pmap.c revision 215844
1135446Strhodes/*-
2193149Sdougb * Copyright (c) 1991 Regents of the University of California.
3135446Strhodes * All rights reserved.
4135446Strhodes * Copyright (c) 1994 John S. Dyson
5193149Sdougb * All rights reserved.
6135446Strhodes * Copyright (c) 1994 David Greenman
7135446Strhodes * All rights reserved.
8135446Strhodes * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9135446Strhodes * All rights reserved.
10135446Strhodes *
11135446Strhodes * This code is derived from software contributed to Berkeley by
12135446Strhodes * the Systems Programming Group of the University of Utah Computer
13135446Strhodes * Science Department and William Jolitz of UUNET Technologies Inc.
14135446Strhodes *
15135446Strhodes * Redistribution and use in source and binary forms, with or without
16135446Strhodes * modification, are permitted provided that the following conditions
17135446Strhodes * are met:
18193149Sdougb * 1. Redistributions of source code must retain the above copyright
19135446Strhodes *    notice, this list of conditions and the following disclaimer.
20170222Sdougb * 2. Redistributions in binary form must reproduce the above copyright
21170222Sdougb *    notice, this list of conditions and the following disclaimer in the
22135446Strhodes *    documentation and/or other materials provided with the distribution.
23135446Strhodes * 3. All advertising materials mentioning features or use of this software
24135446Strhodes *    must display the following acknowledgement:
25135446Strhodes *	This product includes software developed by the University of
26135446Strhodes *	California, Berkeley and its contributors.
27135446Strhodes * 4. Neither the name of the University nor the names of its contributors
28135446Strhodes *    may be used to endorse or promote products derived from this software
29135446Strhodes *    without specific prior written permission.
30135446Strhodes *
31135446Strhodes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32135446Strhodes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33135446Strhodes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34135446Strhodes * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35135446Strhodes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36135446Strhodes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37135446Strhodes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38135446Strhodes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39135446Strhodes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40135446Strhodes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41135446Strhodes * SUCH DAMAGE.
42135446Strhodes *
43135446Strhodes *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44135446Strhodes */
45135446Strhodes/*-
46135446Strhodes * Copyright (c) 2003 Networks Associates Technology, Inc.
47135446Strhodes * All rights reserved.
48135446Strhodes *
49135446Strhodes * This software was developed for the FreeBSD Project by Jake Burkholder,
50135446Strhodes * Safeport Network Services, and Network Associates Laboratories, the
51135446Strhodes * Security Research Division of Network Associates, Inc. under
52135446Strhodes * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53135446Strhodes * CHATS research program.
54135446Strhodes *
55135446Strhodes * Redistribution and use in source and binary forms, with or without
56135446Strhodes * modification, are permitted provided that the following conditions
57135446Strhodes * are met:
58135446Strhodes * 1. Redistributions of source code must retain the above copyright
59135446Strhodes *    notice, this list of conditions and the following disclaimer.
60135446Strhodes * 2. Redistributions in binary form must reproduce the above copyright
61135446Strhodes *    notice, this list of conditions and the following disclaimer in the
62193149Sdougb *    documentation and/or other materials provided with the distribution.
63135446Strhodes *
64135446Strhodes * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65135446Strhodes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66135446Strhodes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67135446Strhodes * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68135446Strhodes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69135446Strhodes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70135446Strhodes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71135446Strhodes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72135446Strhodes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73135446Strhodes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74135446Strhodes * SUCH DAMAGE.
75135446Strhodes */
76135446Strhodes
77135446Strhodes#include <sys/cdefs.h>
78135446Strhodes__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 215844 2010-11-25 22:06:07Z cperciva $");
79135446Strhodes
80135446Strhodes/*
81135446Strhodes *	Manages physical address maps.
82135446Strhodes *
83135446Strhodes *	In addition to hardware address maps, this
84135446Strhodes *	module is called upon to provide software-use-only
85135446Strhodes *	maps which may or may not be stored in the same
86135446Strhodes *	form as hardware maps.  These pseudo-maps are
87135446Strhodes *	used to store intermediate results from copy
88135446Strhodes *	operations to and from address spaces.
89135446Strhodes *
90135446Strhodes *	Since the information managed by this module is
91135446Strhodes *	also stored by the logical address mapping module,
92135446Strhodes *	this module may throw away valid virtual-to-physical
93135446Strhodes *	mappings at almost any time.  However, invalidations
94135446Strhodes *	of virtual-to-physical mappings must be done as
95135446Strhodes *	requested.
96135446Strhodes *
97135446Strhodes *	In order to cope with hardware architectures which
98135446Strhodes *	make virtual-to-physical map invalidates expensive,
99135446Strhodes *	this module may delay invalidate or reduced protection
100135446Strhodes *	operations until such time as they are actually
101135446Strhodes *	necessary.  This module is given full information as
102135446Strhodes *	to which processors are currently using which maps,
103135446Strhodes *	and to when physical maps must be made correct.
104135446Strhodes */
105135446Strhodes
106135446Strhodes#include "opt_cpu.h"
107135446Strhodes#include "opt_pmap.h"
108135446Strhodes#include "opt_msgbuf.h"
109135446Strhodes#include "opt_smp.h"
110135446Strhodes#include "opt_xbox.h"
111135446Strhodes
112135446Strhodes#include <sys/param.h>
113135446Strhodes#include <sys/systm.h>
114135446Strhodes#include <sys/kernel.h>
115135446Strhodes#include <sys/ktr.h>
116135446Strhodes#include <sys/lock.h>
117135446Strhodes#include <sys/malloc.h>
118135446Strhodes#include <sys/mman.h>
119135446Strhodes#include <sys/msgbuf.h>
120135446Strhodes#include <sys/mutex.h>
121135446Strhodes#include <sys/proc.h>
122135446Strhodes#include <sys/sf_buf.h>
123135446Strhodes#include <sys/sx.h>
124135446Strhodes#include <sys/vmmeter.h>
125135446Strhodes#include <sys/sched.h>
126135446Strhodes#include <sys/sysctl.h>
127135446Strhodes#ifdef SMP
128135446Strhodes#include <sys/smp.h>
129135446Strhodes#endif
130135446Strhodes
131135446Strhodes#include <vm/vm.h>
132135446Strhodes#include <vm/vm_param.h>
133135446Strhodes#include <vm/vm_kern.h>
134135446Strhodes#include <vm/vm_page.h>
135135446Strhodes#include <vm/vm_map.h>
136135446Strhodes#include <vm/vm_object.h>
137135446Strhodes#include <vm/vm_extern.h>
138135446Strhodes#include <vm/vm_pageout.h>
139135446Strhodes#include <vm/vm_pager.h>
140135446Strhodes#include <vm/uma.h>
141193149Sdougb
142135446Strhodes#include <machine/cpu.h>
143135446Strhodes#include <machine/cputypes.h>
144135446Strhodes#include <machine/md_var.h>
145135446Strhodes#include <machine/pcb.h>
146135446Strhodes#include <machine/specialreg.h>
147135446Strhodes#ifdef SMP
148135446Strhodes#include <machine/smp.h>
149135446Strhodes#endif
150135446Strhodes
151135446Strhodes#ifdef XBOX
152193149Sdougb#include <machine/xbox.h>
153135446Strhodes#endif
154135446Strhodes
155135446Strhodes#include <xen/interface/xen.h>
156135446Strhodes#include <xen/hypervisor.h>
157135446Strhodes#include <machine/xen/hypercall.h>
158135446Strhodes#include <machine/xen/xenvar.h>
159135446Strhodes#include <machine/xen/xenfunc.h>
160135446Strhodes
161135446Strhodes#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
162135446Strhodes#define CPU_ENABLE_SSE
163135446Strhodes#endif
164135446Strhodes
165135446Strhodes#ifndef PMAP_SHPGPERPROC
166135446Strhodes#define PMAP_SHPGPERPROC 200
167135446Strhodes#endif
168135446Strhodes
169135446Strhodes#define DIAGNOSTIC
170135446Strhodes
171135446Strhodes#if !defined(DIAGNOSTIC)
172135446Strhodes#ifdef __GNUC_GNU_INLINE__
173135446Strhodes#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
174135446Strhodes#else
175135446Strhodes#define PMAP_INLINE	extern inline
176135446Strhodes#endif
177135446Strhodes#else
178135446Strhodes#define PMAP_INLINE
179135446Strhodes#endif
180170222Sdougb
181170222Sdougb#define PV_STATS
182170222Sdougb#ifdef PV_STATS
183193149Sdougb#define PV_STAT(x)	do { x ; } while (0)
184193149Sdougb#else
185135446Strhodes#define PV_STAT(x)	do { } while (0)
186135446Strhodes#endif
187135446Strhodes
188135446Strhodes#define	pa_index(pa)	((pa) >> PDRSHIFT)
189135446Strhodes#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
190135446Strhodes
191135446Strhodes/*
192135446Strhodes * Get PDEs and PTEs for user/kernel address space
193135446Strhodes */
194135446Strhodes#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
195135446Strhodes#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
196135446Strhodes
197135446Strhodes#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
198135446Strhodes#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
199135446Strhodes#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
200135446Strhodes#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
201135446Strhodes#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
202135446Strhodes
203135446Strhodes#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204135446Strhodes
205135446Strhodesstruct pmap kernel_pmap_store;
206135446StrhodesLIST_HEAD(pmaplist, pmap);
207135446Strhodesstatic struct pmaplist allpmaps;
208135446Strhodesstatic struct mtx allpmaps_lock;
209135446Strhodes
210135446Strhodesvm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
211135446Strhodesvm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
212135446Strhodesint pgeflag = 0;		/* PG_G or-in */
213135446Strhodesint pseflag = 0;		/* PG_PS or-in */
214135446Strhodes
215135446Strhodesint nkpt;
216135446Strhodesvm_offset_t kernel_vm_end;
217135446Strhodesextern u_int32_t KERNend;
218135446Strhodes
219135446Strhodes#ifdef PAE
220135446Strhodespt_entry_t pg_nx;
221135446Strhodes#endif
222135446Strhodes
223135446Strhodesstatic int pat_works;			/* Is page attribute table sane? */
224135446Strhodes
225135446Strhodes/*
226135446Strhodes * Data for the pv entry allocation mechanism
227135446Strhodes */
228135446Strhodesstatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
229135446Strhodesstatic struct md_page *pv_table;
230135446Strhodesstatic int shpgperproc = PMAP_SHPGPERPROC;
231135446Strhodes
232135446Strhodesstruct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
233135446Strhodesint pv_maxchunks;			/* How many chunks we have KVA for */
234135446Strhodesvm_offset_t pv_vafree;			/* freelist stored in the PTE */
235135446Strhodes
236135446Strhodes/*
237135446Strhodes * All those kernel PT submaps that BSD is so fond of
238135446Strhodes */
239135446Strhodesstruct sysmaps {
240135446Strhodes	struct	mtx lock;
241135446Strhodes	pt_entry_t *CMAP1;
242135446Strhodes	pt_entry_t *CMAP2;
243135446Strhodes	caddr_t	CADDR1;
244135446Strhodes	caddr_t	CADDR2;
245135446Strhodes};
246135446Strhodesstatic struct sysmaps sysmaps_pcpu[MAXCPU];
247135446Strhodesstatic pt_entry_t *CMAP3;
248135446Strhodescaddr_t ptvmmap = 0;
249135446Strhodesstatic caddr_t CADDR3;
250135446Strhodesstruct msgbuf *msgbufp = 0;
251135446Strhodes
252135446Strhodes/*
253135446Strhodes * Crashdump maps.
254135446Strhodes */
255135446Strhodesstatic caddr_t crashdumpmap;
256135446Strhodes
257135446Strhodesstatic pt_entry_t *PMAP1 = 0, *PMAP2;
258135446Strhodesstatic pt_entry_t *PADDR1 = 0, *PADDR2;
259135446Strhodes#ifdef SMP
260135446Strhodesstatic int PMAP1cpu;
261135446Strhodesstatic int PMAP1changedcpu;
262135446StrhodesSYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
263135446Strhodes	   &PMAP1changedcpu, 0,
264135446Strhodes	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
265135446Strhodes#endif
266135446Strhodesstatic int PMAP1changed;
267135446StrhodesSYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
268135446Strhodes	   &PMAP1changed, 0,
269135446Strhodes	   "Number of times pmap_pte_quick changed PMAP1");
270135446Strhodesstatic int PMAP1unchanged;
271135446StrhodesSYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
272135446Strhodes	   &PMAP1unchanged, 0,
273135446Strhodes	   "Number of times pmap_pte_quick didn't change PMAP1");
274135446Strhodesstatic struct mtx PMAP2mutex;
275135446Strhodes
276135446StrhodesSYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
277135446Strhodesstatic int pg_ps_enabled;
278135446StrhodesSYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
279135446Strhodes    "Are large page mappings enabled?");
280135446Strhodes
281135446StrhodesSYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
282135446Strhodes	"Max number of PV entries");
283135446StrhodesSYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
284135446Strhodes	"Page share factor per proc");
285135446StrhodesSYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
286135446Strhodes    "2/4MB page mapping counters");
287135446Strhodes
288135446Strhodesstatic u_long pmap_pde_mappings;
289135446StrhodesSYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
290135446Strhodes    &pmap_pde_mappings, 0, "2/4MB page mappings");
291165071Sdougb
292135446Strhodesstatic void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
293165071Sdougbstatic pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
294135446Strhodesstatic void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
295135446Strhodesstatic pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
296135446Strhodes		    vm_offset_t va);
297135446Strhodes
298135446Strhodesstatic vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
299135446Strhodes    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
300135446Strhodesstatic int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
301135446Strhodes    vm_page_t *free);
302135446Strhodesstatic void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
303135446Strhodes    vm_page_t *free);
304135446Strhodesstatic void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
305135446Strhodes					vm_offset_t va);
306135446Strhodesstatic boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
307135446Strhodes    vm_page_t m);
308135446Strhodes
309135446Strhodesstatic vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
310135446Strhodes
311135446Strhodesstatic vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
312135446Strhodesstatic int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
313135446Strhodesstatic pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
314135446Strhodesstatic void pmap_pte_release(pt_entry_t *pte);
315135446Strhodesstatic int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
316135446Strhodesstatic vm_offset_t pmap_kmem_choose(vm_offset_t addr);
317135446Strhodesstatic boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
318135446Strhodesstatic void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
319135446Strhodes
320135446Strhodesstatic __inline void pagezero(void *page);
321135446Strhodes
322135446StrhodesCTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
323135446StrhodesCTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
324135446Strhodes
325135446Strhodes/*
326135446Strhodes * If you get an error here, then you set KVA_PAGES wrong! See the
327135446Strhodes * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
328135446Strhodes * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
329135446Strhodes */
330135446StrhodesCTASSERT(KERNBASE % (1 << 24) == 0);
331135446Strhodes
332135446Strhodes
333135446Strhodes
334135446Strhodesvoid
335135446Strhodespd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
336135446Strhodes{
337135446Strhodes	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
338135446Strhodes
339135446Strhodes	switch (type) {
340135446Strhodes	case SH_PD_SET_VA:
341135446Strhodes#if 0
342135446Strhodes		xen_queue_pt_update(shadow_pdir_ma,
343135446Strhodes				    xpmap_ptom(val & ~(PG_RW)));
344135446Strhodes#endif
345193149Sdougb		xen_queue_pt_update(pdir_ma,
346135446Strhodes				    xpmap_ptom(val));
347135446Strhodes		break;
348135446Strhodes	case SH_PD_SET_VA_MA:
349135446Strhodes#if 0
350135446Strhodes		xen_queue_pt_update(shadow_pdir_ma,
351135446Strhodes				    val & ~(PG_RW));
352135446Strhodes#endif
353135446Strhodes		xen_queue_pt_update(pdir_ma, val);
354135446Strhodes		break;
355135446Strhodes	case SH_PD_SET_VA_CLEAR:
356135446Strhodes#if 0
357135446Strhodes		xen_queue_pt_update(shadow_pdir_ma, 0);
358135446Strhodes#endif
359135446Strhodes		xen_queue_pt_update(pdir_ma, 0);
360135446Strhodes		break;
361135446Strhodes	}
362135446Strhodes}
363135446Strhodes
364135446Strhodes/*
365135446Strhodes * Move the kernel virtual free pointer to the next
366135446Strhodes * 4MB.  This is used to help improve performance
367135446Strhodes * by using a large (4MB) page for much of the kernel
368135446Strhodes * (.text, .data, .bss)
369135446Strhodes */
370135446Strhodesstatic vm_offset_t
371135446Strhodespmap_kmem_choose(vm_offset_t addr)
372135446Strhodes{
373135446Strhodes	vm_offset_t newaddr = addr;
374135446Strhodes
375135446Strhodes#ifndef DISABLE_PSE
376135446Strhodes	if (cpu_feature & CPUID_PSE)
377135446Strhodes		newaddr = (addr + PDRMASK) & ~PDRMASK;
378135446Strhodes#endif
379135446Strhodes	return newaddr;
380135446Strhodes}
381135446Strhodes
382135446Strhodes/*
383135446Strhodes *	Bootstrap the system enough to run with virtual memory.
384135446Strhodes *
385135446Strhodes *	On the i386 this is called after mapping has already been enabled
386135446Strhodes *	and just syncs the pmap module with what has already been done.
387135446Strhodes *	[We can't call it easily with mapping off since the kernel is not
388135446Strhodes *	mapped with PA == VA, hence we would have to relocate every address
389135446Strhodes *	from the linked base (virtual) address "KERNBASE" to the actual
390135446Strhodes *	(physical) address starting relative to 0]
391135446Strhodes */
392135446Strhodesvoid
393135446Strhodespmap_bootstrap(vm_paddr_t firstaddr)
394135446Strhodes{
395135446Strhodes	vm_offset_t va;
396135446Strhodes	pt_entry_t *pte, *unused;
397135446Strhodes	struct sysmaps *sysmaps;
398135446Strhodes	int i;
399135446Strhodes
400135446Strhodes	/*
401135446Strhodes	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
402135446Strhodes	 * large. It should instead be correctly calculated in locore.s and
403135446Strhodes	 * not based on 'first' (which is a physical address, not a virtual
404135446Strhodes	 * address, for the start of unused physical memory). The kernel
405135446Strhodes	 * page tables are NOT double mapped and thus should not be included
406135446Strhodes	 * in this calculation.
407135446Strhodes	 */
408135446Strhodes	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
409135446Strhodes	virtual_avail = pmap_kmem_choose(virtual_avail);
410135446Strhodes
411135446Strhodes	virtual_end = VM_MAX_KERNEL_ADDRESS;
412135446Strhodes
413135446Strhodes	/*
414135446Strhodes	 * Initialize the kernel pmap (which is statically allocated).
415135446Strhodes	 */
416135446Strhodes	PMAP_LOCK_INIT(kernel_pmap);
417135446Strhodes	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
418135446Strhodes#ifdef PAE
419135446Strhodes	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
420135446Strhodes#endif
421135446Strhodes	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
422135446Strhodes	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
423135446Strhodes	LIST_INIT(&allpmaps);
424135446Strhodes	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
425135446Strhodes	mtx_lock_spin(&allpmaps_lock);
426135446Strhodes	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
427135446Strhodes	mtx_unlock_spin(&allpmaps_lock);
428135446Strhodes	if (nkpt == 0)
429135446Strhodes		nkpt = NKPT;
430135446Strhodes
431135446Strhodes	/*
432135446Strhodes	 * Reserve some special page table entries/VA space for temporary
433135446Strhodes	 * mapping of pages.
434135446Strhodes	 */
435135446Strhodes#define	SYSMAP(c, p, v, n)	\
436135446Strhodes	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
437135446Strhodes
438135446Strhodes	va = virtual_avail;
439135446Strhodes	pte = vtopte(va);
440135446Strhodes
441135446Strhodes	/*
442135446Strhodes	 * CMAP1/CMAP2 are used for zeroing and copying pages.
443135446Strhodes	 * CMAP3 is used for the idle process page zeroing.
444135446Strhodes	 */
445135446Strhodes	for (i = 0; i < MAXCPU; i++) {
446135446Strhodes		sysmaps = &sysmaps_pcpu[i];
447135446Strhodes		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
448135446Strhodes		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
449135446Strhodes		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
450135446Strhodes		PT_SET_MA(sysmaps->CADDR1, 0);
451193149Sdougb		PT_SET_MA(sysmaps->CADDR2, 0);
452135446Strhodes	}
453135446Strhodes	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
454135446Strhodes	PT_SET_MA(CADDR3, 0);
455135446Strhodes
456135446Strhodes	/*
457135446Strhodes	 * Crashdump maps.
458135446Strhodes	 */
459135446Strhodes	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
460135446Strhodes
461135446Strhodes	/*
462135446Strhodes	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
463135446Strhodes	 */
464135446Strhodes	SYSMAP(caddr_t, unused, ptvmmap, 1)
465135446Strhodes
466135446Strhodes	/*
467135446Strhodes	 * msgbufp is used to map the system message buffer.
468135446Strhodes	 */
469135446Strhodes	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
470135446Strhodes
471135446Strhodes	/*
472135446Strhodes	 * ptemap is used for pmap_pte_quick
473135446Strhodes	 */
474135446Strhodes	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
475135446Strhodes	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
476135446Strhodes
477135446Strhodes	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
478135446Strhodes
479135446Strhodes	virtual_avail = va;
480135446Strhodes
481135446Strhodes	/*
482135446Strhodes	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
483135446Strhodes	 * physical memory region that is used by the ACPI wakeup code.  This
484135446Strhodes	 * mapping must not have PG_G set.
485135446Strhodes	 */
486135446Strhodes#ifndef XEN
487135446Strhodes	/*
488135446Strhodes	 * leave here deliberately to show that this is not supported
489135446Strhodes	 */
490135446Strhodes#ifdef XBOX
491135446Strhodes	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
492135446Strhodes	 * an early stadium, we cannot yet neatly map video memory ... :-(
493135446Strhodes	 * Better fixes are very welcome! */
494135446Strhodes	if (!arch_i386_is_xbox)
495135446Strhodes#endif
496135446Strhodes	for (i = 1; i < NKPT; i++)
497135446Strhodes		PTD[i] = 0;
498135446Strhodes
499135446Strhodes	/* Initialize the PAT MSR if present. */
500135446Strhodes	pmap_init_pat();
501135446Strhodes
502135446Strhodes	/* Turn on PG_G on kernel page(s) */
503135446Strhodes	pmap_set_pg();
504135446Strhodes#endif
505135446Strhodes}
506135446Strhodes
507135446Strhodes/*
508135446Strhodes * Setup the PAT MSR.
509135446Strhodes */
510135446Strhodesvoid
511135446Strhodespmap_init_pat(void)
512135446Strhodes{
513135446Strhodes	uint64_t pat_msr;
514135446Strhodes
515135446Strhodes	/* Bail if this CPU doesn't implement PAT. */
516135446Strhodes	if (!(cpu_feature & CPUID_PAT))
517135446Strhodes		return;
518135446Strhodes
519135446Strhodes	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
520135446Strhodes	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
521135446Strhodes		/*
522135446Strhodes		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
523135446Strhodes		 * Program 4 and 5 as WP and WC.
524135446Strhodes		 * Leave 6 and 7 as UC and UC-.
525135446Strhodes		 */
526135446Strhodes		pat_msr = rdmsr(MSR_PAT);
527135446Strhodes		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
528135446Strhodes		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
529135446Strhodes		    PAT_VALUE(5, PAT_WRITE_COMBINING);
530135446Strhodes		pat_works = 1;
531135446Strhodes	} else {
532135446Strhodes		/*
533135446Strhodes		 * Due to some Intel errata, we can only safely use the lower 4
534135446Strhodes		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
535135446Strhodes		 * of UC-.
536135446Strhodes		 *
537135446Strhodes		 *   Intel Pentium III Processor Specification Update
538135446Strhodes		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
539165071Sdougb		 * or Mode C Paging)
540135446Strhodes		 *
541135446Strhodes		 *   Intel Pentium IV  Processor Specification Update
542135446Strhodes		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
543165071Sdougb		 */
544135446Strhodes		pat_msr = rdmsr(MSR_PAT);
545135446Strhodes		pat_msr &= ~PAT_MASK(2);
546135446Strhodes		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
547135446Strhodes		pat_works = 0;
548135446Strhodes	}
549135446Strhodes	wrmsr(MSR_PAT, pat_msr);
550135446Strhodes}
551135446Strhodes
552135446Strhodes/*
553135446Strhodes * Initialize a vm_page's machine-dependent fields.
554165071Sdougb */
555135446Strhodesvoid
556135446Strhodespmap_page_init(vm_page_t m)
557135446Strhodes{
558165071Sdougb
559135446Strhodes	TAILQ_INIT(&m->md.pv_list);
560135446Strhodes	m->md.pat_mode = PAT_WRITE_BACK;
561135446Strhodes}
562135446Strhodes
563135446Strhodes/*
564135446Strhodes * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
565135446Strhodes * Requirements:
566135446Strhodes *  - Must deal with pages in order to ensure that none of the PG_* bits
567135446Strhodes *    are ever set, PG_V in particular.
568135446Strhodes *  - Assumes we can write to ptes without pte_store() atomic ops, even
569135446Strhodes *    on PAE systems.  This should be ok.
570135446Strhodes *  - Assumes nothing will ever test these addresses for 0 to indicate
571135446Strhodes *    no mapping instead of correctly checking PG_V.
572135446Strhodes *  - Assumes a vm_offset_t will fit in a pte (true for i386).
573135446Strhodes * Because PG_V is never set, there can be no mappings to invalidate.
574135446Strhodes */
575135446Strhodesstatic int ptelist_count = 0;
576135446Strhodesstatic vm_offset_t
577135446Strhodespmap_ptelist_alloc(vm_offset_t *head)
578135446Strhodes{
579135446Strhodes	vm_offset_t va;
580135446Strhodes	vm_offset_t *phead = (vm_offset_t *)*head;
581135446Strhodes
582135446Strhodes	if (ptelist_count == 0) {
583135446Strhodes		printf("out of memory!!!!!!\n");
584135446Strhodes		return (0);	/* Out of memory */
585135446Strhodes	}
586135446Strhodes	ptelist_count--;
587135446Strhodes	va = phead[ptelist_count];
588135446Strhodes	return (va);
589135446Strhodes}
590135446Strhodes
591135446Strhodesstatic void
592135446Strhodespmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
593135446Strhodes{
594135446Strhodes	vm_offset_t *phead = (vm_offset_t *)*head;
595135446Strhodes
596135446Strhodes	phead[ptelist_count++] = va;
597135446Strhodes}
598135446Strhodes
599135446Strhodesstatic void
600135446Strhodespmap_ptelist_init(vm_offset_t *head, void *base, int npages)
601135446Strhodes{
602135446Strhodes	int i, nstackpages;
603135446Strhodes	vm_offset_t va;
604135446Strhodes	vm_page_t m;
605135446Strhodes
606135446Strhodes	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
607135446Strhodes	for (i = 0; i < nstackpages; i++) {
608135446Strhodes		va = (vm_offset_t)base + i * PAGE_SIZE;
609135446Strhodes		m = vm_page_alloc(NULL, i,
610135446Strhodes		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
611135446Strhodes		    VM_ALLOC_ZERO);
612135446Strhodes		pmap_qenter(va, &m, 1);
613135446Strhodes	}
614135446Strhodes
615135446Strhodes	*head = (vm_offset_t)base;
616135446Strhodes	for (i = npages - 1; i >= nstackpages; i--) {
617135446Strhodes		va = (vm_offset_t)base + i * PAGE_SIZE;
618135446Strhodes		pmap_ptelist_free(head, va);
619135446Strhodes	}
620135446Strhodes}
621135446Strhodes
622135446Strhodes
623135446Strhodes/*
624135446Strhodes *	Initialize the pmap module.
625135446Strhodes *	Called by vm_init, to initialize any structures that the pmap
626193149Sdougb *	system needs to map virtual memory.
627135446Strhodes */
628135446Strhodesvoid
629135446Strhodespmap_init(void)
630135446Strhodes{
631135446Strhodes	vm_page_t mpte;
632135446Strhodes	vm_size_t s;
633193149Sdougb	int i, pv_npg;
634135446Strhodes
635170222Sdougb	/*
636193149Sdougb	 * Initialize the vm page array entries for the kernel pmap's
637193149Sdougb	 * page table pages.
638193149Sdougb	 */
639193149Sdougb	for (i = 0; i < nkpt; i++) {
640193149Sdougb		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
641193149Sdougb		KASSERT(mpte >= vm_page_array &&
642193149Sdougb		    mpte < &vm_page_array[vm_page_array_size],
643193149Sdougb		    ("pmap_init: page table page is out of range"));
644193149Sdougb		mpte->pindex = i + KPTDI;
645193149Sdougb		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
646193149Sdougb	}
647193149Sdougb
648193149Sdougb        /*
649193149Sdougb	 * Initialize the address space (zone) for the pv entries.  Set a
650193149Sdougb	 * high water mark so that the system can recover from excessive
651193149Sdougb	 * numbers of pv entries.
652193149Sdougb	 */
653193149Sdougb	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
654193149Sdougb	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
655193149Sdougb	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
656193149Sdougb	pv_entry_max = roundup(pv_entry_max, _NPCPV);
657193149Sdougb	pv_entry_high_water = 9 * (pv_entry_max / 10);
658170222Sdougb
659170222Sdougb	/*
660170222Sdougb	 * Are large page mappings enabled?
661170222Sdougb	 */
662170222Sdougb	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
663170222Sdougb
664170222Sdougb	/*
665170222Sdougb	 * Calculate the size of the pv head table for superpages.
666170222Sdougb	 */
667170222Sdougb	for (i = 0; phys_avail[i + 1]; i += 2);
668170222Sdougb	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
669170222Sdougb
670170222Sdougb	/*
671170222Sdougb	 * Allocate memory for the pv head table for superpages.
672170222Sdougb	 */
673170222Sdougb	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
674170222Sdougb	s = round_page(s);
675170222Sdougb	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
676170222Sdougb	for (i = 0; i < pv_npg; i++)
677170222Sdougb		TAILQ_INIT(&pv_table[i].pv_list);
678170222Sdougb
679170222Sdougb	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
680170222Sdougb	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
681170222Sdougb	    PAGE_SIZE * pv_maxchunks);
682170222Sdougb	if (pv_chunkbase == NULL)
683170222Sdougb		panic("pmap_init: not enough kvm for pv chunks");
684170222Sdougb	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
685170222Sdougb}
686170222Sdougb
687170222Sdougb
688170222Sdougb/***************************************************
689170222Sdougb * Low level helper routines.....
690170222Sdougb ***************************************************/
691170222Sdougb
692170222Sdougb/*
693170222Sdougb * Determine the appropriate bits to set in a PTE or PDE for a specified
694170222Sdougb * caching mode.
695170222Sdougb */
696170222Sdougbint
697170222Sdougbpmap_cache_bits(int mode, boolean_t is_pde)
698170222Sdougb{
699170222Sdougb	int pat_flag, pat_index, cache_bits;
700170222Sdougb
701170222Sdougb	/* The PAT bit is different for PTE's and PDE's. */
702170222Sdougb	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
703170222Sdougb
704170222Sdougb	/* If we don't support PAT, map extended modes to older ones. */
705170222Sdougb	if (!(cpu_feature & CPUID_PAT)) {
706170222Sdougb		switch (mode) {
707170222Sdougb		case PAT_UNCACHEABLE:
708170222Sdougb		case PAT_WRITE_THROUGH:
709170222Sdougb		case PAT_WRITE_BACK:
710170222Sdougb			break;
711170222Sdougb		case PAT_UNCACHED:
712170222Sdougb		case PAT_WRITE_COMBINING:
713170222Sdougb		case PAT_WRITE_PROTECTED:
714170222Sdougb			mode = PAT_UNCACHEABLE;
715170222Sdougb			break;
716170222Sdougb		}
717170222Sdougb	}
718170222Sdougb
719170222Sdougb	/* Map the caching mode to a PAT index. */
720170222Sdougb	if (pat_works) {
721170222Sdougb		switch (mode) {
722170222Sdougb			case PAT_UNCACHEABLE:
723170222Sdougb				pat_index = 3;
724170222Sdougb				break;
725170222Sdougb			case PAT_WRITE_THROUGH:
726170222Sdougb				pat_index = 1;
727170222Sdougb				break;
728170222Sdougb			case PAT_WRITE_BACK:
729170222Sdougb				pat_index = 0;
730170222Sdougb				break;
731170222Sdougb			case PAT_UNCACHED:
732170222Sdougb				pat_index = 2;
733170222Sdougb				break;
734170222Sdougb			case PAT_WRITE_COMBINING:
735				pat_index = 5;
736				break;
737			case PAT_WRITE_PROTECTED:
738				pat_index = 4;
739				break;
740			default:
741				panic("Unknown caching mode %d\n", mode);
742		}
743	} else {
744		switch (mode) {
745			case PAT_UNCACHED:
746			case PAT_UNCACHEABLE:
747			case PAT_WRITE_PROTECTED:
748				pat_index = 3;
749				break;
750			case PAT_WRITE_THROUGH:
751				pat_index = 1;
752				break;
753			case PAT_WRITE_BACK:
754				pat_index = 0;
755				break;
756			case PAT_WRITE_COMBINING:
757				pat_index = 2;
758				break;
759			default:
760				panic("Unknown caching mode %d\n", mode);
761		}
762	}
763
764	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
765	cache_bits = 0;
766	if (pat_index & 0x4)
767		cache_bits |= pat_flag;
768	if (pat_index & 0x2)
769		cache_bits |= PG_NC_PCD;
770	if (pat_index & 0x1)
771		cache_bits |= PG_NC_PWT;
772	return (cache_bits);
773}
774#ifdef SMP
775/*
776 * For SMP, these functions have to use the IPI mechanism for coherence.
777 *
778 * N.B.: Before calling any of the following TLB invalidation functions,
779 * the calling processor must ensure that all stores updating a non-
780 * kernel page table are globally performed.  Otherwise, another
781 * processor could cache an old, pre-update entry without being
782 * invalidated.  This can happen one of two ways: (1) The pmap becomes
783 * active on another processor after its pm_active field is checked by
784 * one of the following functions but before a store updating the page
785 * table is globally performed. (2) The pmap becomes active on another
786 * processor before its pm_active field is checked but due to
787 * speculative loads one of the following functions stills reads the
788 * pmap as inactive on the other processor.
789 *
790 * The kernel page table is exempt because its pm_active field is
791 * immutable.  The kernel page table is always active on every
792 * processor.
793 */
794void
795pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
796{
797	cpumask_t cpumask, other_cpus;
798
799	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
800	    pmap, va);
801
802	sched_pin();
803	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
804		invlpg(va);
805		smp_invlpg(va);
806	} else {
807		cpumask = PCPU_GET(cpumask);
808		other_cpus = PCPU_GET(other_cpus);
809		if (pmap->pm_active & cpumask)
810			invlpg(va);
811		if (pmap->pm_active & other_cpus)
812			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
813	}
814	sched_unpin();
815	PT_UPDATES_FLUSH();
816}
817
818void
819pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
820{
821	cpumask_t cpumask, other_cpus;
822	vm_offset_t addr;
823
824	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
825	    pmap, sva, eva);
826
827	sched_pin();
828	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
829		for (addr = sva; addr < eva; addr += PAGE_SIZE)
830			invlpg(addr);
831		smp_invlpg_range(sva, eva);
832	} else {
833		cpumask = PCPU_GET(cpumask);
834		other_cpus = PCPU_GET(other_cpus);
835		if (pmap->pm_active & cpumask)
836			for (addr = sva; addr < eva; addr += PAGE_SIZE)
837				invlpg(addr);
838		if (pmap->pm_active & other_cpus)
839			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
840			    sva, eva);
841	}
842	sched_unpin();
843	PT_UPDATES_FLUSH();
844}
845
846void
847pmap_invalidate_all(pmap_t pmap)
848{
849	cpumask_t cpumask, other_cpus;
850
851	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
852
853	sched_pin();
854	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
855		invltlb();
856		smp_invltlb();
857	} else {
858		cpumask = PCPU_GET(cpumask);
859		other_cpus = PCPU_GET(other_cpus);
860		if (pmap->pm_active & cpumask)
861			invltlb();
862		if (pmap->pm_active & other_cpus)
863			smp_masked_invltlb(pmap->pm_active & other_cpus);
864	}
865	sched_unpin();
866}
867
868void
869pmap_invalidate_cache(void)
870{
871
872	sched_pin();
873	wbinvd();
874	smp_cache_flush();
875	sched_unpin();
876}
877#else /* !SMP */
878/*
879 * Normal, non-SMP, 486+ invalidation functions.
880 * We inline these within pmap.c for speed.
881 */
882PMAP_INLINE void
883pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
884{
885	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
886	    pmap, va);
887
888	if (pmap == kernel_pmap || pmap->pm_active)
889		invlpg(va);
890	PT_UPDATES_FLUSH();
891}
892
893PMAP_INLINE void
894pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
895{
896	vm_offset_t addr;
897
898	if (eva - sva > PAGE_SIZE)
899		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
900		    pmap, sva, eva);
901
902	if (pmap == kernel_pmap || pmap->pm_active)
903		for (addr = sva; addr < eva; addr += PAGE_SIZE)
904			invlpg(addr);
905	PT_UPDATES_FLUSH();
906}
907
908PMAP_INLINE void
909pmap_invalidate_all(pmap_t pmap)
910{
911
912	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
913
914	if (pmap == kernel_pmap || pmap->pm_active)
915		invltlb();
916}
917
918PMAP_INLINE void
919pmap_invalidate_cache(void)
920{
921
922	wbinvd();
923}
924#endif /* !SMP */
925
926void
927pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
928{
929
930	KASSERT((sva & PAGE_MASK) == 0,
931	    ("pmap_invalidate_cache_range: sva not page-aligned"));
932	KASSERT((eva & PAGE_MASK) == 0,
933	    ("pmap_invalidate_cache_range: eva not page-aligned"));
934
935	if (cpu_feature & CPUID_SS)
936		; /* If "Self Snoop" is supported, do nothing. */
937	else if (cpu_feature & CPUID_CLFSH) {
938
939		/*
940		 * Otherwise, do per-cache line flush.  Use the mfence
941		 * instruction to insure that previous stores are
942		 * included in the write-back.  The processor
943		 * propagates flush to other processors in the cache
944		 * coherence domain.
945		 */
946		mfence();
947		for (; sva < eva; sva += cpu_clflush_line_size)
948			clflush(sva);
949		mfence();
950	} else {
951
952		/*
953		 * No targeted cache flush methods are supported by CPU,
954		 * globally invalidate cache as a last resort.
955		 */
956		pmap_invalidate_cache();
957	}
958}
959
960/*
961 * Are we current address space or kernel?  N.B. We return FALSE when
962 * a pmap's page table is in use because a kernel thread is borrowing
963 * it.  The borrowed page table can change spontaneously, making any
964 * dependence on its continued use subject to a race condition.
965 */
966static __inline int
967pmap_is_current(pmap_t pmap)
968{
969
970	return (pmap == kernel_pmap ||
971	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
972		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
973}
974
975/*
976 * If the given pmap is not the current or kernel pmap, the returned pte must
977 * be released by passing it to pmap_pte_release().
978 */
979pt_entry_t *
980pmap_pte(pmap_t pmap, vm_offset_t va)
981{
982	pd_entry_t newpf;
983	pd_entry_t *pde;
984
985	pde = pmap_pde(pmap, va);
986	if (*pde & PG_PS)
987		return (pde);
988	if (*pde != 0) {
989		/* are we current address space or kernel? */
990		if (pmap_is_current(pmap))
991			return (vtopte(va));
992		mtx_lock(&PMAP2mutex);
993		newpf = *pde & PG_FRAME;
994		if ((*PMAP2 & PG_FRAME) != newpf) {
995			vm_page_lock_queues();
996			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
997			vm_page_unlock_queues();
998			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
999			    pmap, va, (*PMAP2 & 0xffffffff));
1000		}
1001
1002		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1003	}
1004	return (0);
1005}
1006
1007/*
1008 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1009 * being NULL.
1010 */
1011static __inline void
1012pmap_pte_release(pt_entry_t *pte)
1013{
1014
1015	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1016		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1017		    *PMAP2);
1018		PT_SET_VA(PMAP2, 0, TRUE);
1019		mtx_unlock(&PMAP2mutex);
1020	}
1021}
1022
1023static __inline void
1024invlcaddr(void *caddr)
1025{
1026
1027	invlpg((u_int)caddr);
1028	PT_UPDATES_FLUSH();
1029}
1030
1031/*
1032 * Super fast pmap_pte routine best used when scanning
1033 * the pv lists.  This eliminates many coarse-grained
1034 * invltlb calls.  Note that many of the pv list
1035 * scans are across different pmaps.  It is very wasteful
1036 * to do an entire invltlb for checking a single mapping.
1037 *
1038 * If the given pmap is not the current pmap, vm_page_queue_mtx
1039 * must be held and curthread pinned to a CPU.
1040 */
1041static pt_entry_t *
1042pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1043{
1044	pd_entry_t newpf;
1045	pd_entry_t *pde;
1046
1047	pde = pmap_pde(pmap, va);
1048	if (*pde & PG_PS)
1049		return (pde);
1050	if (*pde != 0) {
1051		/* are we current address space or kernel? */
1052		if (pmap_is_current(pmap))
1053			return (vtopte(va));
1054		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1055		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1056		newpf = *pde & PG_FRAME;
1057		if ((*PMAP1 & PG_FRAME) != newpf) {
1058			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1059			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1060			    pmap, va, (u_long)*PMAP1);
1061
1062#ifdef SMP
1063			PMAP1cpu = PCPU_GET(cpuid);
1064#endif
1065			PMAP1changed++;
1066		} else
1067#ifdef SMP
1068		if (PMAP1cpu != PCPU_GET(cpuid)) {
1069			PMAP1cpu = PCPU_GET(cpuid);
1070			invlcaddr(PADDR1);
1071			PMAP1changedcpu++;
1072		} else
1073#endif
1074			PMAP1unchanged++;
1075		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1076	}
1077	return (0);
1078}
1079
1080/*
1081 *	Routine:	pmap_extract
1082 *	Function:
1083 *		Extract the physical page address associated
1084 *		with the given map/virtual_address pair.
1085 */
1086vm_paddr_t
1087pmap_extract(pmap_t pmap, vm_offset_t va)
1088{
1089	vm_paddr_t rtval;
1090	pt_entry_t *pte;
1091	pd_entry_t pde;
1092	pt_entry_t pteval;
1093
1094	rtval = 0;
1095	PMAP_LOCK(pmap);
1096	pde = pmap->pm_pdir[va >> PDRSHIFT];
1097	if (pde != 0) {
1098		if ((pde & PG_PS) != 0) {
1099			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1100			PMAP_UNLOCK(pmap);
1101			return rtval;
1102		}
1103		pte = pmap_pte(pmap, va);
1104		pteval = *pte ? xpmap_mtop(*pte) : 0;
1105		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1106		pmap_pte_release(pte);
1107	}
1108	PMAP_UNLOCK(pmap);
1109	return (rtval);
1110}
1111
1112/*
1113 *	Routine:	pmap_extract_ma
1114 *	Function:
1115 *		Like pmap_extract, but returns machine address
1116 */
1117vm_paddr_t
1118pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1119{
1120	vm_paddr_t rtval;
1121	pt_entry_t *pte;
1122	pd_entry_t pde;
1123
1124	rtval = 0;
1125	PMAP_LOCK(pmap);
1126	pde = pmap->pm_pdir[va >> PDRSHIFT];
1127	if (pde != 0) {
1128		if ((pde & PG_PS) != 0) {
1129			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1130			PMAP_UNLOCK(pmap);
1131			return rtval;
1132		}
1133		pte = pmap_pte(pmap, va);
1134		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1135		pmap_pte_release(pte);
1136	}
1137	PMAP_UNLOCK(pmap);
1138	return (rtval);
1139}
1140
1141/*
1142 *	Routine:	pmap_extract_and_hold
1143 *	Function:
1144 *		Atomically extract and hold the physical page
1145 *		with the given pmap and virtual address pair
1146 *		if that mapping permits the given protection.
1147 */
1148vm_page_t
1149pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1150{
1151	pd_entry_t pde;
1152	pt_entry_t pte;
1153	vm_page_t m;
1154	vm_paddr_t pa;
1155
1156	pa = 0;
1157	m = NULL;
1158	PMAP_LOCK(pmap);
1159retry:
1160	pde = PT_GET(pmap_pde(pmap, va));
1161	if (pde != 0) {
1162		if (pde & PG_PS) {
1163			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1164				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1165				       (va & PDRMASK), &pa))
1166					goto retry;
1167				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1168				    (va & PDRMASK));
1169				vm_page_hold(m);
1170			}
1171		} else {
1172			sched_pin();
1173			pte = PT_GET(pmap_pte_quick(pmap, va));
1174			if (*PMAP1)
1175				PT_SET_MA(PADDR1, 0);
1176			if ((pte & PG_V) &&
1177			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1178				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1179					goto retry;
1180				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1181				vm_page_hold(m);
1182			}
1183			sched_unpin();
1184		}
1185	}
1186	PA_UNLOCK_COND(pa);
1187	PMAP_UNLOCK(pmap);
1188	return (m);
1189}
1190
1191/***************************************************
1192 * Low level mapping routines.....
1193 ***************************************************/
1194
1195/*
1196 * Add a wired page to the kva.
1197 * Note: not SMP coherent.
1198 */
1199void
1200pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1201{
1202	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1203}
1204
1205void
1206pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1207{
1208	pt_entry_t *pte;
1209
1210	pte = vtopte(va);
1211	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1212}
1213
1214
1215static __inline void
1216pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1217{
1218	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1219}
1220
1221/*
1222 * Remove a page from the kernel pagetables.
1223 * Note: not SMP coherent.
1224 */
1225PMAP_INLINE void
1226pmap_kremove(vm_offset_t va)
1227{
1228	pt_entry_t *pte;
1229
1230	pte = vtopte(va);
1231	PT_CLEAR_VA(pte, FALSE);
1232}
1233
1234/*
1235 *	Used to map a range of physical addresses into kernel
1236 *	virtual address space.
1237 *
1238 *	The value passed in '*virt' is a suggested virtual address for
1239 *	the mapping. Architectures which can support a direct-mapped
1240 *	physical to virtual region can return the appropriate address
1241 *	within that region, leaving '*virt' unchanged. Other
1242 *	architectures should map the pages starting at '*virt' and
1243 *	update '*virt' with the first usable address after the mapped
1244 *	region.
1245 */
1246vm_offset_t
1247pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1248{
1249	vm_offset_t va, sva;
1250
1251	va = sva = *virt;
1252	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1253	    va, start, end, prot);
1254	while (start < end) {
1255		pmap_kenter(va, start);
1256		va += PAGE_SIZE;
1257		start += PAGE_SIZE;
1258	}
1259	pmap_invalidate_range(kernel_pmap, sva, va);
1260	*virt = va;
1261	return (sva);
1262}
1263
1264
1265/*
1266 * Add a list of wired pages to the kva
1267 * this routine is only used for temporary
1268 * kernel mappings that do not need to have
1269 * page modification or references recorded.
1270 * Note that old mappings are simply written
1271 * over.  The page *must* be wired.
1272 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1273 */
1274void
1275pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1276{
1277	pt_entry_t *endpte, *pte;
1278	vm_paddr_t pa;
1279	vm_offset_t va = sva;
1280	int mclcount = 0;
1281	multicall_entry_t mcl[16];
1282	multicall_entry_t *mclp = mcl;
1283	int error;
1284
1285	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1286	pte = vtopte(sva);
1287	endpte = pte + count;
1288	while (pte < endpte) {
1289		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1290
1291		mclp->op = __HYPERVISOR_update_va_mapping;
1292		mclp->args[0] = va;
1293		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1294		mclp->args[2] = (uint32_t)(pa >> 32);
1295		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1296
1297		va += PAGE_SIZE;
1298		pte++;
1299		ma++;
1300		mclp++;
1301		mclcount++;
1302		if (mclcount == 16) {
1303			error = HYPERVISOR_multicall(mcl, mclcount);
1304			mclp = mcl;
1305			mclcount = 0;
1306			KASSERT(error == 0, ("bad multicall %d", error));
1307		}
1308	}
1309	if (mclcount) {
1310		error = HYPERVISOR_multicall(mcl, mclcount);
1311		KASSERT(error == 0, ("bad multicall %d", error));
1312	}
1313
1314#ifdef INVARIANTS
1315	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1316		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1317#endif
1318}
1319
1320
1321/*
1322 * This routine tears out page mappings from the
1323 * kernel -- it is meant only for temporary mappings.
1324 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1325 */
1326void
1327pmap_qremove(vm_offset_t sva, int count)
1328{
1329	vm_offset_t va;
1330
1331	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1332	va = sva;
1333	vm_page_lock_queues();
1334	critical_enter();
1335	while (count-- > 0) {
1336		pmap_kremove(va);
1337		va += PAGE_SIZE;
1338	}
1339	PT_UPDATES_FLUSH();
1340	pmap_invalidate_range(kernel_pmap, sva, va);
1341	critical_exit();
1342	vm_page_unlock_queues();
1343}
1344
1345/***************************************************
1346 * Page table page management routines.....
1347 ***************************************************/
1348static __inline void
1349pmap_free_zero_pages(vm_page_t free)
1350{
1351	vm_page_t m;
1352
1353	while (free != NULL) {
1354		m = free;
1355		free = m->right;
1356		vm_page_free_zero(m);
1357	}
1358}
1359
1360/*
1361 * This routine unholds page table pages, and if the hold count
1362 * drops to zero, then it decrements the wire count.
1363 */
1364static __inline int
1365pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1366{
1367
1368	--m->wire_count;
1369	if (m->wire_count == 0)
1370		return _pmap_unwire_pte_hold(pmap, m, free);
1371	else
1372		return 0;
1373}
1374
1375static int
1376_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1377{
1378	vm_offset_t pteva;
1379
1380	PT_UPDATES_FLUSH();
1381	/*
1382	 * unmap the page table page
1383	 */
1384	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1385	/*
1386	 * page *might* contain residual mapping :-/
1387	 */
1388	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1389	pmap_zero_page(m);
1390	--pmap->pm_stats.resident_count;
1391
1392	/*
1393	 * This is a release store so that the ordinary store unmapping
1394	 * the page table page is globally performed before TLB shoot-
1395	 * down is begun.
1396	 */
1397	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1398
1399	/*
1400	 * Do an invltlb to make the invalidated mapping
1401	 * take effect immediately.
1402	 */
1403	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1404	pmap_invalidate_page(pmap, pteva);
1405
1406	/*
1407	 * Put page on a list so that it is released after
1408	 * *ALL* TLB shootdown is done
1409	 */
1410	m->right = *free;
1411	*free = m;
1412
1413	return 1;
1414}
1415
1416/*
1417 * After removing a page table entry, this routine is used to
1418 * conditionally free the page, and manage the hold/wire counts.
1419 */
1420static int
1421pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1422{
1423	pd_entry_t ptepde;
1424	vm_page_t mpte;
1425
1426	if (va >= VM_MAXUSER_ADDRESS)
1427		return 0;
1428	ptepde = PT_GET(pmap_pde(pmap, va));
1429	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1430	return pmap_unwire_pte_hold(pmap, mpte, free);
1431}
1432
1433void
1434pmap_pinit0(pmap_t pmap)
1435{
1436
1437	PMAP_LOCK_INIT(pmap);
1438	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1439#ifdef PAE
1440	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1441#endif
1442	pmap->pm_active = 0;
1443	PCPU_SET(curpmap, pmap);
1444	TAILQ_INIT(&pmap->pm_pvchunk);
1445	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1446	mtx_lock_spin(&allpmaps_lock);
1447	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1448	mtx_unlock_spin(&allpmaps_lock);
1449}
1450
1451/*
1452 * Initialize a preallocated and zeroed pmap structure,
1453 * such as one in a vmspace structure.
1454 */
1455int
1456pmap_pinit(pmap_t pmap)
1457{
1458	vm_page_t m, ptdpg[NPGPTD + 1];
1459	int npgptd = NPGPTD + 1;
1460	static int color;
1461	int i;
1462
1463	PMAP_LOCK_INIT(pmap);
1464
1465	/*
1466	 * No need to allocate page table space yet but we do need a valid
1467	 * page directory table.
1468	 */
1469	if (pmap->pm_pdir == NULL) {
1470		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1471		    NBPTD);
1472		if (pmap->pm_pdir == NULL) {
1473			PMAP_LOCK_DESTROY(pmap);
1474			return (0);
1475		}
1476#ifdef PAE
1477		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1478#endif
1479	}
1480
1481	/*
1482	 * allocate the page directory page(s)
1483	 */
1484	for (i = 0; i < npgptd;) {
1485		m = vm_page_alloc(NULL, color++,
1486		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1487		    VM_ALLOC_ZERO);
1488		if (m == NULL)
1489			VM_WAIT;
1490		else {
1491			ptdpg[i++] = m;
1492		}
1493	}
1494	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1495	for (i = 0; i < NPGPTD; i++) {
1496		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1497			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1498	}
1499
1500	mtx_lock_spin(&allpmaps_lock);
1501	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1502	mtx_unlock_spin(&allpmaps_lock);
1503	/* Wire in kernel global address entries. */
1504
1505	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1506#ifdef PAE
1507	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1508	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1509		bzero(pmap->pm_pdpt, PAGE_SIZE);
1510	for (i = 0; i < NPGPTD; i++) {
1511		vm_paddr_t ma;
1512
1513		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1514		pmap->pm_pdpt[i] = ma | PG_V;
1515
1516	}
1517#endif
1518	for (i = 0; i < NPGPTD; i++) {
1519		pt_entry_t *pd;
1520		vm_paddr_t ma;
1521
1522		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1523		pd = pmap->pm_pdir + (i * NPDEPG);
1524		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1525#if 0
1526		xen_pgd_pin(ma);
1527#endif
1528	}
1529
1530#ifdef PAE
1531	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1532#endif
1533	vm_page_lock_queues();
1534	xen_flush_queue();
1535	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1536	for (i = 0; i < NPGPTD; i++) {
1537		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1538		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1539	}
1540	xen_flush_queue();
1541	vm_page_unlock_queues();
1542	pmap->pm_active = 0;
1543	TAILQ_INIT(&pmap->pm_pvchunk);
1544	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1545
1546	return (1);
1547}
1548
1549/*
1550 * this routine is called if the page table page is not
1551 * mapped correctly.
1552 */
1553static vm_page_t
1554_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1555{
1556	vm_paddr_t ptema;
1557	vm_page_t m;
1558
1559	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1560	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1561	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1562
1563	/*
1564	 * Allocate a page table page.
1565	 */
1566	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1567	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1568		if (flags & M_WAITOK) {
1569			PMAP_UNLOCK(pmap);
1570			vm_page_unlock_queues();
1571			VM_WAIT;
1572			vm_page_lock_queues();
1573			PMAP_LOCK(pmap);
1574		}
1575
1576		/*
1577		 * Indicate the need to retry.  While waiting, the page table
1578		 * page may have been allocated.
1579		 */
1580		return (NULL);
1581	}
1582	if ((m->flags & PG_ZERO) == 0)
1583		pmap_zero_page(m);
1584
1585	/*
1586	 * Map the pagetable page into the process address space, if
1587	 * it isn't already there.
1588	 */
1589	pmap->pm_stats.resident_count++;
1590
1591	ptema = VM_PAGE_TO_MACH(m);
1592	xen_pt_pin(ptema);
1593	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1594		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1595
1596	KASSERT(pmap->pm_pdir[ptepindex],
1597	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1598	return (m);
1599}
1600
1601static vm_page_t
1602pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1603{
1604	unsigned ptepindex;
1605	pd_entry_t ptema;
1606	vm_page_t m;
1607
1608	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1609	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1610	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1611
1612	/*
1613	 * Calculate pagetable page index
1614	 */
1615	ptepindex = va >> PDRSHIFT;
1616retry:
1617	/*
1618	 * Get the page directory entry
1619	 */
1620	ptema = pmap->pm_pdir[ptepindex];
1621
1622	/*
1623	 * This supports switching from a 4MB page to a
1624	 * normal 4K page.
1625	 */
1626	if (ptema & PG_PS) {
1627		/*
1628		 * XXX
1629		 */
1630		pmap->pm_pdir[ptepindex] = 0;
1631		ptema = 0;
1632		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1633		pmap_invalidate_all(kernel_pmap);
1634	}
1635
1636	/*
1637	 * If the page table page is mapped, we just increment the
1638	 * hold count, and activate it.
1639	 */
1640	if (ptema & PG_V) {
1641		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1642		m->wire_count++;
1643	} else {
1644		/*
1645		 * Here if the pte page isn't mapped, or if it has
1646		 * been deallocated.
1647		 */
1648		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1649		    pmap, va, flags);
1650		m = _pmap_allocpte(pmap, ptepindex, flags);
1651		if (m == NULL && (flags & M_WAITOK))
1652			goto retry;
1653
1654		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1655	}
1656	return (m);
1657}
1658
1659
1660/***************************************************
1661* Pmap allocation/deallocation routines.
1662 ***************************************************/
1663
1664#ifdef SMP
1665/*
1666 * Deal with a SMP shootdown of other users of the pmap that we are
1667 * trying to dispose of.  This can be a bit hairy.
1668 */
1669static cpumask_t *lazymask;
1670static u_int lazyptd;
1671static volatile u_int lazywait;
1672
1673void pmap_lazyfix_action(void);
1674
1675void
1676pmap_lazyfix_action(void)
1677{
1678	cpumask_t mymask = PCPU_GET(cpumask);
1679
1680#ifdef COUNT_IPIS
1681	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1682#endif
1683	if (rcr3() == lazyptd)
1684		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1685	atomic_clear_int(lazymask, mymask);
1686	atomic_store_rel_int(&lazywait, 1);
1687}
1688
1689static void
1690pmap_lazyfix_self(cpumask_t mymask)
1691{
1692
1693	if (rcr3() == lazyptd)
1694		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1695	atomic_clear_int(lazymask, mymask);
1696}
1697
1698
1699static void
1700pmap_lazyfix(pmap_t pmap)
1701{
1702	cpumask_t mymask, mask;
1703	u_int spins;
1704
1705	while ((mask = pmap->pm_active) != 0) {
1706		spins = 50000000;
1707		mask = mask & -mask;	/* Find least significant set bit */
1708		mtx_lock_spin(&smp_ipi_mtx);
1709#ifdef PAE
1710		lazyptd = vtophys(pmap->pm_pdpt);
1711#else
1712		lazyptd = vtophys(pmap->pm_pdir);
1713#endif
1714		mymask = PCPU_GET(cpumask);
1715		if (mask == mymask) {
1716			lazymask = &pmap->pm_active;
1717			pmap_lazyfix_self(mymask);
1718		} else {
1719			atomic_store_rel_int((u_int *)&lazymask,
1720			    (u_int)&pmap->pm_active);
1721			atomic_store_rel_int(&lazywait, 0);
1722			ipi_selected(mask, IPI_LAZYPMAP);
1723			while (lazywait == 0) {
1724				ia32_pause();
1725				if (--spins == 0)
1726					break;
1727			}
1728		}
1729		mtx_unlock_spin(&smp_ipi_mtx);
1730		if (spins == 0)
1731			printf("pmap_lazyfix: spun for 50000000\n");
1732	}
1733}
1734
1735#else	/* SMP */
1736
1737/*
1738 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1739 * unlikely to have to even execute this code, including the fact
1740 * that the cleanup is deferred until the parent does a wait(2), which
1741 * means that another userland process has run.
1742 */
1743static void
1744pmap_lazyfix(pmap_t pmap)
1745{
1746	u_int cr3;
1747
1748	cr3 = vtophys(pmap->pm_pdir);
1749	if (cr3 == rcr3()) {
1750		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1751		pmap->pm_active &= ~(PCPU_GET(cpumask));
1752	}
1753}
1754#endif	/* SMP */
1755
1756/*
1757 * Release any resources held by the given physical map.
1758 * Called when a pmap initialized by pmap_pinit is being released.
1759 * Should only be called if the map contains no valid mappings.
1760 */
1761void
1762pmap_release(pmap_t pmap)
1763{
1764	vm_page_t m, ptdpg[2*NPGPTD+1];
1765	vm_paddr_t ma;
1766	int i;
1767#ifdef PAE
1768	int npgptd = NPGPTD + 1;
1769#else
1770	int npgptd = NPGPTD;
1771#endif
1772	KASSERT(pmap->pm_stats.resident_count == 0,
1773	    ("pmap_release: pmap resident count %ld != 0",
1774	    pmap->pm_stats.resident_count));
1775	PT_UPDATES_FLUSH();
1776
1777	pmap_lazyfix(pmap);
1778	mtx_lock_spin(&allpmaps_lock);
1779	LIST_REMOVE(pmap, pm_list);
1780	mtx_unlock_spin(&allpmaps_lock);
1781
1782	for (i = 0; i < NPGPTD; i++)
1783		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1784	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1785#ifdef PAE
1786	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1787#endif
1788
1789	for (i = 0; i < npgptd; i++) {
1790		m = ptdpg[i];
1791		ma = VM_PAGE_TO_MACH(m);
1792		/* unpinning L1 and L2 treated the same */
1793#if 0
1794                xen_pgd_unpin(ma);
1795#else
1796		if (i == NPGPTD)
1797	                xen_pgd_unpin(ma);
1798#endif
1799#ifdef PAE
1800		if (i < NPGPTD)
1801			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1802			    ("pmap_release: got wrong ptd page"));
1803#endif
1804		m->wire_count--;
1805		atomic_subtract_int(&cnt.v_wire_count, 1);
1806		vm_page_free(m);
1807	}
1808#ifdef PAE
1809	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1810#endif
1811	PMAP_LOCK_DESTROY(pmap);
1812}
1813
1814static int
1815kvm_size(SYSCTL_HANDLER_ARGS)
1816{
1817	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1818
1819	return sysctl_handle_long(oidp, &ksize, 0, req);
1820}
1821SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1822    0, 0, kvm_size, "IU", "Size of KVM");
1823
1824static int
1825kvm_free(SYSCTL_HANDLER_ARGS)
1826{
1827	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1828
1829	return sysctl_handle_long(oidp, &kfree, 0, req);
1830}
1831SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1832    0, 0, kvm_free, "IU", "Amount of KVM free");
1833
1834/*
1835 * grow the number of kernel page table entries, if needed
1836 */
1837void
1838pmap_growkernel(vm_offset_t addr)
1839{
1840	struct pmap *pmap;
1841	vm_paddr_t ptppaddr;
1842	vm_page_t nkpg;
1843	pd_entry_t newpdir;
1844
1845	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1846	if (kernel_vm_end == 0) {
1847		kernel_vm_end = KERNBASE;
1848		nkpt = 0;
1849		while (pdir_pde(PTD, kernel_vm_end)) {
1850			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1851			nkpt++;
1852			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1853				kernel_vm_end = kernel_map->max_offset;
1854				break;
1855			}
1856		}
1857	}
1858	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1859	if (addr - 1 >= kernel_map->max_offset)
1860		addr = kernel_map->max_offset;
1861	while (kernel_vm_end < addr) {
1862		if (pdir_pde(PTD, kernel_vm_end)) {
1863			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1864			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1865				kernel_vm_end = kernel_map->max_offset;
1866				break;
1867			}
1868			continue;
1869		}
1870
1871		/*
1872		 * This index is bogus, but out of the way
1873		 */
1874		nkpg = vm_page_alloc(NULL, nkpt,
1875		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1876		if (!nkpg)
1877			panic("pmap_growkernel: no memory to grow kernel");
1878
1879		nkpt++;
1880
1881		pmap_zero_page(nkpg);
1882		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1883		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1884		vm_page_lock_queues();
1885		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1886		mtx_lock_spin(&allpmaps_lock);
1887		LIST_FOREACH(pmap, &allpmaps, pm_list)
1888			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1889
1890		mtx_unlock_spin(&allpmaps_lock);
1891		vm_page_unlock_queues();
1892
1893		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1894		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1895			kernel_vm_end = kernel_map->max_offset;
1896			break;
1897		}
1898	}
1899}
1900
1901
1902/***************************************************
1903 * page management routines.
1904 ***************************************************/
1905
1906CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1907CTASSERT(_NPCM == 11);
1908
1909static __inline struct pv_chunk *
1910pv_to_chunk(pv_entry_t pv)
1911{
1912
1913	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1914}
1915
1916#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1917
1918#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1919#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1920
1921static uint32_t pc_freemask[11] = {
1922	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1923	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1924	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1925	PC_FREE0_9, PC_FREE10
1926};
1927
1928SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1929	"Current number of pv entries");
1930
1931#ifdef PV_STATS
1932static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1933
1934SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1935	"Current number of pv entry chunks");
1936SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1937	"Current number of pv entry chunks allocated");
1938SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1939	"Current number of pv entry chunks frees");
1940SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1941	"Number of times tried to get a chunk page but failed.");
1942
1943static long pv_entry_frees, pv_entry_allocs;
1944static int pv_entry_spare;
1945
1946SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1947	"Current number of pv entry frees");
1948SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1949	"Current number of pv entry allocs");
1950SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1951	"Current number of spare pv entries");
1952
1953static int pmap_collect_inactive, pmap_collect_active;
1954
1955SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1956	"Current number times pmap_collect called on inactive queue");
1957SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1958	"Current number times pmap_collect called on active queue");
1959#endif
1960
1961/*
1962 * We are in a serious low memory condition.  Resort to
1963 * drastic measures to free some pages so we can allocate
1964 * another pv entry chunk.  This is normally called to
1965 * unmap inactive pages, and if necessary, active pages.
1966 */
1967static void
1968pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1969{
1970	pmap_t pmap;
1971	pt_entry_t *pte, tpte;
1972	pv_entry_t next_pv, pv;
1973	vm_offset_t va;
1974	vm_page_t m, free;
1975
1976	sched_pin();
1977	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1978		if (m->hold_count || m->busy)
1979			continue;
1980		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1981			va = pv->pv_va;
1982			pmap = PV_PMAP(pv);
1983			/* Avoid deadlock and lock recursion. */
1984			if (pmap > locked_pmap)
1985				PMAP_LOCK(pmap);
1986			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1987				continue;
1988			pmap->pm_stats.resident_count--;
1989			pte = pmap_pte_quick(pmap, va);
1990			tpte = pte_load_clear(pte);
1991			KASSERT((tpte & PG_W) == 0,
1992			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1993			if (tpte & PG_A)
1994				vm_page_flag_set(m, PG_REFERENCED);
1995			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
1996				vm_page_dirty(m);
1997			free = NULL;
1998			pmap_unuse_pt(pmap, va, &free);
1999			pmap_invalidate_page(pmap, va);
2000			pmap_free_zero_pages(free);
2001			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2002			free_pv_entry(pmap, pv);
2003			if (pmap != locked_pmap)
2004				PMAP_UNLOCK(pmap);
2005		}
2006		if (TAILQ_EMPTY(&m->md.pv_list))
2007			vm_page_flag_clear(m, PG_WRITEABLE);
2008	}
2009	sched_unpin();
2010}
2011
2012
2013/*
2014 * free the pv_entry back to the free list
2015 */
2016static void
2017free_pv_entry(pmap_t pmap, pv_entry_t pv)
2018{
2019	vm_page_t m;
2020	struct pv_chunk *pc;
2021	int idx, field, bit;
2022
2023	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2024	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2025	PV_STAT(pv_entry_frees++);
2026	PV_STAT(pv_entry_spare++);
2027	pv_entry_count--;
2028	pc = pv_to_chunk(pv);
2029	idx = pv - &pc->pc_pventry[0];
2030	field = idx / 32;
2031	bit = idx % 32;
2032	pc->pc_map[field] |= 1ul << bit;
2033	/* move to head of list */
2034	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2035	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2036	for (idx = 0; idx < _NPCM; idx++)
2037		if (pc->pc_map[idx] != pc_freemask[idx])
2038			return;
2039	PV_STAT(pv_entry_spare -= _NPCPV);
2040	PV_STAT(pc_chunk_count--);
2041	PV_STAT(pc_chunk_frees++);
2042	/* entire chunk is free, return it */
2043	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2044	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2045	pmap_qremove((vm_offset_t)pc, 1);
2046	vm_page_unwire(m, 0);
2047	vm_page_free(m);
2048	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2049}
2050
2051/*
2052 * get a new pv_entry, allocating a block from the system
2053 * when needed.
2054 */
2055static pv_entry_t
2056get_pv_entry(pmap_t pmap, int try)
2057{
2058	static const struct timeval printinterval = { 60, 0 };
2059	static struct timeval lastprint;
2060	static vm_pindex_t colour;
2061	struct vpgqueues *pq;
2062	int bit, field;
2063	pv_entry_t pv;
2064	struct pv_chunk *pc;
2065	vm_page_t m;
2066
2067	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2068	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2069	PV_STAT(pv_entry_allocs++);
2070	pv_entry_count++;
2071	if (pv_entry_count > pv_entry_high_water)
2072		if (ratecheck(&lastprint, &printinterval))
2073			printf("Approaching the limit on PV entries, consider "
2074			    "increasing either the vm.pmap.shpgperproc or the "
2075			    "vm.pmap.pv_entry_max tunable.\n");
2076	pq = NULL;
2077retry:
2078	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2079	if (pc != NULL) {
2080		for (field = 0; field < _NPCM; field++) {
2081			if (pc->pc_map[field]) {
2082				bit = bsfl(pc->pc_map[field]);
2083				break;
2084			}
2085		}
2086		if (field < _NPCM) {
2087			pv = &pc->pc_pventry[field * 32 + bit];
2088			pc->pc_map[field] &= ~(1ul << bit);
2089			/* If this was the last item, move it to tail */
2090			for (field = 0; field < _NPCM; field++)
2091				if (pc->pc_map[field] != 0) {
2092					PV_STAT(pv_entry_spare--);
2093					return (pv);	/* not full, return */
2094				}
2095			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2096			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2097			PV_STAT(pv_entry_spare--);
2098			return (pv);
2099		}
2100	}
2101	/*
2102	 * Access to the ptelist "pv_vafree" is synchronized by the page
2103	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2104	 * remain non-empty until pmap_ptelist_alloc() completes.
2105	 */
2106	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2107	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2108	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2109		if (try) {
2110			pv_entry_count--;
2111			PV_STAT(pc_chunk_tryfail++);
2112			return (NULL);
2113		}
2114		/*
2115		 * Reclaim pv entries: At first, destroy mappings to
2116		 * inactive pages.  After that, if a pv chunk entry
2117		 * is still needed, destroy mappings to active pages.
2118		 */
2119		if (pq == NULL) {
2120			PV_STAT(pmap_collect_inactive++);
2121			pq = &vm_page_queues[PQ_INACTIVE];
2122		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2123			PV_STAT(pmap_collect_active++);
2124			pq = &vm_page_queues[PQ_ACTIVE];
2125		} else
2126			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2127		pmap_collect(pmap, pq);
2128		goto retry;
2129	}
2130	PV_STAT(pc_chunk_count++);
2131	PV_STAT(pc_chunk_allocs++);
2132	colour++;
2133	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2134	pmap_qenter((vm_offset_t)pc, &m, 1);
2135	if ((m->flags & PG_ZERO) == 0)
2136		pagezero(pc);
2137	pc->pc_pmap = pmap;
2138	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2139	for (field = 1; field < _NPCM; field++)
2140		pc->pc_map[field] = pc_freemask[field];
2141	pv = &pc->pc_pventry[0];
2142	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2143	PV_STAT(pv_entry_spare += _NPCPV - 1);
2144	return (pv);
2145}
2146
2147static __inline pv_entry_t
2148pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2149{
2150	pv_entry_t pv;
2151
2152	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2153	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2154		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2155			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2156			break;
2157		}
2158	}
2159	return (pv);
2160}
2161
2162static void
2163pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2164{
2165	pv_entry_t pv;
2166
2167	pv = pmap_pvh_remove(pvh, pmap, va);
2168	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2169	free_pv_entry(pmap, pv);
2170}
2171
2172static void
2173pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2174{
2175
2176	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2177	pmap_pvh_free(&m->md, pmap, va);
2178	if (TAILQ_EMPTY(&m->md.pv_list))
2179		vm_page_flag_clear(m, PG_WRITEABLE);
2180}
2181
2182/*
2183 * Conditionally create a pv entry.
2184 */
2185static boolean_t
2186pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2187{
2188	pv_entry_t pv;
2189
2190	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2191	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2192	if (pv_entry_count < pv_entry_high_water &&
2193	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2194		pv->pv_va = va;
2195		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2196		return (TRUE);
2197	} else
2198		return (FALSE);
2199}
2200
2201/*
2202 * pmap_remove_pte: do the things to unmap a page in a process
2203 */
2204static int
2205pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2206{
2207	pt_entry_t oldpte;
2208	vm_page_t m;
2209
2210	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2211	    pmap, (u_long)*ptq, va);
2212
2213	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2214	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2215	oldpte = *ptq;
2216	PT_SET_VA_MA(ptq, 0, TRUE);
2217	if (oldpte & PG_W)
2218		pmap->pm_stats.wired_count -= 1;
2219	/*
2220	 * Machines that don't support invlpg, also don't support
2221	 * PG_G.
2222	 */
2223	if (oldpte & PG_G)
2224		pmap_invalidate_page(kernel_pmap, va);
2225	pmap->pm_stats.resident_count -= 1;
2226	/*
2227	 * XXX This is not strictly correctly, but somewhere along the line
2228	 * we are losing the managed bit on some pages. It is unclear to me
2229	 * why, but I think the most likely explanation is that xen's writable
2230	 * page table implementation doesn't respect the unused bits.
2231	 */
2232	if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
2233		) {
2234		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2235
2236		if (!(oldpte & PG_MANAGED))
2237			printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2238
2239		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2240			vm_page_dirty(m);
2241		if (oldpte & PG_A)
2242			vm_page_flag_set(m, PG_REFERENCED);
2243		pmap_remove_entry(pmap, m, va);
2244	} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
2245		printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2246
2247	return (pmap_unuse_pt(pmap, va, free));
2248}
2249
2250/*
2251 * Remove a single page from a process address space
2252 */
2253static void
2254pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2255{
2256	pt_entry_t *pte;
2257
2258	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2259	    pmap, va);
2260
2261	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2262	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2263	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2264	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2265		return;
2266	pmap_remove_pte(pmap, pte, va, free);
2267	pmap_invalidate_page(pmap, va);
2268	if (*PMAP1)
2269		PT_SET_MA(PADDR1, 0);
2270
2271}
2272
2273/*
2274 *	Remove the given range of addresses from the specified map.
2275 *
2276 *	It is assumed that the start and end are properly
2277 *	rounded to the page size.
2278 */
2279void
2280pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2281{
2282	vm_offset_t pdnxt;
2283	pd_entry_t ptpaddr;
2284	pt_entry_t *pte;
2285	vm_page_t free = NULL;
2286	int anyvalid;
2287
2288	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2289	    pmap, sva, eva);
2290
2291	/*
2292	 * Perform an unsynchronized read.  This is, however, safe.
2293	 */
2294	if (pmap->pm_stats.resident_count == 0)
2295		return;
2296
2297	anyvalid = 0;
2298
2299	vm_page_lock_queues();
2300	sched_pin();
2301	PMAP_LOCK(pmap);
2302
2303	/*
2304	 * special handling of removing one page.  a very
2305	 * common operation and easy to short circuit some
2306	 * code.
2307	 */
2308	if ((sva + PAGE_SIZE == eva) &&
2309	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2310		pmap_remove_page(pmap, sva, &free);
2311		goto out;
2312	}
2313
2314	for (; sva < eva; sva = pdnxt) {
2315		unsigned pdirindex;
2316
2317		/*
2318		 * Calculate index for next page table.
2319		 */
2320		pdnxt = (sva + NBPDR) & ~PDRMASK;
2321		if (pmap->pm_stats.resident_count == 0)
2322			break;
2323
2324		pdirindex = sva >> PDRSHIFT;
2325		ptpaddr = pmap->pm_pdir[pdirindex];
2326
2327		/*
2328		 * Weed out invalid mappings. Note: we assume that the page
2329		 * directory table is always allocated, and in kernel virtual.
2330		 */
2331		if (ptpaddr == 0)
2332			continue;
2333
2334		/*
2335		 * Check for large page.
2336		 */
2337		if ((ptpaddr & PG_PS) != 0) {
2338			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2339			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2340			anyvalid = 1;
2341			continue;
2342		}
2343
2344		/*
2345		 * Limit our scan to either the end of the va represented
2346		 * by the current page table page, or to the end of the
2347		 * range being removed.
2348		 */
2349		if (pdnxt > eva)
2350			pdnxt = eva;
2351
2352		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2353		    sva += PAGE_SIZE) {
2354			if ((*pte & PG_V) == 0)
2355				continue;
2356
2357			/*
2358			 * The TLB entry for a PG_G mapping is invalidated
2359			 * by pmap_remove_pte().
2360			 */
2361			if ((*pte & PG_G) == 0)
2362				anyvalid = 1;
2363			if (pmap_remove_pte(pmap, pte, sva, &free))
2364				break;
2365		}
2366	}
2367	PT_UPDATES_FLUSH();
2368	if (*PMAP1)
2369		PT_SET_VA_MA(PMAP1, 0, TRUE);
2370out:
2371	if (anyvalid)
2372		pmap_invalidate_all(pmap);
2373	sched_unpin();
2374	vm_page_unlock_queues();
2375	PMAP_UNLOCK(pmap);
2376	pmap_free_zero_pages(free);
2377}
2378
2379/*
2380 *	Routine:	pmap_remove_all
2381 *	Function:
2382 *		Removes this physical page from
2383 *		all physical maps in which it resides.
2384 *		Reflects back modify bits to the pager.
2385 *
2386 *	Notes:
2387 *		Original versions of this routine were very
2388 *		inefficient because they iteratively called
2389 *		pmap_remove (slow...)
2390 */
2391
2392void
2393pmap_remove_all(vm_page_t m)
2394{
2395	pv_entry_t pv;
2396	pmap_t pmap;
2397	pt_entry_t *pte, tpte;
2398	vm_page_t free;
2399
2400	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2401	    ("pmap_remove_all: page %p is fictitious", m));
2402	free = NULL;
2403	vm_page_lock_queues();
2404	sched_pin();
2405	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2406		pmap = PV_PMAP(pv);
2407		PMAP_LOCK(pmap);
2408		pmap->pm_stats.resident_count--;
2409		pte = pmap_pte_quick(pmap, pv->pv_va);
2410
2411		tpte = *pte;
2412		PT_SET_VA_MA(pte, 0, TRUE);
2413		if (tpte & PG_W)
2414			pmap->pm_stats.wired_count--;
2415		if (tpte & PG_A)
2416			vm_page_flag_set(m, PG_REFERENCED);
2417
2418		/*
2419		 * Update the vm_page_t clean and reference bits.
2420		 */
2421		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2422			vm_page_dirty(m);
2423		pmap_unuse_pt(pmap, pv->pv_va, &free);
2424		pmap_invalidate_page(pmap, pv->pv_va);
2425		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2426		free_pv_entry(pmap, pv);
2427		PMAP_UNLOCK(pmap);
2428	}
2429	vm_page_flag_clear(m, PG_WRITEABLE);
2430	PT_UPDATES_FLUSH();
2431	if (*PMAP1)
2432		PT_SET_MA(PADDR1, 0);
2433	sched_unpin();
2434	vm_page_unlock_queues();
2435	pmap_free_zero_pages(free);
2436}
2437
2438/*
2439 *	Set the physical protection on the
2440 *	specified range of this map as requested.
2441 */
2442void
2443pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2444{
2445	vm_offset_t pdnxt;
2446	pd_entry_t ptpaddr;
2447	pt_entry_t *pte;
2448	int anychanged;
2449
2450	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2451	    pmap, sva, eva, prot);
2452
2453	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2454		pmap_remove(pmap, sva, eva);
2455		return;
2456	}
2457
2458#ifdef PAE
2459	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2460	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2461		return;
2462#else
2463	if (prot & VM_PROT_WRITE)
2464		return;
2465#endif
2466
2467	anychanged = 0;
2468
2469	vm_page_lock_queues();
2470	sched_pin();
2471	PMAP_LOCK(pmap);
2472	for (; sva < eva; sva = pdnxt) {
2473		pt_entry_t obits, pbits;
2474		unsigned pdirindex;
2475
2476		pdnxt = (sva + NBPDR) & ~PDRMASK;
2477
2478		pdirindex = sva >> PDRSHIFT;
2479		ptpaddr = pmap->pm_pdir[pdirindex];
2480
2481		/*
2482		 * Weed out invalid mappings. Note: we assume that the page
2483		 * directory table is always allocated, and in kernel virtual.
2484		 */
2485		if (ptpaddr == 0)
2486			continue;
2487
2488		/*
2489		 * Check for large page.
2490		 */
2491		if ((ptpaddr & PG_PS) != 0) {
2492			if ((prot & VM_PROT_WRITE) == 0)
2493				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2494#ifdef PAE
2495			if ((prot & VM_PROT_EXECUTE) == 0)
2496				pmap->pm_pdir[pdirindex] |= pg_nx;
2497#endif
2498			anychanged = 1;
2499			continue;
2500		}
2501
2502		if (pdnxt > eva)
2503			pdnxt = eva;
2504
2505		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2506		    sva += PAGE_SIZE) {
2507			vm_page_t m;
2508
2509retry:
2510			/*
2511			 * Regardless of whether a pte is 32 or 64 bits in
2512			 * size, PG_RW, PG_A, and PG_M are among the least
2513			 * significant 32 bits.
2514			 */
2515			obits = pbits = *pte;
2516			if ((pbits & PG_V) == 0)
2517				continue;
2518
2519			if ((prot & VM_PROT_WRITE) == 0) {
2520				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2521				    (PG_MANAGED | PG_M | PG_RW)) {
2522					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2523					    PG_FRAME);
2524					vm_page_dirty(m);
2525				}
2526				pbits &= ~(PG_RW | PG_M);
2527			}
2528#ifdef PAE
2529			if ((prot & VM_PROT_EXECUTE) == 0)
2530				pbits |= pg_nx;
2531#endif
2532
2533			if (pbits != obits) {
2534				obits = *pte;
2535				PT_SET_VA_MA(pte, pbits, TRUE);
2536				if (*pte != pbits)
2537					goto retry;
2538				if (obits & PG_G)
2539					pmap_invalidate_page(pmap, sva);
2540				else
2541					anychanged = 1;
2542			}
2543		}
2544	}
2545	PT_UPDATES_FLUSH();
2546	if (*PMAP1)
2547		PT_SET_VA_MA(PMAP1, 0, TRUE);
2548	if (anychanged)
2549		pmap_invalidate_all(pmap);
2550	sched_unpin();
2551	vm_page_unlock_queues();
2552	PMAP_UNLOCK(pmap);
2553}
2554
2555/*
2556 *	Insert the given physical page (p) at
2557 *	the specified virtual address (v) in the
2558 *	target physical map with the protection requested.
2559 *
2560 *	If specified, the page will be wired down, meaning
2561 *	that the related pte can not be reclaimed.
2562 *
2563 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2564 *	or lose information.  That is, this routine must actually
2565 *	insert this page into the given map NOW.
2566 */
2567void
2568pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2569    vm_prot_t prot, boolean_t wired)
2570{
2571	pd_entry_t *pde;
2572	pt_entry_t *pte;
2573	pt_entry_t newpte, origpte;
2574	pv_entry_t pv;
2575	vm_paddr_t opa, pa;
2576	vm_page_t mpte, om;
2577	boolean_t invlva;
2578
2579	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2580	    pmap, va, access, VM_PAGE_TO_MACH(m), prot, wired);
2581	va = trunc_page(va);
2582	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2583	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2584	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2585	    va));
2586	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2587	    (m->oflags & VPO_BUSY) != 0,
2588	    ("pmap_enter: page %p is not busy", m));
2589
2590	mpte = NULL;
2591
2592	vm_page_lock_queues();
2593	PMAP_LOCK(pmap);
2594	sched_pin();
2595
2596	/*
2597	 * In the case that a page table page is not
2598	 * resident, we are creating it here.
2599	 */
2600	if (va < VM_MAXUSER_ADDRESS) {
2601		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2602	}
2603
2604	pde = pmap_pde(pmap, va);
2605	if ((*pde & PG_PS) != 0)
2606		panic("pmap_enter: attempted pmap_enter on 4MB page");
2607	pte = pmap_pte_quick(pmap, va);
2608
2609	/*
2610	 * Page Directory table entry not valid, we need a new PT page
2611	 */
2612	if (pte == NULL) {
2613		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2614			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2615	}
2616
2617	pa = VM_PAGE_TO_PHYS(m);
2618	om = NULL;
2619	opa = origpte = 0;
2620
2621#if 0
2622	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2623		pte, *pte));
2624#endif
2625	origpte = *pte;
2626	if (origpte)
2627		origpte = xpmap_mtop(origpte);
2628	opa = origpte & PG_FRAME;
2629
2630	/*
2631	 * Mapping has not changed, must be protection or wiring change.
2632	 */
2633	if (origpte && (opa == pa)) {
2634		/*
2635		 * Wiring change, just update stats. We don't worry about
2636		 * wiring PT pages as they remain resident as long as there
2637		 * are valid mappings in them. Hence, if a user page is wired,
2638		 * the PT page will be also.
2639		 */
2640		if (wired && ((origpte & PG_W) == 0))
2641			pmap->pm_stats.wired_count++;
2642		else if (!wired && (origpte & PG_W))
2643			pmap->pm_stats.wired_count--;
2644
2645		/*
2646		 * Remove extra pte reference
2647		 */
2648		if (mpte)
2649			mpte->wire_count--;
2650
2651		if (origpte & PG_MANAGED) {
2652			om = m;
2653			pa |= PG_MANAGED;
2654		}
2655		goto validate;
2656	}
2657
2658	pv = NULL;
2659
2660	/*
2661	 * Mapping has changed, invalidate old range and fall through to
2662	 * handle validating new mapping.
2663	 */
2664	if (opa) {
2665		if (origpte & PG_W)
2666			pmap->pm_stats.wired_count--;
2667		if (origpte & PG_MANAGED) {
2668			om = PHYS_TO_VM_PAGE(opa);
2669			pv = pmap_pvh_remove(&om->md, pmap, va);
2670		} else if (va < VM_MAXUSER_ADDRESS)
2671			printf("va=0x%x is unmanaged :-( \n", va);
2672
2673		if (mpte != NULL) {
2674			mpte->wire_count--;
2675			KASSERT(mpte->wire_count > 0,
2676			    ("pmap_enter: missing reference to page table page,"
2677			     " va: 0x%x", va));
2678		}
2679	} else
2680		pmap->pm_stats.resident_count++;
2681
2682	/*
2683	 * Enter on the PV list if part of our managed memory.
2684	 */
2685	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2686		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2687		    ("pmap_enter: managed mapping within the clean submap"));
2688		if (pv == NULL)
2689			pv = get_pv_entry(pmap, FALSE);
2690		pv->pv_va = va;
2691		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2692		pa |= PG_MANAGED;
2693	} else if (pv != NULL)
2694		free_pv_entry(pmap, pv);
2695
2696	/*
2697	 * Increment counters
2698	 */
2699	if (wired)
2700		pmap->pm_stats.wired_count++;
2701
2702validate:
2703	/*
2704	 * Now validate mapping with desired protection/wiring.
2705	 */
2706	newpte = (pt_entry_t)(pa | PG_V);
2707	if ((prot & VM_PROT_WRITE) != 0) {
2708		newpte |= PG_RW;
2709		if ((newpte & PG_MANAGED) != 0)
2710			vm_page_flag_set(m, PG_WRITEABLE);
2711	}
2712#ifdef PAE
2713	if ((prot & VM_PROT_EXECUTE) == 0)
2714		newpte |= pg_nx;
2715#endif
2716	if (wired)
2717		newpte |= PG_W;
2718	if (va < VM_MAXUSER_ADDRESS)
2719		newpte |= PG_U;
2720	if (pmap == kernel_pmap)
2721		newpte |= pgeflag;
2722
2723	critical_enter();
2724	/*
2725	 * if the mapping or permission bits are different, we need
2726	 * to update the pte.
2727	 */
2728	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2729		if (origpte) {
2730			invlva = FALSE;
2731			origpte = *pte;
2732			PT_SET_VA(pte, newpte | PG_A, FALSE);
2733			if (origpte & PG_A) {
2734				if (origpte & PG_MANAGED)
2735					vm_page_flag_set(om, PG_REFERENCED);
2736				if (opa != VM_PAGE_TO_PHYS(m))
2737					invlva = TRUE;
2738#ifdef PAE
2739				if ((origpte & PG_NX) == 0 &&
2740				    (newpte & PG_NX) != 0)
2741					invlva = TRUE;
2742#endif
2743			}
2744			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2745				if ((origpte & PG_MANAGED) != 0)
2746					vm_page_dirty(om);
2747				if ((prot & VM_PROT_WRITE) == 0)
2748					invlva = TRUE;
2749			}
2750			if ((origpte & PG_MANAGED) != 0 &&
2751			    TAILQ_EMPTY(&om->md.pv_list))
2752				vm_page_flag_clear(om, PG_WRITEABLE);
2753			if (invlva)
2754				pmap_invalidate_page(pmap, va);
2755		} else{
2756			PT_SET_VA(pte, newpte | PG_A, FALSE);
2757		}
2758
2759	}
2760	PT_UPDATES_FLUSH();
2761	critical_exit();
2762	if (*PMAP1)
2763		PT_SET_VA_MA(PMAP1, 0, TRUE);
2764	sched_unpin();
2765	vm_page_unlock_queues();
2766	PMAP_UNLOCK(pmap);
2767}
2768
2769/*
2770 * Maps a sequence of resident pages belonging to the same object.
2771 * The sequence begins with the given page m_start.  This page is
2772 * mapped at the given virtual address start.  Each subsequent page is
2773 * mapped at a virtual address that is offset from start by the same
2774 * amount as the page is offset from m_start within the object.  The
2775 * last page in the sequence is the page with the largest offset from
2776 * m_start that can be mapped at a virtual address less than the given
2777 * virtual address end.  Not every virtual page between start and end
2778 * is mapped; only those for which a resident page exists with the
2779 * corresponding offset from m_start are mapped.
2780 */
2781void
2782pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2783    vm_page_t m_start, vm_prot_t prot)
2784{
2785	vm_page_t m, mpte;
2786	vm_pindex_t diff, psize;
2787	multicall_entry_t mcl[16];
2788	multicall_entry_t *mclp = mcl;
2789	int error, count = 0;
2790
2791	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2792	psize = atop(end - start);
2793
2794	mpte = NULL;
2795	m = m_start;
2796	vm_page_lock_queues();
2797	PMAP_LOCK(pmap);
2798	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2799		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2800		    prot, mpte);
2801		m = TAILQ_NEXT(m, listq);
2802		if (count == 16) {
2803			error = HYPERVISOR_multicall(mcl, count);
2804			KASSERT(error == 0, ("bad multicall %d", error));
2805			mclp = mcl;
2806			count = 0;
2807		}
2808	}
2809	if (count) {
2810		error = HYPERVISOR_multicall(mcl, count);
2811		KASSERT(error == 0, ("bad multicall %d", error));
2812	}
2813	vm_page_unlock_queues();
2814	PMAP_UNLOCK(pmap);
2815}
2816
2817/*
2818 * this code makes some *MAJOR* assumptions:
2819 * 1. Current pmap & pmap exists.
2820 * 2. Not wired.
2821 * 3. Read access.
2822 * 4. No page table pages.
2823 * but is *MUCH* faster than pmap_enter...
2824 */
2825
2826void
2827pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2828{
2829	multicall_entry_t mcl, *mclp;
2830	int count = 0;
2831	mclp = &mcl;
2832
2833	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2834	    pmap, va, m, prot);
2835
2836	vm_page_lock_queues();
2837	PMAP_LOCK(pmap);
2838	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2839	if (count)
2840		HYPERVISOR_multicall(&mcl, count);
2841	vm_page_unlock_queues();
2842	PMAP_UNLOCK(pmap);
2843}
2844
2845#ifdef notyet
2846void
2847pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2848{
2849	int i, error, index = 0;
2850	multicall_entry_t mcl[16];
2851	multicall_entry_t *mclp = mcl;
2852
2853	PMAP_LOCK(pmap);
2854	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2855		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2856			continue;
2857
2858		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2859		if (index == 16) {
2860			error = HYPERVISOR_multicall(mcl, index);
2861			mclp = mcl;
2862			index = 0;
2863			KASSERT(error == 0, ("bad multicall %d", error));
2864		}
2865	}
2866	if (index) {
2867		error = HYPERVISOR_multicall(mcl, index);
2868		KASSERT(error == 0, ("bad multicall %d", error));
2869	}
2870
2871	PMAP_UNLOCK(pmap);
2872}
2873#endif
2874
2875static vm_page_t
2876pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2877    vm_prot_t prot, vm_page_t mpte)
2878{
2879	pt_entry_t *pte;
2880	vm_paddr_t pa;
2881	vm_page_t free;
2882	multicall_entry_t *mcl = *mclpp;
2883
2884	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2885	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2886	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2887	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2888	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2889
2890	/*
2891	 * In the case that a page table page is not
2892	 * resident, we are creating it here.
2893	 */
2894	if (va < VM_MAXUSER_ADDRESS) {
2895		unsigned ptepindex;
2896		pd_entry_t ptema;
2897
2898		/*
2899		 * Calculate pagetable page index
2900		 */
2901		ptepindex = va >> PDRSHIFT;
2902		if (mpte && (mpte->pindex == ptepindex)) {
2903			mpte->wire_count++;
2904		} else {
2905			/*
2906			 * Get the page directory entry
2907			 */
2908			ptema = pmap->pm_pdir[ptepindex];
2909
2910			/*
2911			 * If the page table page is mapped, we just increment
2912			 * the hold count, and activate it.
2913			 */
2914			if (ptema & PG_V) {
2915				if (ptema & PG_PS)
2916					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2917				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2918				mpte->wire_count++;
2919			} else {
2920				mpte = _pmap_allocpte(pmap, ptepindex,
2921				    M_NOWAIT);
2922				if (mpte == NULL)
2923					return (mpte);
2924			}
2925		}
2926	} else {
2927		mpte = NULL;
2928	}
2929
2930	/*
2931	 * This call to vtopte makes the assumption that we are
2932	 * entering the page into the current pmap.  In order to support
2933	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2934	 * But that isn't as quick as vtopte.
2935	 */
2936	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
2937	pte = vtopte(va);
2938	if (*pte & PG_V) {
2939		if (mpte != NULL) {
2940			mpte->wire_count--;
2941			mpte = NULL;
2942		}
2943		return (mpte);
2944	}
2945
2946	/*
2947	 * Enter on the PV list if part of our managed memory.
2948	 */
2949	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2950	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2951		if (mpte != NULL) {
2952			free = NULL;
2953			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2954				pmap_invalidate_page(pmap, va);
2955				pmap_free_zero_pages(free);
2956			}
2957
2958			mpte = NULL;
2959		}
2960		return (mpte);
2961	}
2962
2963	/*
2964	 * Increment counters
2965	 */
2966	pmap->pm_stats.resident_count++;
2967
2968	pa = VM_PAGE_TO_PHYS(m);
2969#ifdef PAE
2970	if ((prot & VM_PROT_EXECUTE) == 0)
2971		pa |= pg_nx;
2972#endif
2973
2974#if 0
2975	/*
2976	 * Now validate mapping with RO protection
2977	 */
2978	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2979		pte_store(pte, pa | PG_V | PG_U);
2980	else
2981		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2982#else
2983	/*
2984	 * Now validate mapping with RO protection
2985	 */
2986	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2987		pa = 	xpmap_ptom(pa | PG_V | PG_U);
2988	else
2989		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
2990
2991	mcl->op = __HYPERVISOR_update_va_mapping;
2992	mcl->args[0] = va;
2993	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
2994	mcl->args[2] = (uint32_t)(pa >> 32);
2995	mcl->args[3] = 0;
2996	*mclpp = mcl + 1;
2997	*count = *count + 1;
2998#endif
2999	return mpte;
3000}
3001
3002/*
3003 * Make a temporary mapping for a physical address.  This is only intended
3004 * to be used for panic dumps.
3005 */
3006void *
3007pmap_kenter_temporary(vm_paddr_t pa, int i)
3008{
3009	vm_offset_t va;
3010	vm_paddr_t ma = xpmap_ptom(pa);
3011
3012	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3013	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3014	invlpg(va);
3015	return ((void *)crashdumpmap);
3016}
3017
3018/*
3019 * This code maps large physical mmap regions into the
3020 * processor address space.  Note that some shortcuts
3021 * are taken, but the code works.
3022 */
3023void
3024pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3025		    vm_object_t object, vm_pindex_t pindex,
3026		    vm_size_t size)
3027{
3028	pd_entry_t *pde;
3029	vm_paddr_t pa, ptepa;
3030	vm_page_t p;
3031	int pat_mode;
3032
3033	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3034	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3035	    ("pmap_object_init_pt: non-device object"));
3036	if (pseflag &&
3037	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3038		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3039			return;
3040		p = vm_page_lookup(object, pindex);
3041		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3042		    ("pmap_object_init_pt: invalid page %p", p));
3043		pat_mode = p->md.pat_mode;
3044		/*
3045		 * Abort the mapping if the first page is not physically
3046		 * aligned to a 2/4MB page boundary.
3047		 */
3048		ptepa = VM_PAGE_TO_PHYS(p);
3049		if (ptepa & (NBPDR - 1))
3050			return;
3051		/*
3052		 * Skip the first page.  Abort the mapping if the rest of
3053		 * the pages are not physically contiguous or have differing
3054		 * memory attributes.
3055		 */
3056		p = TAILQ_NEXT(p, listq);
3057		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3058		    pa += PAGE_SIZE) {
3059			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3060			    ("pmap_object_init_pt: invalid page %p", p));
3061			if (pa != VM_PAGE_TO_PHYS(p) ||
3062			    pat_mode != p->md.pat_mode)
3063				return;
3064			p = TAILQ_NEXT(p, listq);
3065		}
3066		/* Map using 2/4MB pages. */
3067		PMAP_LOCK(pmap);
3068		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3069		    size; pa += NBPDR) {
3070			pde = pmap_pde(pmap, addr);
3071			if (*pde == 0) {
3072				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3073				    PG_U | PG_RW | PG_V);
3074				pmap->pm_stats.resident_count += NBPDR /
3075				    PAGE_SIZE;
3076				pmap_pde_mappings++;
3077			}
3078			/* Else continue on if the PDE is already valid. */
3079			addr += NBPDR;
3080		}
3081		PMAP_UNLOCK(pmap);
3082	}
3083}
3084
3085/*
3086 *	Routine:	pmap_change_wiring
3087 *	Function:	Change the wiring attribute for a map/virtual-address
3088 *			pair.
3089 *	In/out conditions:
3090 *			The mapping must already exist in the pmap.
3091 */
3092void
3093pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3094{
3095	pt_entry_t *pte;
3096
3097	vm_page_lock_queues();
3098	PMAP_LOCK(pmap);
3099	pte = pmap_pte(pmap, va);
3100
3101	if (wired && !pmap_pte_w(pte)) {
3102		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3103		pmap->pm_stats.wired_count++;
3104	} else if (!wired && pmap_pte_w(pte)) {
3105		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3106		pmap->pm_stats.wired_count--;
3107	}
3108
3109	/*
3110	 * Wiring is not a hardware characteristic so there is no need to
3111	 * invalidate TLB.
3112	 */
3113	pmap_pte_release(pte);
3114	PMAP_UNLOCK(pmap);
3115	vm_page_unlock_queues();
3116}
3117
3118
3119
3120/*
3121 *	Copy the range specified by src_addr/len
3122 *	from the source map to the range dst_addr/len
3123 *	in the destination map.
3124 *
3125 *	This routine is only advisory and need not do anything.
3126 */
3127
3128void
3129pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3130	  vm_offset_t src_addr)
3131{
3132	vm_page_t   free;
3133	vm_offset_t addr;
3134	vm_offset_t end_addr = src_addr + len;
3135	vm_offset_t pdnxt;
3136
3137	if (dst_addr != src_addr)
3138		return;
3139
3140	if (!pmap_is_current(src_pmap)) {
3141		CTR2(KTR_PMAP,
3142		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3143		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3144
3145		return;
3146	}
3147	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3148	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3149
3150	vm_page_lock_queues();
3151	if (dst_pmap < src_pmap) {
3152		PMAP_LOCK(dst_pmap);
3153		PMAP_LOCK(src_pmap);
3154	} else {
3155		PMAP_LOCK(src_pmap);
3156		PMAP_LOCK(dst_pmap);
3157	}
3158	sched_pin();
3159	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3160		pt_entry_t *src_pte, *dst_pte;
3161		vm_page_t dstmpte, srcmpte;
3162		pd_entry_t srcptepaddr;
3163		unsigned ptepindex;
3164
3165		KASSERT(addr < UPT_MIN_ADDRESS,
3166		    ("pmap_copy: invalid to pmap_copy page tables"));
3167
3168		pdnxt = (addr + NBPDR) & ~PDRMASK;
3169		ptepindex = addr >> PDRSHIFT;
3170
3171		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3172		if (srcptepaddr == 0)
3173			continue;
3174
3175		if (srcptepaddr & PG_PS) {
3176			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3177				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3178				dst_pmap->pm_stats.resident_count +=
3179				    NBPDR / PAGE_SIZE;
3180			}
3181			continue;
3182		}
3183
3184		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3185		KASSERT(srcmpte->wire_count > 0,
3186		    ("pmap_copy: source page table page is unused"));
3187
3188		if (pdnxt > end_addr)
3189			pdnxt = end_addr;
3190
3191		src_pte = vtopte(addr);
3192		while (addr < pdnxt) {
3193			pt_entry_t ptetemp;
3194			ptetemp = *src_pte;
3195			/*
3196			 * we only virtual copy managed pages
3197			 */
3198			if ((ptetemp & PG_MANAGED) != 0) {
3199				dstmpte = pmap_allocpte(dst_pmap, addr,
3200				    M_NOWAIT);
3201				if (dstmpte == NULL)
3202					break;
3203				dst_pte = pmap_pte_quick(dst_pmap, addr);
3204				if (*dst_pte == 0 &&
3205				    pmap_try_insert_pv_entry(dst_pmap, addr,
3206				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3207					/*
3208					 * Clear the wired, modified, and
3209					 * accessed (referenced) bits
3210					 * during the copy.
3211					 */
3212					KASSERT(ptetemp != 0, ("src_pte not set"));
3213					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3214					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3215					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3216						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3217					dst_pmap->pm_stats.resident_count++;
3218	 			} else {
3219					free = NULL;
3220					if (pmap_unwire_pte_hold(dst_pmap,
3221					    dstmpte, &free)) {
3222						pmap_invalidate_page(dst_pmap,
3223						    addr);
3224						pmap_free_zero_pages(free);
3225					}
3226				}
3227				if (dstmpte->wire_count >= srcmpte->wire_count)
3228					break;
3229			}
3230			addr += PAGE_SIZE;
3231			src_pte++;
3232		}
3233	}
3234	PT_UPDATES_FLUSH();
3235	sched_unpin();
3236	vm_page_unlock_queues();
3237	PMAP_UNLOCK(src_pmap);
3238	PMAP_UNLOCK(dst_pmap);
3239}
3240
3241static __inline void
3242pagezero(void *page)
3243{
3244#if defined(I686_CPU)
3245	if (cpu_class == CPUCLASS_686) {
3246#if defined(CPU_ENABLE_SSE)
3247		if (cpu_feature & CPUID_SSE2)
3248			sse2_pagezero(page);
3249		else
3250#endif
3251			i686_pagezero(page);
3252	} else
3253#endif
3254		bzero(page, PAGE_SIZE);
3255}
3256
3257/*
3258 *	pmap_zero_page zeros the specified hardware page by mapping
3259 *	the page into KVM and using bzero to clear its contents.
3260 */
3261void
3262pmap_zero_page(vm_page_t m)
3263{
3264	struct sysmaps *sysmaps;
3265
3266	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3267	mtx_lock(&sysmaps->lock);
3268	if (*sysmaps->CMAP2)
3269		panic("pmap_zero_page: CMAP2 busy");
3270	sched_pin();
3271	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3272	pagezero(sysmaps->CADDR2);
3273	PT_SET_MA(sysmaps->CADDR2, 0);
3274	sched_unpin();
3275	mtx_unlock(&sysmaps->lock);
3276}
3277
3278/*
3279 *	pmap_zero_page_area zeros the specified hardware page by mapping
3280 *	the page into KVM and using bzero to clear its contents.
3281 *
3282 *	off and size may not cover an area beyond a single hardware page.
3283 */
3284void
3285pmap_zero_page_area(vm_page_t m, int off, int size)
3286{
3287	struct sysmaps *sysmaps;
3288
3289	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3290	mtx_lock(&sysmaps->lock);
3291	if (*sysmaps->CMAP2)
3292		panic("pmap_zero_page: CMAP2 busy");
3293	sched_pin();
3294	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3295
3296	if (off == 0 && size == PAGE_SIZE)
3297		pagezero(sysmaps->CADDR2);
3298	else
3299		bzero((char *)sysmaps->CADDR2 + off, size);
3300	PT_SET_MA(sysmaps->CADDR2, 0);
3301	sched_unpin();
3302	mtx_unlock(&sysmaps->lock);
3303}
3304
3305/*
3306 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3307 *	the page into KVM and using bzero to clear its contents.  This
3308 *	is intended to be called from the vm_pagezero process only and
3309 *	outside of Giant.
3310 */
3311void
3312pmap_zero_page_idle(vm_page_t m)
3313{
3314
3315	if (*CMAP3)
3316		panic("pmap_zero_page: CMAP3 busy");
3317	sched_pin();
3318	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3319	pagezero(CADDR3);
3320	PT_SET_MA(CADDR3, 0);
3321	sched_unpin();
3322}
3323
3324/*
3325 *	pmap_copy_page copies the specified (machine independent)
3326 *	page by mapping the page into virtual memory and using
3327 *	bcopy to copy the page, one machine dependent page at a
3328 *	time.
3329 */
3330void
3331pmap_copy_page(vm_page_t src, vm_page_t dst)
3332{
3333	struct sysmaps *sysmaps;
3334
3335	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3336	mtx_lock(&sysmaps->lock);
3337	if (*sysmaps->CMAP1)
3338		panic("pmap_copy_page: CMAP1 busy");
3339	if (*sysmaps->CMAP2)
3340		panic("pmap_copy_page: CMAP2 busy");
3341	sched_pin();
3342	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3343	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3344	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3345	PT_SET_MA(sysmaps->CADDR1, 0);
3346	PT_SET_MA(sysmaps->CADDR2, 0);
3347	sched_unpin();
3348	mtx_unlock(&sysmaps->lock);
3349}
3350
3351/*
3352 * Returns true if the pmap's pv is one of the first
3353 * 16 pvs linked to from this page.  This count may
3354 * be changed upwards or downwards in the future; it
3355 * is only necessary that true be returned for a small
3356 * subset of pmaps for proper page aging.
3357 */
3358boolean_t
3359pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3360{
3361	pv_entry_t pv;
3362	int loops = 0;
3363	boolean_t rv;
3364
3365	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3366	    ("pmap_page_exists_quick: page %p is not managed", m));
3367	rv = FALSE;
3368	vm_page_lock_queues();
3369	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3370		if (PV_PMAP(pv) == pmap) {
3371			rv = TRUE;
3372			break;
3373		}
3374		loops++;
3375		if (loops >= 16)
3376			break;
3377	}
3378	vm_page_unlock_queues();
3379	return (rv);
3380}
3381
3382/*
3383 *	pmap_page_wired_mappings:
3384 *
3385 *	Return the number of managed mappings to the given physical page
3386 *	that are wired.
3387 */
3388int
3389pmap_page_wired_mappings(vm_page_t m)
3390{
3391	pv_entry_t pv;
3392	pt_entry_t *pte;
3393	pmap_t pmap;
3394	int count;
3395
3396	count = 0;
3397	if ((m->flags & PG_FICTITIOUS) != 0)
3398		return (count);
3399	vm_page_lock_queues();
3400	sched_pin();
3401	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3402		pmap = PV_PMAP(pv);
3403		PMAP_LOCK(pmap);
3404		pte = pmap_pte_quick(pmap, pv->pv_va);
3405		if ((*pte & PG_W) != 0)
3406			count++;
3407		PMAP_UNLOCK(pmap);
3408	}
3409	sched_unpin();
3410	vm_page_unlock_queues();
3411	return (count);
3412}
3413
3414/*
3415 * Returns TRUE if the given page is mapped individually or as part of
3416 * a 4mpage.  Otherwise, returns FALSE.
3417 */
3418boolean_t
3419pmap_page_is_mapped(vm_page_t m)
3420{
3421	boolean_t rv;
3422
3423	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3424		return (FALSE);
3425	vm_page_lock_queues();
3426	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3427	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
3428	vm_page_unlock_queues();
3429	return (rv);
3430}
3431
3432/*
3433 * Remove all pages from specified address space
3434 * this aids process exit speeds.  Also, this code
3435 * is special cased for current process only, but
3436 * can have the more generic (and slightly slower)
3437 * mode enabled.  This is much faster than pmap_remove
3438 * in the case of running down an entire address space.
3439 */
3440void
3441pmap_remove_pages(pmap_t pmap)
3442{
3443	pt_entry_t *pte, tpte;
3444	vm_page_t m, free = NULL;
3445	pv_entry_t pv;
3446	struct pv_chunk *pc, *npc;
3447	int field, idx;
3448	int32_t bit;
3449	uint32_t inuse, bitmask;
3450	int allfree;
3451
3452	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3453
3454	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3455		printf("warning: pmap_remove_pages called with non-current pmap\n");
3456		return;
3457	}
3458	vm_page_lock_queues();
3459	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3460	PMAP_LOCK(pmap);
3461	sched_pin();
3462	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3463		allfree = 1;
3464		for (field = 0; field < _NPCM; field++) {
3465			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3466			while (inuse != 0) {
3467				bit = bsfl(inuse);
3468				bitmask = 1UL << bit;
3469				idx = field * 32 + bit;
3470				pv = &pc->pc_pventry[idx];
3471				inuse &= ~bitmask;
3472
3473				pte = vtopte(pv->pv_va);
3474				tpte = *pte ? xpmap_mtop(*pte) : 0;
3475
3476				if (tpte == 0) {
3477					printf(
3478					    "TPTE at %p  IS ZERO @ VA %08x\n",
3479					    pte, pv->pv_va);
3480					panic("bad pte");
3481				}
3482
3483/*
3484 * We cannot remove wired pages from a process' mapping at this time
3485 */
3486				if (tpte & PG_W) {
3487					allfree = 0;
3488					continue;
3489				}
3490
3491				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3492				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3493				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3494				    m, (uintmax_t)m->phys_addr,
3495				    (uintmax_t)tpte));
3496
3497				KASSERT(m < &vm_page_array[vm_page_array_size],
3498					("pmap_remove_pages: bad tpte %#jx",
3499					(uintmax_t)tpte));
3500
3501
3502				PT_CLEAR_VA(pte, FALSE);
3503
3504				/*
3505				 * Update the vm_page_t clean/reference bits.
3506				 */
3507				if (tpte & PG_M)
3508					vm_page_dirty(m);
3509
3510				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3511				if (TAILQ_EMPTY(&m->md.pv_list))
3512					vm_page_flag_clear(m, PG_WRITEABLE);
3513
3514				pmap_unuse_pt(pmap, pv->pv_va, &free);
3515
3516				/* Mark free */
3517				PV_STAT(pv_entry_frees++);
3518				PV_STAT(pv_entry_spare++);
3519				pv_entry_count--;
3520				pc->pc_map[field] |= bitmask;
3521				pmap->pm_stats.resident_count--;
3522			}
3523		}
3524		PT_UPDATES_FLUSH();
3525		if (allfree) {
3526			PV_STAT(pv_entry_spare -= _NPCPV);
3527			PV_STAT(pc_chunk_count--);
3528			PV_STAT(pc_chunk_frees++);
3529			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3530			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3531			pmap_qremove((vm_offset_t)pc, 1);
3532			vm_page_unwire(m, 0);
3533			vm_page_free(m);
3534			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3535		}
3536	}
3537	PT_UPDATES_FLUSH();
3538	if (*PMAP1)
3539		PT_SET_MA(PADDR1, 0);
3540
3541	sched_unpin();
3542	pmap_invalidate_all(pmap);
3543	vm_page_unlock_queues();
3544	PMAP_UNLOCK(pmap);
3545	pmap_free_zero_pages(free);
3546}
3547
3548/*
3549 *	pmap_is_modified:
3550 *
3551 *	Return whether or not the specified physical page was modified
3552 *	in any physical maps.
3553 */
3554boolean_t
3555pmap_is_modified(vm_page_t m)
3556{
3557	pv_entry_t pv;
3558	pt_entry_t *pte;
3559	pmap_t pmap;
3560	boolean_t rv;
3561
3562	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3563	    ("pmap_is_modified: page %p is not managed", m));
3564	rv = FALSE;
3565
3566	/*
3567	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
3568	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
3569	 * is clear, no PTEs can have PG_M set.
3570	 */
3571	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3572	if ((m->oflags & VPO_BUSY) == 0 &&
3573	    (m->flags & PG_WRITEABLE) == 0)
3574		return (rv);
3575	vm_page_lock_queues();
3576	sched_pin();
3577	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3578		pmap = PV_PMAP(pv);
3579		PMAP_LOCK(pmap);
3580		pte = pmap_pte_quick(pmap, pv->pv_va);
3581		rv = (*pte & PG_M) != 0;
3582		PMAP_UNLOCK(pmap);
3583		if (rv)
3584			break;
3585	}
3586	if (*PMAP1)
3587		PT_SET_MA(PADDR1, 0);
3588	sched_unpin();
3589	vm_page_unlock_queues();
3590	return (rv);
3591}
3592
3593/*
3594 *	pmap_is_prefaultable:
3595 *
3596 *	Return whether or not the specified virtual address is elgible
3597 *	for prefault.
3598 */
3599static boolean_t
3600pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3601{
3602	pt_entry_t *pte;
3603	boolean_t rv = FALSE;
3604
3605	return (rv);
3606
3607	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3608		pte = vtopte(addr);
3609		rv = (*pte == 0);
3610	}
3611	return (rv);
3612}
3613
3614boolean_t
3615pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3616{
3617	boolean_t rv;
3618
3619	PMAP_LOCK(pmap);
3620	rv = pmap_is_prefaultable_locked(pmap, addr);
3621	PMAP_UNLOCK(pmap);
3622	return (rv);
3623}
3624
3625boolean_t
3626pmap_is_referenced(vm_page_t m)
3627{
3628	pv_entry_t pv;
3629	pt_entry_t *pte;
3630	pmap_t pmap;
3631	boolean_t rv;
3632
3633	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3634	    ("pmap_is_referenced: page %p is not managed", m));
3635	rv = FALSE;
3636	vm_page_lock_queues();
3637	sched_pin();
3638	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3639		pmap = PV_PMAP(pv);
3640		PMAP_LOCK(pmap);
3641		pte = pmap_pte_quick(pmap, pv->pv_va);
3642		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3643		PMAP_UNLOCK(pmap);
3644		if (rv)
3645			break;
3646	}
3647	if (*PMAP1)
3648		PT_SET_MA(PADDR1, 0);
3649	sched_unpin();
3650	vm_page_unlock_queues();
3651	return (rv);
3652}
3653
3654void
3655pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3656{
3657	int i, npages = round_page(len) >> PAGE_SHIFT;
3658	for (i = 0; i < npages; i++) {
3659		pt_entry_t *pte;
3660		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3661		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3662		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3663		pmap_pte_release(pte);
3664	}
3665}
3666
3667void
3668pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3669{
3670	int i, npages = round_page(len) >> PAGE_SHIFT;
3671	for (i = 0; i < npages; i++) {
3672		pt_entry_t *pte;
3673		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3674		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3675		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3676		pmap_pte_release(pte);
3677	}
3678}
3679
3680/*
3681 * Clear the write and modified bits in each of the given page's mappings.
3682 */
3683void
3684pmap_remove_write(vm_page_t m)
3685{
3686	pv_entry_t pv;
3687	pmap_t pmap;
3688	pt_entry_t oldpte, *pte;
3689
3690	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3691	    ("pmap_remove_write: page %p is not managed", m));
3692
3693	/*
3694	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
3695	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
3696	 * is clear, no page table entries need updating.
3697	 */
3698	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3699	if ((m->oflags & VPO_BUSY) == 0 &&
3700	    (m->flags & PG_WRITEABLE) == 0)
3701		return;
3702	vm_page_lock_queues();
3703	sched_pin();
3704	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3705		pmap = PV_PMAP(pv);
3706		PMAP_LOCK(pmap);
3707		pte = pmap_pte_quick(pmap, pv->pv_va);
3708retry:
3709		oldpte = *pte;
3710		if ((oldpte & PG_RW) != 0) {
3711			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3712
3713			/*
3714			 * Regardless of whether a pte is 32 or 64 bits
3715			 * in size, PG_RW and PG_M are among the least
3716			 * significant 32 bits.
3717			 */
3718			PT_SET_VA_MA(pte, newpte, TRUE);
3719			if (*pte != newpte)
3720				goto retry;
3721
3722			if ((oldpte & PG_M) != 0)
3723				vm_page_dirty(m);
3724			pmap_invalidate_page(pmap, pv->pv_va);
3725		}
3726		PMAP_UNLOCK(pmap);
3727	}
3728	vm_page_flag_clear(m, PG_WRITEABLE);
3729	PT_UPDATES_FLUSH();
3730	if (*PMAP1)
3731		PT_SET_MA(PADDR1, 0);
3732	sched_unpin();
3733	vm_page_unlock_queues();
3734}
3735
3736/*
3737 *	pmap_ts_referenced:
3738 *
3739 *	Return a count of reference bits for a page, clearing those bits.
3740 *	It is not necessary for every reference bit to be cleared, but it
3741 *	is necessary that 0 only be returned when there are truly no
3742 *	reference bits set.
3743 *
3744 *	XXX: The exact number of bits to check and clear is a matter that
3745 *	should be tested and standardized at some point in the future for
3746 *	optimal aging of shared pages.
3747 */
3748int
3749pmap_ts_referenced(vm_page_t m)
3750{
3751	pv_entry_t pv, pvf, pvn;
3752	pmap_t pmap;
3753	pt_entry_t *pte;
3754	int rtval = 0;
3755
3756	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3757	    ("pmap_ts_referenced: page %p is not managed", m));
3758	vm_page_lock_queues();
3759	sched_pin();
3760	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3761		pvf = pv;
3762		do {
3763			pvn = TAILQ_NEXT(pv, pv_list);
3764			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3765			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3766			pmap = PV_PMAP(pv);
3767			PMAP_LOCK(pmap);
3768			pte = pmap_pte_quick(pmap, pv->pv_va);
3769			if ((*pte & PG_A) != 0) {
3770				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3771				pmap_invalidate_page(pmap, pv->pv_va);
3772				rtval++;
3773				if (rtval > 4)
3774					pvn = NULL;
3775			}
3776			PMAP_UNLOCK(pmap);
3777		} while ((pv = pvn) != NULL && pv != pvf);
3778	}
3779	PT_UPDATES_FLUSH();
3780	if (*PMAP1)
3781		PT_SET_MA(PADDR1, 0);
3782
3783	sched_unpin();
3784	vm_page_unlock_queues();
3785	return (rtval);
3786}
3787
3788/*
3789 *	Clear the modify bits on the specified physical page.
3790 */
3791void
3792pmap_clear_modify(vm_page_t m)
3793{
3794	pv_entry_t pv;
3795	pmap_t pmap;
3796	pt_entry_t *pte;
3797
3798	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3799	    ("pmap_clear_modify: page %p is not managed", m));
3800	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3801	KASSERT((m->oflags & VPO_BUSY) == 0,
3802	    ("pmap_clear_modify: page %p is busy", m));
3803
3804	/*
3805	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
3806	 * If the object containing the page is locked and the page is not
3807	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
3808	 */
3809	if ((m->flags & PG_WRITEABLE) == 0)
3810		return;
3811	vm_page_lock_queues();
3812	sched_pin();
3813	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3814		pmap = PV_PMAP(pv);
3815		PMAP_LOCK(pmap);
3816		pte = pmap_pte_quick(pmap, pv->pv_va);
3817		if ((*pte & PG_M) != 0) {
3818			/*
3819			 * Regardless of whether a pte is 32 or 64 bits
3820			 * in size, PG_M is among the least significant
3821			 * 32 bits.
3822			 */
3823			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3824			pmap_invalidate_page(pmap, pv->pv_va);
3825		}
3826		PMAP_UNLOCK(pmap);
3827	}
3828	sched_unpin();
3829	vm_page_unlock_queues();
3830}
3831
3832/*
3833 *	pmap_clear_reference:
3834 *
3835 *	Clear the reference bit on the specified physical page.
3836 */
3837void
3838pmap_clear_reference(vm_page_t m)
3839{
3840	pv_entry_t pv;
3841	pmap_t pmap;
3842	pt_entry_t *pte;
3843
3844	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3845	    ("pmap_clear_reference: page %p is not managed", m));
3846	vm_page_lock_queues();
3847	sched_pin();
3848	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3849		pmap = PV_PMAP(pv);
3850		PMAP_LOCK(pmap);
3851		pte = pmap_pte_quick(pmap, pv->pv_va);
3852		if ((*pte & PG_A) != 0) {
3853			/*
3854			 * Regardless of whether a pte is 32 or 64 bits
3855			 * in size, PG_A is among the least significant
3856			 * 32 bits.
3857			 */
3858			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3859			pmap_invalidate_page(pmap, pv->pv_va);
3860		}
3861		PMAP_UNLOCK(pmap);
3862	}
3863	sched_unpin();
3864	vm_page_unlock_queues();
3865}
3866
3867/*
3868 * Miscellaneous support routines follow
3869 */
3870
3871/*
3872 * Map a set of physical memory pages into the kernel virtual
3873 * address space. Return a pointer to where it is mapped. This
3874 * routine is intended to be used for mapping device memory,
3875 * NOT real memory.
3876 */
3877void *
3878pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3879{
3880	vm_offset_t va, offset;
3881	vm_size_t tmpsize;
3882
3883	offset = pa & PAGE_MASK;
3884	size = roundup(offset + size, PAGE_SIZE);
3885	pa = pa & PG_FRAME;
3886
3887	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3888		va = KERNBASE + pa;
3889	else
3890		va = kmem_alloc_nofault(kernel_map, size);
3891	if (!va)
3892		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3893
3894	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3895		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3896	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3897	pmap_invalidate_cache_range(va, va + size);
3898	return ((void *)(va + offset));
3899}
3900
3901void *
3902pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3903{
3904
3905	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3906}
3907
3908void *
3909pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3910{
3911
3912	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3913}
3914
3915void
3916pmap_unmapdev(vm_offset_t va, vm_size_t size)
3917{
3918	vm_offset_t base, offset, tmpva;
3919
3920	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3921		return;
3922	base = trunc_page(va);
3923	offset = va & PAGE_MASK;
3924	size = roundup(offset + size, PAGE_SIZE);
3925	critical_enter();
3926	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3927		pmap_kremove(tmpva);
3928	pmap_invalidate_range(kernel_pmap, va, tmpva);
3929	critical_exit();
3930	kmem_free(kernel_map, base, size);
3931}
3932
3933/*
3934 * Sets the memory attribute for the specified page.
3935 */
3936void
3937pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3938{
3939	struct sysmaps *sysmaps;
3940	vm_offset_t sva, eva;
3941
3942	m->md.pat_mode = ma;
3943	if ((m->flags & PG_FICTITIOUS) != 0)
3944		return;
3945
3946	/*
3947	 * If "m" is a normal page, flush it from the cache.
3948	 * See pmap_invalidate_cache_range().
3949	 *
3950	 * First, try to find an existing mapping of the page by sf
3951	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3952	 * flushes the cache.
3953	 */
3954	if (sf_buf_invalidate_cache(m))
3955		return;
3956
3957	/*
3958	 * If page is not mapped by sf buffer, but CPU does not
3959	 * support self snoop, map the page transient and do
3960	 * invalidation. In the worst case, whole cache is flushed by
3961	 * pmap_invalidate_cache_range().
3962	 */
3963	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
3964		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3965		mtx_lock(&sysmaps->lock);
3966		if (*sysmaps->CMAP2)
3967			panic("pmap_page_set_memattr: CMAP2 busy");
3968		sched_pin();
3969		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3970		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
3971		    pmap_cache_bits(m->md.pat_mode, 0));
3972		invlcaddr(sysmaps->CADDR2);
3973		sva = (vm_offset_t)sysmaps->CADDR2;
3974		eva = sva + PAGE_SIZE;
3975	} else
3976		sva = eva = 0; /* gcc */
3977	pmap_invalidate_cache_range(sva, eva);
3978	if (sva != 0) {
3979		PT_SET_MA(sysmaps->CADDR2, 0);
3980		sched_unpin();
3981		mtx_unlock(&sysmaps->lock);
3982	}
3983}
3984
3985int
3986pmap_change_attr(va, size, mode)
3987	vm_offset_t va;
3988	vm_size_t size;
3989	int mode;
3990{
3991	vm_offset_t base, offset, tmpva;
3992	pt_entry_t *pte;
3993	u_int opte, npte;
3994	pd_entry_t *pde;
3995	boolean_t changed;
3996
3997	base = trunc_page(va);
3998	offset = va & PAGE_MASK;
3999	size = roundup(offset + size, PAGE_SIZE);
4000
4001	/* Only supported on kernel virtual addresses. */
4002	if (base <= VM_MAXUSER_ADDRESS)
4003		return (EINVAL);
4004
4005	/* 4MB pages and pages that aren't mapped aren't supported. */
4006	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4007		pde = pmap_pde(kernel_pmap, tmpva);
4008		if (*pde & PG_PS)
4009			return (EINVAL);
4010		if ((*pde & PG_V) == 0)
4011			return (EINVAL);
4012		pte = vtopte(va);
4013		if ((*pte & PG_V) == 0)
4014			return (EINVAL);
4015	}
4016
4017	changed = FALSE;
4018
4019	/*
4020	 * Ok, all the pages exist and are 4k, so run through them updating
4021	 * their cache mode.
4022	 */
4023	for (tmpva = base; size > 0; ) {
4024		pte = vtopte(tmpva);
4025
4026		/*
4027		 * The cache mode bits are all in the low 32-bits of the
4028		 * PTE, so we can just spin on updating the low 32-bits.
4029		 */
4030		do {
4031			opte = *(u_int *)pte;
4032			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4033			npte |= pmap_cache_bits(mode, 0);
4034			PT_SET_VA_MA(pte, npte, TRUE);
4035		} while (npte != opte && (*pte != npte));
4036		if (npte != opte)
4037			changed = TRUE;
4038		tmpva += PAGE_SIZE;
4039		size -= PAGE_SIZE;
4040	}
4041
4042	/*
4043	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4044	 * be, etc.
4045	 */
4046	if (changed) {
4047		pmap_invalidate_range(kernel_pmap, base, tmpva);
4048		pmap_invalidate_cache_range(base, tmpva);
4049	}
4050	return (0);
4051}
4052
4053/*
4054 * perform the pmap work for mincore
4055 */
4056int
4057pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4058{
4059	pt_entry_t *ptep, pte;
4060	vm_paddr_t pa;
4061	int val;
4062
4063	PMAP_LOCK(pmap);
4064retry:
4065	ptep = pmap_pte(pmap, addr);
4066	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4067	pmap_pte_release(ptep);
4068	val = 0;
4069	if ((pte & PG_V) != 0) {
4070		val |= MINCORE_INCORE;
4071		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4072			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4073		if ((pte & PG_A) != 0)
4074			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4075	}
4076	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4077	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4078	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4079		pa = pte & PG_FRAME;
4080		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4081		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4082			goto retry;
4083	} else
4084		PA_UNLOCK_COND(*locked_pa);
4085	PMAP_UNLOCK(pmap);
4086	return (val);
4087}
4088
4089void
4090pmap_activate(struct thread *td)
4091{
4092	pmap_t	pmap, oldpmap;
4093	u_int32_t  cr3;
4094
4095	critical_enter();
4096	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4097	oldpmap = PCPU_GET(curpmap);
4098#if defined(SMP)
4099	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4100	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4101#else
4102	oldpmap->pm_active &= ~1;
4103	pmap->pm_active |= 1;
4104#endif
4105#ifdef PAE
4106	cr3 = vtophys(pmap->pm_pdpt);
4107#else
4108	cr3 = vtophys(pmap->pm_pdir);
4109#endif
4110	/*
4111	 * pmap_activate is for the current thread on the current cpu
4112	 */
4113	td->td_pcb->pcb_cr3 = cr3;
4114	PT_UPDATES_FLUSH();
4115	load_cr3(cr3);
4116	PCPU_SET(curpmap, pmap);
4117	critical_exit();
4118}
4119
4120void
4121pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4122{
4123}
4124
4125/*
4126 *	Increase the starting virtual address of the given mapping if a
4127 *	different alignment might result in more superpage mappings.
4128 */
4129void
4130pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4131    vm_offset_t *addr, vm_size_t size)
4132{
4133	vm_offset_t superpage_offset;
4134
4135	if (size < NBPDR)
4136		return;
4137	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4138		offset += ptoa(object->pg_color);
4139	superpage_offset = offset & PDRMASK;
4140	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4141	    (*addr & PDRMASK) == superpage_offset)
4142		return;
4143	if ((*addr & PDRMASK) < superpage_offset)
4144		*addr = (*addr & ~PDRMASK) + superpage_offset;
4145	else
4146		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4147}
4148
4149void
4150pmap_suspend()
4151{
4152	pmap_t pmap;
4153	int i, pdir, offset;
4154	vm_paddr_t pdirma;
4155	mmu_update_t mu[4];
4156
4157	/*
4158	 * We need to remove the recursive mapping structure from all
4159	 * our pmaps so that Xen doesn't get confused when it restores
4160	 * the page tables. The recursive map lives at page directory
4161	 * index PTDPTDI. We assume that the suspend code has stopped
4162	 * the other vcpus (if any).
4163	 */
4164	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4165		for (i = 0; i < 4; i++) {
4166			/*
4167			 * Figure out which page directory (L2) page
4168			 * contains this bit of the recursive map and
4169			 * the offset within that page of the map
4170			 * entry
4171			 */
4172			pdir = (PTDPTDI + i) / NPDEPG;
4173			offset = (PTDPTDI + i) % NPDEPG;
4174			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4175			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4176			mu[i].val = 0;
4177		}
4178		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4179	}
4180}
4181
4182void
4183pmap_resume()
4184{
4185	pmap_t pmap;
4186	int i, pdir, offset;
4187	vm_paddr_t pdirma;
4188	mmu_update_t mu[4];
4189
4190	/*
4191	 * Restore the recursive map that we removed on suspend.
4192	 */
4193	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4194		for (i = 0; i < 4; i++) {
4195			/*
4196			 * Figure out which page directory (L2) page
4197			 * contains this bit of the recursive map and
4198			 * the offset within that page of the map
4199			 * entry
4200			 */
4201			pdir = (PTDPTDI + i) / NPDEPG;
4202			offset = (PTDPTDI + i) % NPDEPG;
4203			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4204			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4205			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4206		}
4207		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4208	}
4209}
4210
4211#if defined(PMAP_DEBUG)
4212pmap_pid_dump(int pid)
4213{
4214	pmap_t pmap;
4215	struct proc *p;
4216	int npte = 0;
4217	int index;
4218
4219	sx_slock(&allproc_lock);
4220	FOREACH_PROC_IN_SYSTEM(p) {
4221		if (p->p_pid != pid)
4222			continue;
4223
4224		if (p->p_vmspace) {
4225			int i,j;
4226			index = 0;
4227			pmap = vmspace_pmap(p->p_vmspace);
4228			for (i = 0; i < NPDEPTD; i++) {
4229				pd_entry_t *pde;
4230				pt_entry_t *pte;
4231				vm_offset_t base = i << PDRSHIFT;
4232
4233				pde = &pmap->pm_pdir[i];
4234				if (pde && pmap_pde_v(pde)) {
4235					for (j = 0; j < NPTEPG; j++) {
4236						vm_offset_t va = base + (j << PAGE_SHIFT);
4237						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4238							if (index) {
4239								index = 0;
4240								printf("\n");
4241							}
4242							sx_sunlock(&allproc_lock);
4243							return npte;
4244						}
4245						pte = pmap_pte(pmap, va);
4246						if (pte && pmap_pte_v(pte)) {
4247							pt_entry_t pa;
4248							vm_page_t m;
4249							pa = PT_GET(pte);
4250							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4251							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4252								va, pa, m->hold_count, m->wire_count, m->flags);
4253							npte++;
4254							index++;
4255							if (index >= 2) {
4256								index = 0;
4257								printf("\n");
4258							} else {
4259								printf(" ");
4260							}
4261						}
4262					}
4263				}
4264			}
4265		}
4266	}
4267	sx_sunlock(&allproc_lock);
4268	return npte;
4269}
4270#endif
4271
4272#if defined(DEBUG)
4273
4274static void	pads(pmap_t pm);
4275void		pmap_pvdump(vm_paddr_t pa);
4276
4277/* print address space of pmap*/
4278static void
4279pads(pmap_t pm)
4280{
4281	int i, j;
4282	vm_paddr_t va;
4283	pt_entry_t *ptep;
4284
4285	if (pm == kernel_pmap)
4286		return;
4287	for (i = 0; i < NPDEPTD; i++)
4288		if (pm->pm_pdir[i])
4289			for (j = 0; j < NPTEPG; j++) {
4290				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4291				if (pm == kernel_pmap && va < KERNBASE)
4292					continue;
4293				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4294					continue;
4295				ptep = pmap_pte(pm, va);
4296				if (pmap_pte_v(ptep))
4297					printf("%x:%x ", va, *ptep);
4298			};
4299
4300}
4301
4302void
4303pmap_pvdump(vm_paddr_t pa)
4304{
4305	pv_entry_t pv;
4306	pmap_t pmap;
4307	vm_page_t m;
4308
4309	printf("pa %x", pa);
4310	m = PHYS_TO_VM_PAGE(pa);
4311	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4312		pmap = PV_PMAP(pv);
4313		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4314		pads(pmap);
4315	}
4316	printf(" ");
4317}
4318#endif
4319