pmap.c revision 224746
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 224746 2011-08-09 21:01:36Z kib $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_smp.h"
109#include "opt_xbox.h"
110
111#include <sys/param.h>
112#include <sys/systm.h>
113#include <sys/kernel.h>
114#include <sys/ktr.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sf_buf.h>
122#include <sys/sx.h>
123#include <sys/vmmeter.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#ifdef SMP
127#include <sys/smp.h>
128#endif
129
130#include <vm/vm.h>
131#include <vm/vm_param.h>
132#include <vm/vm_kern.h>
133#include <vm/vm_page.h>
134#include <vm/vm_map.h>
135#include <vm/vm_object.h>
136#include <vm/vm_extern.h>
137#include <vm/vm_pageout.h>
138#include <vm/vm_pager.h>
139#include <vm/uma.h>
140
141#include <machine/cpu.h>
142#include <machine/cputypes.h>
143#include <machine/md_var.h>
144#include <machine/pcb.h>
145#include <machine/specialreg.h>
146#ifdef SMP
147#include <machine/smp.h>
148#endif
149
150#ifdef XBOX
151#include <machine/xbox.h>
152#endif
153
154#include <xen/interface/xen.h>
155#include <xen/hypervisor.h>
156#include <machine/xen/hypercall.h>
157#include <machine/xen/xenvar.h>
158#include <machine/xen/xenfunc.h>
159
160#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
161#define CPU_ENABLE_SSE
162#endif
163
164#ifndef PMAP_SHPGPERPROC
165#define PMAP_SHPGPERPROC 200
166#endif
167
168#define DIAGNOSTIC
169
170#if !defined(DIAGNOSTIC)
171#ifdef __GNUC_GNU_INLINE__
172#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
173#else
174#define PMAP_INLINE	extern inline
175#endif
176#else
177#define PMAP_INLINE
178#endif
179
180#define PV_STATS
181#ifdef PV_STATS
182#define PV_STAT(x)	do { x ; } while (0)
183#else
184#define PV_STAT(x)	do { } while (0)
185#endif
186
187#define	pa_index(pa)	((pa) >> PDRSHIFT)
188#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
189
190/*
191 * Get PDEs and PTEs for user/kernel address space
192 */
193#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
194#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
195
196#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
197#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
198#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
199#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
200#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
201
202#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
203
204#define HAMFISTED_LOCKING
205#ifdef HAMFISTED_LOCKING
206static struct mtx createdelete_lock;
207#endif
208
209struct pmap kernel_pmap_store;
210LIST_HEAD(pmaplist, pmap);
211static struct pmaplist allpmaps;
212static struct mtx allpmaps_lock;
213
214vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
215vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
216int pgeflag = 0;		/* PG_G or-in */
217int pseflag = 0;		/* PG_PS or-in */
218
219int nkpt;
220vm_offset_t kernel_vm_end;
221extern u_int32_t KERNend;
222
223#ifdef PAE
224pt_entry_t pg_nx;
225#endif
226
227static int pat_works;			/* Is page attribute table sane? */
228
229/*
230 * Data for the pv entry allocation mechanism
231 */
232static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
233static struct md_page *pv_table;
234static int shpgperproc = PMAP_SHPGPERPROC;
235
236struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
237int pv_maxchunks;			/* How many chunks we have KVA for */
238vm_offset_t pv_vafree;			/* freelist stored in the PTE */
239
240/*
241 * All those kernel PT submaps that BSD is so fond of
242 */
243struct sysmaps {
244	struct	mtx lock;
245	pt_entry_t *CMAP1;
246	pt_entry_t *CMAP2;
247	caddr_t	CADDR1;
248	caddr_t	CADDR2;
249};
250static struct sysmaps sysmaps_pcpu[MAXCPU];
251static pt_entry_t *CMAP3;
252caddr_t ptvmmap = 0;
253static caddr_t CADDR3;
254struct msgbuf *msgbufp = 0;
255
256/*
257 * Crashdump maps.
258 */
259static caddr_t crashdumpmap;
260
261static pt_entry_t *PMAP1 = 0, *PMAP2;
262static pt_entry_t *PADDR1 = 0, *PADDR2;
263#ifdef SMP
264static int PMAP1cpu;
265static int PMAP1changedcpu;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267	   &PMAP1changedcpu, 0,
268	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269#endif
270static int PMAP1changed;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272	   &PMAP1changed, 0,
273	   "Number of times pmap_pte_quick changed PMAP1");
274static int PMAP1unchanged;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276	   &PMAP1unchanged, 0,
277	   "Number of times pmap_pte_quick didn't change PMAP1");
278static struct mtx PMAP2mutex;
279
280SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
281static int pg_ps_enabled;
282SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
283    "Are large page mappings enabled?");
284
285SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
286	"Max number of PV entries");
287SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
288	"Page share factor per proc");
289SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
290    "2/4MB page mapping counters");
291
292static u_long pmap_pde_mappings;
293SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
294    &pmap_pde_mappings, 0, "2/4MB page mappings");
295
296static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
297static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
298static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
299static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
300		    vm_offset_t va);
301
302static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
303    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
304static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
305    vm_page_t *free);
306static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
307    vm_page_t *free);
308static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
309					vm_offset_t va);
310static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
311    vm_page_t m);
312
313static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
314
315static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
316static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
317static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
318static void pmap_pte_release(pt_entry_t *pte);
319static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
320static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
321static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
322static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
323
324static __inline void pagezero(void *page);
325
326CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
327CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
328
329/*
330 * If you get an error here, then you set KVA_PAGES wrong! See the
331 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
332 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
333 */
334CTASSERT(KERNBASE % (1 << 24) == 0);
335
336
337
338void
339pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
340{
341	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
342
343	switch (type) {
344	case SH_PD_SET_VA:
345#if 0
346		xen_queue_pt_update(shadow_pdir_ma,
347				    xpmap_ptom(val & ~(PG_RW)));
348#endif
349		xen_queue_pt_update(pdir_ma,
350				    xpmap_ptom(val));
351		break;
352	case SH_PD_SET_VA_MA:
353#if 0
354		xen_queue_pt_update(shadow_pdir_ma,
355				    val & ~(PG_RW));
356#endif
357		xen_queue_pt_update(pdir_ma, val);
358		break;
359	case SH_PD_SET_VA_CLEAR:
360#if 0
361		xen_queue_pt_update(shadow_pdir_ma, 0);
362#endif
363		xen_queue_pt_update(pdir_ma, 0);
364		break;
365	}
366}
367
368/*
369 * Move the kernel virtual free pointer to the next
370 * 4MB.  This is used to help improve performance
371 * by using a large (4MB) page for much of the kernel
372 * (.text, .data, .bss)
373 */
374static vm_offset_t
375pmap_kmem_choose(vm_offset_t addr)
376{
377	vm_offset_t newaddr = addr;
378
379#ifndef DISABLE_PSE
380	if (cpu_feature & CPUID_PSE)
381		newaddr = (addr + PDRMASK) & ~PDRMASK;
382#endif
383	return newaddr;
384}
385
386/*
387 *	Bootstrap the system enough to run with virtual memory.
388 *
389 *	On the i386 this is called after mapping has already been enabled
390 *	and just syncs the pmap module with what has already been done.
391 *	[We can't call it easily with mapping off since the kernel is not
392 *	mapped with PA == VA, hence we would have to relocate every address
393 *	from the linked base (virtual) address "KERNBASE" to the actual
394 *	(physical) address starting relative to 0]
395 */
396void
397pmap_bootstrap(vm_paddr_t firstaddr)
398{
399	vm_offset_t va;
400	pt_entry_t *pte, *unused;
401	struct sysmaps *sysmaps;
402	int i;
403
404	/*
405	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
406	 * large. It should instead be correctly calculated in locore.s and
407	 * not based on 'first' (which is a physical address, not a virtual
408	 * address, for the start of unused physical memory). The kernel
409	 * page tables are NOT double mapped and thus should not be included
410	 * in this calculation.
411	 */
412	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
413	virtual_avail = pmap_kmem_choose(virtual_avail);
414
415	virtual_end = VM_MAX_KERNEL_ADDRESS;
416
417	/*
418	 * Initialize the kernel pmap (which is statically allocated).
419	 */
420	PMAP_LOCK_INIT(kernel_pmap);
421	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
422#ifdef PAE
423	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
424#endif
425	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
426	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
427	LIST_INIT(&allpmaps);
428	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
429	mtx_lock_spin(&allpmaps_lock);
430	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
431	mtx_unlock_spin(&allpmaps_lock);
432	if (nkpt == 0)
433		nkpt = NKPT;
434
435	/*
436	 * Reserve some special page table entries/VA space for temporary
437	 * mapping of pages.
438	 */
439#define	SYSMAP(c, p, v, n)	\
440	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
441
442	va = virtual_avail;
443	pte = vtopte(va);
444
445	/*
446	 * CMAP1/CMAP2 are used for zeroing and copying pages.
447	 * CMAP3 is used for the idle process page zeroing.
448	 */
449	for (i = 0; i < MAXCPU; i++) {
450		sysmaps = &sysmaps_pcpu[i];
451		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
452		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
453		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
454		PT_SET_MA(sysmaps->CADDR1, 0);
455		PT_SET_MA(sysmaps->CADDR2, 0);
456	}
457	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
458	PT_SET_MA(CADDR3, 0);
459
460	/*
461	 * Crashdump maps.
462	 */
463	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
464
465	/*
466	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
467	 */
468	SYSMAP(caddr_t, unused, ptvmmap, 1)
469
470	/*
471	 * msgbufp is used to map the system message buffer.
472	 */
473	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
474
475	/*
476	 * ptemap is used for pmap_pte_quick
477	 */
478	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
479	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
480
481	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
482
483	virtual_avail = va;
484
485	/*
486	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
487	 * physical memory region that is used by the ACPI wakeup code.  This
488	 * mapping must not have PG_G set.
489	 */
490#ifndef XEN
491	/*
492	 * leave here deliberately to show that this is not supported
493	 */
494#ifdef XBOX
495	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
496	 * an early stadium, we cannot yet neatly map video memory ... :-(
497	 * Better fixes are very welcome! */
498	if (!arch_i386_is_xbox)
499#endif
500	for (i = 1; i < NKPT; i++)
501		PTD[i] = 0;
502
503	/* Initialize the PAT MSR if present. */
504	pmap_init_pat();
505
506	/* Turn on PG_G on kernel page(s) */
507	pmap_set_pg();
508#endif
509
510#ifdef HAMFISTED_LOCKING
511	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
512#endif
513}
514
515/*
516 * Setup the PAT MSR.
517 */
518void
519pmap_init_pat(void)
520{
521	uint64_t pat_msr;
522
523	/* Bail if this CPU doesn't implement PAT. */
524	if (!(cpu_feature & CPUID_PAT))
525		return;
526
527	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
528	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
529		/*
530		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
531		 * Program 4 and 5 as WP and WC.
532		 * Leave 6 and 7 as UC and UC-.
533		 */
534		pat_msr = rdmsr(MSR_PAT);
535		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
536		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
537		    PAT_VALUE(5, PAT_WRITE_COMBINING);
538		pat_works = 1;
539	} else {
540		/*
541		 * Due to some Intel errata, we can only safely use the lower 4
542		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
543		 * of UC-.
544		 *
545		 *   Intel Pentium III Processor Specification Update
546		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
547		 * or Mode C Paging)
548		 *
549		 *   Intel Pentium IV  Processor Specification Update
550		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
551		 */
552		pat_msr = rdmsr(MSR_PAT);
553		pat_msr &= ~PAT_MASK(2);
554		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
555		pat_works = 0;
556	}
557	wrmsr(MSR_PAT, pat_msr);
558}
559
560/*
561 * Initialize a vm_page's machine-dependent fields.
562 */
563void
564pmap_page_init(vm_page_t m)
565{
566
567	TAILQ_INIT(&m->md.pv_list);
568	m->md.pat_mode = PAT_WRITE_BACK;
569}
570
571/*
572 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
573 * Requirements:
574 *  - Must deal with pages in order to ensure that none of the PG_* bits
575 *    are ever set, PG_V in particular.
576 *  - Assumes we can write to ptes without pte_store() atomic ops, even
577 *    on PAE systems.  This should be ok.
578 *  - Assumes nothing will ever test these addresses for 0 to indicate
579 *    no mapping instead of correctly checking PG_V.
580 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
581 * Because PG_V is never set, there can be no mappings to invalidate.
582 */
583static int ptelist_count = 0;
584static vm_offset_t
585pmap_ptelist_alloc(vm_offset_t *head)
586{
587	vm_offset_t va;
588	vm_offset_t *phead = (vm_offset_t *)*head;
589
590	if (ptelist_count == 0) {
591		printf("out of memory!!!!!!\n");
592		return (0);	/* Out of memory */
593	}
594	ptelist_count--;
595	va = phead[ptelist_count];
596	return (va);
597}
598
599static void
600pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
601{
602	vm_offset_t *phead = (vm_offset_t *)*head;
603
604	phead[ptelist_count++] = va;
605}
606
607static void
608pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
609{
610	int i, nstackpages;
611	vm_offset_t va;
612	vm_page_t m;
613
614	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
615	for (i = 0; i < nstackpages; i++) {
616		va = (vm_offset_t)base + i * PAGE_SIZE;
617		m = vm_page_alloc(NULL, i,
618		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
619		    VM_ALLOC_ZERO);
620		pmap_qenter(va, &m, 1);
621	}
622
623	*head = (vm_offset_t)base;
624	for (i = npages - 1; i >= nstackpages; i--) {
625		va = (vm_offset_t)base + i * PAGE_SIZE;
626		pmap_ptelist_free(head, va);
627	}
628}
629
630
631/*
632 *	Initialize the pmap module.
633 *	Called by vm_init, to initialize any structures that the pmap
634 *	system needs to map virtual memory.
635 */
636void
637pmap_init(void)
638{
639	vm_page_t mpte;
640	vm_size_t s;
641	int i, pv_npg;
642
643	/*
644	 * Initialize the vm page array entries for the kernel pmap's
645	 * page table pages.
646	 */
647	for (i = 0; i < nkpt; i++) {
648		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
649		KASSERT(mpte >= vm_page_array &&
650		    mpte < &vm_page_array[vm_page_array_size],
651		    ("pmap_init: page table page is out of range"));
652		mpte->pindex = i + KPTDI;
653		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
654	}
655
656        /*
657	 * Initialize the address space (zone) for the pv entries.  Set a
658	 * high water mark so that the system can recover from excessive
659	 * numbers of pv entries.
660	 */
661	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
662	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
663	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
664	pv_entry_max = roundup(pv_entry_max, _NPCPV);
665	pv_entry_high_water = 9 * (pv_entry_max / 10);
666
667	/*
668	 * Are large page mappings enabled?
669	 */
670	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
671
672	/*
673	 * Calculate the size of the pv head table for superpages.
674	 */
675	for (i = 0; phys_avail[i + 1]; i += 2);
676	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
677
678	/*
679	 * Allocate memory for the pv head table for superpages.
680	 */
681	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
682	s = round_page(s);
683	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
684	for (i = 0; i < pv_npg; i++)
685		TAILQ_INIT(&pv_table[i].pv_list);
686
687	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
688	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
689	    PAGE_SIZE * pv_maxchunks);
690	if (pv_chunkbase == NULL)
691		panic("pmap_init: not enough kvm for pv chunks");
692	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
693}
694
695
696/***************************************************
697 * Low level helper routines.....
698 ***************************************************/
699
700/*
701 * Determine the appropriate bits to set in a PTE or PDE for a specified
702 * caching mode.
703 */
704int
705pmap_cache_bits(int mode, boolean_t is_pde)
706{
707	int pat_flag, pat_index, cache_bits;
708
709	/* The PAT bit is different for PTE's and PDE's. */
710	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
711
712	/* If we don't support PAT, map extended modes to older ones. */
713	if (!(cpu_feature & CPUID_PAT)) {
714		switch (mode) {
715		case PAT_UNCACHEABLE:
716		case PAT_WRITE_THROUGH:
717		case PAT_WRITE_BACK:
718			break;
719		case PAT_UNCACHED:
720		case PAT_WRITE_COMBINING:
721		case PAT_WRITE_PROTECTED:
722			mode = PAT_UNCACHEABLE;
723			break;
724		}
725	}
726
727	/* Map the caching mode to a PAT index. */
728	if (pat_works) {
729		switch (mode) {
730			case PAT_UNCACHEABLE:
731				pat_index = 3;
732				break;
733			case PAT_WRITE_THROUGH:
734				pat_index = 1;
735				break;
736			case PAT_WRITE_BACK:
737				pat_index = 0;
738				break;
739			case PAT_UNCACHED:
740				pat_index = 2;
741				break;
742			case PAT_WRITE_COMBINING:
743				pat_index = 5;
744				break;
745			case PAT_WRITE_PROTECTED:
746				pat_index = 4;
747				break;
748			default:
749				panic("Unknown caching mode %d\n", mode);
750		}
751	} else {
752		switch (mode) {
753			case PAT_UNCACHED:
754			case PAT_UNCACHEABLE:
755			case PAT_WRITE_PROTECTED:
756				pat_index = 3;
757				break;
758			case PAT_WRITE_THROUGH:
759				pat_index = 1;
760				break;
761			case PAT_WRITE_BACK:
762				pat_index = 0;
763				break;
764			case PAT_WRITE_COMBINING:
765				pat_index = 2;
766				break;
767			default:
768				panic("Unknown caching mode %d\n", mode);
769		}
770	}
771
772	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
773	cache_bits = 0;
774	if (pat_index & 0x4)
775		cache_bits |= pat_flag;
776	if (pat_index & 0x2)
777		cache_bits |= PG_NC_PCD;
778	if (pat_index & 0x1)
779		cache_bits |= PG_NC_PWT;
780	return (cache_bits);
781}
782#ifdef SMP
783/*
784 * For SMP, these functions have to use the IPI mechanism for coherence.
785 *
786 * N.B.: Before calling any of the following TLB invalidation functions,
787 * the calling processor must ensure that all stores updating a non-
788 * kernel page table are globally performed.  Otherwise, another
789 * processor could cache an old, pre-update entry without being
790 * invalidated.  This can happen one of two ways: (1) The pmap becomes
791 * active on another processor after its pm_active field is checked by
792 * one of the following functions but before a store updating the page
793 * table is globally performed. (2) The pmap becomes active on another
794 * processor before its pm_active field is checked but due to
795 * speculative loads one of the following functions stills reads the
796 * pmap as inactive on the other processor.
797 *
798 * The kernel page table is exempt because its pm_active field is
799 * immutable.  The kernel page table is always active on every
800 * processor.
801 */
802void
803pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
804{
805	cpuset_t other_cpus;
806	u_int cpuid;
807
808	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
809	    pmap, va);
810
811	sched_pin();
812	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
813		invlpg(va);
814		smp_invlpg(va);
815	} else {
816		cpuid = PCPU_GET(cpuid);
817		other_cpus = all_cpus;
818		CPU_CLR(cpuid, &other_cpus);
819		if (CPU_ISSET(cpuid, &pmap->pm_active))
820			invlpg(va);
821		CPU_AND(&other_cpus, &pmap->pm_active);
822		if (!CPU_EMPTY(&other_cpus))
823			smp_masked_invlpg(other_cpus, va);
824	}
825	sched_unpin();
826	PT_UPDATES_FLUSH();
827}
828
829void
830pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
831{
832	cpuset_t other_cpus;
833	vm_offset_t addr;
834	u_int cpuid;
835
836	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
837	    pmap, sva, eva);
838
839	sched_pin();
840	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
841		for (addr = sva; addr < eva; addr += PAGE_SIZE)
842			invlpg(addr);
843		smp_invlpg_range(sva, eva);
844	} else {
845		cpuid = PCPU_GET(cpuid);
846		other_cpus = all_cpus;
847		CPU_CLR(cpuid, &other_cpus);
848		if (CPU_ISSET(cpuid, &pmap->pm_active))
849			for (addr = sva; addr < eva; addr += PAGE_SIZE)
850				invlpg(addr);
851		CPU_AND(&other_cpus, &pmap->pm_active);
852		if (!CPU_EMPTY(&other_cpus))
853			smp_masked_invlpg_range(other_cpus, sva, eva);
854	}
855	sched_unpin();
856	PT_UPDATES_FLUSH();
857}
858
859void
860pmap_invalidate_all(pmap_t pmap)
861{
862	cpuset_t other_cpus;
863	u_int cpuid;
864
865	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
866
867	sched_pin();
868	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
869		invltlb();
870		smp_invltlb();
871	} else {
872		cpuid = PCPU_GET(cpuid);
873		other_cpus = all_cpus;
874		CPU_CLR(cpuid, &other_cpus);
875		if (CPU_ISSET(cpuid, &pmap->pm_active))
876			invltlb();
877		CPU_AND(&other_cpus, &pmap->pm_active);
878		if (!CPU_EMPTY(&other_cpus))
879			smp_masked_invltlb(other_cpus);
880	}
881	sched_unpin();
882}
883
884void
885pmap_invalidate_cache(void)
886{
887
888	sched_pin();
889	wbinvd();
890	smp_cache_flush();
891	sched_unpin();
892}
893#else /* !SMP */
894/*
895 * Normal, non-SMP, 486+ invalidation functions.
896 * We inline these within pmap.c for speed.
897 */
898PMAP_INLINE void
899pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
900{
901	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
902	    pmap, va);
903
904	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
905		invlpg(va);
906	PT_UPDATES_FLUSH();
907}
908
909PMAP_INLINE void
910pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
911{
912	vm_offset_t addr;
913
914	if (eva - sva > PAGE_SIZE)
915		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
916		    pmap, sva, eva);
917
918	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
919		for (addr = sva; addr < eva; addr += PAGE_SIZE)
920			invlpg(addr);
921	PT_UPDATES_FLUSH();
922}
923
924PMAP_INLINE void
925pmap_invalidate_all(pmap_t pmap)
926{
927
928	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
929
930	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
931		invltlb();
932}
933
934PMAP_INLINE void
935pmap_invalidate_cache(void)
936{
937
938	wbinvd();
939}
940#endif /* !SMP */
941
942void
943pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
944{
945
946	KASSERT((sva & PAGE_MASK) == 0,
947	    ("pmap_invalidate_cache_range: sva not page-aligned"));
948	KASSERT((eva & PAGE_MASK) == 0,
949	    ("pmap_invalidate_cache_range: eva not page-aligned"));
950
951	if (cpu_feature & CPUID_SS)
952		; /* If "Self Snoop" is supported, do nothing. */
953	else if (cpu_feature & CPUID_CLFSH) {
954
955		/*
956		 * Otherwise, do per-cache line flush.  Use the mfence
957		 * instruction to insure that previous stores are
958		 * included in the write-back.  The processor
959		 * propagates flush to other processors in the cache
960		 * coherence domain.
961		 */
962		mfence();
963		for (; sva < eva; sva += cpu_clflush_line_size)
964			clflush(sva);
965		mfence();
966	} else {
967
968		/*
969		 * No targeted cache flush methods are supported by CPU,
970		 * globally invalidate cache as a last resort.
971		 */
972		pmap_invalidate_cache();
973	}
974}
975
976/*
977 * Are we current address space or kernel?  N.B. We return FALSE when
978 * a pmap's page table is in use because a kernel thread is borrowing
979 * it.  The borrowed page table can change spontaneously, making any
980 * dependence on its continued use subject to a race condition.
981 */
982static __inline int
983pmap_is_current(pmap_t pmap)
984{
985
986	return (pmap == kernel_pmap ||
987	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
988		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
989}
990
991/*
992 * If the given pmap is not the current or kernel pmap, the returned pte must
993 * be released by passing it to pmap_pte_release().
994 */
995pt_entry_t *
996pmap_pte(pmap_t pmap, vm_offset_t va)
997{
998	pd_entry_t newpf;
999	pd_entry_t *pde;
1000
1001	pde = pmap_pde(pmap, va);
1002	if (*pde & PG_PS)
1003		return (pde);
1004	if (*pde != 0) {
1005		/* are we current address space or kernel? */
1006		if (pmap_is_current(pmap))
1007			return (vtopte(va));
1008		mtx_lock(&PMAP2mutex);
1009		newpf = *pde & PG_FRAME;
1010		if ((*PMAP2 & PG_FRAME) != newpf) {
1011			vm_page_lock_queues();
1012			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1013			vm_page_unlock_queues();
1014			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1015			    pmap, va, (*PMAP2 & 0xffffffff));
1016		}
1017
1018		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1019	}
1020	return (0);
1021}
1022
1023/*
1024 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1025 * being NULL.
1026 */
1027static __inline void
1028pmap_pte_release(pt_entry_t *pte)
1029{
1030
1031	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1032		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1033		    *PMAP2);
1034		vm_page_lock_queues();
1035		PT_SET_VA(PMAP2, 0, TRUE);
1036		vm_page_unlock_queues();
1037		mtx_unlock(&PMAP2mutex);
1038	}
1039}
1040
1041static __inline void
1042invlcaddr(void *caddr)
1043{
1044
1045	invlpg((u_int)caddr);
1046	PT_UPDATES_FLUSH();
1047}
1048
1049/*
1050 * Super fast pmap_pte routine best used when scanning
1051 * the pv lists.  This eliminates many coarse-grained
1052 * invltlb calls.  Note that many of the pv list
1053 * scans are across different pmaps.  It is very wasteful
1054 * to do an entire invltlb for checking a single mapping.
1055 *
1056 * If the given pmap is not the current pmap, vm_page_queue_mtx
1057 * must be held and curthread pinned to a CPU.
1058 */
1059static pt_entry_t *
1060pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1061{
1062	pd_entry_t newpf;
1063	pd_entry_t *pde;
1064
1065	pde = pmap_pde(pmap, va);
1066	if (*pde & PG_PS)
1067		return (pde);
1068	if (*pde != 0) {
1069		/* are we current address space or kernel? */
1070		if (pmap_is_current(pmap))
1071			return (vtopte(va));
1072		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1073		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1074		newpf = *pde & PG_FRAME;
1075		if ((*PMAP1 & PG_FRAME) != newpf) {
1076			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1077			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1078			    pmap, va, (u_long)*PMAP1);
1079
1080#ifdef SMP
1081			PMAP1cpu = PCPU_GET(cpuid);
1082#endif
1083			PMAP1changed++;
1084		} else
1085#ifdef SMP
1086		if (PMAP1cpu != PCPU_GET(cpuid)) {
1087			PMAP1cpu = PCPU_GET(cpuid);
1088			invlcaddr(PADDR1);
1089			PMAP1changedcpu++;
1090		} else
1091#endif
1092			PMAP1unchanged++;
1093		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1094	}
1095	return (0);
1096}
1097
1098/*
1099 *	Routine:	pmap_extract
1100 *	Function:
1101 *		Extract the physical page address associated
1102 *		with the given map/virtual_address pair.
1103 */
1104vm_paddr_t
1105pmap_extract(pmap_t pmap, vm_offset_t va)
1106{
1107	vm_paddr_t rtval;
1108	pt_entry_t *pte;
1109	pd_entry_t pde;
1110	pt_entry_t pteval;
1111
1112	rtval = 0;
1113	PMAP_LOCK(pmap);
1114	pde = pmap->pm_pdir[va >> PDRSHIFT];
1115	if (pde != 0) {
1116		if ((pde & PG_PS) != 0) {
1117			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1118			PMAP_UNLOCK(pmap);
1119			return rtval;
1120		}
1121		pte = pmap_pte(pmap, va);
1122		pteval = *pte ? xpmap_mtop(*pte) : 0;
1123		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1124		pmap_pte_release(pte);
1125	}
1126	PMAP_UNLOCK(pmap);
1127	return (rtval);
1128}
1129
1130/*
1131 *	Routine:	pmap_extract_ma
1132 *	Function:
1133 *		Like pmap_extract, but returns machine address
1134 */
1135vm_paddr_t
1136pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1137{
1138	vm_paddr_t rtval;
1139	pt_entry_t *pte;
1140	pd_entry_t pde;
1141
1142	rtval = 0;
1143	PMAP_LOCK(pmap);
1144	pde = pmap->pm_pdir[va >> PDRSHIFT];
1145	if (pde != 0) {
1146		if ((pde & PG_PS) != 0) {
1147			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1148			PMAP_UNLOCK(pmap);
1149			return rtval;
1150		}
1151		pte = pmap_pte(pmap, va);
1152		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1153		pmap_pte_release(pte);
1154	}
1155	PMAP_UNLOCK(pmap);
1156	return (rtval);
1157}
1158
1159/*
1160 *	Routine:	pmap_extract_and_hold
1161 *	Function:
1162 *		Atomically extract and hold the physical page
1163 *		with the given pmap and virtual address pair
1164 *		if that mapping permits the given protection.
1165 */
1166vm_page_t
1167pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1168{
1169	pd_entry_t pde;
1170	pt_entry_t pte;
1171	vm_page_t m;
1172	vm_paddr_t pa;
1173
1174	pa = 0;
1175	m = NULL;
1176	PMAP_LOCK(pmap);
1177retry:
1178	pde = PT_GET(pmap_pde(pmap, va));
1179	if (pde != 0) {
1180		if (pde & PG_PS) {
1181			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1182				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1183				       (va & PDRMASK), &pa))
1184					goto retry;
1185				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1186				    (va & PDRMASK));
1187				vm_page_hold(m);
1188			}
1189		} else {
1190			sched_pin();
1191			pte = PT_GET(pmap_pte_quick(pmap, va));
1192			if (*PMAP1)
1193				PT_SET_MA(PADDR1, 0);
1194			if ((pte & PG_V) &&
1195			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1196				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1197					goto retry;
1198				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1199				vm_page_hold(m);
1200			}
1201			sched_unpin();
1202		}
1203	}
1204	PA_UNLOCK_COND(pa);
1205	PMAP_UNLOCK(pmap);
1206	return (m);
1207}
1208
1209/***************************************************
1210 * Low level mapping routines.....
1211 ***************************************************/
1212
1213/*
1214 * Add a wired page to the kva.
1215 * Note: not SMP coherent.
1216 */
1217void
1218pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1219{
1220	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1221}
1222
1223void
1224pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1225{
1226	pt_entry_t *pte;
1227
1228	pte = vtopte(va);
1229	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1230}
1231
1232
1233static __inline void
1234pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1235{
1236	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1237}
1238
1239/*
1240 * Remove a page from the kernel pagetables.
1241 * Note: not SMP coherent.
1242 */
1243PMAP_INLINE void
1244pmap_kremove(vm_offset_t va)
1245{
1246	pt_entry_t *pte;
1247
1248	pte = vtopte(va);
1249	PT_CLEAR_VA(pte, FALSE);
1250}
1251
1252/*
1253 *	Used to map a range of physical addresses into kernel
1254 *	virtual address space.
1255 *
1256 *	The value passed in '*virt' is a suggested virtual address for
1257 *	the mapping. Architectures which can support a direct-mapped
1258 *	physical to virtual region can return the appropriate address
1259 *	within that region, leaving '*virt' unchanged. Other
1260 *	architectures should map the pages starting at '*virt' and
1261 *	update '*virt' with the first usable address after the mapped
1262 *	region.
1263 */
1264vm_offset_t
1265pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1266{
1267	vm_offset_t va, sva;
1268
1269	va = sva = *virt;
1270	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1271	    va, start, end, prot);
1272	while (start < end) {
1273		pmap_kenter(va, start);
1274		va += PAGE_SIZE;
1275		start += PAGE_SIZE;
1276	}
1277	pmap_invalidate_range(kernel_pmap, sva, va);
1278	*virt = va;
1279	return (sva);
1280}
1281
1282
1283/*
1284 * Add a list of wired pages to the kva
1285 * this routine is only used for temporary
1286 * kernel mappings that do not need to have
1287 * page modification or references recorded.
1288 * Note that old mappings are simply written
1289 * over.  The page *must* be wired.
1290 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1291 */
1292void
1293pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1294{
1295	pt_entry_t *endpte, *pte;
1296	vm_paddr_t pa;
1297	vm_offset_t va = sva;
1298	int mclcount = 0;
1299	multicall_entry_t mcl[16];
1300	multicall_entry_t *mclp = mcl;
1301	int error;
1302
1303	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1304	pte = vtopte(sva);
1305	endpte = pte + count;
1306	while (pte < endpte) {
1307		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1308
1309		mclp->op = __HYPERVISOR_update_va_mapping;
1310		mclp->args[0] = va;
1311		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1312		mclp->args[2] = (uint32_t)(pa >> 32);
1313		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1314
1315		va += PAGE_SIZE;
1316		pte++;
1317		ma++;
1318		mclp++;
1319		mclcount++;
1320		if (mclcount == 16) {
1321			error = HYPERVISOR_multicall(mcl, mclcount);
1322			mclp = mcl;
1323			mclcount = 0;
1324			KASSERT(error == 0, ("bad multicall %d", error));
1325		}
1326	}
1327	if (mclcount) {
1328		error = HYPERVISOR_multicall(mcl, mclcount);
1329		KASSERT(error == 0, ("bad multicall %d", error));
1330	}
1331
1332#ifdef INVARIANTS
1333	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1334		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1335#endif
1336}
1337
1338
1339/*
1340 * This routine tears out page mappings from the
1341 * kernel -- it is meant only for temporary mappings.
1342 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1343 */
1344void
1345pmap_qremove(vm_offset_t sva, int count)
1346{
1347	vm_offset_t va;
1348
1349	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1350	va = sva;
1351	vm_page_lock_queues();
1352	critical_enter();
1353	while (count-- > 0) {
1354		pmap_kremove(va);
1355		va += PAGE_SIZE;
1356	}
1357	PT_UPDATES_FLUSH();
1358	pmap_invalidate_range(kernel_pmap, sva, va);
1359	critical_exit();
1360	vm_page_unlock_queues();
1361}
1362
1363/***************************************************
1364 * Page table page management routines.....
1365 ***************************************************/
1366static __inline void
1367pmap_free_zero_pages(vm_page_t free)
1368{
1369	vm_page_t m;
1370
1371	while (free != NULL) {
1372		m = free;
1373		free = m->right;
1374		vm_page_free_zero(m);
1375	}
1376}
1377
1378/*
1379 * This routine unholds page table pages, and if the hold count
1380 * drops to zero, then it decrements the wire count.
1381 */
1382static __inline int
1383pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1384{
1385
1386	--m->wire_count;
1387	if (m->wire_count == 0)
1388		return _pmap_unwire_pte_hold(pmap, m, free);
1389	else
1390		return 0;
1391}
1392
1393static int
1394_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1395{
1396	vm_offset_t pteva;
1397
1398	PT_UPDATES_FLUSH();
1399	/*
1400	 * unmap the page table page
1401	 */
1402	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1403	/*
1404	 * page *might* contain residual mapping :-/
1405	 */
1406	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1407	pmap_zero_page(m);
1408	--pmap->pm_stats.resident_count;
1409
1410	/*
1411	 * This is a release store so that the ordinary store unmapping
1412	 * the page table page is globally performed before TLB shoot-
1413	 * down is begun.
1414	 */
1415	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1416
1417	/*
1418	 * Do an invltlb to make the invalidated mapping
1419	 * take effect immediately.
1420	 */
1421	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1422	pmap_invalidate_page(pmap, pteva);
1423
1424	/*
1425	 * Put page on a list so that it is released after
1426	 * *ALL* TLB shootdown is done
1427	 */
1428	m->right = *free;
1429	*free = m;
1430
1431	return 1;
1432}
1433
1434/*
1435 * After removing a page table entry, this routine is used to
1436 * conditionally free the page, and manage the hold/wire counts.
1437 */
1438static int
1439pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1440{
1441	pd_entry_t ptepde;
1442	vm_page_t mpte;
1443
1444	if (va >= VM_MAXUSER_ADDRESS)
1445		return 0;
1446	ptepde = PT_GET(pmap_pde(pmap, va));
1447	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1448	return pmap_unwire_pte_hold(pmap, mpte, free);
1449}
1450
1451void
1452pmap_pinit0(pmap_t pmap)
1453{
1454
1455	PMAP_LOCK_INIT(pmap);
1456	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1457#ifdef PAE
1458	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1459#endif
1460	CPU_ZERO(&pmap->pm_active);
1461	PCPU_SET(curpmap, pmap);
1462	TAILQ_INIT(&pmap->pm_pvchunk);
1463	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1464	mtx_lock_spin(&allpmaps_lock);
1465	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1466	mtx_unlock_spin(&allpmaps_lock);
1467}
1468
1469/*
1470 * Initialize a preallocated and zeroed pmap structure,
1471 * such as one in a vmspace structure.
1472 */
1473int
1474pmap_pinit(pmap_t pmap)
1475{
1476	vm_page_t m, ptdpg[NPGPTD + 1];
1477	int npgptd = NPGPTD + 1;
1478	static int color;
1479	int i;
1480
1481#ifdef HAMFISTED_LOCKING
1482	mtx_lock(&createdelete_lock);
1483#endif
1484
1485	PMAP_LOCK_INIT(pmap);
1486
1487	/*
1488	 * No need to allocate page table space yet but we do need a valid
1489	 * page directory table.
1490	 */
1491	if (pmap->pm_pdir == NULL) {
1492		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1493		    NBPTD);
1494		if (pmap->pm_pdir == NULL) {
1495			PMAP_LOCK_DESTROY(pmap);
1496#ifdef HAMFISTED_LOCKING
1497			mtx_unlock(&createdelete_lock);
1498#endif
1499			return (0);
1500		}
1501#ifdef PAE
1502		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1503#endif
1504	}
1505
1506	/*
1507	 * allocate the page directory page(s)
1508	 */
1509	for (i = 0; i < npgptd;) {
1510		m = vm_page_alloc(NULL, color++,
1511		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1512		    VM_ALLOC_ZERO);
1513		if (m == NULL)
1514			VM_WAIT;
1515		else {
1516			ptdpg[i++] = m;
1517		}
1518	}
1519	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1520	for (i = 0; i < NPGPTD; i++) {
1521		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1522			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1523	}
1524
1525	mtx_lock_spin(&allpmaps_lock);
1526	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1527	mtx_unlock_spin(&allpmaps_lock);
1528	/* Wire in kernel global address entries. */
1529
1530	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1531#ifdef PAE
1532	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1533	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1534		bzero(pmap->pm_pdpt, PAGE_SIZE);
1535	for (i = 0; i < NPGPTD; i++) {
1536		vm_paddr_t ma;
1537
1538		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1539		pmap->pm_pdpt[i] = ma | PG_V;
1540
1541	}
1542#endif
1543	for (i = 0; i < NPGPTD; i++) {
1544		pt_entry_t *pd;
1545		vm_paddr_t ma;
1546
1547		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1548		pd = pmap->pm_pdir + (i * NPDEPG);
1549		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1550#if 0
1551		xen_pgd_pin(ma);
1552#endif
1553	}
1554
1555#ifdef PAE
1556	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1557#endif
1558	vm_page_lock_queues();
1559	xen_flush_queue();
1560	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1561	for (i = 0; i < NPGPTD; i++) {
1562		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1563		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1564	}
1565	xen_flush_queue();
1566	vm_page_unlock_queues();
1567	CPU_ZERO(&pmap->pm_active);
1568	TAILQ_INIT(&pmap->pm_pvchunk);
1569	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1570
1571#ifdef HAMFISTED_LOCKING
1572	mtx_unlock(&createdelete_lock);
1573#endif
1574	return (1);
1575}
1576
1577/*
1578 * this routine is called if the page table page is not
1579 * mapped correctly.
1580 */
1581static vm_page_t
1582_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1583{
1584	vm_paddr_t ptema;
1585	vm_page_t m;
1586
1587	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1588	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1589	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1590
1591	/*
1592	 * Allocate a page table page.
1593	 */
1594	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1595	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1596		if (flags & M_WAITOK) {
1597			PMAP_UNLOCK(pmap);
1598			vm_page_unlock_queues();
1599			VM_WAIT;
1600			vm_page_lock_queues();
1601			PMAP_LOCK(pmap);
1602		}
1603
1604		/*
1605		 * Indicate the need to retry.  While waiting, the page table
1606		 * page may have been allocated.
1607		 */
1608		return (NULL);
1609	}
1610	if ((m->flags & PG_ZERO) == 0)
1611		pmap_zero_page(m);
1612
1613	/*
1614	 * Map the pagetable page into the process address space, if
1615	 * it isn't already there.
1616	 */
1617	pmap->pm_stats.resident_count++;
1618
1619	ptema = VM_PAGE_TO_MACH(m);
1620	xen_pt_pin(ptema);
1621	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1622		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1623
1624	KASSERT(pmap->pm_pdir[ptepindex],
1625	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1626	return (m);
1627}
1628
1629static vm_page_t
1630pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1631{
1632	unsigned ptepindex;
1633	pd_entry_t ptema;
1634	vm_page_t m;
1635
1636	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1637	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1638	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1639
1640	/*
1641	 * Calculate pagetable page index
1642	 */
1643	ptepindex = va >> PDRSHIFT;
1644retry:
1645	/*
1646	 * Get the page directory entry
1647	 */
1648	ptema = pmap->pm_pdir[ptepindex];
1649
1650	/*
1651	 * This supports switching from a 4MB page to a
1652	 * normal 4K page.
1653	 */
1654	if (ptema & PG_PS) {
1655		/*
1656		 * XXX
1657		 */
1658		pmap->pm_pdir[ptepindex] = 0;
1659		ptema = 0;
1660		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1661		pmap_invalidate_all(kernel_pmap);
1662	}
1663
1664	/*
1665	 * If the page table page is mapped, we just increment the
1666	 * hold count, and activate it.
1667	 */
1668	if (ptema & PG_V) {
1669		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1670		m->wire_count++;
1671	} else {
1672		/*
1673		 * Here if the pte page isn't mapped, or if it has
1674		 * been deallocated.
1675		 */
1676		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1677		    pmap, va, flags);
1678		m = _pmap_allocpte(pmap, ptepindex, flags);
1679		if (m == NULL && (flags & M_WAITOK))
1680			goto retry;
1681
1682		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1683	}
1684	return (m);
1685}
1686
1687
1688/***************************************************
1689* Pmap allocation/deallocation routines.
1690 ***************************************************/
1691
1692#ifdef SMP
1693/*
1694 * Deal with a SMP shootdown of other users of the pmap that we are
1695 * trying to dispose of.  This can be a bit hairy.
1696 */
1697static cpuset_t *lazymask;
1698static u_int lazyptd;
1699static volatile u_int lazywait;
1700
1701void pmap_lazyfix_action(void);
1702
1703void
1704pmap_lazyfix_action(void)
1705{
1706
1707#ifdef COUNT_IPIS
1708	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1709#endif
1710	if (rcr3() == lazyptd)
1711		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1712	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1713	atomic_store_rel_int(&lazywait, 1);
1714}
1715
1716static void
1717pmap_lazyfix_self(u_int cpuid)
1718{
1719
1720	if (rcr3() == lazyptd)
1721		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1722	CPU_CLR_ATOMIC(cpuid, lazymask);
1723}
1724
1725
1726static void
1727pmap_lazyfix(pmap_t pmap)
1728{
1729	cpuset_t mymask, mask;
1730	u_int cpuid, spins;
1731	int lsb;
1732
1733	mask = pmap->pm_active;
1734	while (!CPU_EMPTY(&mask)) {
1735		spins = 50000000;
1736
1737		/* Find least significant set bit. */
1738		lsb = cpusetobj_ffs(&mask);
1739		MPASS(lsb != 0);
1740		lsb--;
1741		CPU_SETOF(lsb, &mask);
1742		mtx_lock_spin(&smp_ipi_mtx);
1743#ifdef PAE
1744		lazyptd = vtophys(pmap->pm_pdpt);
1745#else
1746		lazyptd = vtophys(pmap->pm_pdir);
1747#endif
1748		cpuid = PCPU_GET(cpuid);
1749
1750		/* Use a cpuset just for having an easy check. */
1751		CPU_SETOF(cpuid, &mymask);
1752		if (!CPU_CMP(&mask, &mymask)) {
1753			lazymask = &pmap->pm_active;
1754			pmap_lazyfix_self(cpuid);
1755		} else {
1756			atomic_store_rel_int((u_int *)&lazymask,
1757			    (u_int)&pmap->pm_active);
1758			atomic_store_rel_int(&lazywait, 0);
1759			ipi_selected(mask, IPI_LAZYPMAP);
1760			while (lazywait == 0) {
1761				ia32_pause();
1762				if (--spins == 0)
1763					break;
1764			}
1765		}
1766		mtx_unlock_spin(&smp_ipi_mtx);
1767		if (spins == 0)
1768			printf("pmap_lazyfix: spun for 50000000\n");
1769		mask = pmap->pm_active;
1770	}
1771}
1772
1773#else	/* SMP */
1774
1775/*
1776 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1777 * unlikely to have to even execute this code, including the fact
1778 * that the cleanup is deferred until the parent does a wait(2), which
1779 * means that another userland process has run.
1780 */
1781static void
1782pmap_lazyfix(pmap_t pmap)
1783{
1784	u_int cr3;
1785
1786	cr3 = vtophys(pmap->pm_pdir);
1787	if (cr3 == rcr3()) {
1788		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1789		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1790	}
1791}
1792#endif	/* SMP */
1793
1794/*
1795 * Release any resources held by the given physical map.
1796 * Called when a pmap initialized by pmap_pinit is being released.
1797 * Should only be called if the map contains no valid mappings.
1798 */
1799void
1800pmap_release(pmap_t pmap)
1801{
1802	vm_page_t m, ptdpg[2*NPGPTD+1];
1803	vm_paddr_t ma;
1804	int i;
1805#ifdef PAE
1806	int npgptd = NPGPTD + 1;
1807#else
1808	int npgptd = NPGPTD;
1809#endif
1810	KASSERT(pmap->pm_stats.resident_count == 0,
1811	    ("pmap_release: pmap resident count %ld != 0",
1812	    pmap->pm_stats.resident_count));
1813	PT_UPDATES_FLUSH();
1814
1815#ifdef HAMFISTED_LOCKING
1816	mtx_lock(&createdelete_lock);
1817#endif
1818
1819	pmap_lazyfix(pmap);
1820	mtx_lock_spin(&allpmaps_lock);
1821	LIST_REMOVE(pmap, pm_list);
1822	mtx_unlock_spin(&allpmaps_lock);
1823
1824	for (i = 0; i < NPGPTD; i++)
1825		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1826	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1827#ifdef PAE
1828	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1829#endif
1830
1831	for (i = 0; i < npgptd; i++) {
1832		m = ptdpg[i];
1833		ma = VM_PAGE_TO_MACH(m);
1834		/* unpinning L1 and L2 treated the same */
1835#if 0
1836                xen_pgd_unpin(ma);
1837#else
1838		if (i == NPGPTD)
1839	                xen_pgd_unpin(ma);
1840#endif
1841#ifdef PAE
1842		if (i < NPGPTD)
1843			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1844			    ("pmap_release: got wrong ptd page"));
1845#endif
1846		m->wire_count--;
1847		atomic_subtract_int(&cnt.v_wire_count, 1);
1848		vm_page_free(m);
1849	}
1850#ifdef PAE
1851	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1852#endif
1853	PMAP_LOCK_DESTROY(pmap);
1854
1855#ifdef HAMFISTED_LOCKING
1856	mtx_unlock(&createdelete_lock);
1857#endif
1858}
1859
1860static int
1861kvm_size(SYSCTL_HANDLER_ARGS)
1862{
1863	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1864
1865	return sysctl_handle_long(oidp, &ksize, 0, req);
1866}
1867SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1868    0, 0, kvm_size, "IU", "Size of KVM");
1869
1870static int
1871kvm_free(SYSCTL_HANDLER_ARGS)
1872{
1873	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1874
1875	return sysctl_handle_long(oidp, &kfree, 0, req);
1876}
1877SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1878    0, 0, kvm_free, "IU", "Amount of KVM free");
1879
1880/*
1881 * grow the number of kernel page table entries, if needed
1882 */
1883void
1884pmap_growkernel(vm_offset_t addr)
1885{
1886	struct pmap *pmap;
1887	vm_paddr_t ptppaddr;
1888	vm_page_t nkpg;
1889	pd_entry_t newpdir;
1890
1891	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1892	if (kernel_vm_end == 0) {
1893		kernel_vm_end = KERNBASE;
1894		nkpt = 0;
1895		while (pdir_pde(PTD, kernel_vm_end)) {
1896			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1897			nkpt++;
1898			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1899				kernel_vm_end = kernel_map->max_offset;
1900				break;
1901			}
1902		}
1903	}
1904	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1905	if (addr - 1 >= kernel_map->max_offset)
1906		addr = kernel_map->max_offset;
1907	while (kernel_vm_end < addr) {
1908		if (pdir_pde(PTD, kernel_vm_end)) {
1909			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1910			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1911				kernel_vm_end = kernel_map->max_offset;
1912				break;
1913			}
1914			continue;
1915		}
1916
1917		/*
1918		 * This index is bogus, but out of the way
1919		 */
1920		nkpg = vm_page_alloc(NULL, nkpt,
1921		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1922		if (!nkpg)
1923			panic("pmap_growkernel: no memory to grow kernel");
1924
1925		nkpt++;
1926
1927		pmap_zero_page(nkpg);
1928		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1929		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1930		vm_page_lock_queues();
1931		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1932		mtx_lock_spin(&allpmaps_lock);
1933		LIST_FOREACH(pmap, &allpmaps, pm_list)
1934			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1935
1936		mtx_unlock_spin(&allpmaps_lock);
1937		vm_page_unlock_queues();
1938
1939		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1940		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1941			kernel_vm_end = kernel_map->max_offset;
1942			break;
1943		}
1944	}
1945}
1946
1947
1948/***************************************************
1949 * page management routines.
1950 ***************************************************/
1951
1952CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1953CTASSERT(_NPCM == 11);
1954
1955static __inline struct pv_chunk *
1956pv_to_chunk(pv_entry_t pv)
1957{
1958
1959	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1960}
1961
1962#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1963
1964#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1965#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1966
1967static uint32_t pc_freemask[11] = {
1968	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1969	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1970	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1971	PC_FREE0_9, PC_FREE10
1972};
1973
1974SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1975	"Current number of pv entries");
1976
1977#ifdef PV_STATS
1978static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1979
1980SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1981	"Current number of pv entry chunks");
1982SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1983	"Current number of pv entry chunks allocated");
1984SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1985	"Current number of pv entry chunks frees");
1986SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1987	"Number of times tried to get a chunk page but failed.");
1988
1989static long pv_entry_frees, pv_entry_allocs;
1990static int pv_entry_spare;
1991
1992SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1993	"Current number of pv entry frees");
1994SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1995	"Current number of pv entry allocs");
1996SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1997	"Current number of spare pv entries");
1998
1999static int pmap_collect_inactive, pmap_collect_active;
2000
2001SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2002	"Current number times pmap_collect called on inactive queue");
2003SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2004	"Current number times pmap_collect called on active queue");
2005#endif
2006
2007/*
2008 * We are in a serious low memory condition.  Resort to
2009 * drastic measures to free some pages so we can allocate
2010 * another pv entry chunk.  This is normally called to
2011 * unmap inactive pages, and if necessary, active pages.
2012 */
2013static void
2014pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2015{
2016	pmap_t pmap;
2017	pt_entry_t *pte, tpte;
2018	pv_entry_t next_pv, pv;
2019	vm_offset_t va;
2020	vm_page_t m, free;
2021
2022	sched_pin();
2023	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2024		if ((m->flags & PG_MARKER) != 0 || m->hold_count || m->busy)
2025			continue;
2026		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2027			va = pv->pv_va;
2028			pmap = PV_PMAP(pv);
2029			/* Avoid deadlock and lock recursion. */
2030			if (pmap > locked_pmap)
2031				PMAP_LOCK(pmap);
2032			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2033				continue;
2034			pmap->pm_stats.resident_count--;
2035			pte = pmap_pte_quick(pmap, va);
2036			tpte = pte_load_clear(pte);
2037			KASSERT((tpte & PG_W) == 0,
2038			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2039			if (tpte & PG_A)
2040				vm_page_flag_set(m, PG_REFERENCED);
2041			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2042				vm_page_dirty(m);
2043			free = NULL;
2044			pmap_unuse_pt(pmap, va, &free);
2045			pmap_invalidate_page(pmap, va);
2046			pmap_free_zero_pages(free);
2047			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2048			free_pv_entry(pmap, pv);
2049			if (pmap != locked_pmap)
2050				PMAP_UNLOCK(pmap);
2051		}
2052		if (TAILQ_EMPTY(&m->md.pv_list))
2053			vm_page_flag_clear(m, PG_WRITEABLE);
2054	}
2055	sched_unpin();
2056}
2057
2058
2059/*
2060 * free the pv_entry back to the free list
2061 */
2062static void
2063free_pv_entry(pmap_t pmap, pv_entry_t pv)
2064{
2065	vm_page_t m;
2066	struct pv_chunk *pc;
2067	int idx, field, bit;
2068
2069	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2070	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2071	PV_STAT(pv_entry_frees++);
2072	PV_STAT(pv_entry_spare++);
2073	pv_entry_count--;
2074	pc = pv_to_chunk(pv);
2075	idx = pv - &pc->pc_pventry[0];
2076	field = idx / 32;
2077	bit = idx % 32;
2078	pc->pc_map[field] |= 1ul << bit;
2079	/* move to head of list */
2080	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2081	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2082	for (idx = 0; idx < _NPCM; idx++)
2083		if (pc->pc_map[idx] != pc_freemask[idx])
2084			return;
2085	PV_STAT(pv_entry_spare -= _NPCPV);
2086	PV_STAT(pc_chunk_count--);
2087	PV_STAT(pc_chunk_frees++);
2088	/* entire chunk is free, return it */
2089	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2090	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2091	pmap_qremove((vm_offset_t)pc, 1);
2092	vm_page_unwire(m, 0);
2093	vm_page_free(m);
2094	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2095}
2096
2097/*
2098 * get a new pv_entry, allocating a block from the system
2099 * when needed.
2100 */
2101static pv_entry_t
2102get_pv_entry(pmap_t pmap, int try)
2103{
2104	static const struct timeval printinterval = { 60, 0 };
2105	static struct timeval lastprint;
2106	static vm_pindex_t colour;
2107	struct vpgqueues *pq;
2108	int bit, field;
2109	pv_entry_t pv;
2110	struct pv_chunk *pc;
2111	vm_page_t m;
2112
2113	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2114	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2115	PV_STAT(pv_entry_allocs++);
2116	pv_entry_count++;
2117	if (pv_entry_count > pv_entry_high_water)
2118		if (ratecheck(&lastprint, &printinterval))
2119			printf("Approaching the limit on PV entries, consider "
2120			    "increasing either the vm.pmap.shpgperproc or the "
2121			    "vm.pmap.pv_entry_max tunable.\n");
2122	pq = NULL;
2123retry:
2124	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2125	if (pc != NULL) {
2126		for (field = 0; field < _NPCM; field++) {
2127			if (pc->pc_map[field]) {
2128				bit = bsfl(pc->pc_map[field]);
2129				break;
2130			}
2131		}
2132		if (field < _NPCM) {
2133			pv = &pc->pc_pventry[field * 32 + bit];
2134			pc->pc_map[field] &= ~(1ul << bit);
2135			/* If this was the last item, move it to tail */
2136			for (field = 0; field < _NPCM; field++)
2137				if (pc->pc_map[field] != 0) {
2138					PV_STAT(pv_entry_spare--);
2139					return (pv);	/* not full, return */
2140				}
2141			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2142			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2143			PV_STAT(pv_entry_spare--);
2144			return (pv);
2145		}
2146	}
2147	/*
2148	 * Access to the ptelist "pv_vafree" is synchronized by the page
2149	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2150	 * remain non-empty until pmap_ptelist_alloc() completes.
2151	 */
2152	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2153	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2154	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2155		if (try) {
2156			pv_entry_count--;
2157			PV_STAT(pc_chunk_tryfail++);
2158			return (NULL);
2159		}
2160		/*
2161		 * Reclaim pv entries: At first, destroy mappings to
2162		 * inactive pages.  After that, if a pv chunk entry
2163		 * is still needed, destroy mappings to active pages.
2164		 */
2165		if (pq == NULL) {
2166			PV_STAT(pmap_collect_inactive++);
2167			pq = &vm_page_queues[PQ_INACTIVE];
2168		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2169			PV_STAT(pmap_collect_active++);
2170			pq = &vm_page_queues[PQ_ACTIVE];
2171		} else
2172			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2173		pmap_collect(pmap, pq);
2174		goto retry;
2175	}
2176	PV_STAT(pc_chunk_count++);
2177	PV_STAT(pc_chunk_allocs++);
2178	colour++;
2179	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2180	pmap_qenter((vm_offset_t)pc, &m, 1);
2181	if ((m->flags & PG_ZERO) == 0)
2182		pagezero(pc);
2183	pc->pc_pmap = pmap;
2184	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2185	for (field = 1; field < _NPCM; field++)
2186		pc->pc_map[field] = pc_freemask[field];
2187	pv = &pc->pc_pventry[0];
2188	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2189	PV_STAT(pv_entry_spare += _NPCPV - 1);
2190	return (pv);
2191}
2192
2193static __inline pv_entry_t
2194pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2195{
2196	pv_entry_t pv;
2197
2198	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2199	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2200		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2201			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2202			break;
2203		}
2204	}
2205	return (pv);
2206}
2207
2208static void
2209pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2210{
2211	pv_entry_t pv;
2212
2213	pv = pmap_pvh_remove(pvh, pmap, va);
2214	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2215	free_pv_entry(pmap, pv);
2216}
2217
2218static void
2219pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2220{
2221
2222	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2223	pmap_pvh_free(&m->md, pmap, va);
2224	if (TAILQ_EMPTY(&m->md.pv_list))
2225		vm_page_flag_clear(m, PG_WRITEABLE);
2226}
2227
2228/*
2229 * Conditionally create a pv entry.
2230 */
2231static boolean_t
2232pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2233{
2234	pv_entry_t pv;
2235
2236	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2237	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2238	if (pv_entry_count < pv_entry_high_water &&
2239	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2240		pv->pv_va = va;
2241		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2242		return (TRUE);
2243	} else
2244		return (FALSE);
2245}
2246
2247/*
2248 * pmap_remove_pte: do the things to unmap a page in a process
2249 */
2250static int
2251pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2252{
2253	pt_entry_t oldpte;
2254	vm_page_t m;
2255
2256	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2257	    pmap, (u_long)*ptq, va);
2258
2259	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2260	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2261	oldpte = *ptq;
2262	PT_SET_VA_MA(ptq, 0, TRUE);
2263	if (oldpte & PG_W)
2264		pmap->pm_stats.wired_count -= 1;
2265	/*
2266	 * Machines that don't support invlpg, also don't support
2267	 * PG_G.
2268	 */
2269	if (oldpte & PG_G)
2270		pmap_invalidate_page(kernel_pmap, va);
2271	pmap->pm_stats.resident_count -= 1;
2272	if (oldpte & PG_MANAGED) {
2273		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2274		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2275			vm_page_dirty(m);
2276		if (oldpte & PG_A)
2277			vm_page_flag_set(m, PG_REFERENCED);
2278		pmap_remove_entry(pmap, m, va);
2279	}
2280	return (pmap_unuse_pt(pmap, va, free));
2281}
2282
2283/*
2284 * Remove a single page from a process address space
2285 */
2286static void
2287pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2288{
2289	pt_entry_t *pte;
2290
2291	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2292	    pmap, va);
2293
2294	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2295	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2296	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2297	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2298		return;
2299	pmap_remove_pte(pmap, pte, va, free);
2300	pmap_invalidate_page(pmap, va);
2301	if (*PMAP1)
2302		PT_SET_MA(PADDR1, 0);
2303
2304}
2305
2306/*
2307 *	Remove the given range of addresses from the specified map.
2308 *
2309 *	It is assumed that the start and end are properly
2310 *	rounded to the page size.
2311 */
2312void
2313pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2314{
2315	vm_offset_t pdnxt;
2316	pd_entry_t ptpaddr;
2317	pt_entry_t *pte;
2318	vm_page_t free = NULL;
2319	int anyvalid;
2320
2321	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2322	    pmap, sva, eva);
2323
2324	/*
2325	 * Perform an unsynchronized read.  This is, however, safe.
2326	 */
2327	if (pmap->pm_stats.resident_count == 0)
2328		return;
2329
2330	anyvalid = 0;
2331
2332	vm_page_lock_queues();
2333	sched_pin();
2334	PMAP_LOCK(pmap);
2335
2336	/*
2337	 * special handling of removing one page.  a very
2338	 * common operation and easy to short circuit some
2339	 * code.
2340	 */
2341	if ((sva + PAGE_SIZE == eva) &&
2342	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2343		pmap_remove_page(pmap, sva, &free);
2344		goto out;
2345	}
2346
2347	for (; sva < eva; sva = pdnxt) {
2348		unsigned pdirindex;
2349
2350		/*
2351		 * Calculate index for next page table.
2352		 */
2353		pdnxt = (sva + NBPDR) & ~PDRMASK;
2354		if (pmap->pm_stats.resident_count == 0)
2355			break;
2356
2357		pdirindex = sva >> PDRSHIFT;
2358		ptpaddr = pmap->pm_pdir[pdirindex];
2359
2360		/*
2361		 * Weed out invalid mappings. Note: we assume that the page
2362		 * directory table is always allocated, and in kernel virtual.
2363		 */
2364		if (ptpaddr == 0)
2365			continue;
2366
2367		/*
2368		 * Check for large page.
2369		 */
2370		if ((ptpaddr & PG_PS) != 0) {
2371			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2372			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2373			anyvalid = 1;
2374			continue;
2375		}
2376
2377		/*
2378		 * Limit our scan to either the end of the va represented
2379		 * by the current page table page, or to the end of the
2380		 * range being removed.
2381		 */
2382		if (pdnxt > eva)
2383			pdnxt = eva;
2384
2385		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2386		    sva += PAGE_SIZE) {
2387			if ((*pte & PG_V) == 0)
2388				continue;
2389
2390			/*
2391			 * The TLB entry for a PG_G mapping is invalidated
2392			 * by pmap_remove_pte().
2393			 */
2394			if ((*pte & PG_G) == 0)
2395				anyvalid = 1;
2396			if (pmap_remove_pte(pmap, pte, sva, &free))
2397				break;
2398		}
2399	}
2400	PT_UPDATES_FLUSH();
2401	if (*PMAP1)
2402		PT_SET_VA_MA(PMAP1, 0, TRUE);
2403out:
2404	if (anyvalid)
2405		pmap_invalidate_all(pmap);
2406	sched_unpin();
2407	vm_page_unlock_queues();
2408	PMAP_UNLOCK(pmap);
2409	pmap_free_zero_pages(free);
2410}
2411
2412/*
2413 *	Routine:	pmap_remove_all
2414 *	Function:
2415 *		Removes this physical page from
2416 *		all physical maps in which it resides.
2417 *		Reflects back modify bits to the pager.
2418 *
2419 *	Notes:
2420 *		Original versions of this routine were very
2421 *		inefficient because they iteratively called
2422 *		pmap_remove (slow...)
2423 */
2424
2425void
2426pmap_remove_all(vm_page_t m)
2427{
2428	pv_entry_t pv;
2429	pmap_t pmap;
2430	pt_entry_t *pte, tpte;
2431	vm_page_t free;
2432
2433	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2434	    ("pmap_remove_all: page %p is not managed", m));
2435	free = NULL;
2436	vm_page_lock_queues();
2437	sched_pin();
2438	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2439		pmap = PV_PMAP(pv);
2440		PMAP_LOCK(pmap);
2441		pmap->pm_stats.resident_count--;
2442		pte = pmap_pte_quick(pmap, pv->pv_va);
2443
2444		tpte = *pte;
2445		PT_SET_VA_MA(pte, 0, TRUE);
2446		if (tpte & PG_W)
2447			pmap->pm_stats.wired_count--;
2448		if (tpte & PG_A)
2449			vm_page_flag_set(m, PG_REFERENCED);
2450
2451		/*
2452		 * Update the vm_page_t clean and reference bits.
2453		 */
2454		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2455			vm_page_dirty(m);
2456		pmap_unuse_pt(pmap, pv->pv_va, &free);
2457		pmap_invalidate_page(pmap, pv->pv_va);
2458		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2459		free_pv_entry(pmap, pv);
2460		PMAP_UNLOCK(pmap);
2461	}
2462	vm_page_flag_clear(m, PG_WRITEABLE);
2463	PT_UPDATES_FLUSH();
2464	if (*PMAP1)
2465		PT_SET_MA(PADDR1, 0);
2466	sched_unpin();
2467	vm_page_unlock_queues();
2468	pmap_free_zero_pages(free);
2469}
2470
2471/*
2472 *	Set the physical protection on the
2473 *	specified range of this map as requested.
2474 */
2475void
2476pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2477{
2478	vm_offset_t pdnxt;
2479	pd_entry_t ptpaddr;
2480	pt_entry_t *pte;
2481	int anychanged;
2482
2483	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2484	    pmap, sva, eva, prot);
2485
2486	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2487		pmap_remove(pmap, sva, eva);
2488		return;
2489	}
2490
2491#ifdef PAE
2492	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2493	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2494		return;
2495#else
2496	if (prot & VM_PROT_WRITE)
2497		return;
2498#endif
2499
2500	anychanged = 0;
2501
2502	vm_page_lock_queues();
2503	sched_pin();
2504	PMAP_LOCK(pmap);
2505	for (; sva < eva; sva = pdnxt) {
2506		pt_entry_t obits, pbits;
2507		unsigned pdirindex;
2508
2509		pdnxt = (sva + NBPDR) & ~PDRMASK;
2510
2511		pdirindex = sva >> PDRSHIFT;
2512		ptpaddr = pmap->pm_pdir[pdirindex];
2513
2514		/*
2515		 * Weed out invalid mappings. Note: we assume that the page
2516		 * directory table is always allocated, and in kernel virtual.
2517		 */
2518		if (ptpaddr == 0)
2519			continue;
2520
2521		/*
2522		 * Check for large page.
2523		 */
2524		if ((ptpaddr & PG_PS) != 0) {
2525			if ((prot & VM_PROT_WRITE) == 0)
2526				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2527#ifdef PAE
2528			if ((prot & VM_PROT_EXECUTE) == 0)
2529				pmap->pm_pdir[pdirindex] |= pg_nx;
2530#endif
2531			anychanged = 1;
2532			continue;
2533		}
2534
2535		if (pdnxt > eva)
2536			pdnxt = eva;
2537
2538		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2539		    sva += PAGE_SIZE) {
2540			vm_page_t m;
2541
2542retry:
2543			/*
2544			 * Regardless of whether a pte is 32 or 64 bits in
2545			 * size, PG_RW, PG_A, and PG_M are among the least
2546			 * significant 32 bits.
2547			 */
2548			obits = pbits = *pte;
2549			if ((pbits & PG_V) == 0)
2550				continue;
2551
2552			if ((prot & VM_PROT_WRITE) == 0) {
2553				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2554				    (PG_MANAGED | PG_M | PG_RW)) {
2555					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2556					    PG_FRAME);
2557					vm_page_dirty(m);
2558				}
2559				pbits &= ~(PG_RW | PG_M);
2560			}
2561#ifdef PAE
2562			if ((prot & VM_PROT_EXECUTE) == 0)
2563				pbits |= pg_nx;
2564#endif
2565
2566			if (pbits != obits) {
2567				obits = *pte;
2568				PT_SET_VA_MA(pte, pbits, TRUE);
2569				if (*pte != pbits)
2570					goto retry;
2571				if (obits & PG_G)
2572					pmap_invalidate_page(pmap, sva);
2573				else
2574					anychanged = 1;
2575			}
2576		}
2577	}
2578	PT_UPDATES_FLUSH();
2579	if (*PMAP1)
2580		PT_SET_VA_MA(PMAP1, 0, TRUE);
2581	if (anychanged)
2582		pmap_invalidate_all(pmap);
2583	sched_unpin();
2584	vm_page_unlock_queues();
2585	PMAP_UNLOCK(pmap);
2586}
2587
2588/*
2589 *	Insert the given physical page (p) at
2590 *	the specified virtual address (v) in the
2591 *	target physical map with the protection requested.
2592 *
2593 *	If specified, the page will be wired down, meaning
2594 *	that the related pte can not be reclaimed.
2595 *
2596 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2597 *	or lose information.  That is, this routine must actually
2598 *	insert this page into the given map NOW.
2599 */
2600void
2601pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2602    vm_prot_t prot, boolean_t wired)
2603{
2604	pd_entry_t *pde;
2605	pt_entry_t *pte;
2606	pt_entry_t newpte, origpte;
2607	pv_entry_t pv;
2608	vm_paddr_t opa, pa;
2609	vm_page_t mpte, om;
2610	boolean_t invlva;
2611
2612	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2613	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2614	va = trunc_page(va);
2615	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2616	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2617	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2618	    va));
2619	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0,
2620	    ("pmap_enter: page %p is not busy", m));
2621
2622	mpte = NULL;
2623
2624	vm_page_lock_queues();
2625	PMAP_LOCK(pmap);
2626	sched_pin();
2627
2628	/*
2629	 * In the case that a page table page is not
2630	 * resident, we are creating it here.
2631	 */
2632	if (va < VM_MAXUSER_ADDRESS) {
2633		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2634	}
2635
2636	pde = pmap_pde(pmap, va);
2637	if ((*pde & PG_PS) != 0)
2638		panic("pmap_enter: attempted pmap_enter on 4MB page");
2639	pte = pmap_pte_quick(pmap, va);
2640
2641	/*
2642	 * Page Directory table entry not valid, we need a new PT page
2643	 */
2644	if (pte == NULL) {
2645		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2646			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2647	}
2648
2649	pa = VM_PAGE_TO_PHYS(m);
2650	om = NULL;
2651	opa = origpte = 0;
2652
2653#if 0
2654	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2655		pte, *pte));
2656#endif
2657	origpte = *pte;
2658	if (origpte)
2659		origpte = xpmap_mtop(origpte);
2660	opa = origpte & PG_FRAME;
2661
2662	/*
2663	 * Mapping has not changed, must be protection or wiring change.
2664	 */
2665	if (origpte && (opa == pa)) {
2666		/*
2667		 * Wiring change, just update stats. We don't worry about
2668		 * wiring PT pages as they remain resident as long as there
2669		 * are valid mappings in them. Hence, if a user page is wired,
2670		 * the PT page will be also.
2671		 */
2672		if (wired && ((origpte & PG_W) == 0))
2673			pmap->pm_stats.wired_count++;
2674		else if (!wired && (origpte & PG_W))
2675			pmap->pm_stats.wired_count--;
2676
2677		/*
2678		 * Remove extra pte reference
2679		 */
2680		if (mpte)
2681			mpte->wire_count--;
2682
2683		if (origpte & PG_MANAGED) {
2684			om = m;
2685			pa |= PG_MANAGED;
2686		}
2687		goto validate;
2688	}
2689
2690	pv = NULL;
2691
2692	/*
2693	 * Mapping has changed, invalidate old range and fall through to
2694	 * handle validating new mapping.
2695	 */
2696	if (opa) {
2697		if (origpte & PG_W)
2698			pmap->pm_stats.wired_count--;
2699		if (origpte & PG_MANAGED) {
2700			om = PHYS_TO_VM_PAGE(opa);
2701			pv = pmap_pvh_remove(&om->md, pmap, va);
2702		} else if (va < VM_MAXUSER_ADDRESS)
2703			printf("va=0x%x is unmanaged :-( \n", va);
2704
2705		if (mpte != NULL) {
2706			mpte->wire_count--;
2707			KASSERT(mpte->wire_count > 0,
2708			    ("pmap_enter: missing reference to page table page,"
2709			     " va: 0x%x", va));
2710		}
2711	} else
2712		pmap->pm_stats.resident_count++;
2713
2714	/*
2715	 * Enter on the PV list if part of our managed memory.
2716	 */
2717	if ((m->oflags & VPO_UNMANAGED) == 0) {
2718		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2719		    ("pmap_enter: managed mapping within the clean submap"));
2720		if (pv == NULL)
2721			pv = get_pv_entry(pmap, FALSE);
2722		pv->pv_va = va;
2723		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2724		pa |= PG_MANAGED;
2725	} else if (pv != NULL)
2726		free_pv_entry(pmap, pv);
2727
2728	/*
2729	 * Increment counters
2730	 */
2731	if (wired)
2732		pmap->pm_stats.wired_count++;
2733
2734validate:
2735	/*
2736	 * Now validate mapping with desired protection/wiring.
2737	 */
2738	newpte = (pt_entry_t)(pa | PG_V);
2739	if ((prot & VM_PROT_WRITE) != 0) {
2740		newpte |= PG_RW;
2741		if ((newpte & PG_MANAGED) != 0)
2742			vm_page_flag_set(m, PG_WRITEABLE);
2743	}
2744#ifdef PAE
2745	if ((prot & VM_PROT_EXECUTE) == 0)
2746		newpte |= pg_nx;
2747#endif
2748	if (wired)
2749		newpte |= PG_W;
2750	if (va < VM_MAXUSER_ADDRESS)
2751		newpte |= PG_U;
2752	if (pmap == kernel_pmap)
2753		newpte |= pgeflag;
2754
2755	critical_enter();
2756	/*
2757	 * if the mapping or permission bits are different, we need
2758	 * to update the pte.
2759	 */
2760	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2761		if (origpte) {
2762			invlva = FALSE;
2763			origpte = *pte;
2764			PT_SET_VA(pte, newpte | PG_A, FALSE);
2765			if (origpte & PG_A) {
2766				if (origpte & PG_MANAGED)
2767					vm_page_flag_set(om, PG_REFERENCED);
2768				if (opa != VM_PAGE_TO_PHYS(m))
2769					invlva = TRUE;
2770#ifdef PAE
2771				if ((origpte & PG_NX) == 0 &&
2772				    (newpte & PG_NX) != 0)
2773					invlva = TRUE;
2774#endif
2775			}
2776			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2777				if ((origpte & PG_MANAGED) != 0)
2778					vm_page_dirty(om);
2779				if ((prot & VM_PROT_WRITE) == 0)
2780					invlva = TRUE;
2781			}
2782			if ((origpte & PG_MANAGED) != 0 &&
2783			    TAILQ_EMPTY(&om->md.pv_list))
2784				vm_page_flag_clear(om, PG_WRITEABLE);
2785			if (invlva)
2786				pmap_invalidate_page(pmap, va);
2787		} else{
2788			PT_SET_VA(pte, newpte | PG_A, FALSE);
2789		}
2790
2791	}
2792	PT_UPDATES_FLUSH();
2793	critical_exit();
2794	if (*PMAP1)
2795		PT_SET_VA_MA(PMAP1, 0, TRUE);
2796	sched_unpin();
2797	vm_page_unlock_queues();
2798	PMAP_UNLOCK(pmap);
2799}
2800
2801/*
2802 * Maps a sequence of resident pages belonging to the same object.
2803 * The sequence begins with the given page m_start.  This page is
2804 * mapped at the given virtual address start.  Each subsequent page is
2805 * mapped at a virtual address that is offset from start by the same
2806 * amount as the page is offset from m_start within the object.  The
2807 * last page in the sequence is the page with the largest offset from
2808 * m_start that can be mapped at a virtual address less than the given
2809 * virtual address end.  Not every virtual page between start and end
2810 * is mapped; only those for which a resident page exists with the
2811 * corresponding offset from m_start are mapped.
2812 */
2813void
2814pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2815    vm_page_t m_start, vm_prot_t prot)
2816{
2817	vm_page_t m, mpte;
2818	vm_pindex_t diff, psize;
2819	multicall_entry_t mcl[16];
2820	multicall_entry_t *mclp = mcl;
2821	int error, count = 0;
2822
2823	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2824	psize = atop(end - start);
2825
2826	mpte = NULL;
2827	m = m_start;
2828	vm_page_lock_queues();
2829	PMAP_LOCK(pmap);
2830	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2831		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2832		    prot, mpte);
2833		m = TAILQ_NEXT(m, listq);
2834		if (count == 16) {
2835			error = HYPERVISOR_multicall(mcl, count);
2836			KASSERT(error == 0, ("bad multicall %d", error));
2837			mclp = mcl;
2838			count = 0;
2839		}
2840	}
2841	if (count) {
2842		error = HYPERVISOR_multicall(mcl, count);
2843		KASSERT(error == 0, ("bad multicall %d", error));
2844	}
2845	vm_page_unlock_queues();
2846	PMAP_UNLOCK(pmap);
2847}
2848
2849/*
2850 * this code makes some *MAJOR* assumptions:
2851 * 1. Current pmap & pmap exists.
2852 * 2. Not wired.
2853 * 3. Read access.
2854 * 4. No page table pages.
2855 * but is *MUCH* faster than pmap_enter...
2856 */
2857
2858void
2859pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2860{
2861	multicall_entry_t mcl, *mclp;
2862	int count = 0;
2863	mclp = &mcl;
2864
2865	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2866	    pmap, va, m, prot);
2867
2868	vm_page_lock_queues();
2869	PMAP_LOCK(pmap);
2870	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2871	if (count)
2872		HYPERVISOR_multicall(&mcl, count);
2873	vm_page_unlock_queues();
2874	PMAP_UNLOCK(pmap);
2875}
2876
2877#ifdef notyet
2878void
2879pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2880{
2881	int i, error, index = 0;
2882	multicall_entry_t mcl[16];
2883	multicall_entry_t *mclp = mcl;
2884
2885	PMAP_LOCK(pmap);
2886	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2887		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2888			continue;
2889
2890		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2891		if (index == 16) {
2892			error = HYPERVISOR_multicall(mcl, index);
2893			mclp = mcl;
2894			index = 0;
2895			KASSERT(error == 0, ("bad multicall %d", error));
2896		}
2897	}
2898	if (index) {
2899		error = HYPERVISOR_multicall(mcl, index);
2900		KASSERT(error == 0, ("bad multicall %d", error));
2901	}
2902
2903	PMAP_UNLOCK(pmap);
2904}
2905#endif
2906
2907static vm_page_t
2908pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2909    vm_prot_t prot, vm_page_t mpte)
2910{
2911	pt_entry_t *pte;
2912	vm_paddr_t pa;
2913	vm_page_t free;
2914	multicall_entry_t *mcl = *mclpp;
2915
2916	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2917	    (m->oflags & VPO_UNMANAGED) != 0,
2918	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2919	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2920	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2921
2922	/*
2923	 * In the case that a page table page is not
2924	 * resident, we are creating it here.
2925	 */
2926	if (va < VM_MAXUSER_ADDRESS) {
2927		unsigned ptepindex;
2928		pd_entry_t ptema;
2929
2930		/*
2931		 * Calculate pagetable page index
2932		 */
2933		ptepindex = va >> PDRSHIFT;
2934		if (mpte && (mpte->pindex == ptepindex)) {
2935			mpte->wire_count++;
2936		} else {
2937			/*
2938			 * Get the page directory entry
2939			 */
2940			ptema = pmap->pm_pdir[ptepindex];
2941
2942			/*
2943			 * If the page table page is mapped, we just increment
2944			 * the hold count, and activate it.
2945			 */
2946			if (ptema & PG_V) {
2947				if (ptema & PG_PS)
2948					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2949				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2950				mpte->wire_count++;
2951			} else {
2952				mpte = _pmap_allocpte(pmap, ptepindex,
2953				    M_NOWAIT);
2954				if (mpte == NULL)
2955					return (mpte);
2956			}
2957		}
2958	} else {
2959		mpte = NULL;
2960	}
2961
2962	/*
2963	 * This call to vtopte makes the assumption that we are
2964	 * entering the page into the current pmap.  In order to support
2965	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2966	 * But that isn't as quick as vtopte.
2967	 */
2968	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2969	pte = vtopte(va);
2970	if (*pte & PG_V) {
2971		if (mpte != NULL) {
2972			mpte->wire_count--;
2973			mpte = NULL;
2974		}
2975		return (mpte);
2976	}
2977
2978	/*
2979	 * Enter on the PV list if part of our managed memory.
2980	 */
2981	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2982	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2983		if (mpte != NULL) {
2984			free = NULL;
2985			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2986				pmap_invalidate_page(pmap, va);
2987				pmap_free_zero_pages(free);
2988			}
2989
2990			mpte = NULL;
2991		}
2992		return (mpte);
2993	}
2994
2995	/*
2996	 * Increment counters
2997	 */
2998	pmap->pm_stats.resident_count++;
2999
3000	pa = VM_PAGE_TO_PHYS(m);
3001#ifdef PAE
3002	if ((prot & VM_PROT_EXECUTE) == 0)
3003		pa |= pg_nx;
3004#endif
3005
3006#if 0
3007	/*
3008	 * Now validate mapping with RO protection
3009	 */
3010	if ((m->oflags & VPO_UNMANAGED) != 0)
3011		pte_store(pte, pa | PG_V | PG_U);
3012	else
3013		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3014#else
3015	/*
3016	 * Now validate mapping with RO protection
3017	 */
3018	if ((m->oflags & VPO_UNMANAGED) != 0)
3019		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3020	else
3021		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3022
3023	mcl->op = __HYPERVISOR_update_va_mapping;
3024	mcl->args[0] = va;
3025	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3026	mcl->args[2] = (uint32_t)(pa >> 32);
3027	mcl->args[3] = 0;
3028	*mclpp = mcl + 1;
3029	*count = *count + 1;
3030#endif
3031	return mpte;
3032}
3033
3034/*
3035 * Make a temporary mapping for a physical address.  This is only intended
3036 * to be used for panic dumps.
3037 */
3038void *
3039pmap_kenter_temporary(vm_paddr_t pa, int i)
3040{
3041	vm_offset_t va;
3042	vm_paddr_t ma = xpmap_ptom(pa);
3043
3044	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3045	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3046	invlpg(va);
3047	return ((void *)crashdumpmap);
3048}
3049
3050/*
3051 * This code maps large physical mmap regions into the
3052 * processor address space.  Note that some shortcuts
3053 * are taken, but the code works.
3054 */
3055void
3056pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3057		    vm_object_t object, vm_pindex_t pindex,
3058		    vm_size_t size)
3059{
3060	pd_entry_t *pde;
3061	vm_paddr_t pa, ptepa;
3062	vm_page_t p;
3063	int pat_mode;
3064
3065	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3066	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3067	    ("pmap_object_init_pt: non-device object"));
3068	if (pseflag &&
3069	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3070		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3071			return;
3072		p = vm_page_lookup(object, pindex);
3073		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3074		    ("pmap_object_init_pt: invalid page %p", p));
3075		pat_mode = p->md.pat_mode;
3076		/*
3077		 * Abort the mapping if the first page is not physically
3078		 * aligned to a 2/4MB page boundary.
3079		 */
3080		ptepa = VM_PAGE_TO_PHYS(p);
3081		if (ptepa & (NBPDR - 1))
3082			return;
3083		/*
3084		 * Skip the first page.  Abort the mapping if the rest of
3085		 * the pages are not physically contiguous or have differing
3086		 * memory attributes.
3087		 */
3088		p = TAILQ_NEXT(p, listq);
3089		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3090		    pa += PAGE_SIZE) {
3091			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3092			    ("pmap_object_init_pt: invalid page %p", p));
3093			if (pa != VM_PAGE_TO_PHYS(p) ||
3094			    pat_mode != p->md.pat_mode)
3095				return;
3096			p = TAILQ_NEXT(p, listq);
3097		}
3098		/* Map using 2/4MB pages. */
3099		PMAP_LOCK(pmap);
3100		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3101		    size; pa += NBPDR) {
3102			pde = pmap_pde(pmap, addr);
3103			if (*pde == 0) {
3104				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3105				    PG_U | PG_RW | PG_V);
3106				pmap->pm_stats.resident_count += NBPDR /
3107				    PAGE_SIZE;
3108				pmap_pde_mappings++;
3109			}
3110			/* Else continue on if the PDE is already valid. */
3111			addr += NBPDR;
3112		}
3113		PMAP_UNLOCK(pmap);
3114	}
3115}
3116
3117/*
3118 *	Routine:	pmap_change_wiring
3119 *	Function:	Change the wiring attribute for a map/virtual-address
3120 *			pair.
3121 *	In/out conditions:
3122 *			The mapping must already exist in the pmap.
3123 */
3124void
3125pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3126{
3127	pt_entry_t *pte;
3128
3129	vm_page_lock_queues();
3130	PMAP_LOCK(pmap);
3131	pte = pmap_pte(pmap, va);
3132
3133	if (wired && !pmap_pte_w(pte)) {
3134		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3135		pmap->pm_stats.wired_count++;
3136	} else if (!wired && pmap_pte_w(pte)) {
3137		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3138		pmap->pm_stats.wired_count--;
3139	}
3140
3141	/*
3142	 * Wiring is not a hardware characteristic so there is no need to
3143	 * invalidate TLB.
3144	 */
3145	pmap_pte_release(pte);
3146	PMAP_UNLOCK(pmap);
3147	vm_page_unlock_queues();
3148}
3149
3150
3151
3152/*
3153 *	Copy the range specified by src_addr/len
3154 *	from the source map to the range dst_addr/len
3155 *	in the destination map.
3156 *
3157 *	This routine is only advisory and need not do anything.
3158 */
3159
3160void
3161pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3162	  vm_offset_t src_addr)
3163{
3164	vm_page_t   free;
3165	vm_offset_t addr;
3166	vm_offset_t end_addr = src_addr + len;
3167	vm_offset_t pdnxt;
3168
3169	if (dst_addr != src_addr)
3170		return;
3171
3172	if (!pmap_is_current(src_pmap)) {
3173		CTR2(KTR_PMAP,
3174		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3175		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3176
3177		return;
3178	}
3179	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3180	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3181
3182#ifdef HAMFISTED_LOCKING
3183	mtx_lock(&createdelete_lock);
3184#endif
3185
3186	vm_page_lock_queues();
3187	if (dst_pmap < src_pmap) {
3188		PMAP_LOCK(dst_pmap);
3189		PMAP_LOCK(src_pmap);
3190	} else {
3191		PMAP_LOCK(src_pmap);
3192		PMAP_LOCK(dst_pmap);
3193	}
3194	sched_pin();
3195	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3196		pt_entry_t *src_pte, *dst_pte;
3197		vm_page_t dstmpte, srcmpte;
3198		pd_entry_t srcptepaddr;
3199		unsigned ptepindex;
3200
3201		KASSERT(addr < UPT_MIN_ADDRESS,
3202		    ("pmap_copy: invalid to pmap_copy page tables"));
3203
3204		pdnxt = (addr + NBPDR) & ~PDRMASK;
3205		ptepindex = addr >> PDRSHIFT;
3206
3207		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3208		if (srcptepaddr == 0)
3209			continue;
3210
3211		if (srcptepaddr & PG_PS) {
3212			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3213				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3214				dst_pmap->pm_stats.resident_count +=
3215				    NBPDR / PAGE_SIZE;
3216			}
3217			continue;
3218		}
3219
3220		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3221		KASSERT(srcmpte->wire_count > 0,
3222		    ("pmap_copy: source page table page is unused"));
3223
3224		if (pdnxt > end_addr)
3225			pdnxt = end_addr;
3226
3227		src_pte = vtopte(addr);
3228		while (addr < pdnxt) {
3229			pt_entry_t ptetemp;
3230			ptetemp = *src_pte;
3231			/*
3232			 * we only virtual copy managed pages
3233			 */
3234			if ((ptetemp & PG_MANAGED) != 0) {
3235				dstmpte = pmap_allocpte(dst_pmap, addr,
3236				    M_NOWAIT);
3237				if (dstmpte == NULL)
3238					break;
3239				dst_pte = pmap_pte_quick(dst_pmap, addr);
3240				if (*dst_pte == 0 &&
3241				    pmap_try_insert_pv_entry(dst_pmap, addr,
3242				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3243					/*
3244					 * Clear the wired, modified, and
3245					 * accessed (referenced) bits
3246					 * during the copy.
3247					 */
3248					KASSERT(ptetemp != 0, ("src_pte not set"));
3249					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3250					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3251					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3252						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3253					dst_pmap->pm_stats.resident_count++;
3254	 			} else {
3255					free = NULL;
3256					if (pmap_unwire_pte_hold(dst_pmap,
3257					    dstmpte, &free)) {
3258						pmap_invalidate_page(dst_pmap,
3259						    addr);
3260						pmap_free_zero_pages(free);
3261					}
3262				}
3263				if (dstmpte->wire_count >= srcmpte->wire_count)
3264					break;
3265			}
3266			addr += PAGE_SIZE;
3267			src_pte++;
3268		}
3269	}
3270	PT_UPDATES_FLUSH();
3271	sched_unpin();
3272	vm_page_unlock_queues();
3273	PMAP_UNLOCK(src_pmap);
3274	PMAP_UNLOCK(dst_pmap);
3275
3276#ifdef HAMFISTED_LOCKING
3277	mtx_unlock(&createdelete_lock);
3278#endif
3279}
3280
3281static __inline void
3282pagezero(void *page)
3283{
3284#if defined(I686_CPU)
3285	if (cpu_class == CPUCLASS_686) {
3286#if defined(CPU_ENABLE_SSE)
3287		if (cpu_feature & CPUID_SSE2)
3288			sse2_pagezero(page);
3289		else
3290#endif
3291			i686_pagezero(page);
3292	} else
3293#endif
3294		bzero(page, PAGE_SIZE);
3295}
3296
3297/*
3298 *	pmap_zero_page zeros the specified hardware page by mapping
3299 *	the page into KVM and using bzero to clear its contents.
3300 */
3301void
3302pmap_zero_page(vm_page_t m)
3303{
3304	struct sysmaps *sysmaps;
3305
3306	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3307	mtx_lock(&sysmaps->lock);
3308	if (*sysmaps->CMAP2)
3309		panic("pmap_zero_page: CMAP2 busy");
3310	sched_pin();
3311	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3312	pagezero(sysmaps->CADDR2);
3313	PT_SET_MA(sysmaps->CADDR2, 0);
3314	sched_unpin();
3315	mtx_unlock(&sysmaps->lock);
3316}
3317
3318/*
3319 *	pmap_zero_page_area zeros the specified hardware page by mapping
3320 *	the page into KVM and using bzero to clear its contents.
3321 *
3322 *	off and size may not cover an area beyond a single hardware page.
3323 */
3324void
3325pmap_zero_page_area(vm_page_t m, int off, int size)
3326{
3327	struct sysmaps *sysmaps;
3328
3329	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3330	mtx_lock(&sysmaps->lock);
3331	if (*sysmaps->CMAP2)
3332		panic("pmap_zero_page: CMAP2 busy");
3333	sched_pin();
3334	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3335
3336	if (off == 0 && size == PAGE_SIZE)
3337		pagezero(sysmaps->CADDR2);
3338	else
3339		bzero((char *)sysmaps->CADDR2 + off, size);
3340	PT_SET_MA(sysmaps->CADDR2, 0);
3341	sched_unpin();
3342	mtx_unlock(&sysmaps->lock);
3343}
3344
3345/*
3346 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3347 *	the page into KVM and using bzero to clear its contents.  This
3348 *	is intended to be called from the vm_pagezero process only and
3349 *	outside of Giant.
3350 */
3351void
3352pmap_zero_page_idle(vm_page_t m)
3353{
3354
3355	if (*CMAP3)
3356		panic("pmap_zero_page: CMAP3 busy");
3357	sched_pin();
3358	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3359	pagezero(CADDR3);
3360	PT_SET_MA(CADDR3, 0);
3361	sched_unpin();
3362}
3363
3364/*
3365 *	pmap_copy_page copies the specified (machine independent)
3366 *	page by mapping the page into virtual memory and using
3367 *	bcopy to copy the page, one machine dependent page at a
3368 *	time.
3369 */
3370void
3371pmap_copy_page(vm_page_t src, vm_page_t dst)
3372{
3373	struct sysmaps *sysmaps;
3374
3375	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3376	mtx_lock(&sysmaps->lock);
3377	if (*sysmaps->CMAP1)
3378		panic("pmap_copy_page: CMAP1 busy");
3379	if (*sysmaps->CMAP2)
3380		panic("pmap_copy_page: CMAP2 busy");
3381	sched_pin();
3382	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3383	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3384	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3385	PT_SET_MA(sysmaps->CADDR1, 0);
3386	PT_SET_MA(sysmaps->CADDR2, 0);
3387	sched_unpin();
3388	mtx_unlock(&sysmaps->lock);
3389}
3390
3391/*
3392 * Returns true if the pmap's pv is one of the first
3393 * 16 pvs linked to from this page.  This count may
3394 * be changed upwards or downwards in the future; it
3395 * is only necessary that true be returned for a small
3396 * subset of pmaps for proper page aging.
3397 */
3398boolean_t
3399pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3400{
3401	pv_entry_t pv;
3402	int loops = 0;
3403	boolean_t rv;
3404
3405	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3406	    ("pmap_page_exists_quick: page %p is not managed", m));
3407	rv = FALSE;
3408	vm_page_lock_queues();
3409	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3410		if (PV_PMAP(pv) == pmap) {
3411			rv = TRUE;
3412			break;
3413		}
3414		loops++;
3415		if (loops >= 16)
3416			break;
3417	}
3418	vm_page_unlock_queues();
3419	return (rv);
3420}
3421
3422/*
3423 *	pmap_page_wired_mappings:
3424 *
3425 *	Return the number of managed mappings to the given physical page
3426 *	that are wired.
3427 */
3428int
3429pmap_page_wired_mappings(vm_page_t m)
3430{
3431	pv_entry_t pv;
3432	pt_entry_t *pte;
3433	pmap_t pmap;
3434	int count;
3435
3436	count = 0;
3437	if ((m->oflags & VPO_UNMANAGED) != 0)
3438		return (count);
3439	vm_page_lock_queues();
3440	sched_pin();
3441	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3442		pmap = PV_PMAP(pv);
3443		PMAP_LOCK(pmap);
3444		pte = pmap_pte_quick(pmap, pv->pv_va);
3445		if ((*pte & PG_W) != 0)
3446			count++;
3447		PMAP_UNLOCK(pmap);
3448	}
3449	sched_unpin();
3450	vm_page_unlock_queues();
3451	return (count);
3452}
3453
3454/*
3455 * Returns TRUE if the given page is mapped individually or as part of
3456 * a 4mpage.  Otherwise, returns FALSE.
3457 */
3458boolean_t
3459pmap_page_is_mapped(vm_page_t m)
3460{
3461	boolean_t rv;
3462
3463	if ((m->oflags & VPO_UNMANAGED) != 0)
3464		return (FALSE);
3465	vm_page_lock_queues();
3466	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3467	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
3468	vm_page_unlock_queues();
3469	return (rv);
3470}
3471
3472/*
3473 * Remove all pages from specified address space
3474 * this aids process exit speeds.  Also, this code
3475 * is special cased for current process only, but
3476 * can have the more generic (and slightly slower)
3477 * mode enabled.  This is much faster than pmap_remove
3478 * in the case of running down an entire address space.
3479 */
3480void
3481pmap_remove_pages(pmap_t pmap)
3482{
3483	pt_entry_t *pte, tpte;
3484	vm_page_t m, free = NULL;
3485	pv_entry_t pv;
3486	struct pv_chunk *pc, *npc;
3487	int field, idx;
3488	int32_t bit;
3489	uint32_t inuse, bitmask;
3490	int allfree;
3491
3492	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3493
3494	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3495		printf("warning: pmap_remove_pages called with non-current pmap\n");
3496		return;
3497	}
3498	vm_page_lock_queues();
3499	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3500	PMAP_LOCK(pmap);
3501	sched_pin();
3502	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3503		allfree = 1;
3504		for (field = 0; field < _NPCM; field++) {
3505			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3506			while (inuse != 0) {
3507				bit = bsfl(inuse);
3508				bitmask = 1UL << bit;
3509				idx = field * 32 + bit;
3510				pv = &pc->pc_pventry[idx];
3511				inuse &= ~bitmask;
3512
3513				pte = vtopte(pv->pv_va);
3514				tpte = *pte ? xpmap_mtop(*pte) : 0;
3515
3516				if (tpte == 0) {
3517					printf(
3518					    "TPTE at %p  IS ZERO @ VA %08x\n",
3519					    pte, pv->pv_va);
3520					panic("bad pte");
3521				}
3522
3523/*
3524 * We cannot remove wired pages from a process' mapping at this time
3525 */
3526				if (tpte & PG_W) {
3527					allfree = 0;
3528					continue;
3529				}
3530
3531				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3532				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3533				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3534				    m, (uintmax_t)m->phys_addr,
3535				    (uintmax_t)tpte));
3536
3537				KASSERT(m < &vm_page_array[vm_page_array_size],
3538					("pmap_remove_pages: bad tpte %#jx",
3539					(uintmax_t)tpte));
3540
3541
3542				PT_CLEAR_VA(pte, FALSE);
3543
3544				/*
3545				 * Update the vm_page_t clean/reference bits.
3546				 */
3547				if (tpte & PG_M)
3548					vm_page_dirty(m);
3549
3550				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3551				if (TAILQ_EMPTY(&m->md.pv_list))
3552					vm_page_flag_clear(m, PG_WRITEABLE);
3553
3554				pmap_unuse_pt(pmap, pv->pv_va, &free);
3555
3556				/* Mark free */
3557				PV_STAT(pv_entry_frees++);
3558				PV_STAT(pv_entry_spare++);
3559				pv_entry_count--;
3560				pc->pc_map[field] |= bitmask;
3561				pmap->pm_stats.resident_count--;
3562			}
3563		}
3564		PT_UPDATES_FLUSH();
3565		if (allfree) {
3566			PV_STAT(pv_entry_spare -= _NPCPV);
3567			PV_STAT(pc_chunk_count--);
3568			PV_STAT(pc_chunk_frees++);
3569			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3570			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3571			pmap_qremove((vm_offset_t)pc, 1);
3572			vm_page_unwire(m, 0);
3573			vm_page_free(m);
3574			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3575		}
3576	}
3577	PT_UPDATES_FLUSH();
3578	if (*PMAP1)
3579		PT_SET_MA(PADDR1, 0);
3580
3581	sched_unpin();
3582	pmap_invalidate_all(pmap);
3583	vm_page_unlock_queues();
3584	PMAP_UNLOCK(pmap);
3585	pmap_free_zero_pages(free);
3586}
3587
3588/*
3589 *	pmap_is_modified:
3590 *
3591 *	Return whether or not the specified physical page was modified
3592 *	in any physical maps.
3593 */
3594boolean_t
3595pmap_is_modified(vm_page_t m)
3596{
3597	pv_entry_t pv;
3598	pt_entry_t *pte;
3599	pmap_t pmap;
3600	boolean_t rv;
3601
3602	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3603	    ("pmap_is_modified: page %p is not managed", m));
3604	rv = FALSE;
3605
3606	/*
3607	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
3608	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
3609	 * is clear, no PTEs can have PG_M set.
3610	 */
3611	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3612	if ((m->oflags & VPO_BUSY) == 0 &&
3613	    (m->flags & PG_WRITEABLE) == 0)
3614		return (rv);
3615	vm_page_lock_queues();
3616	sched_pin();
3617	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3618		pmap = PV_PMAP(pv);
3619		PMAP_LOCK(pmap);
3620		pte = pmap_pte_quick(pmap, pv->pv_va);
3621		rv = (*pte & PG_M) != 0;
3622		PMAP_UNLOCK(pmap);
3623		if (rv)
3624			break;
3625	}
3626	if (*PMAP1)
3627		PT_SET_MA(PADDR1, 0);
3628	sched_unpin();
3629	vm_page_unlock_queues();
3630	return (rv);
3631}
3632
3633/*
3634 *	pmap_is_prefaultable:
3635 *
3636 *	Return whether or not the specified virtual address is elgible
3637 *	for prefault.
3638 */
3639static boolean_t
3640pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3641{
3642	pt_entry_t *pte;
3643	boolean_t rv = FALSE;
3644
3645	return (rv);
3646
3647	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3648		pte = vtopte(addr);
3649		rv = (*pte == 0);
3650	}
3651	return (rv);
3652}
3653
3654boolean_t
3655pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3656{
3657	boolean_t rv;
3658
3659	PMAP_LOCK(pmap);
3660	rv = pmap_is_prefaultable_locked(pmap, addr);
3661	PMAP_UNLOCK(pmap);
3662	return (rv);
3663}
3664
3665boolean_t
3666pmap_is_referenced(vm_page_t m)
3667{
3668	pv_entry_t pv;
3669	pt_entry_t *pte;
3670	pmap_t pmap;
3671	boolean_t rv;
3672
3673	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3674	    ("pmap_is_referenced: page %p is not managed", m));
3675	rv = FALSE;
3676	vm_page_lock_queues();
3677	sched_pin();
3678	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3679		pmap = PV_PMAP(pv);
3680		PMAP_LOCK(pmap);
3681		pte = pmap_pte_quick(pmap, pv->pv_va);
3682		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3683		PMAP_UNLOCK(pmap);
3684		if (rv)
3685			break;
3686	}
3687	if (*PMAP1)
3688		PT_SET_MA(PADDR1, 0);
3689	sched_unpin();
3690	vm_page_unlock_queues();
3691	return (rv);
3692}
3693
3694void
3695pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3696{
3697	int i, npages = round_page(len) >> PAGE_SHIFT;
3698	for (i = 0; i < npages; i++) {
3699		pt_entry_t *pte;
3700		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3701		vm_page_lock_queues();
3702		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3703		vm_page_unlock_queues();
3704		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3705		pmap_pte_release(pte);
3706	}
3707}
3708
3709void
3710pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3711{
3712	int i, npages = round_page(len) >> PAGE_SHIFT;
3713	for (i = 0; i < npages; i++) {
3714		pt_entry_t *pte;
3715		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3716		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3717		vm_page_lock_queues();
3718		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3719		vm_page_unlock_queues();
3720		pmap_pte_release(pte);
3721	}
3722}
3723
3724/*
3725 * Clear the write and modified bits in each of the given page's mappings.
3726 */
3727void
3728pmap_remove_write(vm_page_t m)
3729{
3730	pv_entry_t pv;
3731	pmap_t pmap;
3732	pt_entry_t oldpte, *pte;
3733
3734	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3735	    ("pmap_remove_write: page %p is not managed", m));
3736
3737	/*
3738	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
3739	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
3740	 * is clear, no page table entries need updating.
3741	 */
3742	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3743	if ((m->oflags & VPO_BUSY) == 0 &&
3744	    (m->flags & PG_WRITEABLE) == 0)
3745		return;
3746	vm_page_lock_queues();
3747	sched_pin();
3748	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3749		pmap = PV_PMAP(pv);
3750		PMAP_LOCK(pmap);
3751		pte = pmap_pte_quick(pmap, pv->pv_va);
3752retry:
3753		oldpte = *pte;
3754		if ((oldpte & PG_RW) != 0) {
3755			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3756
3757			/*
3758			 * Regardless of whether a pte is 32 or 64 bits
3759			 * in size, PG_RW and PG_M are among the least
3760			 * significant 32 bits.
3761			 */
3762			PT_SET_VA_MA(pte, newpte, TRUE);
3763			if (*pte != newpte)
3764				goto retry;
3765
3766			if ((oldpte & PG_M) != 0)
3767				vm_page_dirty(m);
3768			pmap_invalidate_page(pmap, pv->pv_va);
3769		}
3770		PMAP_UNLOCK(pmap);
3771	}
3772	vm_page_flag_clear(m, PG_WRITEABLE);
3773	PT_UPDATES_FLUSH();
3774	if (*PMAP1)
3775		PT_SET_MA(PADDR1, 0);
3776	sched_unpin();
3777	vm_page_unlock_queues();
3778}
3779
3780/*
3781 *	pmap_ts_referenced:
3782 *
3783 *	Return a count of reference bits for a page, clearing those bits.
3784 *	It is not necessary for every reference bit to be cleared, but it
3785 *	is necessary that 0 only be returned when there are truly no
3786 *	reference bits set.
3787 *
3788 *	XXX: The exact number of bits to check and clear is a matter that
3789 *	should be tested and standardized at some point in the future for
3790 *	optimal aging of shared pages.
3791 */
3792int
3793pmap_ts_referenced(vm_page_t m)
3794{
3795	pv_entry_t pv, pvf, pvn;
3796	pmap_t pmap;
3797	pt_entry_t *pte;
3798	int rtval = 0;
3799
3800	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3801	    ("pmap_ts_referenced: page %p is not managed", m));
3802	vm_page_lock_queues();
3803	sched_pin();
3804	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3805		pvf = pv;
3806		do {
3807			pvn = TAILQ_NEXT(pv, pv_list);
3808			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3809			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3810			pmap = PV_PMAP(pv);
3811			PMAP_LOCK(pmap);
3812			pte = pmap_pte_quick(pmap, pv->pv_va);
3813			if ((*pte & PG_A) != 0) {
3814				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3815				pmap_invalidate_page(pmap, pv->pv_va);
3816				rtval++;
3817				if (rtval > 4)
3818					pvn = NULL;
3819			}
3820			PMAP_UNLOCK(pmap);
3821		} while ((pv = pvn) != NULL && pv != pvf);
3822	}
3823	PT_UPDATES_FLUSH();
3824	if (*PMAP1)
3825		PT_SET_MA(PADDR1, 0);
3826
3827	sched_unpin();
3828	vm_page_unlock_queues();
3829	return (rtval);
3830}
3831
3832/*
3833 *	Clear the modify bits on the specified physical page.
3834 */
3835void
3836pmap_clear_modify(vm_page_t m)
3837{
3838	pv_entry_t pv;
3839	pmap_t pmap;
3840	pt_entry_t *pte;
3841
3842	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3843	    ("pmap_clear_modify: page %p is not managed", m));
3844	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3845	KASSERT((m->oflags & VPO_BUSY) == 0,
3846	    ("pmap_clear_modify: page %p is busy", m));
3847
3848	/*
3849	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
3850	 * If the object containing the page is locked and the page is not
3851	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
3852	 */
3853	if ((m->flags & PG_WRITEABLE) == 0)
3854		return;
3855	vm_page_lock_queues();
3856	sched_pin();
3857	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3858		pmap = PV_PMAP(pv);
3859		PMAP_LOCK(pmap);
3860		pte = pmap_pte_quick(pmap, pv->pv_va);
3861		if ((*pte & PG_M) != 0) {
3862			/*
3863			 * Regardless of whether a pte is 32 or 64 bits
3864			 * in size, PG_M is among the least significant
3865			 * 32 bits.
3866			 */
3867			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3868			pmap_invalidate_page(pmap, pv->pv_va);
3869		}
3870		PMAP_UNLOCK(pmap);
3871	}
3872	sched_unpin();
3873	vm_page_unlock_queues();
3874}
3875
3876/*
3877 *	pmap_clear_reference:
3878 *
3879 *	Clear the reference bit on the specified physical page.
3880 */
3881void
3882pmap_clear_reference(vm_page_t m)
3883{
3884	pv_entry_t pv;
3885	pmap_t pmap;
3886	pt_entry_t *pte;
3887
3888	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3889	    ("pmap_clear_reference: page %p is not managed", m));
3890	vm_page_lock_queues();
3891	sched_pin();
3892	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3893		pmap = PV_PMAP(pv);
3894		PMAP_LOCK(pmap);
3895		pte = pmap_pte_quick(pmap, pv->pv_va);
3896		if ((*pte & PG_A) != 0) {
3897			/*
3898			 * Regardless of whether a pte is 32 or 64 bits
3899			 * in size, PG_A is among the least significant
3900			 * 32 bits.
3901			 */
3902			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3903			pmap_invalidate_page(pmap, pv->pv_va);
3904		}
3905		PMAP_UNLOCK(pmap);
3906	}
3907	sched_unpin();
3908	vm_page_unlock_queues();
3909}
3910
3911/*
3912 * Miscellaneous support routines follow
3913 */
3914
3915/*
3916 * Map a set of physical memory pages into the kernel virtual
3917 * address space. Return a pointer to where it is mapped. This
3918 * routine is intended to be used for mapping device memory,
3919 * NOT real memory.
3920 */
3921void *
3922pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3923{
3924	vm_offset_t va, offset;
3925	vm_size_t tmpsize;
3926
3927	offset = pa & PAGE_MASK;
3928	size = roundup(offset + size, PAGE_SIZE);
3929	pa = pa & PG_FRAME;
3930
3931	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3932		va = KERNBASE + pa;
3933	else
3934		va = kmem_alloc_nofault(kernel_map, size);
3935	if (!va)
3936		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3937
3938	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3939		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3940	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3941	pmap_invalidate_cache_range(va, va + size);
3942	return ((void *)(va + offset));
3943}
3944
3945void *
3946pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3947{
3948
3949	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3950}
3951
3952void *
3953pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3954{
3955
3956	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3957}
3958
3959void
3960pmap_unmapdev(vm_offset_t va, vm_size_t size)
3961{
3962	vm_offset_t base, offset, tmpva;
3963
3964	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3965		return;
3966	base = trunc_page(va);
3967	offset = va & PAGE_MASK;
3968	size = roundup(offset + size, PAGE_SIZE);
3969	critical_enter();
3970	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3971		pmap_kremove(tmpva);
3972	pmap_invalidate_range(kernel_pmap, va, tmpva);
3973	critical_exit();
3974	kmem_free(kernel_map, base, size);
3975}
3976
3977/*
3978 * Sets the memory attribute for the specified page.
3979 */
3980void
3981pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3982{
3983	struct sysmaps *sysmaps;
3984	vm_offset_t sva, eva;
3985
3986	m->md.pat_mode = ma;
3987	if ((m->flags & PG_FICTITIOUS) != 0)
3988		return;
3989
3990	/*
3991	 * If "m" is a normal page, flush it from the cache.
3992	 * See pmap_invalidate_cache_range().
3993	 *
3994	 * First, try to find an existing mapping of the page by sf
3995	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3996	 * flushes the cache.
3997	 */
3998	if (sf_buf_invalidate_cache(m))
3999		return;
4000
4001	/*
4002	 * If page is not mapped by sf buffer, but CPU does not
4003	 * support self snoop, map the page transient and do
4004	 * invalidation. In the worst case, whole cache is flushed by
4005	 * pmap_invalidate_cache_range().
4006	 */
4007	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4008		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4009		mtx_lock(&sysmaps->lock);
4010		if (*sysmaps->CMAP2)
4011			panic("pmap_page_set_memattr: CMAP2 busy");
4012		sched_pin();
4013		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4014		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4015		    pmap_cache_bits(m->md.pat_mode, 0));
4016		invlcaddr(sysmaps->CADDR2);
4017		sva = (vm_offset_t)sysmaps->CADDR2;
4018		eva = sva + PAGE_SIZE;
4019	} else
4020		sva = eva = 0; /* gcc */
4021	pmap_invalidate_cache_range(sva, eva);
4022	if (sva != 0) {
4023		PT_SET_MA(sysmaps->CADDR2, 0);
4024		sched_unpin();
4025		mtx_unlock(&sysmaps->lock);
4026	}
4027}
4028
4029int
4030pmap_change_attr(va, size, mode)
4031	vm_offset_t va;
4032	vm_size_t size;
4033	int mode;
4034{
4035	vm_offset_t base, offset, tmpva;
4036	pt_entry_t *pte;
4037	u_int opte, npte;
4038	pd_entry_t *pde;
4039	boolean_t changed;
4040
4041	base = trunc_page(va);
4042	offset = va & PAGE_MASK;
4043	size = roundup(offset + size, PAGE_SIZE);
4044
4045	/* Only supported on kernel virtual addresses. */
4046	if (base <= VM_MAXUSER_ADDRESS)
4047		return (EINVAL);
4048
4049	/* 4MB pages and pages that aren't mapped aren't supported. */
4050	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4051		pde = pmap_pde(kernel_pmap, tmpva);
4052		if (*pde & PG_PS)
4053			return (EINVAL);
4054		if ((*pde & PG_V) == 0)
4055			return (EINVAL);
4056		pte = vtopte(va);
4057		if ((*pte & PG_V) == 0)
4058			return (EINVAL);
4059	}
4060
4061	changed = FALSE;
4062
4063	/*
4064	 * Ok, all the pages exist and are 4k, so run through them updating
4065	 * their cache mode.
4066	 */
4067	for (tmpva = base; size > 0; ) {
4068		pte = vtopte(tmpva);
4069
4070		/*
4071		 * The cache mode bits are all in the low 32-bits of the
4072		 * PTE, so we can just spin on updating the low 32-bits.
4073		 */
4074		do {
4075			opte = *(u_int *)pte;
4076			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4077			npte |= pmap_cache_bits(mode, 0);
4078			PT_SET_VA_MA(pte, npte, TRUE);
4079		} while (npte != opte && (*pte != npte));
4080		if (npte != opte)
4081			changed = TRUE;
4082		tmpva += PAGE_SIZE;
4083		size -= PAGE_SIZE;
4084	}
4085
4086	/*
4087	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4088	 * be, etc.
4089	 */
4090	if (changed) {
4091		pmap_invalidate_range(kernel_pmap, base, tmpva);
4092		pmap_invalidate_cache_range(base, tmpva);
4093	}
4094	return (0);
4095}
4096
4097/*
4098 * perform the pmap work for mincore
4099 */
4100int
4101pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4102{
4103	pt_entry_t *ptep, pte;
4104	vm_paddr_t pa;
4105	int val;
4106
4107	PMAP_LOCK(pmap);
4108retry:
4109	ptep = pmap_pte(pmap, addr);
4110	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4111	pmap_pte_release(ptep);
4112	val = 0;
4113	if ((pte & PG_V) != 0) {
4114		val |= MINCORE_INCORE;
4115		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4116			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4117		if ((pte & PG_A) != 0)
4118			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4119	}
4120	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4121	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4122	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4123		pa = pte & PG_FRAME;
4124		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4125		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4126			goto retry;
4127	} else
4128		PA_UNLOCK_COND(*locked_pa);
4129	PMAP_UNLOCK(pmap);
4130	return (val);
4131}
4132
4133void
4134pmap_activate(struct thread *td)
4135{
4136	pmap_t	pmap, oldpmap;
4137	u_int	cpuid;
4138	u_int32_t  cr3;
4139
4140	critical_enter();
4141	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4142	oldpmap = PCPU_GET(curpmap);
4143	cpuid = PCPU_GET(cpuid);
4144#if defined(SMP)
4145	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4146	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4147#else
4148	CPU_CLR(cpuid, &oldpmap->pm_active);
4149	CPU_SET(cpuid, &pmap->pm_active);
4150#endif
4151#ifdef PAE
4152	cr3 = vtophys(pmap->pm_pdpt);
4153#else
4154	cr3 = vtophys(pmap->pm_pdir);
4155#endif
4156	/*
4157	 * pmap_activate is for the current thread on the current cpu
4158	 */
4159	td->td_pcb->pcb_cr3 = cr3;
4160	PT_UPDATES_FLUSH();
4161	load_cr3(cr3);
4162	PCPU_SET(curpmap, pmap);
4163	critical_exit();
4164}
4165
4166void
4167pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4168{
4169}
4170
4171/*
4172 *	Increase the starting virtual address of the given mapping if a
4173 *	different alignment might result in more superpage mappings.
4174 */
4175void
4176pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4177    vm_offset_t *addr, vm_size_t size)
4178{
4179	vm_offset_t superpage_offset;
4180
4181	if (size < NBPDR)
4182		return;
4183	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4184		offset += ptoa(object->pg_color);
4185	superpage_offset = offset & PDRMASK;
4186	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4187	    (*addr & PDRMASK) == superpage_offset)
4188		return;
4189	if ((*addr & PDRMASK) < superpage_offset)
4190		*addr = (*addr & ~PDRMASK) + superpage_offset;
4191	else
4192		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4193}
4194
4195void
4196pmap_suspend()
4197{
4198	pmap_t pmap;
4199	int i, pdir, offset;
4200	vm_paddr_t pdirma;
4201	mmu_update_t mu[4];
4202
4203	/*
4204	 * We need to remove the recursive mapping structure from all
4205	 * our pmaps so that Xen doesn't get confused when it restores
4206	 * the page tables. The recursive map lives at page directory
4207	 * index PTDPTDI. We assume that the suspend code has stopped
4208	 * the other vcpus (if any).
4209	 */
4210	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4211		for (i = 0; i < 4; i++) {
4212			/*
4213			 * Figure out which page directory (L2) page
4214			 * contains this bit of the recursive map and
4215			 * the offset within that page of the map
4216			 * entry
4217			 */
4218			pdir = (PTDPTDI + i) / NPDEPG;
4219			offset = (PTDPTDI + i) % NPDEPG;
4220			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4221			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4222			mu[i].val = 0;
4223		}
4224		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4225	}
4226}
4227
4228void
4229pmap_resume()
4230{
4231	pmap_t pmap;
4232	int i, pdir, offset;
4233	vm_paddr_t pdirma;
4234	mmu_update_t mu[4];
4235
4236	/*
4237	 * Restore the recursive map that we removed on suspend.
4238	 */
4239	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4240		for (i = 0; i < 4; i++) {
4241			/*
4242			 * Figure out which page directory (L2) page
4243			 * contains this bit of the recursive map and
4244			 * the offset within that page of the map
4245			 * entry
4246			 */
4247			pdir = (PTDPTDI + i) / NPDEPG;
4248			offset = (PTDPTDI + i) % NPDEPG;
4249			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4250			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4251			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4252		}
4253		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4254	}
4255}
4256
4257#if defined(PMAP_DEBUG)
4258pmap_pid_dump(int pid)
4259{
4260	pmap_t pmap;
4261	struct proc *p;
4262	int npte = 0;
4263	int index;
4264
4265	sx_slock(&allproc_lock);
4266	FOREACH_PROC_IN_SYSTEM(p) {
4267		if (p->p_pid != pid)
4268			continue;
4269
4270		if (p->p_vmspace) {
4271			int i,j;
4272			index = 0;
4273			pmap = vmspace_pmap(p->p_vmspace);
4274			for (i = 0; i < NPDEPTD; i++) {
4275				pd_entry_t *pde;
4276				pt_entry_t *pte;
4277				vm_offset_t base = i << PDRSHIFT;
4278
4279				pde = &pmap->pm_pdir[i];
4280				if (pde && pmap_pde_v(pde)) {
4281					for (j = 0; j < NPTEPG; j++) {
4282						vm_offset_t va = base + (j << PAGE_SHIFT);
4283						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4284							if (index) {
4285								index = 0;
4286								printf("\n");
4287							}
4288							sx_sunlock(&allproc_lock);
4289							return npte;
4290						}
4291						pte = pmap_pte(pmap, va);
4292						if (pte && pmap_pte_v(pte)) {
4293							pt_entry_t pa;
4294							vm_page_t m;
4295							pa = PT_GET(pte);
4296							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4297							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4298								va, pa, m->hold_count, m->wire_count, m->flags);
4299							npte++;
4300							index++;
4301							if (index >= 2) {
4302								index = 0;
4303								printf("\n");
4304							} else {
4305								printf(" ");
4306							}
4307						}
4308					}
4309				}
4310			}
4311		}
4312	}
4313	sx_sunlock(&allproc_lock);
4314	return npte;
4315}
4316#endif
4317
4318#if defined(DEBUG)
4319
4320static void	pads(pmap_t pm);
4321void		pmap_pvdump(vm_paddr_t pa);
4322
4323/* print address space of pmap*/
4324static void
4325pads(pmap_t pm)
4326{
4327	int i, j;
4328	vm_paddr_t va;
4329	pt_entry_t *ptep;
4330
4331	if (pm == kernel_pmap)
4332		return;
4333	for (i = 0; i < NPDEPTD; i++)
4334		if (pm->pm_pdir[i])
4335			for (j = 0; j < NPTEPG; j++) {
4336				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4337				if (pm == kernel_pmap && va < KERNBASE)
4338					continue;
4339				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4340					continue;
4341				ptep = pmap_pte(pm, va);
4342				if (pmap_pte_v(ptep))
4343					printf("%x:%x ", va, *ptep);
4344			};
4345
4346}
4347
4348void
4349pmap_pvdump(vm_paddr_t pa)
4350{
4351	pv_entry_t pv;
4352	pmap_t pmap;
4353	vm_page_t m;
4354
4355	printf("pa %x", pa);
4356	m = PHYS_TO_VM_PAGE(pa);
4357	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4358		pmap = PV_PMAP(pv);
4359		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4360		pads(pmap);
4361	}
4362	printf(" ");
4363}
4364#endif
4365