pmap.c revision 75668
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 1998,2000 Doug Rabson
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 *	from:	i386 Id: pmap.c,v 1.193 1998/04/19 15:22:48 bde Exp
45 *		with some ideas from NetBSD's alpha pmap
46 * $FreeBSD: head/sys/ia64/ia64/pmap.c 75668 2001-04-18 15:08:37Z dfr $
47 */
48
49/*
50 *	Manages physical address maps.
51 *
52 *	In addition to hardware address maps, this
53 *	module is called upon to provide software-use-only
54 *	maps which may or may not be stored in the same
55 *	form as hardware maps.  These pseudo-maps are
56 *	used to store intermediate results from copy
57 *	operations to and from address spaces.
58 *
59 *	Since the information managed by this module is
60 *	also stored by the logical address mapping module,
61 *	this module may throw away valid virtual-to-physical
62 *	mappings at almost any time.  However, invalidations
63 *	of virtual-to-physical mappings must be done as
64 *	requested.
65 *
66 *	In order to cope with hardware architectures which
67 *	make virtual-to-physical map invalidates expensive,
68 *	this module may delay invalidate or reduced protection
69 *	operations until such time as they are actually
70 *	necessary.  This module is given full information as
71 *	to which processors are currently using which maps,
72 *	and to when physical maps must be made correct.
73 */
74
75/*
76 * Following the Linux model, region IDs are allocated in groups of
77 * eight so that a single region ID can be used for as many RRs as we
78 * want by encoding the RR number into the low bits of the ID.
79 *
80 * We reserve region ID 0 for the kernel and allocate the remaining
81 * IDs for user pmaps.
82 *
83 * Region 0..4
84 *	User virtually mapped
85 *
86 * Region 5
87 *	Kernel virtually mapped
88 *
89 * Region 6
90 *	Kernel physically mapped uncacheable
91 *
92 * Region 7
93 *	Kernel physically mapped cacheable
94 */
95
96#include <sys/param.h>
97#include <sys/systm.h>
98#include <sys/proc.h>
99#include <sys/msgbuf.h>
100#include <sys/vmmeter.h>
101#include <sys/mman.h>
102#include <sys/malloc.h>
103#include <sys/kernel.h>
104#include <sys/sx.h>
105
106#include <vm/vm.h>
107#include <vm/vm_param.h>
108#include <sys/lock.h>
109#include <vm/vm_kern.h>
110#include <vm/vm_page.h>
111#include <vm/vm_map.h>
112#include <vm/vm_object.h>
113#include <vm/vm_extern.h>
114#include <vm/vm_pageout.h>
115#include <vm/vm_pager.h>
116#include <vm/vm_zone.h>
117
118#include <sys/user.h>
119
120#include <machine/md_var.h>
121
122MALLOC_DEFINE(M_PMAP, "PMAP", "PMAP Structures");
123
124#ifndef PMAP_SHPGPERPROC
125#define PMAP_SHPGPERPROC 200
126#endif
127
128#if defined(DIAGNOSTIC)
129#define PMAP_DIAGNOSTIC
130#endif
131
132#define MINPV 2048
133
134#if 0
135#define PMAP_DIAGNOSTIC
136#define PMAP_DEBUG
137#endif
138
139#if !defined(PMAP_DIAGNOSTIC)
140#define PMAP_INLINE __inline
141#else
142#define PMAP_INLINE
143#endif
144
145#if 0
146
147static void
148pmap_break(void)
149{
150}
151
152/* #define PMAP_DEBUG_VA(va) if ((va) == 0x120058000) pmap_break(); else */
153
154#endif
155
156#ifndef PMAP_DEBUG_VA
157#define PMAP_DEBUG_VA(va) do {} while(0)
158#endif
159
160/*
161 * Get PDEs and PTEs for user/kernel address space
162 */
163#define pmap_pte_w(pte)		((pte)->pte_ig & PTE_IG_WIRED)
164#define pmap_pte_managed(pte)	((pte)->pte_ig & PTE_IG_MANAGED)
165#define pmap_pte_v(pte)		((pte)->pte_p)
166#define pmap_pte_pa(pte)	(((pte)->pte_ppn) << 12)
167#define pmap_pte_prot(pte)	(((pte)->pte_ar << 2) | (pte)->pte_pl)
168
169#define pmap_pte_set_w(pte, v) ((v)?((pte)->pte_ig |= PTE_IG_WIRED) \
170				:((pte)->pte_ig &= ~PTE_IG_WIRED))
171#define pmap_pte_set_prot(pte, v) do {		\
172    (pte)->pte_ar = v >> 2;			\
173    (pte)->pte_pl = v & 3;			\
174} while (0)
175
176/*
177 * Given a map and a machine independent protection code,
178 * convert to an ia64 protection code.
179 */
180#define pte_prot(m, p)		(protection_codes[m == pmap_kernel() ? 0 : 1][p])
181int	protection_codes[2][8];
182
183/*
184 * Return non-zero if this pmap is currently active
185 */
186#define pmap_isactive(pmap)	(pmap->pm_active)
187
188/*
189 * Statically allocated kernel pmap
190 */
191static struct pmap kernel_pmap_store;
192pmap_t kernel_pmap;
193
194vm_offset_t avail_start;	/* PA of first available physical page */
195vm_offset_t avail_end;		/* PA of last available physical page */
196vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
197vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
198static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
199
200
201vm_offset_t kernel_vm_end;
202
203/*
204 * Values for ptc.e. XXX values for SKI.
205 */
206static u_int64_t pmap_pte_e_base = 0x100000000;
207static u_int64_t pmap_pte_e_count1 = 3;
208static u_int64_t pmap_pte_e_count2 = 2;
209static u_int64_t pmap_pte_e_stride1 = 0x2000;
210static u_int64_t pmap_pte_e_stride2 = 0x100000000;
211
212/*
213 * Data for the RID allocator
214 */
215static int pmap_nextrid;
216static int pmap_ridbits = 18;
217
218/*
219 * Data for the pv entry allocation mechanism
220 */
221static vm_zone_t pvzone;
222static struct vm_zone pvzone_store;
223static struct vm_object pvzone_obj;
224static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
225static int pmap_pagedaemon_waken = 0;
226static struct pv_entry *pvinit;
227
228static PMAP_INLINE void	free_pv_entry __P((pv_entry_t pv));
229static pv_entry_t get_pv_entry __P((void));
230static void	ia64_protection_init __P((void));
231
232static void	pmap_remove_all __P((vm_page_t m));
233static void	pmap_enter_quick __P((pmap_t pmap, vm_offset_t va, vm_page_t m));
234
235vm_offset_t
236pmap_steal_memory(vm_size_t size)
237{
238	vm_size_t bank_size;
239	vm_offset_t pa, va;
240
241	size = round_page(size);
242
243	bank_size = phys_avail[1] - phys_avail[0];
244	while (size > bank_size) {
245		int i;
246		for (i = 0; phys_avail[i+2]; i+= 2) {
247			phys_avail[i] = phys_avail[i+2];
248			phys_avail[i+1] = phys_avail[i+3];
249		}
250		phys_avail[i] = 0;
251		phys_avail[i+1] = 0;
252		if (!phys_avail[0])
253			panic("pmap_steal_memory: out of memory");
254		bank_size = phys_avail[1] - phys_avail[0];
255	}
256
257	pa = phys_avail[0];
258	phys_avail[0] += size;
259
260	va = IA64_PHYS_TO_RR7(pa);
261	bzero((caddr_t) va, size);
262	return va;
263}
264
265/*
266 *	Bootstrap the system enough to run with virtual memory.
267 */
268void
269pmap_bootstrap()
270{
271	int i;
272
273	/*
274	 * Setup RIDs. We use the bits above pmap_ridbits for a
275	 * generation counter, saving generation zero for
276	 * 'invalid'. RIDs 0..7 are reserved for the kernel.
277	 */
278	pmap_nextrid = (1 << pmap_ridbits) + 8;
279
280	avail_start = phys_avail[0];
281	for (i = 0; phys_avail[i+2]; i+= 2) ;
282	avail_end = phys_avail[i+1];
283
284	virtual_avail = IA64_RR_BASE(5);
285	virtual_end = IA64_RR_BASE(6)-1;
286
287	/*
288	 * Initialize protection array.
289	 */
290	ia64_protection_init();
291
292	/*
293	 * The kernel's pmap is statically allocated so we don't have to use
294	 * pmap_create, which is unlikely to work correctly at this part of
295	 * the boot sequence (XXX and which no longer exists).
296	 */
297	kernel_pmap = &kernel_pmap_store;
298	kernel_pmap->pm_rid = 0;
299	kernel_pmap->pm_count = 1;
300	kernel_pmap->pm_active = 1;
301	TAILQ_INIT(&kernel_pmap->pm_pvlist);
302
303	/*
304	 * Region 5 is mapped via the vhpt.
305	 */
306	ia64_set_rr(IA64_RR_BASE(5),
307		    (5 << 8) | (PAGE_SHIFT << 2) | 1);
308
309	/*
310	 * Region 6 is direct mapped UC and region 7 is direct mapped
311	 * WC. The details of this is controlled by the Alt {I,D}TLB
312	 * handlers. Here we just make sure that they have the largest
313	 * possible page size to minimise TLB usage.
314	 */
315	ia64_set_rr(IA64_RR_BASE(6), (6 << 8) | (28 << 2));
316	ia64_set_rr(IA64_RR_BASE(7), (7 << 8) | (28 << 2));
317
318	/*
319	 * Set up proc0's PCB.
320	 */
321#if 0
322	proc0.p_addr->u_pcb.pcb_hw.apcb_asn = 0;
323#endif
324}
325
326/*
327 *	Initialize the pmap module.
328 *	Called by vm_init, to initialize any structures that the pmap
329 *	system needs to map virtual memory.
330 *	pmap_init has been enhanced to support in a fairly consistant
331 *	way, discontiguous physical memory.
332 */
333void
334pmap_init(phys_start, phys_end)
335	vm_offset_t phys_start, phys_end;
336{
337	int i;
338	int initial_pvs;
339
340	/*
341	 * Allocate memory for random pmap data structures.  Includes the
342	 * pv_head_table.
343	 */
344
345	for(i = 0; i < vm_page_array_size; i++) {
346		vm_page_t m;
347
348		m = &vm_page_array[i];
349		TAILQ_INIT(&m->md.pv_list);
350		m->md.pv_list_count = 0;
351 	}
352
353	/*
354	 * init the pv free list
355	 */
356	initial_pvs = vm_page_array_size;
357	if (initial_pvs < MINPV)
358		initial_pvs = MINPV;
359	pvzone = &pvzone_store;
360	pvinit = (struct pv_entry *) kmem_alloc(kernel_map,
361		initial_pvs * sizeof (struct pv_entry));
362	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
363		  vm_page_array_size);
364
365	/*
366	 * Now it is safe to enable pv_table recording.
367	 */
368	pmap_initialized = TRUE;
369}
370
371/*
372 * Initialize the address space (zone) for the pv_entries.  Set a
373 * high water mark so that the system can recover from excessive
374 * numbers of pv entries.
375 */
376void
377pmap_init2()
378{
379	pv_entry_max = PMAP_SHPGPERPROC * maxproc + vm_page_array_size;
380	pv_entry_high_water = 9 * (pv_entry_max / 10);
381	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
382}
383
384
385/***************************************************
386 * Manipulate TLBs for a pmap
387 ***************************************************/
388
389static void
390pmap_invalidate_rid(pmap_t pmap)
391{
392	KASSERT(pmap != kernel_pmap,
393		("changing kernel_pmap's RID"));
394	KASSERT(pmap == PCPU_GET(current_pmap),
395		("invalidating RID of non-current pmap"));
396	pmap_remove_pages(pmap, IA64_RR_BASE(0), IA64_RR_BASE(5));
397	pmap->pm_rid = 0;
398}
399
400static void
401pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
402{
403	KASSERT((pmap == kernel_pmap || pmap == PCPU_GET(current_pmap)),
404		("invalidating TLB for non-current pmap"));
405	ia64_ptc_l(va, PAGE_SHIFT << 2);
406}
407
408static void
409pmap_invalidate_all(pmap_t pmap)
410{
411	u_int64_t addr;
412	int i, j;
413	critical_t psr;
414
415	KASSERT((pmap == kernel_pmap || pmap == PCPU_GET(current_pmap)),
416		("invalidating TLB for non-current pmap"));
417
418	psr = critical_enter();
419	addr = pmap_pte_e_base;
420	for (i = 0; i < pmap_pte_e_count1; i++) {
421		for (j = 0; j < pmap_pte_e_count2; j++) {
422			ia64_ptc_e(addr);
423			addr += pmap_pte_e_stride2;
424		}
425		addr += pmap_pte_e_stride1;
426	}
427	critical_exit(psr);
428}
429
430static void
431pmap_get_rid(pmap_t pmap)
432{
433	if ((pmap_nextrid & ((1 << pmap_ridbits) - 1)) == 0) {
434		/*
435		 * Start a new ASN generation.
436		 *
437		 * Invalidate all per-process mappings and I-cache
438		 */
439		pmap_nextrid += 8;
440
441		/*
442		 * Since we are about to start re-using ASNs, we must
443		 * clear out the TLB.
444		 * with the ASN.
445		 */
446#if 0
447		IA64_TBIAP();
448		ia64_pal_imb();	/* XXX overkill? */
449#endif
450	}
451	pmap->pm_rid = pmap_nextrid;
452	pmap_nextrid += 8;
453}
454
455/***************************************************
456 * Low level helper routines.....
457 ***************************************************/
458
459/*
460 * Install a pte into the VHPT
461 */
462static PMAP_INLINE void
463pmap_install_pte(struct ia64_lpte *vhpte, struct ia64_lpte *pte)
464{
465	u_int64_t *vhp, *p;
466
467	/* invalidate the pte */
468	atomic_set_64(&vhpte->pte_tag, 1L << 63);
469	ia64_mf();			/* make sure everyone sees */
470
471	vhp = (u_int64_t *) vhpte;
472	p = (u_int64_t *) pte;
473
474	vhp[0] = p[0];
475	vhp[1] = p[1];
476	vhp[2] = p[2];			/* sets ti to one */
477
478	ia64_mf();
479}
480
481/*
482 * Compare essential parts of pte.
483 */
484static PMAP_INLINE int
485pmap_equal_pte(struct ia64_lpte *pte1, struct ia64_lpte *pte2)
486{
487	return *(u_int64_t *) pte1 == *(u_int64_t *) pte2;
488}
489
490/*
491 * this routine defines the region(s) of memory that should
492 * not be tested for the modified bit.
493 */
494static PMAP_INLINE int
495pmap_track_modified(vm_offset_t va)
496{
497	if ((va < clean_sva) || (va >= clean_eva))
498		return 1;
499	else
500		return 0;
501}
502
503/*
504 * Create the UPAGES for a new process.
505 * This routine directly affects the fork perf for a process.
506 */
507void
508pmap_new_proc(struct proc *p)
509{
510	struct user *up;
511
512	/*
513	 * Use contigmalloc for user area so that we can use a region
514	 * 7 address for it which makes it impossible to accidentally
515	 * lose when recording a trapframe.
516	 */
517	up = contigmalloc(UPAGES * PAGE_SIZE, M_PMAP,
518			  M_WAITOK,
519			  0ul,
520			  256*1024*1024 - 1,
521			  PAGE_SIZE,
522			  256*1024*1024);
523
524	p->p_md.md_uservirt = up;
525	p->p_addr = (struct user *)
526		IA64_PHYS_TO_RR7(ia64_tpa((u_int64_t) up));
527}
528
529/*
530 * Dispose the UPAGES for a process that has exited.
531 * This routine directly impacts the exit perf of a process.
532 */
533void
534pmap_dispose_proc(p)
535	struct proc *p;
536{
537	contigfree(p->p_md.md_uservirt, UPAGES * PAGE_SIZE, M_PMAP);
538	p->p_md.md_uservirt = 0;
539	p->p_addr = 0;
540}
541
542/*
543 * Allow the UPAGES for a process to be prejudicially paged out.
544 */
545void
546pmap_swapout_proc(p)
547	struct proc *p;
548{
549#if 0
550	int i;
551	vm_object_t upobj;
552	vm_page_t m;
553
554	/*
555	 * Make sure we aren't fpcurproc.
556	 */
557	ia64_fpstate_save(p, 1);
558
559	upobj = p->p_upages_obj;
560	/*
561	 * let the upages be paged
562	 */
563	for(i=0;i<UPAGES;i++) {
564		if ((m = vm_page_lookup(upobj, i)) == NULL)
565			panic("pmap_swapout_proc: upage already missing???");
566		vm_page_dirty(m);
567		vm_page_unwire(m, 0);
568		pmap_kremove((vm_offset_t)p->p_addr + PAGE_SIZE * i);
569	}
570#endif
571}
572
573/*
574 * Bring the UPAGES for a specified process back in.
575 */
576void
577pmap_swapin_proc(p)
578	struct proc *p;
579{
580#if 0
581	int i,rv;
582	vm_object_t upobj;
583	vm_page_t m;
584
585	upobj = p->p_upages_obj;
586	for(i=0;i<UPAGES;i++) {
587
588		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
589
590		pmap_kenter(((vm_offset_t) p->p_addr) + i * PAGE_SIZE,
591			VM_PAGE_TO_PHYS(m));
592
593		if (m->valid != VM_PAGE_BITS_ALL) {
594			rv = vm_pager_get_pages(upobj, &m, 1, 0);
595			if (rv != VM_PAGER_OK)
596				panic("pmap_swapin_proc: cannot get upages for proc: %d\n", p->p_pid);
597			m = vm_page_lookup(upobj, i);
598			m->valid = VM_PAGE_BITS_ALL;
599		}
600
601		vm_page_wire(m);
602		vm_page_wakeup(m);
603		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
604	}
605#endif
606}
607
608/***************************************************
609 * Page table page management routines.....
610 ***************************************************/
611
612void
613pmap_pinit0(pmap)
614	struct pmap *pmap;
615{
616	/*
617	 * kernel_pmap is the same as any other pmap.
618	 */
619	pmap_pinit(pmap);
620	pmap->pm_flags = 0;
621	pmap->pm_rid = 0;
622	pmap->pm_count = 1;
623	pmap->pm_ptphint = NULL;
624	pmap->pm_active = 0;
625	TAILQ_INIT(&pmap->pm_pvlist);
626	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
627}
628
629/*
630 * Initialize a preallocated and zeroed pmap structure,
631 * such as one in a vmspace structure.
632 */
633void
634pmap_pinit(pmap)
635	register struct pmap *pmap;
636{
637	pmap->pm_flags = 0;
638	pmap->pm_rid = 0;
639	pmap->pm_count = 1;
640	pmap->pm_ptphint = NULL;
641	pmap->pm_active = 0;
642	TAILQ_INIT(&pmap->pm_pvlist);
643	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
644}
645
646/*
647 * Wire in kernel global address entries.  To avoid a race condition
648 * between pmap initialization and pmap_growkernel, this procedure
649 * should be called after the vmspace is attached to the process
650 * but before this pmap is activated.
651 */
652void
653pmap_pinit2(pmap)
654	struct pmap *pmap;
655{
656}
657
658/***************************************************
659* Pmap allocation/deallocation routines.
660 ***************************************************/
661
662/*
663 * Release any resources held by the given physical map.
664 * Called when a pmap initialized by pmap_pinit is being released.
665 * Should only be called if the map contains no valid mappings.
666 */
667void
668pmap_release(pmap_t pmap)
669{
670#if defined(DIAGNOSTIC)
671	if (object->ref_count != 1)
672		panic("pmap_release: pteobj reference count != 1");
673#endif
674}
675
676/*
677 * grow the number of kernel page table entries, if needed
678 */
679void
680pmap_growkernel(vm_offset_t addr)
681{
682}
683
684/*
685 *	Retire the given physical map from service.
686 *	Should only be called if the map contains
687 *	no valid mappings.
688 */
689void
690pmap_destroy(pmap_t pmap)
691{
692	int count;
693
694	if (pmap == NULL)
695		return;
696
697	count = --pmap->pm_count;
698	if (count == 0) {
699		pmap_release(pmap);
700		panic("destroying a pmap is not yet implemented");
701	}
702}
703
704/*
705 *	Add a reference to the specified pmap.
706 */
707void
708pmap_reference(pmap_t pmap)
709{
710	if (pmap != NULL) {
711		pmap->pm_count++;
712	}
713}
714
715/***************************************************
716* page management routines.
717 ***************************************************/
718
719/*
720 * free the pv_entry back to the free list
721 */
722static PMAP_INLINE void
723free_pv_entry(pv_entry_t pv)
724{
725	pv_entry_count--;
726	zfree(pvzone, pv);
727}
728
729/*
730 * get a new pv_entry, allocating a block from the system
731 * when needed.
732 * the memory allocation is performed bypassing the malloc code
733 * because of the possibility of allocations at interrupt time.
734 */
735static pv_entry_t
736get_pv_entry(void)
737{
738	/*
739	 * We can get called a few times really early before
740	 * pmap_init() has finished allocating the pvzone (mostly as a
741	 * result of the call to kmem_alloc() in pmap_init(). We allow
742	 * a small number of entries to be allocated statically to
743	 * cover this.
744	 */
745	if (!pvinit) {
746#define PV_BOOTSTRAP_NEEDED	512
747		static struct pv_entry pvbootentries[PV_BOOTSTRAP_NEEDED];
748		static int pvbootnext = 0;
749
750		if (pvbootnext == PV_BOOTSTRAP_NEEDED)
751			panic("get_pv_entry: called too many times"
752			      " before pmap_init is finished");
753		return &pvbootentries[pvbootnext++];
754	}
755
756	pv_entry_count++;
757	if (pv_entry_high_water &&
758		(pv_entry_count > pv_entry_high_water) &&
759		(pmap_pagedaemon_waken == 0)) {
760		pmap_pagedaemon_waken = 1;
761		wakeup (&vm_pages_needed);
762	}
763	return (pv_entry_t) IA64_PHYS_TO_RR7(vtophys(zalloc(pvzone)));
764}
765
766/*
767 * Add a pv_entry to the VHPT.
768 */
769static void
770pmap_enter_vhpt(pv_entry_t pv)
771{
772	struct ia64_lpte *vhpte;
773
774	vhpte = (struct ia64_lpte *) ia64_thash(pv->pv_va);
775
776	pv->pv_pte.pte_chain = vhpte->pte_chain;
777	vhpte->pte_chain = ia64_tpa((vm_offset_t) pv);
778
779	if (!vhpte->pte_p && pv->pv_pte.pte_p)
780		pmap_install_pte(vhpte, &pv->pv_pte);
781	else
782		ia64_mf();
783}
784
785/*
786 * Update VHPT after pv->pv_pte has changed.
787 */
788static void
789pmap_update_vhpt(pv_entry_t pv)
790{
791	struct ia64_lpte *vhpte;
792
793	vhpte = (struct ia64_lpte *) ia64_thash(pv->pv_va);
794
795	if ((!vhpte->pte_p || vhpte->pte_tag == pv->pv_pte.pte_tag)
796	    && pv->pv_pte.pte_p)
797		pmap_install_pte(vhpte, &pv->pv_pte);
798}
799
800/*
801 * Remove a pv_entry from the VHPT. Return true if it worked.
802 */
803static int
804pmap_remove_vhpt(pv_entry_t pv)
805{
806	struct ia64_lpte *pte;
807	struct ia64_lpte *lpte;
808	struct ia64_lpte *vhpte;
809	u_int64_t tag;
810
811	vhpte = (struct ia64_lpte *) ia64_thash(pv->pv_va);
812
813	/*
814	 * If the VHPTE is invalid, there can't be a collision chain.
815	 */
816	if (!vhpte->pte_p) {
817		KASSERT(!vhpte->pte_chain, ("bad vhpte"));
818		return 0;
819	}
820
821	lpte = vhpte;
822	pte = (struct ia64_lpte *) IA64_PHYS_TO_RR7(vhpte->pte_chain);
823	tag = ia64_ttag(pv->pv_va);
824
825	while (pte->pte_tag != tag) {
826		lpte = pte;
827		if (pte->pte_chain)
828			pte = (struct ia64_lpte *) IA64_PHYS_TO_RR7(pte->pte_chain);
829		else
830			return 0; /* error here? */
831	}
832
833	/*
834	 * Snip this pv_entry out of the collision chain.
835	 */
836	lpte->pte_chain = pte->pte_chain;
837
838	/*
839	 * If the VHPTE matches as well, change it to map the first
840	 * element from the chain if there is one.
841	 */
842	if (vhpte->pte_tag == tag) {
843		if (vhpte->pte_chain) {
844			pte = (struct ia64_lpte *)
845				IA64_PHYS_TO_RR7(vhpte->pte_chain);
846			pmap_install_pte(vhpte, pte);
847		} else {
848			vhpte->pte_p = 0;
849			ia64_mf();
850		}
851	}
852
853	return 1;
854}
855
856/*
857 * Make a pv_entry_t which maps the given virtual address. The pte
858 * will be initialised with pte_p = 0. The function pmap_set_pv()
859 * should be called to change the value of the pte.
860 * Must be called at splvm().
861 */
862static pv_entry_t
863pmap_make_pv(pmap_t pmap, vm_offset_t va)
864{
865	pv_entry_t pv;
866
867	pv = get_pv_entry();
868	bzero(pv, sizeof(*pv));
869	pv->pv_va = va;
870	pv->pv_pmap = pmap;
871
872	pv->pv_pte.pte_p = 0;		/* invalid for now */
873	pv->pv_pte.pte_ma = PTE_MA_WB;	/* cacheable, write-back */
874	pv->pv_pte.pte_a = 0;
875	pv->pv_pte.pte_d = 0;
876	pv->pv_pte.pte_pl = 0;		/* privilege level 0 */
877	pv->pv_pte.pte_ar = 3;		/* read/write/execute */
878	pv->pv_pte.pte_ppn = 0;		/* physical address */
879	pv->pv_pte.pte_ed = 0;
880	pv->pv_pte.pte_ig = 0;
881
882	pv->pv_pte.pte_ps = PAGE_SHIFT;	/* page size */
883	pv->pv_pte.pte_key = 0;		/* protection key */
884
885	pv->pv_pte.pte_tag = ia64_ttag(va);
886
887	pmap_enter_vhpt(pv);
888
889	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
890	pmap->pm_stats.resident_count++;
891
892	return pv;
893}
894
895/*
896 * Initialise a pv_entry_t with a given physical address and
897 * protection code. If the passed vm_page_t is non-zero, the entry is
898 * added to its list of mappings.
899 * Must be called at splvm().
900 */
901static void
902pmap_set_pv(pmap_t pmap, pv_entry_t pv, vm_offset_t pa,
903	    int prot, vm_page_t m)
904{
905	if (pv->pv_pte.pte_p && pv->pv_pte.pte_ig & PTE_IG_MANAGED) {
906		vm_offset_t opa = pv->pv_pte.pte_ppn << 12;
907		vm_page_t om = PHYS_TO_VM_PAGE(opa);
908
909		TAILQ_REMOVE(&om->md.pv_list, pv, pv_list);
910		om->md.pv_list_count--;
911
912		if (TAILQ_FIRST(&om->md.pv_list) == NULL)
913			vm_page_flag_clear(om, PG_MAPPED | PG_WRITEABLE);
914	}
915
916	pv->pv_pte.pte_p = 1;		/* set to valid */
917
918	/*
919	 * Only track access/modify for managed pages.
920	 */
921	if (m) {
922		pv->pv_pte.pte_a = 0;
923		pv->pv_pte.pte_d = 0;
924	} else {
925		pv->pv_pte.pte_a = 1;
926		pv->pv_pte.pte_d = 1;
927	}
928
929	pv->pv_pte.pte_pl = prot & 3;	/* privilege level */
930	pv->pv_pte.pte_ar = prot >> 2;	/* access rights */
931	pv->pv_pte.pte_ppn = pa >> 12;	/* physical address */
932
933	if (m) {
934		pv->pv_pte.pte_ig |= PTE_IG_MANAGED;
935		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
936		m->md.pv_list_count++;
937	}
938
939	/*
940	 * Update the VHPT entry if it needs to change.
941	 */
942	pmap_update_vhpt(pv);
943}
944
945/*
946 * Remove a mapping represented by a particular pv_entry_t. If the
947 * passed vm_page_t is non-zero, then the entry is removed from it.
948 * Must be called at splvm().
949 */
950static int
951pmap_remove_pv(pmap_t pmap, pv_entry_t pv, vm_page_t m)
952{
953	int rtval;
954
955	/*
956	 * First remove from the VHPT.
957	 */
958	rtval = pmap_remove_vhpt(pv);
959	if (!rtval)
960		return rtval;
961
962	if ((pv->pv_pte.pte_ig & PTE_IG_MANAGED) && m) {
963		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
964		m->md.pv_list_count--;
965
966		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
967			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
968	}
969
970	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
971	pmap->pm_stats.resident_count--;
972
973	free_pv_entry(pv);
974
975	return (rtval);
976}
977
978/*
979 * Find a pv given a pmap and virtual address.
980 */
981static pv_entry_t
982pmap_find_pv(pmap_t pmap, vm_offset_t va)
983{
984	struct ia64_lpte *pte;
985	u_int64_t tag;
986
987	pte = (struct ia64_lpte *) ia64_thash(va);
988	if (!pte->pte_chain)
989		return 0;
990
991	tag = ia64_ttag(va);
992	pte = (struct ia64_lpte *) IA64_PHYS_TO_RR7(pte->pte_chain);
993
994	while (pte->pte_tag != tag) {
995		if (pte->pte_chain)
996			pte = (struct ia64_lpte *) IA64_PHYS_TO_RR7(pte->pte_chain);
997		else
998			return 0;
999	}
1000
1001	return (pv_entry_t) pte;	/* XXX wrong va */
1002}
1003
1004/*
1005 *	Routine:	pmap_extract
1006 *	Function:
1007 *		Extract the physical page address associated
1008 *		with the given map/virtual_address pair.
1009 */
1010vm_offset_t
1011pmap_extract(pmap, va)
1012	register pmap_t pmap;
1013	vm_offset_t va;
1014{
1015	pv_entry_t pv = pmap_find_pv(pmap, va);
1016	if (pv)
1017		return pmap_pte_pa(&pv->pv_pte);
1018	else
1019		return 0;
1020}
1021
1022/***************************************************
1023 * Low level mapping routines.....
1024 ***************************************************/
1025
1026/*
1027 * Add a list of wired pages to the kva
1028 * this routine is only used for temporary
1029 * kernel mappings that do not need to have
1030 * page modification or references recorded.
1031 * Note that old mappings are simply written
1032 * over.  The page *must* be wired.
1033 */
1034void
1035pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1036{
1037	int i, inval;
1038	pv_entry_t pv;
1039
1040	for (i = 0; i < count; i++) {
1041		vm_offset_t tva = va + i * PAGE_SIZE;
1042		pv = pmap_find_pv(kernel_pmap, tva);
1043		inval = 0;
1044		if (!pv)
1045			pv = pmap_make_pv(kernel_pmap, tva);
1046		else
1047			inval = 1;
1048
1049		PMAP_DEBUG_VA(va);
1050		pmap_set_pv(kernel_pmap, pv,
1051			    VM_PAGE_TO_PHYS(m[i]),
1052			    (PTE_AR_RWX<<2) | PTE_PL_KERN, 0);
1053		if (inval)
1054			pmap_invalidate_page(kernel_pmap, tva);
1055	}
1056}
1057
1058/*
1059 * this routine jerks page mappings from the
1060 * kernel -- it is meant only for temporary mappings.
1061 */
1062void
1063pmap_qremove(va, count)
1064	vm_offset_t va;
1065	int count;
1066{
1067	int i;
1068	pv_entry_t pv;
1069
1070	for (i = 0; i < count; i++) {
1071		pv = pmap_find_pv(kernel_pmap, va);
1072		PMAP_DEBUG_VA(va);
1073		if (pv) {
1074			pmap_remove_pv(kernel_pmap, pv, 0);
1075			pmap_invalidate_page(kernel_pmap, va);
1076		}
1077		va += PAGE_SIZE;
1078	}
1079}
1080
1081/*
1082 * Add a wired page to the kva.
1083 */
1084void
1085pmap_kenter(vm_offset_t va, vm_offset_t pa)
1086{
1087	pv_entry_t pv;
1088
1089	pv = pmap_find_pv(kernel_pmap, va);
1090	if (!pv)
1091		pv = pmap_make_pv(kernel_pmap, va);
1092	pmap_set_pv(kernel_pmap, pv,
1093		    pa, (PTE_AR_RWX<<2) | PTE_PL_KERN, 0);
1094	pmap_invalidate_page(kernel_pmap, va);
1095}
1096
1097/*
1098 * Remove a page from the kva
1099 */
1100void
1101pmap_kremove(vm_offset_t va)
1102{
1103	pv_entry_t pv;
1104
1105	pv = pmap_find_pv(kernel_pmap, va);
1106	if (pv) {
1107		pmap_remove_pv(kernel_pmap, pv, 0);
1108		pmap_invalidate_page(kernel_pmap, va);
1109	}
1110}
1111
1112/*
1113 *	Used to map a range of physical addresses into kernel
1114 *	virtual address space.
1115 *
1116 *	The value passed in '*virt' is a suggested virtual address for
1117 *	the mapping. Architectures which can support a direct-mapped
1118 *	physical to virtual region can return the appropriate address
1119 *	within that region, leaving '*virt' unchanged. Other
1120 *	architectures should map the pages starting at '*virt' and
1121 *	update '*virt' with the first usable address after the mapped
1122 *	region.
1123 */
1124vm_offset_t
1125pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
1126{
1127	return IA64_PHYS_TO_RR7(start);
1128}
1129
1130/*
1131 * This routine is very drastic, but can save the system
1132 * in a pinch.
1133 */
1134void
1135pmap_collect()
1136{
1137	int i;
1138	vm_page_t m;
1139	static int warningdone=0;
1140
1141	if (pmap_pagedaemon_waken == 0)
1142		return;
1143
1144	if (warningdone < 5) {
1145		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1146		warningdone++;
1147	}
1148
1149	for(i = 0; i < vm_page_array_size; i++) {
1150		m = &vm_page_array[i];
1151		if (m->wire_count || m->hold_count || m->busy ||
1152		    (m->flags & PG_BUSY))
1153			continue;
1154		pmap_remove_all(m);
1155	}
1156	pmap_pagedaemon_waken = 0;
1157}
1158
1159/*
1160 * Remove a single page from a process address space
1161 */
1162static void
1163pmap_remove_page(pmap_t pmap, vm_offset_t va)
1164{
1165	pv_entry_t pv;
1166	vm_page_t m;
1167	int rtval;
1168	int s;
1169
1170	s = splvm();
1171
1172	pv = pmap_find_pv(pmap, va);
1173
1174	rtval = 0;
1175	if (pv) {
1176		m = PHYS_TO_VM_PAGE(pmap_pte_pa(&pv->pv_pte));
1177		rtval = pmap_remove_pv(pmap, pv, m);
1178		pmap_invalidate_page(pmap, va);
1179	}
1180
1181	splx(s);
1182	return;
1183}
1184
1185/*
1186 *	Remove the given range of addresses from the specified map.
1187 *
1188 *	It is assumed that the start and end are properly
1189 *	rounded to the page size.
1190 */
1191void
1192pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1193{
1194	vm_offset_t va, nva;
1195
1196	if (pmap == NULL)
1197		return;
1198
1199	if (pmap->pm_stats.resident_count == 0)
1200		return;
1201
1202	/*
1203	 * special handling of removing one page.  a very
1204	 * common operation and easy to short circuit some
1205	 * code.
1206	 */
1207	if (sva + PAGE_SIZE == eva) {
1208		pmap_remove_page(pmap, sva);
1209		return;
1210	}
1211
1212	if (atop(eva - sva) < pmap->pm_stats.resident_count) {
1213		for (va = sva; va < eva; va = nva) {
1214			pmap_remove_page(pmap, va);
1215			nva = va + PAGE_SIZE;
1216		}
1217	} else {
1218		pv_entry_t pv, pvnext;
1219		int s;
1220
1221		s = splvm();
1222		for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1223			pv;
1224			pv = pvnext) {
1225			pvnext = TAILQ_NEXT(pv, pv_plist);
1226			if (pv->pv_va >= sva && pv->pv_va < eva) {
1227				vm_page_t m = PHYS_TO_VM_PAGE(pmap_pte_pa(&pv->pv_pte));
1228				va = pv->pv_va;
1229				pmap_remove_pv(pmap, pv, m);
1230				pmap_invalidate_page(pmap, va);
1231			}
1232		}
1233		splx(s);
1234	}
1235}
1236
1237/*
1238 *	Routine:	pmap_remove_all
1239 *	Function:
1240 *		Removes this physical page from
1241 *		all physical maps in which it resides.
1242 *		Reflects back modify bits to the pager.
1243 *
1244 *	Notes:
1245 *		Original versions of this routine were very
1246 *		inefficient because they iteratively called
1247 *		pmap_remove (slow...)
1248 */
1249
1250static void
1251pmap_remove_all(vm_page_t m)
1252{
1253	register pv_entry_t pv;
1254	int nmodify;
1255	int s;
1256
1257	nmodify = 0;
1258#if defined(PMAP_DIAGNOSTIC)
1259	/*
1260	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1261	 * pages!
1262	 */
1263	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1264		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", VM_PAGE_TO_PHYS(m));
1265	}
1266#endif
1267
1268	s = splvm();
1269
1270	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1271		vm_page_t m = PHYS_TO_VM_PAGE(pmap_pte_pa(&pv->pv_pte));
1272		vm_offset_t va = pv->pv_va;
1273		pmap_remove_pv(pv->pv_pmap, pv, m);
1274		pmap_invalidate_page(pv->pv_pmap, va);
1275	}
1276
1277	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1278
1279	splx(s);
1280	return;
1281}
1282
1283/*
1284 *	Set the physical protection on the
1285 *	specified range of this map as requested.
1286 */
1287void
1288pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1289{
1290	pmap_t oldpmap;
1291	pv_entry_t pv;
1292	int newprot;
1293
1294	if (pmap == NULL)
1295		return;
1296
1297	oldpmap = pmap_install(pmap);
1298
1299	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1300		pmap_remove(pmap, sva, eva);
1301		pmap_install(oldpmap);
1302		return;
1303	}
1304
1305	if (prot & VM_PROT_WRITE) {
1306		pmap_install(oldpmap);
1307		return;
1308	}
1309
1310	newprot = pte_prot(pmap, prot);
1311
1312	if ((sva & PAGE_MASK) || (eva & PAGE_MASK))
1313		panic("pmap_protect: unaligned addresses");
1314
1315	while (sva < eva) {
1316		/*
1317		 * If page is invalid, skip this page
1318		 */
1319		pv = pmap_find_pv(pmap, sva);
1320		if (!pv) {
1321			sva += PAGE_SIZE;
1322			continue;
1323		}
1324
1325		if (pmap_pte_prot(&pv->pv_pte) != newprot) {
1326			pmap_pte_set_prot(&pv->pv_pte, newprot);
1327			pmap_update_vhpt(pv);
1328			pmap_invalidate_page(pmap, sva);
1329		}
1330
1331		sva += PAGE_SIZE;
1332	}
1333	pmap_install(oldpmap);
1334}
1335
1336/*
1337 *	Insert the given physical page (p) at
1338 *	the specified virtual address (v) in the
1339 *	target physical map with the protection requested.
1340 *
1341 *	If specified, the page will be wired down, meaning
1342 *	that the related pte can not be reclaimed.
1343 *
1344 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1345 *	or lose information.  That is, this routine must actually
1346 *	insert this page into the given map NOW.
1347 */
1348void
1349pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1350	   boolean_t wired)
1351{
1352	pmap_t oldpmap;
1353	vm_offset_t pa;
1354	pv_entry_t pv;
1355	vm_offset_t opa;
1356	struct ia64_lpte origpte;
1357	int managed;
1358
1359	if (pmap == NULL)
1360		return;
1361
1362	oldpmap = pmap_install(pmap);
1363
1364	va &= ~PAGE_MASK;
1365#ifdef PMAP_DIAGNOSTIC
1366	if (va > VM_MAX_KERNEL_ADDRESS)
1367		panic("pmap_enter: toobig");
1368#endif
1369
1370	pv = pmap_find_pv(pmap, va);
1371	if (!pv)
1372		pv = pmap_make_pv(pmap, va);
1373
1374	origpte = pv->pv_pte;
1375	if (origpte.pte_p)
1376		opa = pmap_pte_pa(&origpte);
1377	else
1378		opa = 0;
1379
1380	pa = VM_PAGE_TO_PHYS(m) & ~PAGE_MASK;
1381	managed = 0;
1382
1383	/*
1384	 * Mapping has not changed, must be protection or wiring change.
1385	 */
1386	if (origpte.pte_p && (opa == pa)) {
1387		/*
1388		 * Wiring change, just update stats. We don't worry about
1389		 * wiring PT pages as they remain resident as long as there
1390		 * are valid mappings in them. Hence, if a user page is wired,
1391		 * the PT page will be also.
1392		 */
1393		if (wired && ((origpte.pte_ig & PTE_IG_WIRED) == 0))
1394			pmap->pm_stats.wired_count++;
1395		else if (!wired && (origpte.pte_ig & PTE_IG_WIRED))
1396			pmap->pm_stats.wired_count--;
1397
1398		managed = origpte.pte_ig & PTE_IG_MANAGED;
1399		goto validate;
1400	}  else {
1401		/*
1402		 * Mapping has changed, invalidate old range and fall
1403		 * through to handle validating new mapping.
1404		 */
1405	}
1406
1407	/*
1408	 * Increment counters
1409	 */
1410	if (wired)
1411		pmap->pm_stats.wired_count++;
1412
1413validate:
1414	/*
1415	 * Now validate mapping with desired protection/wiring.
1416	 * This enters the pv_entry_t on the page's list if necessary.
1417	 */
1418	pmap_set_pv(pmap, pv, pa, pte_prot(pmap, prot), m);
1419
1420	if (wired)
1421		pv->pv_pte.pte_ig |= PTE_IG_WIRED;
1422
1423	/*
1424	 * if the mapping or permission bits are different, we need
1425	 * to invalidate the page.
1426	 */
1427	if (!pmap_equal_pte(&origpte, &pv->pv_pte)) {
1428		PMAP_DEBUG_VA(va);
1429		pmap_invalidate_page(pmap, va);
1430	}
1431
1432	pmap_install(oldpmap);
1433}
1434
1435/*
1436 * this code makes some *MAJOR* assumptions:
1437 * 1. Current pmap & pmap exists.
1438 * 2. Not wired.
1439 * 3. Read access.
1440 * 4. No page table pages.
1441 * 5. Tlbflush is deferred to calling procedure.
1442 * 6. Page IS managed.
1443 * but is *MUCH* faster than pmap_enter...
1444 */
1445
1446static void
1447pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
1448{
1449	pv_entry_t pv;
1450	int s;
1451
1452	s = splvm();
1453
1454	pv = pmap_find_pv(pmap, va);
1455	if (!pv)
1456		pv = pmap_make_pv(pmap, va);
1457
1458	/*
1459	 * Enter on the PV list if part of our managed memory. Note that we
1460	 * raise IPL while manipulating pv_table since pmap_enter can be
1461	 * called at interrupt time.
1462	 */
1463	PMAP_DEBUG_VA(va);
1464	pmap_set_pv(pmap, pv, VM_PAGE_TO_PHYS(m),
1465		    (PTE_AR_R << 2) | PTE_PL_USER, m);
1466
1467	splx(s);
1468}
1469
1470/*
1471 * Make temporary mapping for a physical address. This is called
1472 * during dump.
1473 */
1474void *
1475pmap_kenter_temporary(vm_offset_t pa, int i)
1476{
1477	return (void *) IA64_PHYS_TO_RR7(pa - (i * PAGE_SIZE));
1478}
1479
1480#define MAX_INIT_PT (96)
1481/*
1482 * pmap_object_init_pt preloads the ptes for a given object
1483 * into the specified pmap.  This eliminates the blast of soft
1484 * faults on process startup and immediately after an mmap.
1485 */
1486void
1487pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
1488		    vm_object_t object, vm_pindex_t pindex,
1489		    vm_size_t size, int limit)
1490{
1491	pmap_t oldpmap;
1492	vm_offset_t tmpidx;
1493	int psize;
1494	vm_page_t p;
1495	int objpgs;
1496
1497	if (pmap == NULL || object == NULL)
1498		return;
1499
1500	oldpmap = pmap_install(pmap);
1501
1502	psize = ia64_btop(size);
1503
1504	if ((object->type != OBJT_VNODE) ||
1505		(limit && (psize > MAX_INIT_PT) &&
1506			(object->resident_page_count > MAX_INIT_PT))) {
1507		pmap_install(oldpmap);
1508		return;
1509	}
1510
1511	if (psize + pindex > object->size)
1512		psize = object->size - pindex;
1513
1514	/*
1515	 * if we are processing a major portion of the object, then scan the
1516	 * entire thing.
1517	 */
1518	if (psize > (object->resident_page_count >> 2)) {
1519		objpgs = psize;
1520
1521		for (p = TAILQ_FIRST(&object->memq);
1522		    ((objpgs > 0) && (p != NULL));
1523		    p = TAILQ_NEXT(p, listq)) {
1524
1525			tmpidx = p->pindex;
1526			if (tmpidx < pindex) {
1527				continue;
1528			}
1529			tmpidx -= pindex;
1530			if (tmpidx >= psize) {
1531				continue;
1532			}
1533			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1534			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1535				if ((p->queue - p->pc) == PQ_CACHE)
1536					vm_page_deactivate(p);
1537				vm_page_busy(p);
1538				pmap_enter_quick(pmap,
1539						 addr + ia64_ptob(tmpidx), p);
1540				vm_page_flag_set(p, PG_MAPPED);
1541				vm_page_wakeup(p);
1542			}
1543			objpgs -= 1;
1544		}
1545	} else {
1546		/*
1547		 * else lookup the pages one-by-one.
1548		 */
1549		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
1550			p = vm_page_lookup(object, tmpidx + pindex);
1551			if (p &&
1552			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1553			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1554				if ((p->queue - p->pc) == PQ_CACHE)
1555					vm_page_deactivate(p);
1556				vm_page_busy(p);
1557				pmap_enter_quick(pmap,
1558						 addr + ia64_ptob(tmpidx), p);
1559				vm_page_flag_set(p, PG_MAPPED);
1560				vm_page_wakeup(p);
1561			}
1562		}
1563	}
1564	pmap_install(oldpmap);
1565	return;
1566}
1567
1568/*
1569 * pmap_prefault provides a quick way of clustering
1570 * pagefaults into a processes address space.  It is a "cousin"
1571 * of pmap_object_init_pt, except it runs at page fault time instead
1572 * of mmap time.
1573 */
1574#define PFBAK 4
1575#define PFFOR 4
1576#define PAGEORDER_SIZE (PFBAK+PFFOR)
1577
1578static int pmap_prefault_pageorder[] = {
1579	-PAGE_SIZE, PAGE_SIZE,
1580	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1581	-3 * PAGE_SIZE, 3 * PAGE_SIZE
1582	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1583};
1584
1585void
1586pmap_prefault(pmap, addra, entry)
1587	pmap_t pmap;
1588	vm_offset_t addra;
1589	vm_map_entry_t entry;
1590{
1591	int i;
1592	vm_offset_t starta;
1593	vm_offset_t addr;
1594	vm_pindex_t pindex;
1595	vm_page_t m, mpte;
1596	vm_object_t object;
1597
1598	if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace)))
1599		return;
1600
1601	object = entry->object.vm_object;
1602
1603	starta = addra - PFBAK * PAGE_SIZE;
1604	if (starta < entry->start) {
1605		starta = entry->start;
1606	} else if (starta > addra) {
1607		starta = 0;
1608	}
1609
1610	mpte = NULL;
1611	for (i = 0; i < PAGEORDER_SIZE; i++) {
1612		vm_object_t lobject;
1613		pv_entry_t pv;
1614
1615		addr = addra + pmap_prefault_pageorder[i];
1616		if (addr > addra + (PFFOR * PAGE_SIZE))
1617			addr = 0;
1618
1619		if (addr < starta || addr >= entry->end)
1620			continue;
1621
1622		pv = pmap_find_pv(pmap, addr);
1623		if (pv)
1624			continue;
1625
1626		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1627		lobject = object;
1628		for (m = vm_page_lookup(lobject, pindex);
1629		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
1630		    lobject = lobject->backing_object) {
1631			if (lobject->backing_object_offset & PAGE_MASK)
1632				break;
1633			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
1634			m = vm_page_lookup(lobject->backing_object, pindex);
1635		}
1636
1637		/*
1638		 * give-up when a page is not in memory
1639		 */
1640		if (m == NULL)
1641			break;
1642
1643		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1644		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1645
1646			if ((m->queue - m->pc) == PQ_CACHE) {
1647				vm_page_deactivate(m);
1648			}
1649			vm_page_busy(m);
1650			pmap_enter_quick(pmap, addr, m);
1651			vm_page_flag_set(m, PG_MAPPED);
1652			vm_page_wakeup(m);
1653		}
1654	}
1655}
1656
1657/*
1658 *	Routine:	pmap_change_wiring
1659 *	Function:	Change the wiring attribute for a map/virtual-address
1660 *			pair.
1661 *	In/out conditions:
1662 *			The mapping must already exist in the pmap.
1663 */
1664void
1665pmap_change_wiring(pmap, va, wired)
1666	register pmap_t pmap;
1667	vm_offset_t va;
1668	boolean_t wired;
1669{
1670	pmap_t oldpmap;
1671	pv_entry_t pv;
1672
1673	if (pmap == NULL)
1674		return;
1675
1676	oldpmap = pmap_install(pmap);
1677
1678	pv = pmap_find_pv(pmap, va);
1679
1680	if (wired && !pmap_pte_w(&pv->pv_pte))
1681		pmap->pm_stats.wired_count++;
1682	else if (!wired && pmap_pte_w(&pv->pv_pte))
1683		pmap->pm_stats.wired_count--;
1684
1685	/*
1686	 * Wiring is not a hardware characteristic so there is no need to
1687	 * invalidate TLB.
1688	 */
1689	pmap_pte_set_w(&pv->pv_pte, wired);
1690
1691	pmap_install(oldpmap);
1692}
1693
1694
1695
1696/*
1697 *	Copy the range specified by src_addr/len
1698 *	from the source map to the range dst_addr/len
1699 *	in the destination map.
1700 *
1701 *	This routine is only advisory and need not do anything.
1702 */
1703
1704void
1705pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
1706	  vm_offset_t src_addr)
1707{
1708}
1709
1710/*
1711 *	Routine:	pmap_kernel
1712 *	Function:
1713 *		Returns the physical map handle for the kernel.
1714 */
1715pmap_t
1716pmap_kernel()
1717{
1718	return (kernel_pmap);
1719}
1720
1721/*
1722 *	pmap_zero_page zeros the specified hardware page by
1723 *	mapping it into virtual memory and using bzero to clear
1724 *	its contents.
1725 */
1726
1727void
1728pmap_zero_page(vm_offset_t pa)
1729{
1730	vm_offset_t va = IA64_PHYS_TO_RR7(pa);
1731	bzero((caddr_t) va, PAGE_SIZE);
1732}
1733
1734
1735/*
1736 *	pmap_zero_page_area zeros the specified hardware page by
1737 *	mapping it into virtual memory and using bzero to clear
1738 *	its contents.
1739 *
1740 *	off and size must reside within a single page.
1741 */
1742
1743void
1744pmap_zero_page_area(vm_offset_t pa, int off, int size)
1745{
1746	vm_offset_t va = IA64_PHYS_TO_RR7(pa);
1747	bzero((char *)(caddr_t)va + off, size);
1748}
1749
1750/*
1751 *	pmap_copy_page copies the specified (machine independent)
1752 *	page by mapping the page into virtual memory and using
1753 *	bcopy to copy the page, one machine dependent page at a
1754 *	time.
1755 */
1756void
1757pmap_copy_page(vm_offset_t src, vm_offset_t dst)
1758{
1759	src = IA64_PHYS_TO_RR7(src);
1760	dst = IA64_PHYS_TO_RR7(dst);
1761	bcopy((caddr_t) src, (caddr_t) dst, PAGE_SIZE);
1762}
1763
1764
1765/*
1766 *	Routine:	pmap_pageable
1767 *	Function:
1768 *		Make the specified pages (by pmap, offset)
1769 *		pageable (or not) as requested.
1770 *
1771 *		A page which is not pageable may not take
1772 *		a fault; therefore, its page table entry
1773 *		must remain valid for the duration.
1774 *
1775 *		This routine is merely advisory; pmap_enter
1776 *		will specify that these pages are to be wired
1777 *		down (or not) as appropriate.
1778 */
1779void
1780pmap_pageable(pmap, sva, eva, pageable)
1781	pmap_t pmap;
1782	vm_offset_t sva, eva;
1783	boolean_t pageable;
1784{
1785}
1786
1787/*
1788 * this routine returns true if a physical page resides
1789 * in the given pmap.
1790 */
1791boolean_t
1792pmap_page_exists(pmap, m)
1793	pmap_t pmap;
1794	vm_page_t m;
1795{
1796	register pv_entry_t pv;
1797	int s;
1798
1799	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1800		return FALSE;
1801
1802	s = splvm();
1803
1804	/*
1805	 * Not found, check current mappings returning immediately if found.
1806	 */
1807	for (pv = TAILQ_FIRST(&m->md.pv_list);
1808		pv;
1809		pv = TAILQ_NEXT(pv, pv_list)) {
1810		if (pv->pv_pmap == pmap) {
1811			splx(s);
1812			return TRUE;
1813		}
1814	}
1815	splx(s);
1816	return (FALSE);
1817}
1818
1819#define PMAP_REMOVE_PAGES_CURPROC_ONLY
1820/*
1821 * Remove all pages from specified address space
1822 * this aids process exit speeds.  Also, this code
1823 * is special cased for current process only, but
1824 * can have the more generic (and slightly slower)
1825 * mode enabled.  This is much faster than pmap_remove
1826 * in the case of running down an entire address space.
1827 */
1828void
1829pmap_remove_pages(pmap, sva, eva)
1830	pmap_t pmap;
1831	vm_offset_t sva, eva;
1832{
1833	pv_entry_t pv, npv;
1834	int s;
1835
1836#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
1837	if (!curproc || (pmap != vmspace_pmap(curproc->p_vmspace))) {
1838		printf("warning: pmap_remove_pages called with non-current pmap\n");
1839		return;
1840	}
1841#endif
1842
1843	s = splvm();
1844	for (pv = TAILQ_FIRST(&pmap->pm_pvlist);
1845		pv;
1846		pv = npv) {
1847		vm_page_t m;
1848
1849		npv = TAILQ_NEXT(pv, pv_plist);
1850
1851		if (pv->pv_va >= eva || pv->pv_va < sva) {
1852			continue;
1853		}
1854
1855/*
1856 * We cannot remove wired pages from a process' mapping at this time
1857 */
1858		if (pv->pv_pte.pte_ig & PTE_IG_WIRED) {
1859			continue;
1860		}
1861
1862		PMAP_DEBUG_VA(pv->pv_va);
1863
1864		m = PHYS_TO_VM_PAGE(pmap_pte_pa(&pv->pv_pte));
1865		pmap_remove_pv(pmap, pv, m);
1866	}
1867	splx(s);
1868
1869	pmap_invalidate_all(pmap);
1870}
1871
1872/*
1873 *      pmap_page_protect:
1874 *
1875 *      Lower the permission for all mappings to a given page.
1876 */
1877void
1878pmap_page_protect(vm_page_t m, vm_prot_t prot)
1879{
1880	pv_entry_t pv;
1881
1882	if ((prot & VM_PROT_WRITE) != 0)
1883		return;
1884	if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
1885		for (pv = TAILQ_FIRST(&m->md.pv_list);
1886		     pv;
1887		     pv = TAILQ_NEXT(pv, pv_list)) {
1888			int newprot = pte_prot(pv->pv_pmap, prot);
1889			pmap_t oldpmap = pmap_install(pv->pv_pmap);
1890			pmap_pte_set_prot(&pv->pv_pte, newprot);
1891			pmap_update_vhpt(pv);
1892			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1893			pmap_install(oldpmap);
1894		}
1895	} else {
1896		pmap_remove_all(m);
1897	}
1898}
1899
1900vm_offset_t
1901pmap_phys_address(ppn)
1902	int ppn;
1903{
1904	return (ia64_ptob(ppn));
1905}
1906
1907/*
1908 *	pmap_ts_referenced:
1909 *
1910 *	Return the count of reference bits for a page, clearing all of them.
1911 *
1912 */
1913int
1914pmap_ts_referenced(vm_page_t m)
1915{
1916	pv_entry_t pv;
1917	int count = 0;
1918
1919	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1920		return 0;
1921
1922	for (pv = TAILQ_FIRST(&m->md.pv_list);
1923		pv;
1924		pv = TAILQ_NEXT(pv, pv_list)) {
1925		if (pv->pv_pte.pte_a) {
1926			pmap_t oldpmap = pmap_install(pv->pv_pmap);
1927			count++;
1928			pv->pv_pte.pte_a = 0;
1929			pmap_update_vhpt(pv);
1930			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1931			pmap_install(oldpmap);
1932		}
1933	}
1934
1935	return count;
1936}
1937
1938#if 0
1939/*
1940 *	pmap_is_referenced:
1941 *
1942 *	Return whether or not the specified physical page was referenced
1943 *	in any physical maps.
1944 */
1945static boolean_t
1946pmap_is_referenced(vm_page_t m)
1947{
1948	pv_entry_t pv;
1949
1950	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1951		return FALSE;
1952
1953	for (pv = TAILQ_FIRST(&m->md.pv_list);
1954		pv;
1955		pv = TAILQ_NEXT(pv, pv_list)) {
1956		if (pv->pv_pte.pte_a) {
1957			return 1;
1958		}
1959	}
1960
1961	return 0;
1962}
1963#endif
1964
1965/*
1966 *	pmap_is_modified:
1967 *
1968 *	Return whether or not the specified physical page was modified
1969 *	in any physical maps.
1970 */
1971boolean_t
1972pmap_is_modified(vm_page_t m)
1973{
1974	pv_entry_t pv;
1975
1976	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1977		return FALSE;
1978
1979	for (pv = TAILQ_FIRST(&m->md.pv_list);
1980		pv;
1981		pv = TAILQ_NEXT(pv, pv_list)) {
1982		if (pv->pv_pte.pte_d) {
1983			return 1;
1984		}
1985	}
1986
1987	return 0;
1988}
1989
1990/*
1991 *	Clear the modify bits on the specified physical page.
1992 */
1993void
1994pmap_clear_modify(vm_page_t m)
1995{
1996	pv_entry_t pv;
1997
1998	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1999		return;
2000
2001	for (pv = TAILQ_FIRST(&m->md.pv_list);
2002		pv;
2003		pv = TAILQ_NEXT(pv, pv_list)) {
2004		if (pv->pv_pte.pte_d) {
2005			pmap_t oldpmap = pmap_install(pv->pv_pmap);
2006			pv->pv_pte.pte_d = 0;
2007			pmap_update_vhpt(pv);
2008			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2009			pmap_install(oldpmap);
2010		}
2011	}
2012}
2013
2014/*
2015 *	pmap_clear_reference:
2016 *
2017 *	Clear the reference bit on the specified physical page.
2018 */
2019void
2020pmap_clear_reference(vm_page_t m)
2021{
2022	pv_entry_t pv;
2023
2024	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2025		return;
2026
2027	for (pv = TAILQ_FIRST(&m->md.pv_list);
2028		pv;
2029		pv = TAILQ_NEXT(pv, pv_list)) {
2030		if (pv->pv_pte.pte_a) {
2031			pmap_t oldpmap = pmap_install(pv->pv_pmap);
2032			pv->pv_pte.pte_a = 0;
2033			pmap_update_vhpt(pv);
2034			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2035			pmap_install(oldpmap);
2036		}
2037	}
2038}
2039
2040/*
2041 * Miscellaneous support routines follow
2042 */
2043
2044static void
2045ia64_protection_init()
2046{
2047	int prot, *kp, *up;
2048
2049	kp = protection_codes[0];
2050	up = protection_codes[1];
2051
2052	for (prot = 0; prot < 8; prot++) {
2053		switch (prot) {
2054		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2055			*kp++ = (PTE_AR_R << 2) | PTE_PL_KERN;
2056			*up++ = (PTE_AR_R << 2) | PTE_PL_KERN;
2057			break;
2058
2059		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2060			*kp++ = (PTE_AR_X_RX << 2) | PTE_PL_KERN;
2061			*up++ = (PTE_AR_X_RX << 2) | PTE_PL_USER;
2062			break;
2063
2064		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2065			*kp++ = (PTE_AR_RW << 2) | PTE_PL_KERN;
2066			*up++ = (PTE_AR_RW << 2) | PTE_PL_USER;
2067			break;
2068
2069		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2070			*kp++ = (PTE_AR_RWX << 2) | PTE_PL_KERN;
2071			*up++ = (PTE_AR_RWX << 2) | PTE_PL_USER;
2072			break;
2073
2074		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2075			*kp++ = (PTE_AR_R << 2) | PTE_PL_KERN;
2076			*up++ = (PTE_AR_R << 2) | PTE_PL_USER;
2077			break;
2078
2079		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2080			*kp++ = (PTE_AR_RX << 2) | PTE_PL_KERN;
2081			*up++ = (PTE_AR_RX << 2) | PTE_PL_USER;
2082			break;
2083
2084		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2085			*kp++ = (PTE_AR_RW << 2) | PTE_PL_KERN;
2086			*up++ = (PTE_AR_RW << 2) | PTE_PL_USER;
2087			break;
2088
2089		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2090			*kp++ = (PTE_AR_RWX << 2) | PTE_PL_KERN;
2091			*up++ = (PTE_AR_RWX << 2) | PTE_PL_USER;
2092			break;
2093		}
2094	}
2095}
2096
2097/*
2098 * Map a set of physical memory pages into the kernel virtual
2099 * address space. Return a pointer to where it is mapped. This
2100 * routine is intended to be used for mapping device memory,
2101 * NOT real memory.
2102 */
2103void *
2104pmap_mapdev(pa, size)
2105	vm_offset_t pa;
2106	vm_size_t size;
2107{
2108	return (void*) IA64_PHYS_TO_RR6(pa);
2109}
2110
2111/*
2112 * perform the pmap work for mincore
2113 */
2114int
2115pmap_mincore(pmap, addr)
2116	pmap_t pmap;
2117	vm_offset_t addr;
2118{
2119	pv_entry_t pv;
2120	struct ia64_lpte *pte;
2121	int val = 0;
2122
2123	pv = pmap_find_pv(pmap, addr);
2124	if (pv == 0) {
2125		return 0;
2126	}
2127	pte = &pv->pv_pte;
2128
2129	if (pmap_pte_v(pte)) {
2130		vm_page_t m;
2131		vm_offset_t pa;
2132
2133		val = MINCORE_INCORE;
2134		if ((pte->pte_ig & PTE_IG_MANAGED) == 0)
2135			return val;
2136
2137		pa = pmap_pte_pa(pte);
2138
2139		m = PHYS_TO_VM_PAGE(pa);
2140
2141		/*
2142		 * Modified by us
2143		 */
2144		if (pte->pte_d)
2145			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2146		/*
2147		 * Modified by someone
2148		 */
2149		else if (pmap_is_modified(m))
2150			val |= MINCORE_MODIFIED_OTHER;
2151		/*
2152		 * Referenced by us
2153		 */
2154		if (pte->pte_a)
2155			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2156
2157		/*
2158		 * Referenced by someone
2159		 */
2160		else if (pmap_ts_referenced(m)) {
2161			val |= MINCORE_REFERENCED_OTHER;
2162			vm_page_flag_set(m, PG_REFERENCED);
2163		}
2164	}
2165	return val;
2166}
2167
2168void
2169pmap_activate(struct proc *p)
2170{
2171	pmap_install(vmspace_pmap(p->p_vmspace));
2172}
2173
2174pmap_t
2175pmap_install(pmap_t pmap)
2176{
2177	pmap_t oldpmap;
2178	int rid;
2179
2180	oldpmap = PCPU_GET(current_pmap);
2181
2182	if (pmap == oldpmap || pmap == kernel_pmap)
2183		return pmap;
2184
2185	PCPU_SET(current_pmap, pmap);
2186	if (!pmap) {
2187		/*
2188		 * RIDs 0..4 have no mappings to make sure we generate
2189		 * page faults on accesses.
2190		 */
2191		ia64_set_rr(IA64_RR_BASE(0), (0 << 8)|(PAGE_SHIFT << 2)|1);
2192		ia64_set_rr(IA64_RR_BASE(1), (1 << 8)|(PAGE_SHIFT << 2)|1);
2193		ia64_set_rr(IA64_RR_BASE(2), (2 << 8)|(PAGE_SHIFT << 2)|1);
2194		ia64_set_rr(IA64_RR_BASE(3), (3 << 8)|(PAGE_SHIFT << 2)|1);
2195		ia64_set_rr(IA64_RR_BASE(4), (4 << 8)|(PAGE_SHIFT << 2)|1);
2196		return oldpmap;
2197	}
2198
2199	pmap->pm_active = 1;	/* XXX use bitmap for SMP */
2200
2201 reinstall:
2202	rid = pmap->pm_rid & ((1 << pmap_ridbits) - 1);
2203	ia64_set_rr(IA64_RR_BASE(0), ((rid + 0) << 8)|(PAGE_SHIFT << 2)|1);
2204	ia64_set_rr(IA64_RR_BASE(1), ((rid + 1) << 8)|(PAGE_SHIFT << 2)|1);
2205	ia64_set_rr(IA64_RR_BASE(2), ((rid + 2) << 8)|(PAGE_SHIFT << 2)|1);
2206	ia64_set_rr(IA64_RR_BASE(3), ((rid + 3) << 8)|(PAGE_SHIFT << 2)|1);
2207	ia64_set_rr(IA64_RR_BASE(4), ((rid + 4) << 8)|(PAGE_SHIFT << 2)|1);
2208
2209	/*
2210	 * If we need a new RID, get it now. Note that we need to
2211	 * remove our old mappings (if any) from the VHTP, so we will
2212	 * run on the old RID for a moment while we invalidate the old
2213	 * one. XXX maybe we should just clear out the VHTP when the
2214	 * RID generation rolls over.
2215	 */
2216	if ((pmap->pm_rid>>pmap_ridbits) != (pmap_nextrid>>pmap_ridbits)) {
2217		if (pmap->pm_rid)
2218			pmap_invalidate_rid(pmap);
2219		pmap_get_rid(pmap);
2220		goto reinstall;
2221	}
2222
2223	return oldpmap;
2224}
2225
2226vm_offset_t
2227pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
2228{
2229
2230	return addr;
2231}
2232
2233#if 0
2234#if defined(PMAP_DEBUG)
2235pmap_pid_dump(int pid)
2236{
2237	pmap_t pmap;
2238	struct proc *p;
2239	int npte = 0;
2240	int index;
2241
2242	sx_slock(&allproc_lock);
2243	LIST_FOREACH(p, &allproc, p_list) {
2244		if (p->p_pid != pid)
2245			continue;
2246
2247		if (p->p_vmspace) {
2248			int i,j;
2249			index = 0;
2250			pmap = vmspace_pmap(p->p_vmspace);
2251			for(i=0;i<1024;i++) {
2252				pd_entry_t *pde;
2253				pt_entry_t *pte;
2254				unsigned base = i << PDRSHIFT;
2255
2256				pde = &pmap->pm_pdir[i];
2257				if (pde && pmap_pde_v(pde)) {
2258					for(j=0;j<1024;j++) {
2259						unsigned va = base + (j << PAGE_SHIFT);
2260						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
2261							if (index) {
2262								index = 0;
2263								printf("\n");
2264							}
2265							sx_sunlock(&allproc_lock);
2266							return npte;
2267						}
2268						pte = pmap_pte_quick( pmap, va);
2269						if (pte && pmap_pte_v(pte)) {
2270							vm_offset_t pa;
2271							vm_page_t m;
2272							pa = *(int *)pte;
2273							m = PHYS_TO_VM_PAGE(pa);
2274							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
2275								va, pa, m->hold_count, m->wire_count, m->flags);
2276							npte++;
2277							index++;
2278							if (index >= 2) {
2279								index = 0;
2280								printf("\n");
2281							} else {
2282								printf(" ");
2283							}
2284						}
2285					}
2286				}
2287			}
2288		}
2289	}
2290	sx_sunlock(&allproc_lock);
2291	return npte;
2292}
2293#endif
2294
2295#if defined(DEBUG)
2296
2297static void	pads __P((pmap_t pm));
2298static void	pmap_pvdump __P((vm_page_t m));
2299
2300/* print address space of pmap*/
2301static void
2302pads(pm)
2303	pmap_t pm;
2304{
2305        int i, j;
2306	vm_offset_t va;
2307	pt_entry_t *ptep;
2308
2309	if (pm == kernel_pmap)
2310		return;
2311	for (i = 0; i < 1024; i++)
2312		if (pm->pm_pdir[i])
2313			for (j = 0; j < 1024; j++) {
2314				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
2315				if (pm == kernel_pmap && va < KERNBASE)
2316					continue;
2317				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2318					continue;
2319				ptep = pmap_pte_quick(pm, va);
2320				if (pmap_pte_v(ptep))
2321					printf("%x:%x ", va, *(int *) ptep);
2322			};
2323
2324}
2325
2326static void
2327pmap_pvdump(pa)
2328	vm_offset_t pa;
2329{
2330	pv_entry_t pv;
2331
2332	printf("pa %x", pa);
2333	m = PHYS_TO_VM_PAGE(pa);
2334	for (pv = TAILQ_FIRST(&m->md.pv_list);
2335		pv;
2336		pv = TAILQ_NEXT(pv, pv_list)) {
2337		printf(" -> pmap %x, va %x",
2338		    pv->pv_pmap, pv->pv_va);
2339		pads(pv->pv_pmap);
2340	}
2341	printf(" ");
2342}
2343#endif
2344#endif
2345