pmap.c revision 248814
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: stable/9/sys/i386/xen/pmap.c 248814 2013-03-28 06:31:04Z kib $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_smp.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/ktr.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sf_buf.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#else
129#include <sys/cpuset.h>
130#endif
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#include <xen/interface/xen.h>
157#include <xen/hypervisor.h>
158#include <machine/xen/hypercall.h>
159#include <machine/xen/xenvar.h>
160#include <machine/xen/xenfunc.h>
161
162#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
163#define CPU_ENABLE_SSE
164#endif
165
166#ifndef PMAP_SHPGPERPROC
167#define PMAP_SHPGPERPROC 200
168#endif
169
170#define DIAGNOSTIC
171
172#if !defined(DIAGNOSTIC)
173#ifdef __GNUC_GNU_INLINE__
174#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
175#else
176#define PMAP_INLINE	extern inline
177#endif
178#else
179#define PMAP_INLINE
180#endif
181
182#define PV_STATS
183#ifdef PV_STATS
184#define PV_STAT(x)	do { x ; } while (0)
185#else
186#define PV_STAT(x)	do { } while (0)
187#endif
188
189/*
190 * Get PDEs and PTEs for user/kernel address space
191 */
192#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
193#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
194
195#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
196#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
197#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
198#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
199#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
200
201#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
202
203#define HAMFISTED_LOCKING
204#ifdef HAMFISTED_LOCKING
205static struct mtx createdelete_lock;
206#endif
207
208struct pmap kernel_pmap_store;
209LIST_HEAD(pmaplist, pmap);
210static struct pmaplist allpmaps;
211static struct mtx allpmaps_lock;
212
213vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
214vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
215int pgeflag = 0;		/* PG_G or-in */
216int pseflag = 0;		/* PG_PS or-in */
217
218int nkpt;
219vm_offset_t kernel_vm_end;
220extern u_int32_t KERNend;
221
222#ifdef PAE
223pt_entry_t pg_nx;
224#endif
225
226static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
227
228static int pat_works;			/* Is page attribute table sane? */
229
230/*
231 * Data for the pv entry allocation mechanism
232 */
233static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
234static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
235static int shpgperproc = PMAP_SHPGPERPROC;
236
237struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
238int pv_maxchunks;			/* How many chunks we have KVA for */
239vm_offset_t pv_vafree;			/* freelist stored in the PTE */
240
241/*
242 * All those kernel PT submaps that BSD is so fond of
243 */
244struct sysmaps {
245	struct	mtx lock;
246	pt_entry_t *CMAP1;
247	pt_entry_t *CMAP2;
248	caddr_t	CADDR1;
249	caddr_t	CADDR2;
250};
251static struct sysmaps sysmaps_pcpu[MAXCPU];
252static pt_entry_t *CMAP3;
253caddr_t ptvmmap = 0;
254static caddr_t CADDR3;
255struct msgbuf *msgbufp = 0;
256
257/*
258 * Crashdump maps.
259 */
260static caddr_t crashdumpmap;
261
262static pt_entry_t *PMAP1 = 0, *PMAP2;
263static pt_entry_t *PADDR1 = 0, *PADDR2;
264#ifdef SMP
265static int PMAP1cpu;
266static int PMAP1changedcpu;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268	   &PMAP1changedcpu, 0,
269	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270#endif
271static int PMAP1changed;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273	   &PMAP1changed, 0,
274	   "Number of times pmap_pte_quick changed PMAP1");
275static int PMAP1unchanged;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277	   &PMAP1unchanged, 0,
278	   "Number of times pmap_pte_quick didn't change PMAP1");
279static struct mtx PMAP2mutex;
280
281static void	free_pv_chunk(struct pv_chunk *pc);
282static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
283static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
284static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
285static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
286		    vm_offset_t va);
287
288static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
289    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
290static void pmap_flush_page(vm_page_t m);
291static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
292static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
293    vm_page_t *free);
294static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
295    vm_page_t *free);
296static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
297					vm_offset_t va);
298static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
299    vm_page_t m);
300
301static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
302
303static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
304static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free);
305static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
306static void pmap_pte_release(pt_entry_t *pte);
307static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
308static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
309
310static __inline void pagezero(void *page);
311
312CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
313CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
314
315/*
316 * If you get an error here, then you set KVA_PAGES wrong! See the
317 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
318 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
319 */
320CTASSERT(KERNBASE % (1 << 24) == 0);
321
322void
323pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
324{
325	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
326
327	switch (type) {
328	case SH_PD_SET_VA:
329#if 0
330		xen_queue_pt_update(shadow_pdir_ma,
331				    xpmap_ptom(val & ~(PG_RW)));
332#endif
333		xen_queue_pt_update(pdir_ma,
334				    xpmap_ptom(val));
335		break;
336	case SH_PD_SET_VA_MA:
337#if 0
338		xen_queue_pt_update(shadow_pdir_ma,
339				    val & ~(PG_RW));
340#endif
341		xen_queue_pt_update(pdir_ma, val);
342		break;
343	case SH_PD_SET_VA_CLEAR:
344#if 0
345		xen_queue_pt_update(shadow_pdir_ma, 0);
346#endif
347		xen_queue_pt_update(pdir_ma, 0);
348		break;
349	}
350}
351
352/*
353 *	Bootstrap the system enough to run with virtual memory.
354 *
355 *	On the i386 this is called after mapping has already been enabled
356 *	and just syncs the pmap module with what has already been done.
357 *	[We can't call it easily with mapping off since the kernel is not
358 *	mapped with PA == VA, hence we would have to relocate every address
359 *	from the linked base (virtual) address "KERNBASE" to the actual
360 *	(physical) address starting relative to 0]
361 */
362void
363pmap_bootstrap(vm_paddr_t firstaddr)
364{
365	vm_offset_t va;
366	pt_entry_t *pte, *unused;
367	struct sysmaps *sysmaps;
368	int i;
369
370	/*
371	 * Initialize the first available kernel virtual address.  However,
372	 * using "firstaddr" may waste a few pages of the kernel virtual
373	 * address space, because locore may not have mapped every physical
374	 * page that it allocated.  Preferably, locore would provide a first
375	 * unused virtual address in addition to "firstaddr".
376	 */
377	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
378
379	virtual_end = VM_MAX_KERNEL_ADDRESS;
380
381	/*
382	 * Initialize the kernel pmap (which is statically allocated).
383	 */
384	PMAP_LOCK_INIT(kernel_pmap);
385	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
386#ifdef PAE
387	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
388#endif
389	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
390	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
391	LIST_INIT(&allpmaps);
392	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
393	mtx_lock_spin(&allpmaps_lock);
394	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
395	mtx_unlock_spin(&allpmaps_lock);
396	if (nkpt == 0)
397		nkpt = NKPT;
398
399	/*
400	 * Reserve some special page table entries/VA space for temporary
401	 * mapping of pages.
402	 */
403#define	SYSMAP(c, p, v, n)	\
404	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
405
406	va = virtual_avail;
407	pte = vtopte(va);
408
409	/*
410	 * CMAP1/CMAP2 are used for zeroing and copying pages.
411	 * CMAP3 is used for the idle process page zeroing.
412	 */
413	for (i = 0; i < MAXCPU; i++) {
414		sysmaps = &sysmaps_pcpu[i];
415		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
416		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
417		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
418		PT_SET_MA(sysmaps->CADDR1, 0);
419		PT_SET_MA(sysmaps->CADDR2, 0);
420	}
421	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
422	PT_SET_MA(CADDR3, 0);
423
424	/*
425	 * Crashdump maps.
426	 */
427	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
428
429	/*
430	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
431	 */
432	SYSMAP(caddr_t, unused, ptvmmap, 1)
433
434	/*
435	 * msgbufp is used to map the system message buffer.
436	 */
437	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
438
439	/*
440	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
441	 * respectively.
442	 */
443	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
444	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
445
446	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
447
448	virtual_avail = va;
449
450	/*
451	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
452	 * physical memory region that is used by the ACPI wakeup code.  This
453	 * mapping must not have PG_G set.
454	 */
455#ifndef XEN
456	/*
457	 * leave here deliberately to show that this is not supported
458	 */
459#ifdef XBOX
460	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
461	 * an early stadium, we cannot yet neatly map video memory ... :-(
462	 * Better fixes are very welcome! */
463	if (!arch_i386_is_xbox)
464#endif
465	for (i = 1; i < NKPT; i++)
466		PTD[i] = 0;
467
468	/* Initialize the PAT MSR if present. */
469	pmap_init_pat();
470
471	/* Turn on PG_G on kernel page(s) */
472	pmap_set_pg();
473#endif
474
475#ifdef HAMFISTED_LOCKING
476	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
477#endif
478}
479
480/*
481 * Setup the PAT MSR.
482 */
483void
484pmap_init_pat(void)
485{
486	uint64_t pat_msr;
487
488	/* Bail if this CPU doesn't implement PAT. */
489	if (!(cpu_feature & CPUID_PAT))
490		return;
491
492	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
493	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
494		/*
495		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
496		 * Program 4 and 5 as WP and WC.
497		 * Leave 6 and 7 as UC and UC-.
498		 */
499		pat_msr = rdmsr(MSR_PAT);
500		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
501		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
502		    PAT_VALUE(5, PAT_WRITE_COMBINING);
503		pat_works = 1;
504	} else {
505		/*
506		 * Due to some Intel errata, we can only safely use the lower 4
507		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
508		 * of UC-.
509		 *
510		 *   Intel Pentium III Processor Specification Update
511		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
512		 * or Mode C Paging)
513		 *
514		 *   Intel Pentium IV  Processor Specification Update
515		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
516		 */
517		pat_msr = rdmsr(MSR_PAT);
518		pat_msr &= ~PAT_MASK(2);
519		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
520		pat_works = 0;
521	}
522	wrmsr(MSR_PAT, pat_msr);
523}
524
525/*
526 * Initialize a vm_page's machine-dependent fields.
527 */
528void
529pmap_page_init(vm_page_t m)
530{
531
532	TAILQ_INIT(&m->md.pv_list);
533	m->md.pat_mode = PAT_WRITE_BACK;
534}
535
536/*
537 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
538 * Requirements:
539 *  - Must deal with pages in order to ensure that none of the PG_* bits
540 *    are ever set, PG_V in particular.
541 *  - Assumes we can write to ptes without pte_store() atomic ops, even
542 *    on PAE systems.  This should be ok.
543 *  - Assumes nothing will ever test these addresses for 0 to indicate
544 *    no mapping instead of correctly checking PG_V.
545 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
546 * Because PG_V is never set, there can be no mappings to invalidate.
547 */
548static int ptelist_count = 0;
549static vm_offset_t
550pmap_ptelist_alloc(vm_offset_t *head)
551{
552	vm_offset_t va;
553	vm_offset_t *phead = (vm_offset_t *)*head;
554
555	if (ptelist_count == 0) {
556		printf("out of memory!!!!!!\n");
557		return (0);	/* Out of memory */
558	}
559	ptelist_count--;
560	va = phead[ptelist_count];
561	return (va);
562}
563
564static void
565pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
566{
567	vm_offset_t *phead = (vm_offset_t *)*head;
568
569	phead[ptelist_count++] = va;
570}
571
572static void
573pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
574{
575	int i, nstackpages;
576	vm_offset_t va;
577	vm_page_t m;
578
579	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
580	for (i = 0; i < nstackpages; i++) {
581		va = (vm_offset_t)base + i * PAGE_SIZE;
582		m = vm_page_alloc(NULL, i,
583		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
584		    VM_ALLOC_ZERO);
585		pmap_qenter(va, &m, 1);
586	}
587
588	*head = (vm_offset_t)base;
589	for (i = npages - 1; i >= nstackpages; i--) {
590		va = (vm_offset_t)base + i * PAGE_SIZE;
591		pmap_ptelist_free(head, va);
592	}
593}
594
595
596/*
597 *	Initialize the pmap module.
598 *	Called by vm_init, to initialize any structures that the pmap
599 *	system needs to map virtual memory.
600 */
601void
602pmap_init(void)
603{
604
605	/*
606	 * Initialize the address space (zone) for the pv entries.  Set a
607	 * high water mark so that the system can recover from excessive
608	 * numbers of pv entries.
609	 */
610	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
611	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
612	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
613	pv_entry_max = roundup(pv_entry_max, _NPCPV);
614	pv_entry_high_water = 9 * (pv_entry_max / 10);
615
616	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
617	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
618	    PAGE_SIZE * pv_maxchunks);
619	if (pv_chunkbase == NULL)
620		panic("pmap_init: not enough kvm for pv chunks");
621	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
622}
623
624
625SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
626	"Max number of PV entries");
627SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
628	"Page share factor per proc");
629
630static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
631    "2/4MB page mapping counters");
632
633static u_long pmap_pde_mappings;
634SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
635    &pmap_pde_mappings, 0, "2/4MB page mappings");
636
637/***************************************************
638 * Low level helper routines.....
639 ***************************************************/
640
641/*
642 * Determine the appropriate bits to set in a PTE or PDE for a specified
643 * caching mode.
644 */
645int
646pmap_cache_bits(int mode, boolean_t is_pde)
647{
648	int pat_flag, pat_index, cache_bits;
649
650	/* The PAT bit is different for PTE's and PDE's. */
651	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
652
653	/* If we don't support PAT, map extended modes to older ones. */
654	if (!(cpu_feature & CPUID_PAT)) {
655		switch (mode) {
656		case PAT_UNCACHEABLE:
657		case PAT_WRITE_THROUGH:
658		case PAT_WRITE_BACK:
659			break;
660		case PAT_UNCACHED:
661		case PAT_WRITE_COMBINING:
662		case PAT_WRITE_PROTECTED:
663			mode = PAT_UNCACHEABLE;
664			break;
665		}
666	}
667
668	/* Map the caching mode to a PAT index. */
669	if (pat_works) {
670		switch (mode) {
671			case PAT_UNCACHEABLE:
672				pat_index = 3;
673				break;
674			case PAT_WRITE_THROUGH:
675				pat_index = 1;
676				break;
677			case PAT_WRITE_BACK:
678				pat_index = 0;
679				break;
680			case PAT_UNCACHED:
681				pat_index = 2;
682				break;
683			case PAT_WRITE_COMBINING:
684				pat_index = 5;
685				break;
686			case PAT_WRITE_PROTECTED:
687				pat_index = 4;
688				break;
689			default:
690				panic("Unknown caching mode %d\n", mode);
691		}
692	} else {
693		switch (mode) {
694			case PAT_UNCACHED:
695			case PAT_UNCACHEABLE:
696			case PAT_WRITE_PROTECTED:
697				pat_index = 3;
698				break;
699			case PAT_WRITE_THROUGH:
700				pat_index = 1;
701				break;
702			case PAT_WRITE_BACK:
703				pat_index = 0;
704				break;
705			case PAT_WRITE_COMBINING:
706				pat_index = 2;
707				break;
708			default:
709				panic("Unknown caching mode %d\n", mode);
710		}
711	}
712
713	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
714	cache_bits = 0;
715	if (pat_index & 0x4)
716		cache_bits |= pat_flag;
717	if (pat_index & 0x2)
718		cache_bits |= PG_NC_PCD;
719	if (pat_index & 0x1)
720		cache_bits |= PG_NC_PWT;
721	return (cache_bits);
722}
723#ifdef SMP
724/*
725 * For SMP, these functions have to use the IPI mechanism for coherence.
726 *
727 * N.B.: Before calling any of the following TLB invalidation functions,
728 * the calling processor must ensure that all stores updating a non-
729 * kernel page table are globally performed.  Otherwise, another
730 * processor could cache an old, pre-update entry without being
731 * invalidated.  This can happen one of two ways: (1) The pmap becomes
732 * active on another processor after its pm_active field is checked by
733 * one of the following functions but before a store updating the page
734 * table is globally performed. (2) The pmap becomes active on another
735 * processor before its pm_active field is checked but due to
736 * speculative loads one of the following functions stills reads the
737 * pmap as inactive on the other processor.
738 *
739 * The kernel page table is exempt because its pm_active field is
740 * immutable.  The kernel page table is always active on every
741 * processor.
742 */
743void
744pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
745{
746	cpuset_t other_cpus;
747	u_int cpuid;
748
749	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
750	    pmap, va);
751
752	sched_pin();
753	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
754		invlpg(va);
755		smp_invlpg(va);
756	} else {
757		cpuid = PCPU_GET(cpuid);
758		other_cpus = all_cpus;
759		CPU_CLR(cpuid, &other_cpus);
760		if (CPU_ISSET(cpuid, &pmap->pm_active))
761			invlpg(va);
762		CPU_AND(&other_cpus, &pmap->pm_active);
763		if (!CPU_EMPTY(&other_cpus))
764			smp_masked_invlpg(other_cpus, va);
765	}
766	sched_unpin();
767	PT_UPDATES_FLUSH();
768}
769
770void
771pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
772{
773	cpuset_t other_cpus;
774	vm_offset_t addr;
775	u_int cpuid;
776
777	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
778	    pmap, sva, eva);
779
780	sched_pin();
781	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
782		for (addr = sva; addr < eva; addr += PAGE_SIZE)
783			invlpg(addr);
784		smp_invlpg_range(sva, eva);
785	} else {
786		cpuid = PCPU_GET(cpuid);
787		other_cpus = all_cpus;
788		CPU_CLR(cpuid, &other_cpus);
789		if (CPU_ISSET(cpuid, &pmap->pm_active))
790			for (addr = sva; addr < eva; addr += PAGE_SIZE)
791				invlpg(addr);
792		CPU_AND(&other_cpus, &pmap->pm_active);
793		if (!CPU_EMPTY(&other_cpus))
794			smp_masked_invlpg_range(other_cpus, sva, eva);
795	}
796	sched_unpin();
797	PT_UPDATES_FLUSH();
798}
799
800void
801pmap_invalidate_all(pmap_t pmap)
802{
803	cpuset_t other_cpus;
804	u_int cpuid;
805
806	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
807
808	sched_pin();
809	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
810		invltlb();
811		smp_invltlb();
812	} else {
813		cpuid = PCPU_GET(cpuid);
814		other_cpus = all_cpus;
815		CPU_CLR(cpuid, &other_cpus);
816		if (CPU_ISSET(cpuid, &pmap->pm_active))
817			invltlb();
818		CPU_AND(&other_cpus, &pmap->pm_active);
819		if (!CPU_EMPTY(&other_cpus))
820			smp_masked_invltlb(other_cpus);
821	}
822	sched_unpin();
823}
824
825void
826pmap_invalidate_cache(void)
827{
828
829	sched_pin();
830	wbinvd();
831	smp_cache_flush();
832	sched_unpin();
833}
834#else /* !SMP */
835/*
836 * Normal, non-SMP, 486+ invalidation functions.
837 * We inline these within pmap.c for speed.
838 */
839PMAP_INLINE void
840pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
841{
842	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
843	    pmap, va);
844
845	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
846		invlpg(va);
847	PT_UPDATES_FLUSH();
848}
849
850PMAP_INLINE void
851pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
852{
853	vm_offset_t addr;
854
855	if (eva - sva > PAGE_SIZE)
856		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
857		    pmap, sva, eva);
858
859	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
860		for (addr = sva; addr < eva; addr += PAGE_SIZE)
861			invlpg(addr);
862	PT_UPDATES_FLUSH();
863}
864
865PMAP_INLINE void
866pmap_invalidate_all(pmap_t pmap)
867{
868
869	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
870
871	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
872		invltlb();
873}
874
875PMAP_INLINE void
876pmap_invalidate_cache(void)
877{
878
879	wbinvd();
880}
881#endif /* !SMP */
882
883#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
884
885void
886pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
887{
888
889	KASSERT((sva & PAGE_MASK) == 0,
890	    ("pmap_invalidate_cache_range: sva not page-aligned"));
891	KASSERT((eva & PAGE_MASK) == 0,
892	    ("pmap_invalidate_cache_range: eva not page-aligned"));
893
894	if (cpu_feature & CPUID_SS)
895		; /* If "Self Snoop" is supported, do nothing. */
896	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
897	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
898
899		/*
900		 * Otherwise, do per-cache line flush.  Use the mfence
901		 * instruction to insure that previous stores are
902		 * included in the write-back.  The processor
903		 * propagates flush to other processors in the cache
904		 * coherence domain.
905		 */
906		mfence();
907		for (; sva < eva; sva += cpu_clflush_line_size)
908			clflush(sva);
909		mfence();
910	} else {
911
912		/*
913		 * No targeted cache flush methods are supported by CPU,
914		 * or the supplied range is bigger than 2MB.
915		 * Globally invalidate cache.
916		 */
917		pmap_invalidate_cache();
918	}
919}
920
921void
922pmap_invalidate_cache_pages(vm_page_t *pages, int count)
923{
924	int i;
925
926	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
927	    (cpu_feature & CPUID_CLFSH) == 0) {
928		pmap_invalidate_cache();
929	} else {
930		for (i = 0; i < count; i++)
931			pmap_flush_page(pages[i]);
932	}
933}
934
935/*
936 * Are we current address space or kernel?  N.B. We return FALSE when
937 * a pmap's page table is in use because a kernel thread is borrowing
938 * it.  The borrowed page table can change spontaneously, making any
939 * dependence on its continued use subject to a race condition.
940 */
941static __inline int
942pmap_is_current(pmap_t pmap)
943{
944
945	return (pmap == kernel_pmap ||
946	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
947	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
948}
949
950/*
951 * If the given pmap is not the current or kernel pmap, the returned pte must
952 * be released by passing it to pmap_pte_release().
953 */
954pt_entry_t *
955pmap_pte(pmap_t pmap, vm_offset_t va)
956{
957	pd_entry_t newpf;
958	pd_entry_t *pde;
959
960	pde = pmap_pde(pmap, va);
961	if (*pde & PG_PS)
962		return (pde);
963	if (*pde != 0) {
964		/* are we current address space or kernel? */
965		if (pmap_is_current(pmap))
966			return (vtopte(va));
967		mtx_lock(&PMAP2mutex);
968		newpf = *pde & PG_FRAME;
969		if ((*PMAP2 & PG_FRAME) != newpf) {
970			vm_page_lock_queues();
971			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
972			vm_page_unlock_queues();
973			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
974			    pmap, va, (*PMAP2 & 0xffffffff));
975		}
976		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
977	}
978	return (NULL);
979}
980
981/*
982 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
983 * being NULL.
984 */
985static __inline void
986pmap_pte_release(pt_entry_t *pte)
987{
988
989	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
990		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
991		    *PMAP2);
992		vm_page_lock_queues();
993		PT_SET_VA(PMAP2, 0, TRUE);
994		vm_page_unlock_queues();
995		mtx_unlock(&PMAP2mutex);
996	}
997}
998
999static __inline void
1000invlcaddr(void *caddr)
1001{
1002
1003	invlpg((u_int)caddr);
1004	PT_UPDATES_FLUSH();
1005}
1006
1007/*
1008 * Super fast pmap_pte routine best used when scanning
1009 * the pv lists.  This eliminates many coarse-grained
1010 * invltlb calls.  Note that many of the pv list
1011 * scans are across different pmaps.  It is very wasteful
1012 * to do an entire invltlb for checking a single mapping.
1013 *
1014 * If the given pmap is not the current pmap, vm_page_queue_mtx
1015 * must be held and curthread pinned to a CPU.
1016 */
1017static pt_entry_t *
1018pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1019{
1020	pd_entry_t newpf;
1021	pd_entry_t *pde;
1022
1023	pde = pmap_pde(pmap, va);
1024	if (*pde & PG_PS)
1025		return (pde);
1026	if (*pde != 0) {
1027		/* are we current address space or kernel? */
1028		if (pmap_is_current(pmap))
1029			return (vtopte(va));
1030		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1031		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1032		newpf = *pde & PG_FRAME;
1033		if ((*PMAP1 & PG_FRAME) != newpf) {
1034			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1035			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1036			    pmap, va, (u_long)*PMAP1);
1037
1038#ifdef SMP
1039			PMAP1cpu = PCPU_GET(cpuid);
1040#endif
1041			PMAP1changed++;
1042		} else
1043#ifdef SMP
1044		if (PMAP1cpu != PCPU_GET(cpuid)) {
1045			PMAP1cpu = PCPU_GET(cpuid);
1046			invlcaddr(PADDR1);
1047			PMAP1changedcpu++;
1048		} else
1049#endif
1050			PMAP1unchanged++;
1051		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1052	}
1053	return (0);
1054}
1055
1056/*
1057 *	Routine:	pmap_extract
1058 *	Function:
1059 *		Extract the physical page address associated
1060 *		with the given map/virtual_address pair.
1061 */
1062vm_paddr_t
1063pmap_extract(pmap_t pmap, vm_offset_t va)
1064{
1065	vm_paddr_t rtval;
1066	pt_entry_t *pte;
1067	pd_entry_t pde;
1068	pt_entry_t pteval;
1069
1070	rtval = 0;
1071	PMAP_LOCK(pmap);
1072	pde = pmap->pm_pdir[va >> PDRSHIFT];
1073	if (pde != 0) {
1074		if ((pde & PG_PS) != 0) {
1075			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1076			PMAP_UNLOCK(pmap);
1077			return rtval;
1078		}
1079		pte = pmap_pte(pmap, va);
1080		pteval = *pte ? xpmap_mtop(*pte) : 0;
1081		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1082		pmap_pte_release(pte);
1083	}
1084	PMAP_UNLOCK(pmap);
1085	return (rtval);
1086}
1087
1088/*
1089 *	Routine:	pmap_extract_ma
1090 *	Function:
1091 *		Like pmap_extract, but returns machine address
1092 */
1093vm_paddr_t
1094pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1095{
1096	vm_paddr_t rtval;
1097	pt_entry_t *pte;
1098	pd_entry_t pde;
1099
1100	rtval = 0;
1101	PMAP_LOCK(pmap);
1102	pde = pmap->pm_pdir[va >> PDRSHIFT];
1103	if (pde != 0) {
1104		if ((pde & PG_PS) != 0) {
1105			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1106			PMAP_UNLOCK(pmap);
1107			return rtval;
1108		}
1109		pte = pmap_pte(pmap, va);
1110		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1111		pmap_pte_release(pte);
1112	}
1113	PMAP_UNLOCK(pmap);
1114	return (rtval);
1115}
1116
1117/*
1118 *	Routine:	pmap_extract_and_hold
1119 *	Function:
1120 *		Atomically extract and hold the physical page
1121 *		with the given pmap and virtual address pair
1122 *		if that mapping permits the given protection.
1123 */
1124vm_page_t
1125pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1126{
1127	pd_entry_t pde;
1128	pt_entry_t pte, *ptep;
1129	vm_page_t m;
1130	vm_paddr_t pa;
1131
1132	pa = 0;
1133	m = NULL;
1134	PMAP_LOCK(pmap);
1135retry:
1136	pde = PT_GET(pmap_pde(pmap, va));
1137	if (pde != 0) {
1138		if (pde & PG_PS) {
1139			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1140				if (vm_page_pa_tryrelock(pmap, (pde &
1141				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1142					goto retry;
1143				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1144				    (va & PDRMASK));
1145				vm_page_hold(m);
1146			}
1147		} else {
1148			ptep = pmap_pte(pmap, va);
1149			pte = PT_GET(ptep);
1150			pmap_pte_release(ptep);
1151			if (pte != 0 &&
1152			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1153				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1154				    &pa))
1155					goto retry;
1156				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1157				vm_page_hold(m);
1158			}
1159		}
1160	}
1161	PA_UNLOCK_COND(pa);
1162	PMAP_UNLOCK(pmap);
1163	return (m);
1164}
1165
1166/***************************************************
1167 * Low level mapping routines.....
1168 ***************************************************/
1169
1170/*
1171 * Add a wired page to the kva.
1172 * Note: not SMP coherent.
1173 *
1174 * This function may be used before pmap_bootstrap() is called.
1175 */
1176void
1177pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1178{
1179
1180	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1181}
1182
1183void
1184pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1185{
1186	pt_entry_t *pte;
1187
1188	pte = vtopte(va);
1189	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1190}
1191
1192static __inline void
1193pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1194{
1195
1196	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1197}
1198
1199/*
1200 * Remove a page from the kernel pagetables.
1201 * Note: not SMP coherent.
1202 *
1203 * This function may be used before pmap_bootstrap() is called.
1204 */
1205PMAP_INLINE void
1206pmap_kremove(vm_offset_t va)
1207{
1208	pt_entry_t *pte;
1209
1210	pte = vtopte(va);
1211	PT_CLEAR_VA(pte, FALSE);
1212}
1213
1214/*
1215 *	Used to map a range of physical addresses into kernel
1216 *	virtual address space.
1217 *
1218 *	The value passed in '*virt' is a suggested virtual address for
1219 *	the mapping. Architectures which can support a direct-mapped
1220 *	physical to virtual region can return the appropriate address
1221 *	within that region, leaving '*virt' unchanged. Other
1222 *	architectures should map the pages starting at '*virt' and
1223 *	update '*virt' with the first usable address after the mapped
1224 *	region.
1225 */
1226vm_offset_t
1227pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1228{
1229	vm_offset_t va, sva;
1230
1231	va = sva = *virt;
1232	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1233	    va, start, end, prot);
1234	while (start < end) {
1235		pmap_kenter(va, start);
1236		va += PAGE_SIZE;
1237		start += PAGE_SIZE;
1238	}
1239	pmap_invalidate_range(kernel_pmap, sva, va);
1240	*virt = va;
1241	return (sva);
1242}
1243
1244
1245/*
1246 * Add a list of wired pages to the kva
1247 * this routine is only used for temporary
1248 * kernel mappings that do not need to have
1249 * page modification or references recorded.
1250 * Note that old mappings are simply written
1251 * over.  The page *must* be wired.
1252 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1253 */
1254void
1255pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1256{
1257	pt_entry_t *endpte, *pte;
1258	vm_paddr_t pa;
1259	vm_offset_t va = sva;
1260	int mclcount = 0;
1261	multicall_entry_t mcl[16];
1262	multicall_entry_t *mclp = mcl;
1263	int error;
1264
1265	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1266	pte = vtopte(sva);
1267	endpte = pte + count;
1268	while (pte < endpte) {
1269		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1270
1271		mclp->op = __HYPERVISOR_update_va_mapping;
1272		mclp->args[0] = va;
1273		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1274		mclp->args[2] = (uint32_t)(pa >> 32);
1275		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1276
1277		va += PAGE_SIZE;
1278		pte++;
1279		ma++;
1280		mclp++;
1281		mclcount++;
1282		if (mclcount == 16) {
1283			error = HYPERVISOR_multicall(mcl, mclcount);
1284			mclp = mcl;
1285			mclcount = 0;
1286			KASSERT(error == 0, ("bad multicall %d", error));
1287		}
1288	}
1289	if (mclcount) {
1290		error = HYPERVISOR_multicall(mcl, mclcount);
1291		KASSERT(error == 0, ("bad multicall %d", error));
1292	}
1293
1294#ifdef INVARIANTS
1295	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1296		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1297#endif
1298}
1299
1300/*
1301 * This routine tears out page mappings from the
1302 * kernel -- it is meant only for temporary mappings.
1303 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1304 */
1305void
1306pmap_qremove(vm_offset_t sva, int count)
1307{
1308	vm_offset_t va;
1309
1310	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1311	va = sva;
1312	vm_page_lock_queues();
1313	critical_enter();
1314	while (count-- > 0) {
1315		pmap_kremove(va);
1316		va += PAGE_SIZE;
1317	}
1318	PT_UPDATES_FLUSH();
1319	pmap_invalidate_range(kernel_pmap, sva, va);
1320	critical_exit();
1321	vm_page_unlock_queues();
1322}
1323
1324/***************************************************
1325 * Page table page management routines.....
1326 ***************************************************/
1327static __inline void
1328pmap_free_zero_pages(vm_page_t free)
1329{
1330	vm_page_t m;
1331
1332	while (free != NULL) {
1333		m = free;
1334		free = m->right;
1335		vm_page_free_zero(m);
1336	}
1337}
1338
1339/*
1340 * Decrements a page table page's wire count, which is used to record the
1341 * number of valid page table entries within the page.  If the wire count
1342 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1343 * page table page was unmapped and FALSE otherwise.
1344 */
1345static inline boolean_t
1346pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1347{
1348
1349	--m->wire_count;
1350	if (m->wire_count == 0) {
1351		_pmap_unwire_ptp(pmap, m, free);
1352		return (TRUE);
1353	} else
1354		return (FALSE);
1355}
1356
1357static void
1358_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1359{
1360	vm_offset_t pteva;
1361
1362	PT_UPDATES_FLUSH();
1363	/*
1364	 * unmap the page table page
1365	 */
1366	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1367	/*
1368	 * page *might* contain residual mapping :-/
1369	 */
1370	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1371	pmap_zero_page(m);
1372	--pmap->pm_stats.resident_count;
1373
1374	/*
1375	 * This is a release store so that the ordinary store unmapping
1376	 * the page table page is globally performed before TLB shoot-
1377	 * down is begun.
1378	 */
1379	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1380
1381	/*
1382	 * Do an invltlb to make the invalidated mapping
1383	 * take effect immediately.
1384	 */
1385	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1386	pmap_invalidate_page(pmap, pteva);
1387
1388	/*
1389	 * Put page on a list so that it is released after
1390	 * *ALL* TLB shootdown is done
1391	 */
1392	m->right = *free;
1393	*free = m;
1394}
1395
1396/*
1397 * After removing a page table entry, this routine is used to
1398 * conditionally free the page, and manage the hold/wire counts.
1399 */
1400static int
1401pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1402{
1403	pd_entry_t ptepde;
1404	vm_page_t mpte;
1405
1406	if (va >= VM_MAXUSER_ADDRESS)
1407		return (0);
1408	ptepde = PT_GET(pmap_pde(pmap, va));
1409	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1410	return (pmap_unwire_ptp(pmap, mpte, free));
1411}
1412
1413/*
1414 * Initialize the pmap for the swapper process.
1415 */
1416void
1417pmap_pinit0(pmap_t pmap)
1418{
1419
1420	PMAP_LOCK_INIT(pmap);
1421	/*
1422	 * Since the page table directory is shared with the kernel pmap,
1423	 * which is already included in the list "allpmaps", this pmap does
1424	 * not need to be inserted into that list.
1425	 */
1426	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1427#ifdef PAE
1428	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1429#endif
1430	CPU_ZERO(&pmap->pm_active);
1431	PCPU_SET(curpmap, pmap);
1432	TAILQ_INIT(&pmap->pm_pvchunk);
1433	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1434}
1435
1436/*
1437 * Initialize a preallocated and zeroed pmap structure,
1438 * such as one in a vmspace structure.
1439 */
1440int
1441pmap_pinit(pmap_t pmap)
1442{
1443	vm_page_t m, ptdpg[NPGPTD + 1];
1444	int npgptd = NPGPTD + 1;
1445	int i;
1446
1447#ifdef HAMFISTED_LOCKING
1448	mtx_lock(&createdelete_lock);
1449#endif
1450
1451	PMAP_LOCK_INIT(pmap);
1452
1453	/*
1454	 * No need to allocate page table space yet but we do need a valid
1455	 * page directory table.
1456	 */
1457	if (pmap->pm_pdir == NULL) {
1458		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1459		    NBPTD);
1460		if (pmap->pm_pdir == NULL) {
1461			PMAP_LOCK_DESTROY(pmap);
1462#ifdef HAMFISTED_LOCKING
1463			mtx_unlock(&createdelete_lock);
1464#endif
1465			return (0);
1466		}
1467#ifdef PAE
1468		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1469#endif
1470	}
1471
1472	/*
1473	 * allocate the page directory page(s)
1474	 */
1475	for (i = 0; i < npgptd;) {
1476		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1477		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1478		if (m == NULL)
1479			VM_WAIT;
1480		else {
1481			ptdpg[i++] = m;
1482		}
1483	}
1484
1485	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1486
1487	for (i = 0; i < NPGPTD; i++)
1488		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1489			pagezero(pmap->pm_pdir + (i * NPDEPG));
1490
1491	mtx_lock_spin(&allpmaps_lock);
1492	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1493	/* Copy the kernel page table directory entries. */
1494	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1495	mtx_unlock_spin(&allpmaps_lock);
1496
1497#ifdef PAE
1498	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1499	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1500		bzero(pmap->pm_pdpt, PAGE_SIZE);
1501	for (i = 0; i < NPGPTD; i++) {
1502		vm_paddr_t ma;
1503
1504		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1505		pmap->pm_pdpt[i] = ma | PG_V;
1506
1507	}
1508#endif
1509	for (i = 0; i < NPGPTD; i++) {
1510		pt_entry_t *pd;
1511		vm_paddr_t ma;
1512
1513		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1514		pd = pmap->pm_pdir + (i * NPDEPG);
1515		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1516#if 0
1517		xen_pgd_pin(ma);
1518#endif
1519	}
1520
1521#ifdef PAE
1522	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1523#endif
1524	vm_page_lock_queues();
1525	xen_flush_queue();
1526	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1527	for (i = 0; i < NPGPTD; i++) {
1528		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1529		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1530	}
1531	xen_flush_queue();
1532	vm_page_unlock_queues();
1533	CPU_ZERO(&pmap->pm_active);
1534	TAILQ_INIT(&pmap->pm_pvchunk);
1535	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1536
1537#ifdef HAMFISTED_LOCKING
1538	mtx_unlock(&createdelete_lock);
1539#endif
1540	return (1);
1541}
1542
1543/*
1544 * this routine is called if the page table page is not
1545 * mapped correctly.
1546 */
1547static vm_page_t
1548_pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
1549{
1550	vm_paddr_t ptema;
1551	vm_page_t m;
1552
1553	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1554	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1555	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1556
1557	/*
1558	 * Allocate a page table page.
1559	 */
1560	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1561	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1562		if (flags & M_WAITOK) {
1563			PMAP_UNLOCK(pmap);
1564			vm_page_unlock_queues();
1565			VM_WAIT;
1566			vm_page_lock_queues();
1567			PMAP_LOCK(pmap);
1568		}
1569
1570		/*
1571		 * Indicate the need to retry.  While waiting, the page table
1572		 * page may have been allocated.
1573		 */
1574		return (NULL);
1575	}
1576	if ((m->flags & PG_ZERO) == 0)
1577		pmap_zero_page(m);
1578
1579	/*
1580	 * Map the pagetable page into the process address space, if
1581	 * it isn't already there.
1582	 */
1583
1584	pmap->pm_stats.resident_count++;
1585
1586	ptema = VM_PAGE_TO_MACH(m);
1587	xen_pt_pin(ptema);
1588	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1589		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1590
1591	KASSERT(pmap->pm_pdir[ptepindex],
1592	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1593	return (m);
1594}
1595
1596static vm_page_t
1597pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1598{
1599	u_int ptepindex;
1600	pd_entry_t ptema;
1601	vm_page_t m;
1602
1603	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1604	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1605	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1606
1607	/*
1608	 * Calculate pagetable page index
1609	 */
1610	ptepindex = va >> PDRSHIFT;
1611retry:
1612	/*
1613	 * Get the page directory entry
1614	 */
1615	ptema = pmap->pm_pdir[ptepindex];
1616
1617	/*
1618	 * This supports switching from a 4MB page to a
1619	 * normal 4K page.
1620	 */
1621	if (ptema & PG_PS) {
1622		/*
1623		 * XXX
1624		 */
1625		pmap->pm_pdir[ptepindex] = 0;
1626		ptema = 0;
1627		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1628		pmap_invalidate_all(kernel_pmap);
1629	}
1630
1631	/*
1632	 * If the page table page is mapped, we just increment the
1633	 * hold count, and activate it.
1634	 */
1635	if (ptema & PG_V) {
1636		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1637		m->wire_count++;
1638	} else {
1639		/*
1640		 * Here if the pte page isn't mapped, or if it has
1641		 * been deallocated.
1642		 */
1643		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1644		    pmap, va, flags);
1645		m = _pmap_allocpte(pmap, ptepindex, flags);
1646		if (m == NULL && (flags & M_WAITOK))
1647			goto retry;
1648
1649		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1650	}
1651	return (m);
1652}
1653
1654
1655/***************************************************
1656* Pmap allocation/deallocation routines.
1657 ***************************************************/
1658
1659#ifdef SMP
1660/*
1661 * Deal with a SMP shootdown of other users of the pmap that we are
1662 * trying to dispose of.  This can be a bit hairy.
1663 */
1664static cpuset_t *lazymask;
1665static u_int lazyptd;
1666static volatile u_int lazywait;
1667
1668void pmap_lazyfix_action(void);
1669
1670void
1671pmap_lazyfix_action(void)
1672{
1673
1674#ifdef COUNT_IPIS
1675	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1676#endif
1677	if (rcr3() == lazyptd)
1678		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1679	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1680	atomic_store_rel_int(&lazywait, 1);
1681}
1682
1683static void
1684pmap_lazyfix_self(u_int cpuid)
1685{
1686
1687	if (rcr3() == lazyptd)
1688		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1689	CPU_CLR_ATOMIC(cpuid, lazymask);
1690}
1691
1692
1693static void
1694pmap_lazyfix(pmap_t pmap)
1695{
1696	cpuset_t mymask, mask;
1697	u_int cpuid, spins;
1698	int lsb;
1699
1700	mask = pmap->pm_active;
1701	while (!CPU_EMPTY(&mask)) {
1702		spins = 50000000;
1703
1704		/* Find least significant set bit. */
1705		lsb = cpusetobj_ffs(&mask);
1706		MPASS(lsb != 0);
1707		lsb--;
1708		CPU_SETOF(lsb, &mask);
1709		mtx_lock_spin(&smp_ipi_mtx);
1710#ifdef PAE
1711		lazyptd = vtophys(pmap->pm_pdpt);
1712#else
1713		lazyptd = vtophys(pmap->pm_pdir);
1714#endif
1715		cpuid = PCPU_GET(cpuid);
1716
1717		/* Use a cpuset just for having an easy check. */
1718		CPU_SETOF(cpuid, &mymask);
1719		if (!CPU_CMP(&mask, &mymask)) {
1720			lazymask = &pmap->pm_active;
1721			pmap_lazyfix_self(cpuid);
1722		} else {
1723			atomic_store_rel_int((u_int *)&lazymask,
1724			    (u_int)&pmap->pm_active);
1725			atomic_store_rel_int(&lazywait, 0);
1726			ipi_selected(mask, IPI_LAZYPMAP);
1727			while (lazywait == 0) {
1728				ia32_pause();
1729				if (--spins == 0)
1730					break;
1731			}
1732		}
1733		mtx_unlock_spin(&smp_ipi_mtx);
1734		if (spins == 0)
1735			printf("pmap_lazyfix: spun for 50000000\n");
1736		mask = pmap->pm_active;
1737	}
1738}
1739
1740#else	/* SMP */
1741
1742/*
1743 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1744 * unlikely to have to even execute this code, including the fact
1745 * that the cleanup is deferred until the parent does a wait(2), which
1746 * means that another userland process has run.
1747 */
1748static void
1749pmap_lazyfix(pmap_t pmap)
1750{
1751	u_int cr3;
1752
1753	cr3 = vtophys(pmap->pm_pdir);
1754	if (cr3 == rcr3()) {
1755		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1756		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1757	}
1758}
1759#endif	/* SMP */
1760
1761/*
1762 * Release any resources held by the given physical map.
1763 * Called when a pmap initialized by pmap_pinit is being released.
1764 * Should only be called if the map contains no valid mappings.
1765 */
1766void
1767pmap_release(pmap_t pmap)
1768{
1769	vm_page_t m, ptdpg[2*NPGPTD+1];
1770	vm_paddr_t ma;
1771	int i;
1772#ifdef PAE
1773	int npgptd = NPGPTD + 1;
1774#else
1775	int npgptd = NPGPTD;
1776#endif
1777
1778	KASSERT(pmap->pm_stats.resident_count == 0,
1779	    ("pmap_release: pmap resident count %ld != 0",
1780	    pmap->pm_stats.resident_count));
1781	PT_UPDATES_FLUSH();
1782
1783#ifdef HAMFISTED_LOCKING
1784	mtx_lock(&createdelete_lock);
1785#endif
1786
1787	pmap_lazyfix(pmap);
1788	mtx_lock_spin(&allpmaps_lock);
1789	LIST_REMOVE(pmap, pm_list);
1790	mtx_unlock_spin(&allpmaps_lock);
1791
1792	for (i = 0; i < NPGPTD; i++)
1793		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1794	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1795#ifdef PAE
1796	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1797#endif
1798
1799	for (i = 0; i < npgptd; i++) {
1800		m = ptdpg[i];
1801		ma = VM_PAGE_TO_MACH(m);
1802		/* unpinning L1 and L2 treated the same */
1803#if 0
1804                xen_pgd_unpin(ma);
1805#else
1806		if (i == NPGPTD)
1807	                xen_pgd_unpin(ma);
1808#endif
1809#ifdef PAE
1810		if (i < NPGPTD)
1811			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1812			    ("pmap_release: got wrong ptd page"));
1813#endif
1814		m->wire_count--;
1815		atomic_subtract_int(&cnt.v_wire_count, 1);
1816		vm_page_free(m);
1817	}
1818#ifdef PAE
1819	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1820#endif
1821	PMAP_LOCK_DESTROY(pmap);
1822
1823#ifdef HAMFISTED_LOCKING
1824	mtx_unlock(&createdelete_lock);
1825#endif
1826}
1827
1828static int
1829kvm_size(SYSCTL_HANDLER_ARGS)
1830{
1831	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1832
1833	return (sysctl_handle_long(oidp, &ksize, 0, req));
1834}
1835SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1836    0, 0, kvm_size, "IU", "Size of KVM");
1837
1838static int
1839kvm_free(SYSCTL_HANDLER_ARGS)
1840{
1841	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1842
1843	return (sysctl_handle_long(oidp, &kfree, 0, req));
1844}
1845SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1846    0, 0, kvm_free, "IU", "Amount of KVM free");
1847
1848/*
1849 * grow the number of kernel page table entries, if needed
1850 */
1851void
1852pmap_growkernel(vm_offset_t addr)
1853{
1854	struct pmap *pmap;
1855	vm_paddr_t ptppaddr;
1856	vm_page_t nkpg;
1857	pd_entry_t newpdir;
1858
1859	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1860	if (kernel_vm_end == 0) {
1861		kernel_vm_end = KERNBASE;
1862		nkpt = 0;
1863		while (pdir_pde(PTD, kernel_vm_end)) {
1864			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1865			nkpt++;
1866			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1867				kernel_vm_end = kernel_map->max_offset;
1868				break;
1869			}
1870		}
1871	}
1872	addr = roundup2(addr, NBPDR);
1873	if (addr - 1 >= kernel_map->max_offset)
1874		addr = kernel_map->max_offset;
1875	while (kernel_vm_end < addr) {
1876		if (pdir_pde(PTD, kernel_vm_end)) {
1877			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1878			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1879				kernel_vm_end = kernel_map->max_offset;
1880				break;
1881			}
1882			continue;
1883		}
1884
1885		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1886		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1887		    VM_ALLOC_ZERO);
1888		if (nkpg == NULL)
1889			panic("pmap_growkernel: no memory to grow kernel");
1890
1891		nkpt++;
1892
1893		if ((nkpg->flags & PG_ZERO) == 0)
1894			pmap_zero_page(nkpg);
1895		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1896		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1897		vm_page_lock_queues();
1898		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1899		mtx_lock_spin(&allpmaps_lock);
1900		LIST_FOREACH(pmap, &allpmaps, pm_list)
1901			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1902
1903		mtx_unlock_spin(&allpmaps_lock);
1904		vm_page_unlock_queues();
1905
1906		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1907		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1908			kernel_vm_end = kernel_map->max_offset;
1909			break;
1910		}
1911	}
1912}
1913
1914
1915/***************************************************
1916 * page management routines.
1917 ***************************************************/
1918
1919CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1920CTASSERT(_NPCM == 11);
1921CTASSERT(_NPCPV == 336);
1922
1923static __inline struct pv_chunk *
1924pv_to_chunk(pv_entry_t pv)
1925{
1926
1927	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1928}
1929
1930#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1931
1932#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1933#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1934
1935static const uint32_t pc_freemask[_NPCM] = {
1936	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1937	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1938	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1939	PC_FREE0_9, PC_FREE10
1940};
1941
1942SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1943	"Current number of pv entries");
1944
1945#ifdef PV_STATS
1946static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1947
1948SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1949	"Current number of pv entry chunks");
1950SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1951	"Current number of pv entry chunks allocated");
1952SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1953	"Current number of pv entry chunks frees");
1954SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1955	"Number of times tried to get a chunk page but failed.");
1956
1957static long pv_entry_frees, pv_entry_allocs;
1958static int pv_entry_spare;
1959
1960SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1961	"Current number of pv entry frees");
1962SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1963	"Current number of pv entry allocs");
1964SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1965	"Current number of spare pv entries");
1966#endif
1967
1968/*
1969 * We are in a serious low memory condition.  Resort to
1970 * drastic measures to free some pages so we can allocate
1971 * another pv entry chunk.
1972 */
1973static vm_page_t
1974pmap_pv_reclaim(pmap_t locked_pmap)
1975{
1976	struct pch newtail;
1977	struct pv_chunk *pc;
1978	pmap_t pmap;
1979	pt_entry_t *pte, tpte;
1980	pv_entry_t pv;
1981	vm_offset_t va;
1982	vm_page_t free, m, m_pc;
1983	uint32_t inuse;
1984	int bit, field, freed;
1985
1986	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1987	pmap = NULL;
1988	free = m_pc = NULL;
1989	TAILQ_INIT(&newtail);
1990	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
1991	    free == NULL)) {
1992		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1993		if (pmap != pc->pc_pmap) {
1994			if (pmap != NULL) {
1995				pmap_invalidate_all(pmap);
1996				if (pmap != locked_pmap)
1997					PMAP_UNLOCK(pmap);
1998			}
1999			pmap = pc->pc_pmap;
2000			/* Avoid deadlock and lock recursion. */
2001			if (pmap > locked_pmap)
2002				PMAP_LOCK(pmap);
2003			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2004				pmap = NULL;
2005				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2006				continue;
2007			}
2008		}
2009
2010		/*
2011		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2012		 */
2013		freed = 0;
2014		for (field = 0; field < _NPCM; field++) {
2015			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2016			    inuse != 0; inuse &= ~(1UL << bit)) {
2017				bit = bsfl(inuse);
2018				pv = &pc->pc_pventry[field * 32 + bit];
2019				va = pv->pv_va;
2020				pte = pmap_pte(pmap, va);
2021				tpte = *pte;
2022				if ((tpte & PG_W) == 0)
2023					tpte = pte_load_clear(pte);
2024				pmap_pte_release(pte);
2025				if ((tpte & PG_W) != 0)
2026					continue;
2027				KASSERT(tpte != 0,
2028				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2029				    pmap, va));
2030				if ((tpte & PG_G) != 0)
2031					pmap_invalidate_page(pmap, va);
2032				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2033				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2034					vm_page_dirty(m);
2035				if ((tpte & PG_A) != 0)
2036					vm_page_aflag_set(m, PGA_REFERENCED);
2037				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2038				if (TAILQ_EMPTY(&m->md.pv_list))
2039					vm_page_aflag_clear(m, PGA_WRITEABLE);
2040				pc->pc_map[field] |= 1UL << bit;
2041				pmap_unuse_pt(pmap, va, &free);
2042				freed++;
2043			}
2044		}
2045		if (freed == 0) {
2046			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2047			continue;
2048		}
2049		/* Every freed mapping is for a 4 KB page. */
2050		pmap->pm_stats.resident_count -= freed;
2051		PV_STAT(pv_entry_frees += freed);
2052		PV_STAT(pv_entry_spare += freed);
2053		pv_entry_count -= freed;
2054		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2055		for (field = 0; field < _NPCM; field++)
2056			if (pc->pc_map[field] != pc_freemask[field]) {
2057				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2058				    pc_list);
2059				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2060
2061				/*
2062				 * One freed pv entry in locked_pmap is
2063				 * sufficient.
2064				 */
2065				if (pmap == locked_pmap)
2066					goto out;
2067				break;
2068			}
2069		if (field == _NPCM) {
2070			PV_STAT(pv_entry_spare -= _NPCPV);
2071			PV_STAT(pc_chunk_count--);
2072			PV_STAT(pc_chunk_frees++);
2073			/* Entire chunk is free; return it. */
2074			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2075			pmap_qremove((vm_offset_t)pc, 1);
2076			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2077			break;
2078		}
2079	}
2080out:
2081	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2082	if (pmap != NULL) {
2083		pmap_invalidate_all(pmap);
2084		if (pmap != locked_pmap)
2085			PMAP_UNLOCK(pmap);
2086	}
2087	if (m_pc == NULL && pv_vafree != 0 && free != NULL) {
2088		m_pc = free;
2089		free = m_pc->right;
2090		/* Recycle a freed page table page. */
2091		m_pc->wire_count = 1;
2092		atomic_add_int(&cnt.v_wire_count, 1);
2093	}
2094	pmap_free_zero_pages(free);
2095	return (m_pc);
2096}
2097
2098/*
2099 * free the pv_entry back to the free list
2100 */
2101static void
2102free_pv_entry(pmap_t pmap, pv_entry_t pv)
2103{
2104	struct pv_chunk *pc;
2105	int idx, field, bit;
2106
2107	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2108	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2109	PV_STAT(pv_entry_frees++);
2110	PV_STAT(pv_entry_spare++);
2111	pv_entry_count--;
2112	pc = pv_to_chunk(pv);
2113	idx = pv - &pc->pc_pventry[0];
2114	field = idx / 32;
2115	bit = idx % 32;
2116	pc->pc_map[field] |= 1ul << bit;
2117	for (idx = 0; idx < _NPCM; idx++)
2118		if (pc->pc_map[idx] != pc_freemask[idx]) {
2119			/*
2120			 * 98% of the time, pc is already at the head of the
2121			 * list.  If it isn't already, move it to the head.
2122			 */
2123			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2124			    pc)) {
2125				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2126				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2127				    pc_list);
2128			}
2129			return;
2130		}
2131	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2132	free_pv_chunk(pc);
2133}
2134
2135static void
2136free_pv_chunk(struct pv_chunk *pc)
2137{
2138	vm_page_t m;
2139
2140 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2141	PV_STAT(pv_entry_spare -= _NPCPV);
2142	PV_STAT(pc_chunk_count--);
2143	PV_STAT(pc_chunk_frees++);
2144	/* entire chunk is free, return it */
2145	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2146	pmap_qremove((vm_offset_t)pc, 1);
2147	vm_page_unwire(m, 0);
2148	vm_page_free(m);
2149	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2150}
2151
2152/*
2153 * get a new pv_entry, allocating a block from the system
2154 * when needed.
2155 */
2156static pv_entry_t
2157get_pv_entry(pmap_t pmap, boolean_t try)
2158{
2159	static const struct timeval printinterval = { 60, 0 };
2160	static struct timeval lastprint;
2161	int bit, field;
2162	pv_entry_t pv;
2163	struct pv_chunk *pc;
2164	vm_page_t m;
2165
2166	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2167	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2168	PV_STAT(pv_entry_allocs++);
2169	pv_entry_count++;
2170	if (pv_entry_count > pv_entry_high_water)
2171		if (ratecheck(&lastprint, &printinterval))
2172			printf("Approaching the limit on PV entries, consider "
2173			    "increasing either the vm.pmap.shpgperproc or the "
2174			    "vm.pmap.pv_entry_max tunable.\n");
2175retry:
2176	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2177	if (pc != NULL) {
2178		for (field = 0; field < _NPCM; field++) {
2179			if (pc->pc_map[field]) {
2180				bit = bsfl(pc->pc_map[field]);
2181				break;
2182			}
2183		}
2184		if (field < _NPCM) {
2185			pv = &pc->pc_pventry[field * 32 + bit];
2186			pc->pc_map[field] &= ~(1ul << bit);
2187			/* If this was the last item, move it to tail */
2188			for (field = 0; field < _NPCM; field++)
2189				if (pc->pc_map[field] != 0) {
2190					PV_STAT(pv_entry_spare--);
2191					return (pv);	/* not full, return */
2192				}
2193			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2194			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2195			PV_STAT(pv_entry_spare--);
2196			return (pv);
2197		}
2198	}
2199	/*
2200	 * Access to the ptelist "pv_vafree" is synchronized by the page
2201	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2202	 * remain non-empty until pmap_ptelist_alloc() completes.
2203	 */
2204	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2205	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2206		if (try) {
2207			pv_entry_count--;
2208			PV_STAT(pc_chunk_tryfail++);
2209			return (NULL);
2210		}
2211		m = pmap_pv_reclaim(pmap);
2212		if (m == NULL)
2213			goto retry;
2214	}
2215	PV_STAT(pc_chunk_count++);
2216	PV_STAT(pc_chunk_allocs++);
2217	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2218	pmap_qenter((vm_offset_t)pc, &m, 1);
2219	if ((m->flags & PG_ZERO) == 0)
2220		pagezero(pc);
2221	pc->pc_pmap = pmap;
2222	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2223	for (field = 1; field < _NPCM; field++)
2224		pc->pc_map[field] = pc_freemask[field];
2225	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2226	pv = &pc->pc_pventry[0];
2227	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2228	PV_STAT(pv_entry_spare += _NPCPV - 1);
2229	return (pv);
2230}
2231
2232static __inline pv_entry_t
2233pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2234{
2235	pv_entry_t pv;
2236
2237	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2238	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2239		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2240			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2241			break;
2242		}
2243	}
2244	return (pv);
2245}
2246
2247static void
2248pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2249{
2250	pv_entry_t pv;
2251
2252	pv = pmap_pvh_remove(pvh, pmap, va);
2253	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2254	free_pv_entry(pmap, pv);
2255}
2256
2257static void
2258pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2259{
2260
2261	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2262	pmap_pvh_free(&m->md, pmap, va);
2263	if (TAILQ_EMPTY(&m->md.pv_list))
2264		vm_page_aflag_clear(m, PGA_WRITEABLE);
2265}
2266
2267/*
2268 * Conditionally create a pv entry.
2269 */
2270static boolean_t
2271pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2272{
2273	pv_entry_t pv;
2274
2275	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2276	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2277	if (pv_entry_count < pv_entry_high_water &&
2278	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2279		pv->pv_va = va;
2280		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2281		return (TRUE);
2282	} else
2283		return (FALSE);
2284}
2285
2286/*
2287 * pmap_remove_pte: do the things to unmap a page in a process
2288 */
2289static int
2290pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2291{
2292	pt_entry_t oldpte;
2293	vm_page_t m;
2294
2295	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2296	    pmap, (u_long)*ptq, va);
2297
2298	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2299	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2300	oldpte = *ptq;
2301	PT_SET_VA_MA(ptq, 0, TRUE);
2302	KASSERT(oldpte != 0,
2303	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2304	if (oldpte & PG_W)
2305		pmap->pm_stats.wired_count -= 1;
2306	/*
2307	 * Machines that don't support invlpg, also don't support
2308	 * PG_G.
2309	 */
2310	if (oldpte & PG_G)
2311		pmap_invalidate_page(kernel_pmap, va);
2312	pmap->pm_stats.resident_count -= 1;
2313	if (oldpte & PG_MANAGED) {
2314		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2315		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2316			vm_page_dirty(m);
2317		if (oldpte & PG_A)
2318			vm_page_aflag_set(m, PGA_REFERENCED);
2319		pmap_remove_entry(pmap, m, va);
2320	}
2321	return (pmap_unuse_pt(pmap, va, free));
2322}
2323
2324/*
2325 * Remove a single page from a process address space
2326 */
2327static void
2328pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2329{
2330	pt_entry_t *pte;
2331
2332	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2333	    pmap, va);
2334
2335	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2336	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2337	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2338	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2339		return;
2340	pmap_remove_pte(pmap, pte, va, free);
2341	pmap_invalidate_page(pmap, va);
2342	if (*PMAP1)
2343		PT_SET_MA(PADDR1, 0);
2344
2345}
2346
2347/*
2348 *	Remove the given range of addresses from the specified map.
2349 *
2350 *	It is assumed that the start and end are properly
2351 *	rounded to the page size.
2352 */
2353void
2354pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2355{
2356	vm_offset_t pdnxt;
2357	pd_entry_t ptpaddr;
2358	pt_entry_t *pte;
2359	vm_page_t free = NULL;
2360	int anyvalid;
2361
2362	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2363	    pmap, sva, eva);
2364
2365	/*
2366	 * Perform an unsynchronized read.  This is, however, safe.
2367	 */
2368	if (pmap->pm_stats.resident_count == 0)
2369		return;
2370
2371	anyvalid = 0;
2372
2373	vm_page_lock_queues();
2374	sched_pin();
2375	PMAP_LOCK(pmap);
2376
2377	/*
2378	 * special handling of removing one page.  a very
2379	 * common operation and easy to short circuit some
2380	 * code.
2381	 */
2382	if ((sva + PAGE_SIZE == eva) &&
2383	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2384		pmap_remove_page(pmap, sva, &free);
2385		goto out;
2386	}
2387
2388	for (; sva < eva; sva = pdnxt) {
2389		u_int pdirindex;
2390
2391		/*
2392		 * Calculate index for next page table.
2393		 */
2394		pdnxt = (sva + NBPDR) & ~PDRMASK;
2395		if (pdnxt < sva)
2396			pdnxt = eva;
2397		if (pmap->pm_stats.resident_count == 0)
2398			break;
2399
2400		pdirindex = sva >> PDRSHIFT;
2401		ptpaddr = pmap->pm_pdir[pdirindex];
2402
2403		/*
2404		 * Weed out invalid mappings. Note: we assume that the page
2405		 * directory table is always allocated, and in kernel virtual.
2406		 */
2407		if (ptpaddr == 0)
2408			continue;
2409
2410		/*
2411		 * Check for large page.
2412		 */
2413		if ((ptpaddr & PG_PS) != 0) {
2414			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2415			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2416			anyvalid = 1;
2417			continue;
2418		}
2419
2420		/*
2421		 * Limit our scan to either the end of the va represented
2422		 * by the current page table page, or to the end of the
2423		 * range being removed.
2424		 */
2425		if (pdnxt > eva)
2426			pdnxt = eva;
2427
2428		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2429		    sva += PAGE_SIZE) {
2430			if ((*pte & PG_V) == 0)
2431				continue;
2432
2433			/*
2434			 * The TLB entry for a PG_G mapping is invalidated
2435			 * by pmap_remove_pte().
2436			 */
2437			if ((*pte & PG_G) == 0)
2438				anyvalid = 1;
2439			if (pmap_remove_pte(pmap, pte, sva, &free))
2440				break;
2441		}
2442	}
2443	PT_UPDATES_FLUSH();
2444	if (*PMAP1)
2445		PT_SET_VA_MA(PMAP1, 0, TRUE);
2446out:
2447	if (anyvalid)
2448		pmap_invalidate_all(pmap);
2449	sched_unpin();
2450	vm_page_unlock_queues();
2451	PMAP_UNLOCK(pmap);
2452	pmap_free_zero_pages(free);
2453}
2454
2455/*
2456 *	Routine:	pmap_remove_all
2457 *	Function:
2458 *		Removes this physical page from
2459 *		all physical maps in which it resides.
2460 *		Reflects back modify bits to the pager.
2461 *
2462 *	Notes:
2463 *		Original versions of this routine were very
2464 *		inefficient because they iteratively called
2465 *		pmap_remove (slow...)
2466 */
2467
2468void
2469pmap_remove_all(vm_page_t m)
2470{
2471	pv_entry_t pv;
2472	pmap_t pmap;
2473	pt_entry_t *pte, tpte;
2474	vm_page_t free;
2475
2476	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2477	    ("pmap_remove_all: page %p is not managed", m));
2478	free = NULL;
2479	vm_page_lock_queues();
2480	sched_pin();
2481	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2482		pmap = PV_PMAP(pv);
2483		PMAP_LOCK(pmap);
2484		pmap->pm_stats.resident_count--;
2485		pte = pmap_pte_quick(pmap, pv->pv_va);
2486		tpte = *pte;
2487		PT_SET_VA_MA(pte, 0, TRUE);
2488		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
2489		    pmap, pv->pv_va));
2490		if (tpte & PG_W)
2491			pmap->pm_stats.wired_count--;
2492		if (tpte & PG_A)
2493			vm_page_aflag_set(m, PGA_REFERENCED);
2494
2495		/*
2496		 * Update the vm_page_t clean and reference bits.
2497		 */
2498		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2499			vm_page_dirty(m);
2500		pmap_unuse_pt(pmap, pv->pv_va, &free);
2501		pmap_invalidate_page(pmap, pv->pv_va);
2502		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2503		free_pv_entry(pmap, pv);
2504		PMAP_UNLOCK(pmap);
2505	}
2506	vm_page_aflag_clear(m, PGA_WRITEABLE);
2507	PT_UPDATES_FLUSH();
2508	if (*PMAP1)
2509		PT_SET_MA(PADDR1, 0);
2510	sched_unpin();
2511	vm_page_unlock_queues();
2512	pmap_free_zero_pages(free);
2513}
2514
2515/*
2516 *	Set the physical protection on the
2517 *	specified range of this map as requested.
2518 */
2519void
2520pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2521{
2522	vm_offset_t pdnxt;
2523	pd_entry_t ptpaddr;
2524	pt_entry_t *pte;
2525	int anychanged;
2526
2527	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2528	    pmap, sva, eva, prot);
2529
2530	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2531		pmap_remove(pmap, sva, eva);
2532		return;
2533	}
2534
2535#ifdef PAE
2536	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2537	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2538		return;
2539#else
2540	if (prot & VM_PROT_WRITE)
2541		return;
2542#endif
2543
2544	anychanged = 0;
2545
2546	vm_page_lock_queues();
2547	sched_pin();
2548	PMAP_LOCK(pmap);
2549	for (; sva < eva; sva = pdnxt) {
2550		pt_entry_t obits, pbits;
2551		u_int pdirindex;
2552
2553		pdnxt = (sva + NBPDR) & ~PDRMASK;
2554		if (pdnxt < sva)
2555			pdnxt = eva;
2556
2557		pdirindex = sva >> PDRSHIFT;
2558		ptpaddr = pmap->pm_pdir[pdirindex];
2559
2560		/*
2561		 * Weed out invalid mappings. Note: we assume that the page
2562		 * directory table is always allocated, and in kernel virtual.
2563		 */
2564		if (ptpaddr == 0)
2565			continue;
2566
2567		/*
2568		 * Check for large page.
2569		 */
2570		if ((ptpaddr & PG_PS) != 0) {
2571			if ((prot & VM_PROT_WRITE) == 0)
2572				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2573#ifdef PAE
2574			if ((prot & VM_PROT_EXECUTE) == 0)
2575				pmap->pm_pdir[pdirindex] |= pg_nx;
2576#endif
2577			anychanged = 1;
2578			continue;
2579		}
2580
2581		if (pdnxt > eva)
2582			pdnxt = eva;
2583
2584		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2585		    sva += PAGE_SIZE) {
2586			vm_page_t m;
2587
2588retry:
2589			/*
2590			 * Regardless of whether a pte is 32 or 64 bits in
2591			 * size, PG_RW, PG_A, and PG_M are among the least
2592			 * significant 32 bits.
2593			 */
2594			obits = pbits = *pte;
2595			if ((pbits & PG_V) == 0)
2596				continue;
2597
2598			if ((prot & VM_PROT_WRITE) == 0) {
2599				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2600				    (PG_MANAGED | PG_M | PG_RW)) {
2601					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2602					    PG_FRAME);
2603					vm_page_dirty(m);
2604				}
2605				pbits &= ~(PG_RW | PG_M);
2606			}
2607#ifdef PAE
2608			if ((prot & VM_PROT_EXECUTE) == 0)
2609				pbits |= pg_nx;
2610#endif
2611
2612			if (pbits != obits) {
2613				obits = *pte;
2614				PT_SET_VA_MA(pte, pbits, TRUE);
2615				if (*pte != pbits)
2616					goto retry;
2617				if (obits & PG_G)
2618					pmap_invalidate_page(pmap, sva);
2619				else
2620					anychanged = 1;
2621			}
2622		}
2623	}
2624	PT_UPDATES_FLUSH();
2625	if (*PMAP1)
2626		PT_SET_VA_MA(PMAP1, 0, TRUE);
2627	if (anychanged)
2628		pmap_invalidate_all(pmap);
2629	sched_unpin();
2630	vm_page_unlock_queues();
2631	PMAP_UNLOCK(pmap);
2632}
2633
2634/*
2635 *	Insert the given physical page (p) at
2636 *	the specified virtual address (v) in the
2637 *	target physical map with the protection requested.
2638 *
2639 *	If specified, the page will be wired down, meaning
2640 *	that the related pte can not be reclaimed.
2641 *
2642 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2643 *	or lose information.  That is, this routine must actually
2644 *	insert this page into the given map NOW.
2645 */
2646void
2647pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2648    vm_prot_t prot, boolean_t wired)
2649{
2650	pd_entry_t *pde;
2651	pt_entry_t *pte;
2652	pt_entry_t newpte, origpte;
2653	pv_entry_t pv;
2654	vm_paddr_t opa, pa;
2655	vm_page_t mpte, om;
2656	boolean_t invlva;
2657
2658	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2659	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2660	va = trunc_page(va);
2661	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2662	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2663	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2664	    va));
2665	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
2666	    VM_OBJECT_LOCKED(m->object),
2667	    ("pmap_enter: page %p is not busy", m));
2668
2669	mpte = NULL;
2670
2671	vm_page_lock_queues();
2672	PMAP_LOCK(pmap);
2673	sched_pin();
2674
2675	/*
2676	 * In the case that a page table page is not
2677	 * resident, we are creating it here.
2678	 */
2679	if (va < VM_MAXUSER_ADDRESS) {
2680		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2681	}
2682
2683	pde = pmap_pde(pmap, va);
2684	if ((*pde & PG_PS) != 0)
2685		panic("pmap_enter: attempted pmap_enter on 4MB page");
2686	pte = pmap_pte_quick(pmap, va);
2687
2688	/*
2689	 * Page Directory table entry not valid, we need a new PT page
2690	 */
2691	if (pte == NULL) {
2692		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2693			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2694	}
2695
2696	pa = VM_PAGE_TO_PHYS(m);
2697	om = NULL;
2698	opa = origpte = 0;
2699
2700#if 0
2701	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2702		pte, *pte));
2703#endif
2704	origpte = *pte;
2705	if (origpte)
2706		origpte = xpmap_mtop(origpte);
2707	opa = origpte & PG_FRAME;
2708
2709	/*
2710	 * Mapping has not changed, must be protection or wiring change.
2711	 */
2712	if (origpte && (opa == pa)) {
2713		/*
2714		 * Wiring change, just update stats. We don't worry about
2715		 * wiring PT pages as they remain resident as long as there
2716		 * are valid mappings in them. Hence, if a user page is wired,
2717		 * the PT page will be also.
2718		 */
2719		if (wired && ((origpte & PG_W) == 0))
2720			pmap->pm_stats.wired_count++;
2721		else if (!wired && (origpte & PG_W))
2722			pmap->pm_stats.wired_count--;
2723
2724		/*
2725		 * Remove extra pte reference
2726		 */
2727		if (mpte)
2728			mpte->wire_count--;
2729
2730		if (origpte & PG_MANAGED) {
2731			om = m;
2732			pa |= PG_MANAGED;
2733		}
2734		goto validate;
2735	}
2736
2737	pv = NULL;
2738
2739	/*
2740	 * Mapping has changed, invalidate old range and fall through to
2741	 * handle validating new mapping.
2742	 */
2743	if (opa) {
2744		if (origpte & PG_W)
2745			pmap->pm_stats.wired_count--;
2746		if (origpte & PG_MANAGED) {
2747			om = PHYS_TO_VM_PAGE(opa);
2748			pv = pmap_pvh_remove(&om->md, pmap, va);
2749		} else if (va < VM_MAXUSER_ADDRESS)
2750			printf("va=0x%x is unmanaged :-( \n", va);
2751
2752		if (mpte != NULL) {
2753			mpte->wire_count--;
2754			KASSERT(mpte->wire_count > 0,
2755			    ("pmap_enter: missing reference to page table page,"
2756			     " va: 0x%x", va));
2757		}
2758	} else
2759		pmap->pm_stats.resident_count++;
2760
2761	/*
2762	 * Enter on the PV list if part of our managed memory.
2763	 */
2764	if ((m->oflags & VPO_UNMANAGED) == 0) {
2765		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2766		    ("pmap_enter: managed mapping within the clean submap"));
2767		if (pv == NULL)
2768			pv = get_pv_entry(pmap, FALSE);
2769		pv->pv_va = va;
2770		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2771		pa |= PG_MANAGED;
2772	} else if (pv != NULL)
2773		free_pv_entry(pmap, pv);
2774
2775	/*
2776	 * Increment counters
2777	 */
2778	if (wired)
2779		pmap->pm_stats.wired_count++;
2780
2781validate:
2782	/*
2783	 * Now validate mapping with desired protection/wiring.
2784	 */
2785	newpte = (pt_entry_t)(pa | PG_V);
2786	if ((prot & VM_PROT_WRITE) != 0) {
2787		newpte |= PG_RW;
2788		if ((newpte & PG_MANAGED) != 0)
2789			vm_page_aflag_set(m, PGA_WRITEABLE);
2790	}
2791#ifdef PAE
2792	if ((prot & VM_PROT_EXECUTE) == 0)
2793		newpte |= pg_nx;
2794#endif
2795	if (wired)
2796		newpte |= PG_W;
2797	if (va < VM_MAXUSER_ADDRESS)
2798		newpte |= PG_U;
2799	if (pmap == kernel_pmap)
2800		newpte |= pgeflag;
2801
2802	critical_enter();
2803	/*
2804	 * if the mapping or permission bits are different, we need
2805	 * to update the pte.
2806	 */
2807	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2808		if (origpte) {
2809			invlva = FALSE;
2810			origpte = *pte;
2811			PT_SET_VA(pte, newpte | PG_A, FALSE);
2812			if (origpte & PG_A) {
2813				if (origpte & PG_MANAGED)
2814					vm_page_aflag_set(om, PGA_REFERENCED);
2815				if (opa != VM_PAGE_TO_PHYS(m))
2816					invlva = TRUE;
2817#ifdef PAE
2818				if ((origpte & PG_NX) == 0 &&
2819				    (newpte & PG_NX) != 0)
2820					invlva = TRUE;
2821#endif
2822			}
2823			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2824				if ((origpte & PG_MANAGED) != 0)
2825					vm_page_dirty(om);
2826				if ((prot & VM_PROT_WRITE) == 0)
2827					invlva = TRUE;
2828			}
2829			if ((origpte & PG_MANAGED) != 0 &&
2830			    TAILQ_EMPTY(&om->md.pv_list))
2831				vm_page_aflag_clear(om, PGA_WRITEABLE);
2832			if (invlva)
2833				pmap_invalidate_page(pmap, va);
2834		} else{
2835			PT_SET_VA(pte, newpte | PG_A, FALSE);
2836		}
2837
2838	}
2839	PT_UPDATES_FLUSH();
2840	critical_exit();
2841	if (*PMAP1)
2842		PT_SET_VA_MA(PMAP1, 0, TRUE);
2843	sched_unpin();
2844	vm_page_unlock_queues();
2845	PMAP_UNLOCK(pmap);
2846}
2847
2848/*
2849 * Maps a sequence of resident pages belonging to the same object.
2850 * The sequence begins with the given page m_start.  This page is
2851 * mapped at the given virtual address start.  Each subsequent page is
2852 * mapped at a virtual address that is offset from start by the same
2853 * amount as the page is offset from m_start within the object.  The
2854 * last page in the sequence is the page with the largest offset from
2855 * m_start that can be mapped at a virtual address less than the given
2856 * virtual address end.  Not every virtual page between start and end
2857 * is mapped; only those for which a resident page exists with the
2858 * corresponding offset from m_start are mapped.
2859 */
2860void
2861pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2862    vm_page_t m_start, vm_prot_t prot)
2863{
2864	vm_page_t m, mpte;
2865	vm_pindex_t diff, psize;
2866	multicall_entry_t mcl[16];
2867	multicall_entry_t *mclp = mcl;
2868	int error, count = 0;
2869
2870	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2871	psize = atop(end - start);
2872	mpte = NULL;
2873	m = m_start;
2874	vm_page_lock_queues();
2875	PMAP_LOCK(pmap);
2876	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2877		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2878		    prot, mpte);
2879		m = TAILQ_NEXT(m, listq);
2880		if (count == 16) {
2881			error = HYPERVISOR_multicall(mcl, count);
2882			KASSERT(error == 0, ("bad multicall %d", error));
2883			mclp = mcl;
2884			count = 0;
2885		}
2886	}
2887	if (count) {
2888		error = HYPERVISOR_multicall(mcl, count);
2889		KASSERT(error == 0, ("bad multicall %d", error));
2890	}
2891	vm_page_unlock_queues();
2892	PMAP_UNLOCK(pmap);
2893}
2894
2895/*
2896 * this code makes some *MAJOR* assumptions:
2897 * 1. Current pmap & pmap exists.
2898 * 2. Not wired.
2899 * 3. Read access.
2900 * 4. No page table pages.
2901 * but is *MUCH* faster than pmap_enter...
2902 */
2903
2904void
2905pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2906{
2907	multicall_entry_t mcl, *mclp;
2908	int count = 0;
2909	mclp = &mcl;
2910
2911	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2912	    pmap, va, m, prot);
2913
2914	vm_page_lock_queues();
2915	PMAP_LOCK(pmap);
2916	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2917	if (count)
2918		HYPERVISOR_multicall(&mcl, count);
2919	vm_page_unlock_queues();
2920	PMAP_UNLOCK(pmap);
2921}
2922
2923#ifdef notyet
2924void
2925pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2926{
2927	int i, error, index = 0;
2928	multicall_entry_t mcl[16];
2929	multicall_entry_t *mclp = mcl;
2930
2931	PMAP_LOCK(pmap);
2932	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2933		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2934			continue;
2935
2936		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2937		if (index == 16) {
2938			error = HYPERVISOR_multicall(mcl, index);
2939			mclp = mcl;
2940			index = 0;
2941			KASSERT(error == 0, ("bad multicall %d", error));
2942		}
2943	}
2944	if (index) {
2945		error = HYPERVISOR_multicall(mcl, index);
2946		KASSERT(error == 0, ("bad multicall %d", error));
2947	}
2948
2949	PMAP_UNLOCK(pmap);
2950}
2951#endif
2952
2953static vm_page_t
2954pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2955    vm_prot_t prot, vm_page_t mpte)
2956{
2957	pt_entry_t *pte;
2958	vm_paddr_t pa;
2959	vm_page_t free;
2960	multicall_entry_t *mcl = *mclpp;
2961
2962	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2963	    (m->oflags & VPO_UNMANAGED) != 0,
2964	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2965	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2966	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2967
2968	/*
2969	 * In the case that a page table page is not
2970	 * resident, we are creating it here.
2971	 */
2972	if (va < VM_MAXUSER_ADDRESS) {
2973		u_int ptepindex;
2974		pd_entry_t ptema;
2975
2976		/*
2977		 * Calculate pagetable page index
2978		 */
2979		ptepindex = va >> PDRSHIFT;
2980		if (mpte && (mpte->pindex == ptepindex)) {
2981			mpte->wire_count++;
2982		} else {
2983			/*
2984			 * Get the page directory entry
2985			 */
2986			ptema = pmap->pm_pdir[ptepindex];
2987
2988			/*
2989			 * If the page table page is mapped, we just increment
2990			 * the hold count, and activate it.
2991			 */
2992			if (ptema & PG_V) {
2993				if (ptema & PG_PS)
2994					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2995				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2996				mpte->wire_count++;
2997			} else {
2998				mpte = _pmap_allocpte(pmap, ptepindex,
2999				    M_NOWAIT);
3000				if (mpte == NULL)
3001					return (mpte);
3002			}
3003		}
3004	} else {
3005		mpte = NULL;
3006	}
3007
3008	/*
3009	 * This call to vtopte makes the assumption that we are
3010	 * entering the page into the current pmap.  In order to support
3011	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3012	 * But that isn't as quick as vtopte.
3013	 */
3014	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3015	pte = vtopte(va);
3016	if (*pte & PG_V) {
3017		if (mpte != NULL) {
3018			mpte->wire_count--;
3019			mpte = NULL;
3020		}
3021		return (mpte);
3022	}
3023
3024	/*
3025	 * Enter on the PV list if part of our managed memory.
3026	 */
3027	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3028	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3029		if (mpte != NULL) {
3030			free = NULL;
3031			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3032				pmap_invalidate_page(pmap, va);
3033				pmap_free_zero_pages(free);
3034			}
3035
3036			mpte = NULL;
3037		}
3038		return (mpte);
3039	}
3040
3041	/*
3042	 * Increment counters
3043	 */
3044	pmap->pm_stats.resident_count++;
3045
3046	pa = VM_PAGE_TO_PHYS(m);
3047#ifdef PAE
3048	if ((prot & VM_PROT_EXECUTE) == 0)
3049		pa |= pg_nx;
3050#endif
3051
3052#if 0
3053	/*
3054	 * Now validate mapping with RO protection
3055	 */
3056	if ((m->oflags & VPO_UNMANAGED) != 0)
3057		pte_store(pte, pa | PG_V | PG_U);
3058	else
3059		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3060#else
3061	/*
3062	 * Now validate mapping with RO protection
3063	 */
3064	if ((m->oflags & VPO_UNMANAGED) != 0)
3065		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3066	else
3067		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3068
3069	mcl->op = __HYPERVISOR_update_va_mapping;
3070	mcl->args[0] = va;
3071	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3072	mcl->args[2] = (uint32_t)(pa >> 32);
3073	mcl->args[3] = 0;
3074	*mclpp = mcl + 1;
3075	*count = *count + 1;
3076#endif
3077	return (mpte);
3078}
3079
3080/*
3081 * Make a temporary mapping for a physical address.  This is only intended
3082 * to be used for panic dumps.
3083 */
3084void *
3085pmap_kenter_temporary(vm_paddr_t pa, int i)
3086{
3087	vm_offset_t va;
3088	vm_paddr_t ma = xpmap_ptom(pa);
3089
3090	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3091	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3092	invlpg(va);
3093	return ((void *)crashdumpmap);
3094}
3095
3096/*
3097 * This code maps large physical mmap regions into the
3098 * processor address space.  Note that some shortcuts
3099 * are taken, but the code works.
3100 */
3101void
3102pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3103    vm_pindex_t pindex, vm_size_t size)
3104{
3105	pd_entry_t *pde;
3106	vm_paddr_t pa, ptepa;
3107	vm_page_t p;
3108	int pat_mode;
3109
3110	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3111	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3112	    ("pmap_object_init_pt: non-device object"));
3113	if (pseflag &&
3114	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3115		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3116			return;
3117		p = vm_page_lookup(object, pindex);
3118		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3119		    ("pmap_object_init_pt: invalid page %p", p));
3120		pat_mode = p->md.pat_mode;
3121
3122		/*
3123		 * Abort the mapping if the first page is not physically
3124		 * aligned to a 2/4MB page boundary.
3125		 */
3126		ptepa = VM_PAGE_TO_PHYS(p);
3127		if (ptepa & (NBPDR - 1))
3128			return;
3129
3130		/*
3131		 * Skip the first page.  Abort the mapping if the rest of
3132		 * the pages are not physically contiguous or have differing
3133		 * memory attributes.
3134		 */
3135		p = TAILQ_NEXT(p, listq);
3136		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3137		    pa += PAGE_SIZE) {
3138			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3139			    ("pmap_object_init_pt: invalid page %p", p));
3140			if (pa != VM_PAGE_TO_PHYS(p) ||
3141			    pat_mode != p->md.pat_mode)
3142				return;
3143			p = TAILQ_NEXT(p, listq);
3144		}
3145
3146		/*
3147		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3148		 * "size" is a multiple of 2/4M, adding the PAT setting to
3149		 * "pa" will not affect the termination of this loop.
3150		 */
3151		PMAP_LOCK(pmap);
3152		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3153		    size; pa += NBPDR) {
3154			pde = pmap_pde(pmap, addr);
3155			if (*pde == 0) {
3156				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3157				    PG_U | PG_RW | PG_V);
3158				pmap->pm_stats.resident_count += NBPDR /
3159				    PAGE_SIZE;
3160				pmap_pde_mappings++;
3161			}
3162			/* Else continue on if the PDE is already valid. */
3163			addr += NBPDR;
3164		}
3165		PMAP_UNLOCK(pmap);
3166	}
3167}
3168
3169/*
3170 *	Routine:	pmap_change_wiring
3171 *	Function:	Change the wiring attribute for a map/virtual-address
3172 *			pair.
3173 *	In/out conditions:
3174 *			The mapping must already exist in the pmap.
3175 */
3176void
3177pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3178{
3179	pt_entry_t *pte;
3180
3181	vm_page_lock_queues();
3182	PMAP_LOCK(pmap);
3183	pte = pmap_pte(pmap, va);
3184
3185	if (wired && !pmap_pte_w(pte)) {
3186		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3187		pmap->pm_stats.wired_count++;
3188	} else if (!wired && pmap_pte_w(pte)) {
3189		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3190		pmap->pm_stats.wired_count--;
3191	}
3192
3193	/*
3194	 * Wiring is not a hardware characteristic so there is no need to
3195	 * invalidate TLB.
3196	 */
3197	pmap_pte_release(pte);
3198	PMAP_UNLOCK(pmap);
3199	vm_page_unlock_queues();
3200}
3201
3202
3203
3204/*
3205 *	Copy the range specified by src_addr/len
3206 *	from the source map to the range dst_addr/len
3207 *	in the destination map.
3208 *
3209 *	This routine is only advisory and need not do anything.
3210 */
3211
3212void
3213pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3214    vm_offset_t src_addr)
3215{
3216	vm_page_t   free;
3217	vm_offset_t addr;
3218	vm_offset_t end_addr = src_addr + len;
3219	vm_offset_t pdnxt;
3220
3221	if (dst_addr != src_addr)
3222		return;
3223
3224	if (!pmap_is_current(src_pmap)) {
3225		CTR2(KTR_PMAP,
3226		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3227		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3228
3229		return;
3230	}
3231	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3232	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3233
3234#ifdef HAMFISTED_LOCKING
3235	mtx_lock(&createdelete_lock);
3236#endif
3237
3238	vm_page_lock_queues();
3239	if (dst_pmap < src_pmap) {
3240		PMAP_LOCK(dst_pmap);
3241		PMAP_LOCK(src_pmap);
3242	} else {
3243		PMAP_LOCK(src_pmap);
3244		PMAP_LOCK(dst_pmap);
3245	}
3246	sched_pin();
3247	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3248		pt_entry_t *src_pte, *dst_pte;
3249		vm_page_t dstmpte, srcmpte;
3250		pd_entry_t srcptepaddr;
3251		u_int ptepindex;
3252
3253		KASSERT(addr < UPT_MIN_ADDRESS,
3254		    ("pmap_copy: invalid to pmap_copy page tables"));
3255
3256		pdnxt = (addr + NBPDR) & ~PDRMASK;
3257		if (pdnxt < addr)
3258			pdnxt = end_addr;
3259		ptepindex = addr >> PDRSHIFT;
3260
3261		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3262		if (srcptepaddr == 0)
3263			continue;
3264
3265		if (srcptepaddr & PG_PS) {
3266			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3267				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3268				dst_pmap->pm_stats.resident_count +=
3269				    NBPDR / PAGE_SIZE;
3270			}
3271			continue;
3272		}
3273
3274		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3275		KASSERT(srcmpte->wire_count > 0,
3276		    ("pmap_copy: source page table page is unused"));
3277
3278		if (pdnxt > end_addr)
3279			pdnxt = end_addr;
3280
3281		src_pte = vtopte(addr);
3282		while (addr < pdnxt) {
3283			pt_entry_t ptetemp;
3284			ptetemp = *src_pte;
3285			/*
3286			 * we only virtual copy managed pages
3287			 */
3288			if ((ptetemp & PG_MANAGED) != 0) {
3289				dstmpte = pmap_allocpte(dst_pmap, addr,
3290				    M_NOWAIT);
3291				if (dstmpte == NULL)
3292					goto out;
3293				dst_pte = pmap_pte_quick(dst_pmap, addr);
3294				if (*dst_pte == 0 &&
3295				    pmap_try_insert_pv_entry(dst_pmap, addr,
3296				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3297					/*
3298					 * Clear the wired, modified, and
3299					 * accessed (referenced) bits
3300					 * during the copy.
3301					 */
3302					KASSERT(ptetemp != 0, ("src_pte not set"));
3303					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3304					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3305					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3306						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3307					dst_pmap->pm_stats.resident_count++;
3308	 			} else {
3309					free = NULL;
3310					if (pmap_unwire_ptp(dst_pmap, dstmpte,
3311					    &free)) {
3312						pmap_invalidate_page(dst_pmap,
3313						    addr);
3314						pmap_free_zero_pages(free);
3315					}
3316					goto out;
3317				}
3318				if (dstmpte->wire_count >= srcmpte->wire_count)
3319					break;
3320			}
3321			addr += PAGE_SIZE;
3322			src_pte++;
3323		}
3324	}
3325out:
3326	PT_UPDATES_FLUSH();
3327	sched_unpin();
3328	vm_page_unlock_queues();
3329	PMAP_UNLOCK(src_pmap);
3330	PMAP_UNLOCK(dst_pmap);
3331
3332#ifdef HAMFISTED_LOCKING
3333	mtx_unlock(&createdelete_lock);
3334#endif
3335}
3336
3337static __inline void
3338pagezero(void *page)
3339{
3340#if defined(I686_CPU)
3341	if (cpu_class == CPUCLASS_686) {
3342#if defined(CPU_ENABLE_SSE)
3343		if (cpu_feature & CPUID_SSE2)
3344			sse2_pagezero(page);
3345		else
3346#endif
3347			i686_pagezero(page);
3348	} else
3349#endif
3350		bzero(page, PAGE_SIZE);
3351}
3352
3353/*
3354 *	pmap_zero_page zeros the specified hardware page by mapping
3355 *	the page into KVM and using bzero to clear its contents.
3356 */
3357void
3358pmap_zero_page(vm_page_t m)
3359{
3360	struct sysmaps *sysmaps;
3361
3362	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3363	mtx_lock(&sysmaps->lock);
3364	if (*sysmaps->CMAP2)
3365		panic("pmap_zero_page: CMAP2 busy");
3366	sched_pin();
3367	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3368	pagezero(sysmaps->CADDR2);
3369	PT_SET_MA(sysmaps->CADDR2, 0);
3370	sched_unpin();
3371	mtx_unlock(&sysmaps->lock);
3372}
3373
3374/*
3375 *	pmap_zero_page_area zeros the specified hardware page by mapping
3376 *	the page into KVM and using bzero to clear its contents.
3377 *
3378 *	off and size may not cover an area beyond a single hardware page.
3379 */
3380void
3381pmap_zero_page_area(vm_page_t m, int off, int size)
3382{
3383	struct sysmaps *sysmaps;
3384
3385	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3386	mtx_lock(&sysmaps->lock);
3387	if (*sysmaps->CMAP2)
3388		panic("pmap_zero_page_area: CMAP2 busy");
3389	sched_pin();
3390	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3391
3392	if (off == 0 && size == PAGE_SIZE)
3393		pagezero(sysmaps->CADDR2);
3394	else
3395		bzero((char *)sysmaps->CADDR2 + off, size);
3396	PT_SET_MA(sysmaps->CADDR2, 0);
3397	sched_unpin();
3398	mtx_unlock(&sysmaps->lock);
3399}
3400
3401/*
3402 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3403 *	the page into KVM and using bzero to clear its contents.  This
3404 *	is intended to be called from the vm_pagezero process only and
3405 *	outside of Giant.
3406 */
3407void
3408pmap_zero_page_idle(vm_page_t m)
3409{
3410
3411	if (*CMAP3)
3412		panic("pmap_zero_page_idle: CMAP3 busy");
3413	sched_pin();
3414	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3415	pagezero(CADDR3);
3416	PT_SET_MA(CADDR3, 0);
3417	sched_unpin();
3418}
3419
3420/*
3421 *	pmap_copy_page copies the specified (machine independent)
3422 *	page by mapping the page into virtual memory and using
3423 *	bcopy to copy the page, one machine dependent page at a
3424 *	time.
3425 */
3426void
3427pmap_copy_page(vm_page_t src, vm_page_t dst)
3428{
3429	struct sysmaps *sysmaps;
3430
3431	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3432	mtx_lock(&sysmaps->lock);
3433	if (*sysmaps->CMAP1)
3434		panic("pmap_copy_page: CMAP1 busy");
3435	if (*sysmaps->CMAP2)
3436		panic("pmap_copy_page: CMAP2 busy");
3437	sched_pin();
3438	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3439	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3440	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3441	PT_SET_MA(sysmaps->CADDR1, 0);
3442	PT_SET_MA(sysmaps->CADDR2, 0);
3443	sched_unpin();
3444	mtx_unlock(&sysmaps->lock);
3445}
3446
3447void
3448pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
3449    vm_offset_t b_offset, int xfersize)
3450{
3451	struct sysmaps *sysmaps;
3452	vm_page_t a_pg, b_pg;
3453	char *a_cp, *b_cp;
3454	vm_offset_t a_pg_offset, b_pg_offset;
3455	int cnt;
3456
3457	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3458	mtx_lock(&sysmaps->lock);
3459	if (*sysmaps->CMAP1 != 0)
3460		panic("pmap_copy_pages: CMAP1 busy");
3461	if (*sysmaps->CMAP2 != 0)
3462		panic("pmap_copy_pages: CMAP2 busy");
3463	sched_pin();
3464	while (xfersize > 0) {
3465		a_pg = ma[a_offset >> PAGE_SHIFT];
3466		a_pg_offset = a_offset & PAGE_MASK;
3467		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
3468		b_pg = mb[b_offset >> PAGE_SHIFT];
3469		b_pg_offset = b_offset & PAGE_MASK;
3470		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
3471		PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(a_pg) | PG_A);
3472		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3473		    VM_PAGE_TO_MACH(b_pg) | PG_A | PG_M);
3474		a_cp = sysmaps->CADDR1 + a_pg_offset;
3475		b_cp = sysmaps->CADDR2 + b_pg_offset;
3476		bcopy(a_cp, b_cp, cnt);
3477		a_offset += cnt;
3478		b_offset += cnt;
3479		xfersize -= cnt;
3480	}
3481	PT_SET_MA(sysmaps->CADDR1, 0);
3482	PT_SET_MA(sysmaps->CADDR2, 0);
3483	sched_unpin();
3484	mtx_unlock(&sysmaps->lock);
3485}
3486
3487/*
3488 * Returns true if the pmap's pv is one of the first
3489 * 16 pvs linked to from this page.  This count may
3490 * be changed upwards or downwards in the future; it
3491 * is only necessary that true be returned for a small
3492 * subset of pmaps for proper page aging.
3493 */
3494boolean_t
3495pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3496{
3497	pv_entry_t pv;
3498	int loops = 0;
3499	boolean_t rv;
3500
3501	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3502	    ("pmap_page_exists_quick: page %p is not managed", m));
3503	rv = FALSE;
3504	vm_page_lock_queues();
3505	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3506		if (PV_PMAP(pv) == pmap) {
3507			rv = TRUE;
3508			break;
3509		}
3510		loops++;
3511		if (loops >= 16)
3512			break;
3513	}
3514	vm_page_unlock_queues();
3515	return (rv);
3516}
3517
3518/*
3519 *	pmap_page_wired_mappings:
3520 *
3521 *	Return the number of managed mappings to the given physical page
3522 *	that are wired.
3523 */
3524int
3525pmap_page_wired_mappings(vm_page_t m)
3526{
3527	pv_entry_t pv;
3528	pt_entry_t *pte;
3529	pmap_t pmap;
3530	int count;
3531
3532	count = 0;
3533	if ((m->oflags & VPO_UNMANAGED) != 0)
3534		return (count);
3535	vm_page_lock_queues();
3536	sched_pin();
3537	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3538		pmap = PV_PMAP(pv);
3539		PMAP_LOCK(pmap);
3540		pte = pmap_pte_quick(pmap, pv->pv_va);
3541		if ((*pte & PG_W) != 0)
3542			count++;
3543		PMAP_UNLOCK(pmap);
3544	}
3545	sched_unpin();
3546	vm_page_unlock_queues();
3547	return (count);
3548}
3549
3550/*
3551 * Returns TRUE if the given page is mapped.  Otherwise, returns FALSE.
3552 */
3553boolean_t
3554pmap_page_is_mapped(vm_page_t m)
3555{
3556
3557	if ((m->oflags & VPO_UNMANAGED) != 0)
3558		return (FALSE);
3559	return (!TAILQ_EMPTY(&m->md.pv_list));
3560}
3561
3562/*
3563 * Remove all pages from specified address space
3564 * this aids process exit speeds.  Also, this code
3565 * is special cased for current process only, but
3566 * can have the more generic (and slightly slower)
3567 * mode enabled.  This is much faster than pmap_remove
3568 * in the case of running down an entire address space.
3569 */
3570void
3571pmap_remove_pages(pmap_t pmap)
3572{
3573	pt_entry_t *pte, tpte;
3574	vm_page_t m, free = NULL;
3575	pv_entry_t pv;
3576	struct pv_chunk *pc, *npc;
3577	int field, idx;
3578	int32_t bit;
3579	uint32_t inuse, bitmask;
3580	int allfree;
3581
3582	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3583
3584	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3585		printf("warning: pmap_remove_pages called with non-current pmap\n");
3586		return;
3587	}
3588	vm_page_lock_queues();
3589	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3590	PMAP_LOCK(pmap);
3591	sched_pin();
3592	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3593		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
3594		    pc->pc_pmap));
3595		allfree = 1;
3596		for (field = 0; field < _NPCM; field++) {
3597			inuse = ~pc->pc_map[field] & pc_freemask[field];
3598			while (inuse != 0) {
3599				bit = bsfl(inuse);
3600				bitmask = 1UL << bit;
3601				idx = field * 32 + bit;
3602				pv = &pc->pc_pventry[idx];
3603				inuse &= ~bitmask;
3604
3605				pte = vtopte(pv->pv_va);
3606				tpte = *pte ? xpmap_mtop(*pte) : 0;
3607
3608				if (tpte == 0) {
3609					printf(
3610					    "TPTE at %p  IS ZERO @ VA %08x\n",
3611					    pte, pv->pv_va);
3612					panic("bad pte");
3613				}
3614
3615/*
3616 * We cannot remove wired pages from a process' mapping at this time
3617 */
3618				if (tpte & PG_W) {
3619					allfree = 0;
3620					continue;
3621				}
3622
3623				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3624				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3625				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3626				    m, (uintmax_t)m->phys_addr,
3627				    (uintmax_t)tpte));
3628
3629				KASSERT(m < &vm_page_array[vm_page_array_size],
3630					("pmap_remove_pages: bad tpte %#jx",
3631					(uintmax_t)tpte));
3632
3633
3634				PT_CLEAR_VA(pte, FALSE);
3635
3636				/*
3637				 * Update the vm_page_t clean/reference bits.
3638				 */
3639				if (tpte & PG_M)
3640					vm_page_dirty(m);
3641
3642				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3643				if (TAILQ_EMPTY(&m->md.pv_list))
3644					vm_page_aflag_clear(m, PGA_WRITEABLE);
3645
3646				pmap_unuse_pt(pmap, pv->pv_va, &free);
3647
3648				/* Mark free */
3649				PV_STAT(pv_entry_frees++);
3650				PV_STAT(pv_entry_spare++);
3651				pv_entry_count--;
3652				pc->pc_map[field] |= bitmask;
3653				pmap->pm_stats.resident_count--;
3654			}
3655		}
3656		PT_UPDATES_FLUSH();
3657		if (allfree) {
3658			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3659			free_pv_chunk(pc);
3660		}
3661	}
3662	PT_UPDATES_FLUSH();
3663	if (*PMAP1)
3664		PT_SET_MA(PADDR1, 0);
3665
3666	sched_unpin();
3667	pmap_invalidate_all(pmap);
3668	vm_page_unlock_queues();
3669	PMAP_UNLOCK(pmap);
3670	pmap_free_zero_pages(free);
3671}
3672
3673/*
3674 *	pmap_is_modified:
3675 *
3676 *	Return whether or not the specified physical page was modified
3677 *	in any physical maps.
3678 */
3679boolean_t
3680pmap_is_modified(vm_page_t m)
3681{
3682	pv_entry_t pv;
3683	pt_entry_t *pte;
3684	pmap_t pmap;
3685	boolean_t rv;
3686
3687	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3688	    ("pmap_is_modified: page %p is not managed", m));
3689	rv = FALSE;
3690
3691	/*
3692	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
3693	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3694	 * is clear, no PTEs can have PG_M set.
3695	 */
3696	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3697	if ((m->oflags & VPO_BUSY) == 0 &&
3698	    (m->aflags & PGA_WRITEABLE) == 0)
3699		return (rv);
3700	vm_page_lock_queues();
3701	sched_pin();
3702	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3703		pmap = PV_PMAP(pv);
3704		PMAP_LOCK(pmap);
3705		pte = pmap_pte_quick(pmap, pv->pv_va);
3706		rv = (*pte & PG_M) != 0;
3707		PMAP_UNLOCK(pmap);
3708		if (rv)
3709			break;
3710	}
3711	if (*PMAP1)
3712		PT_SET_MA(PADDR1, 0);
3713	sched_unpin();
3714	vm_page_unlock_queues();
3715	return (rv);
3716}
3717
3718/*
3719 *	pmap_is_prefaultable:
3720 *
3721 *	Return whether or not the specified virtual address is elgible
3722 *	for prefault.
3723 */
3724static boolean_t
3725pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3726{
3727	pt_entry_t *pte;
3728	boolean_t rv = FALSE;
3729
3730	return (rv);
3731
3732	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3733		pte = vtopte(addr);
3734		rv = (*pte == 0);
3735	}
3736	return (rv);
3737}
3738
3739boolean_t
3740pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3741{
3742	boolean_t rv;
3743
3744	PMAP_LOCK(pmap);
3745	rv = pmap_is_prefaultable_locked(pmap, addr);
3746	PMAP_UNLOCK(pmap);
3747	return (rv);
3748}
3749
3750boolean_t
3751pmap_is_referenced(vm_page_t m)
3752{
3753	pv_entry_t pv;
3754	pt_entry_t *pte;
3755	pmap_t pmap;
3756	boolean_t rv;
3757
3758	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3759	    ("pmap_is_referenced: page %p is not managed", m));
3760	rv = FALSE;
3761	vm_page_lock_queues();
3762	sched_pin();
3763	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3764		pmap = PV_PMAP(pv);
3765		PMAP_LOCK(pmap);
3766		pte = pmap_pte_quick(pmap, pv->pv_va);
3767		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3768		PMAP_UNLOCK(pmap);
3769		if (rv)
3770			break;
3771	}
3772	if (*PMAP1)
3773		PT_SET_MA(PADDR1, 0);
3774	sched_unpin();
3775	vm_page_unlock_queues();
3776	return (rv);
3777}
3778
3779void
3780pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3781{
3782	int i, npages = round_page(len) >> PAGE_SHIFT;
3783	for (i = 0; i < npages; i++) {
3784		pt_entry_t *pte;
3785		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3786		vm_page_lock_queues();
3787		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3788		vm_page_unlock_queues();
3789		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3790		pmap_pte_release(pte);
3791	}
3792}
3793
3794void
3795pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3796{
3797	int i, npages = round_page(len) >> PAGE_SHIFT;
3798	for (i = 0; i < npages; i++) {
3799		pt_entry_t *pte;
3800		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3801		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3802		vm_page_lock_queues();
3803		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3804		vm_page_unlock_queues();
3805		pmap_pte_release(pte);
3806	}
3807}
3808
3809/*
3810 * Clear the write and modified bits in each of the given page's mappings.
3811 */
3812void
3813pmap_remove_write(vm_page_t m)
3814{
3815	pv_entry_t pv;
3816	pmap_t pmap;
3817	pt_entry_t oldpte, *pte;
3818
3819	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3820	    ("pmap_remove_write: page %p is not managed", m));
3821
3822	/*
3823	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
3824	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
3825	 * is clear, no page table entries need updating.
3826	 */
3827	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3828	if ((m->oflags & VPO_BUSY) == 0 &&
3829	    (m->aflags & PGA_WRITEABLE) == 0)
3830		return;
3831	vm_page_lock_queues();
3832	sched_pin();
3833	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3834		pmap = PV_PMAP(pv);
3835		PMAP_LOCK(pmap);
3836		pte = pmap_pte_quick(pmap, pv->pv_va);
3837retry:
3838		oldpte = *pte;
3839		if ((oldpte & PG_RW) != 0) {
3840			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3841
3842			/*
3843			 * Regardless of whether a pte is 32 or 64 bits
3844			 * in size, PG_RW and PG_M are among the least
3845			 * significant 32 bits.
3846			 */
3847			PT_SET_VA_MA(pte, newpte, TRUE);
3848			if (*pte != newpte)
3849				goto retry;
3850
3851			if ((oldpte & PG_M) != 0)
3852				vm_page_dirty(m);
3853			pmap_invalidate_page(pmap, pv->pv_va);
3854		}
3855		PMAP_UNLOCK(pmap);
3856	}
3857	vm_page_aflag_clear(m, PGA_WRITEABLE);
3858	PT_UPDATES_FLUSH();
3859	if (*PMAP1)
3860		PT_SET_MA(PADDR1, 0);
3861	sched_unpin();
3862	vm_page_unlock_queues();
3863}
3864
3865/*
3866 *	pmap_ts_referenced:
3867 *
3868 *	Return a count of reference bits for a page, clearing those bits.
3869 *	It is not necessary for every reference bit to be cleared, but it
3870 *	is necessary that 0 only be returned when there are truly no
3871 *	reference bits set.
3872 *
3873 *	XXX: The exact number of bits to check and clear is a matter that
3874 *	should be tested and standardized at some point in the future for
3875 *	optimal aging of shared pages.
3876 */
3877int
3878pmap_ts_referenced(vm_page_t m)
3879{
3880	pv_entry_t pv, pvf, pvn;
3881	pmap_t pmap;
3882	pt_entry_t *pte;
3883	int rtval = 0;
3884
3885	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3886	    ("pmap_ts_referenced: page %p is not managed", m));
3887	vm_page_lock_queues();
3888	sched_pin();
3889	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3890		pvf = pv;
3891		do {
3892			pvn = TAILQ_NEXT(pv, pv_list);
3893			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3894			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3895			pmap = PV_PMAP(pv);
3896			PMAP_LOCK(pmap);
3897			pte = pmap_pte_quick(pmap, pv->pv_va);
3898			if ((*pte & PG_A) != 0) {
3899				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3900				pmap_invalidate_page(pmap, pv->pv_va);
3901				rtval++;
3902				if (rtval > 4)
3903					pvn = NULL;
3904			}
3905			PMAP_UNLOCK(pmap);
3906		} while ((pv = pvn) != NULL && pv != pvf);
3907	}
3908	PT_UPDATES_FLUSH();
3909	if (*PMAP1)
3910		PT_SET_MA(PADDR1, 0);
3911	sched_unpin();
3912	vm_page_unlock_queues();
3913	return (rtval);
3914}
3915
3916/*
3917 *	Clear the modify bits on the specified physical page.
3918 */
3919void
3920pmap_clear_modify(vm_page_t m)
3921{
3922	pv_entry_t pv;
3923	pmap_t pmap;
3924	pt_entry_t *pte;
3925
3926	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3927	    ("pmap_clear_modify: page %p is not managed", m));
3928	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3929	KASSERT((m->oflags & VPO_BUSY) == 0,
3930	    ("pmap_clear_modify: page %p is busy", m));
3931
3932	/*
3933	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
3934	 * If the object containing the page is locked and the page is not
3935	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
3936	 */
3937	if ((m->aflags & PGA_WRITEABLE) == 0)
3938		return;
3939	vm_page_lock_queues();
3940	sched_pin();
3941	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3942		pmap = PV_PMAP(pv);
3943		PMAP_LOCK(pmap);
3944		pte = pmap_pte_quick(pmap, pv->pv_va);
3945		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3946			/*
3947			 * Regardless of whether a pte is 32 or 64 bits
3948			 * in size, PG_M is among the least significant
3949			 * 32 bits.
3950			 */
3951			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3952			pmap_invalidate_page(pmap, pv->pv_va);
3953		}
3954		PMAP_UNLOCK(pmap);
3955	}
3956	sched_unpin();
3957	vm_page_unlock_queues();
3958}
3959
3960/*
3961 *	pmap_clear_reference:
3962 *
3963 *	Clear the reference bit on the specified physical page.
3964 */
3965void
3966pmap_clear_reference(vm_page_t m)
3967{
3968	pv_entry_t pv;
3969	pmap_t pmap;
3970	pt_entry_t *pte;
3971
3972	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3973	    ("pmap_clear_reference: page %p is not managed", m));
3974	vm_page_lock_queues();
3975	sched_pin();
3976	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3977		pmap = PV_PMAP(pv);
3978		PMAP_LOCK(pmap);
3979		pte = pmap_pte_quick(pmap, pv->pv_va);
3980		if ((*pte & PG_A) != 0) {
3981			/*
3982			 * Regardless of whether a pte is 32 or 64 bits
3983			 * in size, PG_A is among the least significant
3984			 * 32 bits.
3985			 */
3986			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3987			pmap_invalidate_page(pmap, pv->pv_va);
3988		}
3989		PMAP_UNLOCK(pmap);
3990	}
3991	sched_unpin();
3992	vm_page_unlock_queues();
3993}
3994
3995/*
3996 * Miscellaneous support routines follow
3997 */
3998
3999/*
4000 * Map a set of physical memory pages into the kernel virtual
4001 * address space. Return a pointer to where it is mapped. This
4002 * routine is intended to be used for mapping device memory,
4003 * NOT real memory.
4004 */
4005void *
4006pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4007{
4008	vm_offset_t va, offset;
4009	vm_size_t tmpsize;
4010
4011	offset = pa & PAGE_MASK;
4012	size = roundup(offset + size, PAGE_SIZE);
4013	pa = pa & PG_FRAME;
4014
4015	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4016		va = KERNBASE + pa;
4017	else
4018		va = kmem_alloc_nofault(kernel_map, size);
4019	if (!va)
4020		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4021
4022	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4023		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4024	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4025	pmap_invalidate_cache_range(va, va + size);
4026	return ((void *)(va + offset));
4027}
4028
4029void *
4030pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4031{
4032
4033	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4034}
4035
4036void *
4037pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4038{
4039
4040	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4041}
4042
4043void
4044pmap_unmapdev(vm_offset_t va, vm_size_t size)
4045{
4046	vm_offset_t base, offset;
4047
4048	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4049		return;
4050	base = trunc_page(va);
4051	offset = va & PAGE_MASK;
4052	size = roundup(offset + size, PAGE_SIZE);
4053	kmem_free(kernel_map, base, size);
4054}
4055
4056/*
4057 * Sets the memory attribute for the specified page.
4058 */
4059void
4060pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4061{
4062
4063	m->md.pat_mode = ma;
4064	if ((m->flags & PG_FICTITIOUS) != 0)
4065		return;
4066
4067	/*
4068	 * If "m" is a normal page, flush it from the cache.
4069	 * See pmap_invalidate_cache_range().
4070	 *
4071	 * First, try to find an existing mapping of the page by sf
4072	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4073	 * flushes the cache.
4074	 */
4075	if (sf_buf_invalidate_cache(m))
4076		return;
4077
4078	/*
4079	 * If page is not mapped by sf buffer, but CPU does not
4080	 * support self snoop, map the page transient and do
4081	 * invalidation. In the worst case, whole cache is flushed by
4082	 * pmap_invalidate_cache_range().
4083	 */
4084	if ((cpu_feature & CPUID_SS) == 0)
4085		pmap_flush_page(m);
4086}
4087
4088static void
4089pmap_flush_page(vm_page_t m)
4090{
4091	struct sysmaps *sysmaps;
4092	vm_offset_t sva, eva;
4093
4094	if ((cpu_feature & CPUID_CLFSH) != 0) {
4095		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4096		mtx_lock(&sysmaps->lock);
4097		if (*sysmaps->CMAP2)
4098			panic("pmap_flush_page: CMAP2 busy");
4099		sched_pin();
4100		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4101		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4102		    pmap_cache_bits(m->md.pat_mode, 0));
4103		invlcaddr(sysmaps->CADDR2);
4104		sva = (vm_offset_t)sysmaps->CADDR2;
4105		eva = sva + PAGE_SIZE;
4106
4107		/*
4108		 * Use mfence despite the ordering implied by
4109		 * mtx_{un,}lock() because clflush is not guaranteed
4110		 * to be ordered by any other instruction.
4111		 */
4112		mfence();
4113		for (; sva < eva; sva += cpu_clflush_line_size)
4114			clflush(sva);
4115		mfence();
4116		PT_SET_MA(sysmaps->CADDR2, 0);
4117		sched_unpin();
4118		mtx_unlock(&sysmaps->lock);
4119	} else
4120		pmap_invalidate_cache();
4121}
4122
4123/*
4124 * Changes the specified virtual address range's memory type to that given by
4125 * the parameter "mode".  The specified virtual address range must be
4126 * completely contained within either the kernel map.
4127 *
4128 * Returns zero if the change completed successfully, and either EINVAL or
4129 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4130 * of the virtual address range was not mapped, and ENOMEM is returned if
4131 * there was insufficient memory available to complete the change.
4132 */
4133int
4134pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4135{
4136	vm_offset_t base, offset, tmpva;
4137	pt_entry_t *pte;
4138	u_int opte, npte;
4139	pd_entry_t *pde;
4140	boolean_t changed;
4141
4142	base = trunc_page(va);
4143	offset = va & PAGE_MASK;
4144	size = roundup(offset + size, PAGE_SIZE);
4145
4146	/* Only supported on kernel virtual addresses. */
4147	if (base <= VM_MAXUSER_ADDRESS)
4148		return (EINVAL);
4149
4150	/* 4MB pages and pages that aren't mapped aren't supported. */
4151	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4152		pde = pmap_pde(kernel_pmap, tmpva);
4153		if (*pde & PG_PS)
4154			return (EINVAL);
4155		if ((*pde & PG_V) == 0)
4156			return (EINVAL);
4157		pte = vtopte(va);
4158		if ((*pte & PG_V) == 0)
4159			return (EINVAL);
4160	}
4161
4162	changed = FALSE;
4163
4164	/*
4165	 * Ok, all the pages exist and are 4k, so run through them updating
4166	 * their cache mode.
4167	 */
4168	for (tmpva = base; size > 0; ) {
4169		pte = vtopte(tmpva);
4170
4171		/*
4172		 * The cache mode bits are all in the low 32-bits of the
4173		 * PTE, so we can just spin on updating the low 32-bits.
4174		 */
4175		do {
4176			opte = *(u_int *)pte;
4177			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4178			npte |= pmap_cache_bits(mode, 0);
4179			PT_SET_VA_MA(pte, npte, TRUE);
4180		} while (npte != opte && (*pte != npte));
4181		if (npte != opte)
4182			changed = TRUE;
4183		tmpva += PAGE_SIZE;
4184		size -= PAGE_SIZE;
4185	}
4186
4187	/*
4188	 * Flush CPU caches to make sure any data isn't cached that
4189	 * shouldn't be, etc.
4190	 */
4191	if (changed) {
4192		pmap_invalidate_range(kernel_pmap, base, tmpva);
4193		pmap_invalidate_cache_range(base, tmpva);
4194	}
4195	return (0);
4196}
4197
4198/*
4199 * perform the pmap work for mincore
4200 */
4201int
4202pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4203{
4204	pt_entry_t *ptep, pte;
4205	vm_paddr_t pa;
4206	int val;
4207
4208	PMAP_LOCK(pmap);
4209retry:
4210	ptep = pmap_pte(pmap, addr);
4211	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4212	pmap_pte_release(ptep);
4213	val = 0;
4214	if ((pte & PG_V) != 0) {
4215		val |= MINCORE_INCORE;
4216		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4217			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4218		if ((pte & PG_A) != 0)
4219			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4220	}
4221	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4222	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4223	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4224		pa = pte & PG_FRAME;
4225		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4226		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4227			goto retry;
4228	} else
4229		PA_UNLOCK_COND(*locked_pa);
4230	PMAP_UNLOCK(pmap);
4231	return (val);
4232}
4233
4234void
4235pmap_activate(struct thread *td)
4236{
4237	pmap_t	pmap, oldpmap;
4238	u_int	cpuid;
4239	u_int32_t  cr3;
4240
4241	critical_enter();
4242	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4243	oldpmap = PCPU_GET(curpmap);
4244	cpuid = PCPU_GET(cpuid);
4245#if defined(SMP)
4246	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4247	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4248#else
4249	CPU_CLR(cpuid, &oldpmap->pm_active);
4250	CPU_SET(cpuid, &pmap->pm_active);
4251#endif
4252#ifdef PAE
4253	cr3 = vtophys(pmap->pm_pdpt);
4254#else
4255	cr3 = vtophys(pmap->pm_pdir);
4256#endif
4257	/*
4258	 * pmap_activate is for the current thread on the current cpu
4259	 */
4260	td->td_pcb->pcb_cr3 = cr3;
4261	PT_UPDATES_FLUSH();
4262	load_cr3(cr3);
4263	PCPU_SET(curpmap, pmap);
4264	critical_exit();
4265}
4266
4267void
4268pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4269{
4270}
4271
4272/*
4273 *	Increase the starting virtual address of the given mapping if a
4274 *	different alignment might result in more superpage mappings.
4275 */
4276void
4277pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4278    vm_offset_t *addr, vm_size_t size)
4279{
4280	vm_offset_t superpage_offset;
4281
4282	if (size < NBPDR)
4283		return;
4284	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4285		offset += ptoa(object->pg_color);
4286	superpage_offset = offset & PDRMASK;
4287	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4288	    (*addr & PDRMASK) == superpage_offset)
4289		return;
4290	if ((*addr & PDRMASK) < superpage_offset)
4291		*addr = (*addr & ~PDRMASK) + superpage_offset;
4292	else
4293		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4294}
4295
4296void
4297pmap_suspend()
4298{
4299	pmap_t pmap;
4300	int i, pdir, offset;
4301	vm_paddr_t pdirma;
4302	mmu_update_t mu[4];
4303
4304	/*
4305	 * We need to remove the recursive mapping structure from all
4306	 * our pmaps so that Xen doesn't get confused when it restores
4307	 * the page tables. The recursive map lives at page directory
4308	 * index PTDPTDI. We assume that the suspend code has stopped
4309	 * the other vcpus (if any).
4310	 */
4311	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4312		for (i = 0; i < 4; i++) {
4313			/*
4314			 * Figure out which page directory (L2) page
4315			 * contains this bit of the recursive map and
4316			 * the offset within that page of the map
4317			 * entry
4318			 */
4319			pdir = (PTDPTDI + i) / NPDEPG;
4320			offset = (PTDPTDI + i) % NPDEPG;
4321			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4322			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4323			mu[i].val = 0;
4324		}
4325		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4326	}
4327}
4328
4329void
4330pmap_resume()
4331{
4332	pmap_t pmap;
4333	int i, pdir, offset;
4334	vm_paddr_t pdirma;
4335	mmu_update_t mu[4];
4336
4337	/*
4338	 * Restore the recursive map that we removed on suspend.
4339	 */
4340	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4341		for (i = 0; i < 4; i++) {
4342			/*
4343			 * Figure out which page directory (L2) page
4344			 * contains this bit of the recursive map and
4345			 * the offset within that page of the map
4346			 * entry
4347			 */
4348			pdir = (PTDPTDI + i) / NPDEPG;
4349			offset = (PTDPTDI + i) % NPDEPG;
4350			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4351			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4352			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4353		}
4354		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4355	}
4356}
4357
4358#if defined(PMAP_DEBUG)
4359pmap_pid_dump(int pid)
4360{
4361	pmap_t pmap;
4362	struct proc *p;
4363	int npte = 0;
4364	int index;
4365
4366	sx_slock(&allproc_lock);
4367	FOREACH_PROC_IN_SYSTEM(p) {
4368		if (p->p_pid != pid)
4369			continue;
4370
4371		if (p->p_vmspace) {
4372			int i,j;
4373			index = 0;
4374			pmap = vmspace_pmap(p->p_vmspace);
4375			for (i = 0; i < NPDEPTD; i++) {
4376				pd_entry_t *pde;
4377				pt_entry_t *pte;
4378				vm_offset_t base = i << PDRSHIFT;
4379
4380				pde = &pmap->pm_pdir[i];
4381				if (pde && pmap_pde_v(pde)) {
4382					for (j = 0; j < NPTEPG; j++) {
4383						vm_offset_t va = base + (j << PAGE_SHIFT);
4384						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4385							if (index) {
4386								index = 0;
4387								printf("\n");
4388							}
4389							sx_sunlock(&allproc_lock);
4390							return (npte);
4391						}
4392						pte = pmap_pte(pmap, va);
4393						if (pte && pmap_pte_v(pte)) {
4394							pt_entry_t pa;
4395							vm_page_t m;
4396							pa = PT_GET(pte);
4397							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4398							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4399								va, pa, m->hold_count, m->wire_count, m->flags);
4400							npte++;
4401							index++;
4402							if (index >= 2) {
4403								index = 0;
4404								printf("\n");
4405							} else {
4406								printf(" ");
4407							}
4408						}
4409					}
4410				}
4411			}
4412		}
4413	}
4414	sx_sunlock(&allproc_lock);
4415	return (npte);
4416}
4417#endif
4418
4419#if defined(DEBUG)
4420
4421static void	pads(pmap_t pm);
4422void		pmap_pvdump(vm_paddr_t pa);
4423
4424/* print address space of pmap*/
4425static void
4426pads(pmap_t pm)
4427{
4428	int i, j;
4429	vm_paddr_t va;
4430	pt_entry_t *ptep;
4431
4432	if (pm == kernel_pmap)
4433		return;
4434	for (i = 0; i < NPDEPTD; i++)
4435		if (pm->pm_pdir[i])
4436			for (j = 0; j < NPTEPG; j++) {
4437				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4438				if (pm == kernel_pmap && va < KERNBASE)
4439					continue;
4440				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4441					continue;
4442				ptep = pmap_pte(pm, va);
4443				if (pmap_pte_v(ptep))
4444					printf("%x:%x ", va, *ptep);
4445			};
4446
4447}
4448
4449void
4450pmap_pvdump(vm_paddr_t pa)
4451{
4452	pv_entry_t pv;
4453	pmap_t pmap;
4454	vm_page_t m;
4455
4456	printf("pa %x", pa);
4457	m = PHYS_TO_VM_PAGE(pa);
4458	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4459		pmap = PV_PMAP(pv);
4460		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4461		pads(pmap);
4462	}
4463	printf(" ");
4464}
4465#endif
4466