLE))
513		return (0);
514#endif
515	if (ctd->td_critnest > 1) {
516		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
517		    ctd->td_critnest);
518		ctd->td_flags |= TDF_OWEPREEMPT;
519		return (0);
520	}
521
522	/*
523	 * Our thread state says that we are already on a run queue, so
524	 * update our state as if we had been dequeued by choosethread().
525	 */
526	MPASS(TD_ON_RUNQ(td));
527	TD_SET_RUNNING(td);
528	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
529	    td->td_proc->p_pid, td->td_proc->p_comm);
530	mi_switch(SW_INVOL, td);
531	return (1);
532#else
533	return (0);
534#endif
535}
536
537#ifndef PREEMPTION
538/* XXX: There should be a non-static version of this. */
539static void
540printf_caddr_t(void *data)
541{
542	printf("%s", (char *)data);
543}
544static char preempt_warning[] =
545    "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
546SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
547    preempt_warning)
548#endif
549
550/************************************************************************
551 * SYSTEM RUN QUEUE manipulations and tests				*
552 ************************************************************************/
553/*
554 * Initialize a run structure.
555 */
556void
557runq_init(struct runq *rq)
558{
559	int i;
560
561	bzero(rq, sizeof *rq);
562	for (i = 0; i < RQ_NQS; i++)
563		TAILQ_INIT(&rq->rq_queues[i]);
564}
565
566/*
567 * Clear the status bit of the queue corresponding to priority level pri,
568 * indicating that it is empty.
569 */
570static __inline void
571runq_clrbit(struct runq *rq, int pri)
572{
573	struct rqbits *rqb;
574
575	rqb = &rq->rq_status;
576	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
577	    rqb->rqb_bits[RQB_WORD(pri)],
578	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
579	    RQB_BIT(pri), RQB_WORD(pri));
580	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
581}
582
583/*
584 * Find the index of the first non-empty run queue.  This is done by
585 * scanning the status bits, a set bit indicates a non-empty queue.
586 */
587static __inline int
588runq_findbit(struct runq *rq)
589{
590	struct rqbits *rqb;
591	int pri;
592	int i;
593
594	rqb = &rq->rq_status;
595	for (i = 0; i < RQB_LEN; i++)
596		if (rqb->rqb_bits[i]) {
597			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
598			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
599			    rqb->rqb_bits[i], i, pri);
600			return (pri);
601		}
602
603	return (-1);
604}
605
606/*
607 * Set the status bit of the queue corresponding to priority level pri,
608 * indicating that it is non-empty.
609 */
610static __inline void
611runq_setbit(struct runq *rq, int pri)
612{
613	struct rqbits *rqb;
614
615	rqb = &rq->rq_status;
616	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
617	    rqb->rqb_bits[RQB_WORD(pri)],
618	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
619	    RQB_BIT(pri), RQB_WORD(pri));
620	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
621}
622
623/*
624 * Add the KSE to the queue specified by its priority, and set the
625 * corresponding status bit.
626 */
627void
628runq_add(struct runq *rq, struct kse *ke)
629{
630	struct rqhead *rqh;
631	int pri;
632
633	pri = ke->ke_thread->td_priority / RQ_PPQ;
634	ke->ke_rqindex = pri;
635	runq_setbit(rq, pri);
636	rqh = &rq->rq_queues[pri];
637	CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p",
638	    ke->ke_proc, ke->ke_thread->td_priority, pri, rqh);
639	TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
640}
641
642/*
643 * Return true if there are runnable processes of any priority on the run
644 * queue, false otherwise.  Has no side effects, does not modify the run
645 * queue structure.
646 */
647int
648runq_check(struct runq *rq)
649{
650	struct rqbits *rqb;
651	int i;
652
653	rqb = &rq->rq_status;
654	for (i = 0; i < RQB_LEN; i++)
655		if (rqb->rqb_bits[i]) {
656			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
657			    rqb->rqb_bits[i], i);
658			return (1);
659		}
660	CTR0(KTR_RUNQ, "runq_check: empty");
661
662	return (0);
663}
664
665/*
666 * Find the highest priority process on the run queue.
667 */
668struct kse *
669runq_choose(struct runq *rq)
670{
671	struct rqhead *rqh;
672	struct kse *ke;
673	int pri;
674
675	mtx_assert(&sched_lock, MA_OWNED);
676	while ((pri = runq_findbit(rq)) != -1) {
677		rqh = &rq->rq_queues[pri];
678		ke = TAILQ_FIRST(rqh);
679		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
680		CTR3(KTR_RUNQ,
681		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
682		return (ke);
683	}
684	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
685
686	return (NULL);
687}
688
689/*
690 * Remove the KSE from the queue specified by its priority, and clear the
691 * corresponding status bit if the queue becomes empty.
692 * Caller must set ke->ke_state afterwards.
693 */
694void
695runq_remove(struct runq *rq, struct kse *ke)
696{
697	struct rqhead *rqh;
698	int pri;
699
700	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
701		("runq_remove: process swapped out"));
702	pri = ke->ke_rqindex;
703	rqh = &rq->rq_queues[pri];
704	CTR4(KTR_RUNQ, "runq_remove: p=%p pri=%d %d rqh=%p",
705	    ke, ke->ke_thread->td_priority, pri, rqh);
706	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
707	TAILQ_REMOVE(rqh, ke, ke_procq);
708	if (TAILQ_EMPTY(rqh)) {
709		CTR0(KTR_RUNQ, "runq_remove: empty");
710		runq_clrbit(rq, pri);
711	}
712}
713
714#if 0
715void
716panc(char *string1, char *string2)
717{
718	printf("%s", string1);
719	kdb_enter(string2);
720}
721
722void
723thread_sanity_check(struct thread *td, char *string)
724{
725	struct proc *p;
726	struct ksegrp *kg;
727	struct kse *ke;
728	struct thread *td2 = NULL;
729	unsigned int prevpri;
730	int	saw_lastassigned = 0;
731	int unassigned = 0;
732	int assigned = 0;
733
734	p = td->td_proc;
735	kg = td->td_ksegrp;
736	ke = td->td_kse;
737
738
739	if (ke) {
740		if (p != ke->ke_proc) {
741			panc(string, "wrong proc");
742		}
743		if (ke->ke_thread != td) {
744			panc(string, "wrong thread");
745		}
746	}
747
748	if ((p->p_flag & P_SA) == 0) {
749		if (ke == NULL) {
750			panc(string, "non KSE thread lost kse");
751		}
752	} else {
753		prevpri = 0;
754		saw_lastassigned = 0;
755		unassigned = 0;
756		assigned = 0;
757		TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
758			if (td2->td_priority < prevpri) {
759				panc(string, "thread runqueue unosorted");
760			}
761			if ((td2->td_state == TDS_RUNQ) &&
762			    td2->td_kse &&
763			    (td2->td_kse->ke_state != KES_ONRUNQ)) {
764				panc(string, "KSE wrong state");
765			}
766			prevpri = td2->td_priority;
767			if (td2->td_kse) {
768				assigned++;
769				if (unassigned) {
770					panc(string, "unassigned before assigned");
771				}
772 				if  (kg->kg_last_assigned == NULL) {
773					panc(string, "lastassigned corrupt");
774				}
775				if (saw_lastassigned) {
776					panc(string, "last assigned not last");
777				}
778				if (td2->td_kse->ke_thread != td2) {
779					panc(string, "mismatched kse/thread");
780				}
781			} else {
782				unassigned++;
783			}
784			if (td2 == kg->kg_last_assigned) {
785				saw_lastassigned = 1;
786				if (td2->td_kse == NULL) {
787					panc(string, "last assigned not assigned");
788				}
789			}
790		}
791		if (kg->kg_last_assigned && (saw_lastassigned == 0)) {
792			panc(string, "where on earth does lastassigned point?");
793		}
794#if 0
795		FOREACH_THREAD_IN_GROUP(kg, td2) {
796			if (((td2->td_flags & TDF_UNBOUND) == 0) &&
797			    (TD_ON_RUNQ(td2))) {
798				assigned++;
799				if (td2->td_kse == NULL) {
800					panc(string, "BOUND thread with no KSE");
801				}
802			}
803		}
804#endif
805#if 0
806		if ((unassigned + assigned) != kg->kg_runnable) {
807			panc(string, "wrong number in runnable");
808		}
809#endif
810	}
811	if (assigned == 12345) {
812		printf("%p %p %p %p %p %d, %d",
813		    td, td2, ke, kg, p, assigned, saw_lastassigned);
814	}
815}
816#endif
817
818