pmap.c revision 215525
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 215525 2010-11-19 15:12:19Z cperciva $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/uma.h>
141
142#include <machine/cpu.h>
143#include <machine/cputypes.h>
144#include <machine/md_var.h>
145#include <machine/pcb.h>
146#include <machine/specialreg.h>
147#ifdef SMP
148#include <machine/smp.h>
149#endif
150
151#ifdef XBOX
152#include <machine/xbox.h>
153#endif
154
155#include <xen/interface/xen.h>
156#include <xen/hypervisor.h>
157#include <machine/xen/hypercall.h>
158#include <machine/xen/xenvar.h>
159#include <machine/xen/xenfunc.h>
160
161#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
162#define CPU_ENABLE_SSE
163#endif
164
165#ifndef PMAP_SHPGPERPROC
166#define PMAP_SHPGPERPROC 200
167#endif
168
169#define DIAGNOSTIC
170
171#if !defined(DIAGNOSTIC)
172#ifdef __GNUC_GNU_INLINE__
173#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
174#else
175#define PMAP_INLINE	extern inline
176#endif
177#else
178#define PMAP_INLINE
179#endif
180
181#define PV_STATS
182#ifdef PV_STATS
183#define PV_STAT(x)	do { x ; } while (0)
184#else
185#define PV_STAT(x)	do { } while (0)
186#endif
187
188#define	pa_index(pa)	((pa) >> PDRSHIFT)
189#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
190
191/*
192 * Get PDEs and PTEs for user/kernel address space
193 */
194#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
195#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
196
197#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
198#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
199#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
200#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
201#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
202
203#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204
205struct pmap kernel_pmap_store;
206LIST_HEAD(pmaplist, pmap);
207static struct pmaplist allpmaps;
208static struct mtx allpmaps_lock;
209
210vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
211vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
212int pgeflag = 0;		/* PG_G or-in */
213int pseflag = 0;		/* PG_PS or-in */
214
215int nkpt;
216vm_offset_t kernel_vm_end;
217extern u_int32_t KERNend;
218
219#ifdef PAE
220pt_entry_t pg_nx;
221#if !defined(XEN)
222static uma_zone_t pdptzone;
223#endif
224#endif
225
226static int pat_works;			/* Is page attribute table sane? */
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250static pt_entry_t *CMAP3;
251caddr_t ptvmmap = 0;
252static caddr_t CADDR3;
253struct msgbuf *msgbufp = 0;
254
255/*
256 * Crashdump maps.
257 */
258static caddr_t crashdumpmap;
259
260static pt_entry_t *PMAP1 = 0, *PMAP2;
261static pt_entry_t *PADDR1 = 0, *PADDR2;
262#ifdef SMP
263static int PMAP1cpu;
264static int PMAP1changedcpu;
265SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
266	   &PMAP1changedcpu, 0,
267	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
268#endif
269static int PMAP1changed;
270SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
271	   &PMAP1changed, 0,
272	   "Number of times pmap_pte_quick changed PMAP1");
273static int PMAP1unchanged;
274SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
275	   &PMAP1unchanged, 0,
276	   "Number of times pmap_pte_quick didn't change PMAP1");
277static struct mtx PMAP2mutex;
278
279SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
280static int pg_ps_enabled;
281SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
282    "Are large page mappings enabled?");
283
284SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
285	"Max number of PV entries");
286SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
287	"Page share factor per proc");
288SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
289    "2/4MB page mapping counters");
290
291static u_long pmap_pde_mappings;
292SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
293    &pmap_pde_mappings, 0, "2/4MB page mappings");
294
295static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
296static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
297static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
298static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
299		    vm_offset_t va);
300
301static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
302    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
303static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
304    vm_page_t *free);
305static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
306    vm_page_t *free);
307static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
308					vm_offset_t va);
309static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
310    vm_page_t m);
311
312static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
313
314static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
315static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
316static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
317static void pmap_pte_release(pt_entry_t *pte);
318static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
319static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
320static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
321static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
322
323static __inline void pagezero(void *page);
324
325#if defined(PAE) && !defined(XEN)
326static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
327#endif
328#ifndef XEN
329static void pmap_set_pg(void);
330#endif
331
332CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
333CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
334
335/*
336 * If you get an error here, then you set KVA_PAGES wrong! See the
337 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
338 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
339 */
340CTASSERT(KERNBASE % (1 << 24) == 0);
341
342
343
344void
345pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
346{
347	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
348
349	switch (type) {
350	case SH_PD_SET_VA:
351#if 0
352		xen_queue_pt_update(shadow_pdir_ma,
353				    xpmap_ptom(val & ~(PG_RW)));
354#endif
355		xen_queue_pt_update(pdir_ma,
356				    xpmap_ptom(val));
357		break;
358	case SH_PD_SET_VA_MA:
359#if 0
360		xen_queue_pt_update(shadow_pdir_ma,
361				    val & ~(PG_RW));
362#endif
363		xen_queue_pt_update(pdir_ma, val);
364		break;
365	case SH_PD_SET_VA_CLEAR:
366#if 0
367		xen_queue_pt_update(shadow_pdir_ma, 0);
368#endif
369		xen_queue_pt_update(pdir_ma, 0);
370		break;
371	}
372}
373
374/*
375 * Move the kernel virtual free pointer to the next
376 * 4MB.  This is used to help improve performance
377 * by using a large (4MB) page for much of the kernel
378 * (.text, .data, .bss)
379 */
380static vm_offset_t
381pmap_kmem_choose(vm_offset_t addr)
382{
383	vm_offset_t newaddr = addr;
384
385#ifndef DISABLE_PSE
386	if (cpu_feature & CPUID_PSE)
387		newaddr = (addr + PDRMASK) & ~PDRMASK;
388#endif
389	return newaddr;
390}
391
392/*
393 *	Bootstrap the system enough to run with virtual memory.
394 *
395 *	On the i386 this is called after mapping has already been enabled
396 *	and just syncs the pmap module with what has already been done.
397 *	[We can't call it easily with mapping off since the kernel is not
398 *	mapped with PA == VA, hence we would have to relocate every address
399 *	from the linked base (virtual) address "KERNBASE" to the actual
400 *	(physical) address starting relative to 0]
401 */
402void
403pmap_bootstrap(vm_paddr_t firstaddr)
404{
405	vm_offset_t va;
406	pt_entry_t *pte, *unused;
407	struct sysmaps *sysmaps;
408	int i;
409
410	/*
411	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
412	 * large. It should instead be correctly calculated in locore.s and
413	 * not based on 'first' (which is a physical address, not a virtual
414	 * address, for the start of unused physical memory). The kernel
415	 * page tables are NOT double mapped and thus should not be included
416	 * in this calculation.
417	 */
418	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
419	virtual_avail = pmap_kmem_choose(virtual_avail);
420
421	virtual_end = VM_MAX_KERNEL_ADDRESS;
422
423	/*
424	 * Initialize the kernel pmap (which is statically allocated).
425	 */
426	PMAP_LOCK_INIT(kernel_pmap);
427	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
428#ifdef PAE
429	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
430#endif
431	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
432	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
433	LIST_INIT(&allpmaps);
434	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
435	mtx_lock_spin(&allpmaps_lock);
436	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
437	mtx_unlock_spin(&allpmaps_lock);
438	if (nkpt == 0)
439		nkpt = NKPT;
440
441	/*
442	 * Reserve some special page table entries/VA space for temporary
443	 * mapping of pages.
444	 */
445#define	SYSMAP(c, p, v, n)	\
446	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
447
448	va = virtual_avail;
449	pte = vtopte(va);
450
451	/*
452	 * CMAP1/CMAP2 are used for zeroing and copying pages.
453	 * CMAP3 is used for the idle process page zeroing.
454	 */
455	for (i = 0; i < MAXCPU; i++) {
456		sysmaps = &sysmaps_pcpu[i];
457		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
458		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
459		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
460		PT_SET_MA(sysmaps->CADDR1, 0);
461		PT_SET_MA(sysmaps->CADDR2, 0);
462	}
463	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
464	PT_SET_MA(CADDR3, 0);
465
466	/*
467	 * Crashdump maps.
468	 */
469	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
470
471	/*
472	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
473	 */
474	SYSMAP(caddr_t, unused, ptvmmap, 1)
475
476	/*
477	 * msgbufp is used to map the system message buffer.
478	 */
479	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
480
481	/*
482	 * ptemap is used for pmap_pte_quick
483	 */
484	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
485	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
486
487	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
488
489	virtual_avail = va;
490
491	/*
492	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
493	 * physical memory region that is used by the ACPI wakeup code.  This
494	 * mapping must not have PG_G set.
495	 */
496#ifndef XEN
497	/*
498	 * leave here deliberately to show that this is not supported
499	 */
500#ifdef XBOX
501	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
502	 * an early stadium, we cannot yet neatly map video memory ... :-(
503	 * Better fixes are very welcome! */
504	if (!arch_i386_is_xbox)
505#endif
506	for (i = 1; i < NKPT; i++)
507		PTD[i] = 0;
508
509	/* Initialize the PAT MSR if present. */
510	pmap_init_pat();
511
512	/* Turn on PG_G on kernel page(s) */
513	pmap_set_pg();
514#endif
515}
516
517/*
518 * Setup the PAT MSR.
519 */
520void
521pmap_init_pat(void)
522{
523	uint64_t pat_msr;
524
525	/* Bail if this CPU doesn't implement PAT. */
526	if (!(cpu_feature & CPUID_PAT))
527		return;
528
529	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
530	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
531		/*
532		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
533		 * Program 4 and 5 as WP and WC.
534		 * Leave 6 and 7 as UC and UC-.
535		 */
536		pat_msr = rdmsr(MSR_PAT);
537		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
538		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
539		    PAT_VALUE(5, PAT_WRITE_COMBINING);
540		pat_works = 1;
541	} else {
542		/*
543		 * Due to some Intel errata, we can only safely use the lower 4
544		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
545		 * of UC-.
546		 *
547		 *   Intel Pentium III Processor Specification Update
548		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
549		 * or Mode C Paging)
550		 *
551		 *   Intel Pentium IV  Processor Specification Update
552		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
553		 */
554		pat_msr = rdmsr(MSR_PAT);
555		pat_msr &= ~PAT_MASK(2);
556		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
557		pat_works = 0;
558	}
559	wrmsr(MSR_PAT, pat_msr);
560}
561
562#ifndef XEN
563/*
564 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
565 */
566static void
567pmap_set_pg(void)
568{
569	pd_entry_t pdir;
570	pt_entry_t *pte;
571	vm_offset_t va, endva;
572	int i;
573
574	if (pgeflag == 0)
575		return;
576
577	i = KERNLOAD/NBPDR;
578	endva = KERNBASE + KERNend;
579
580	if (pseflag) {
581		va = KERNBASE + KERNLOAD;
582		while (va  < endva) {
583			pdir = kernel_pmap->pm_pdir[KPTDI+i];
584			pdir |= pgeflag;
585			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
586			invltlb();	/* Play it safe, invltlb() every time */
587			i++;
588			va += NBPDR;
589		}
590	} else {
591		va = (vm_offset_t)btext;
592		while (va < endva) {
593			pte = vtopte(va);
594			if (*pte & PG_V)
595				*pte |= pgeflag;
596			invltlb();	/* Play it safe, invltlb() every time */
597			va += PAGE_SIZE;
598		}
599	}
600}
601#endif
602
603/*
604 * Initialize a vm_page's machine-dependent fields.
605 */
606void
607pmap_page_init(vm_page_t m)
608{
609
610	TAILQ_INIT(&m->md.pv_list);
611	m->md.pat_mode = PAT_WRITE_BACK;
612}
613
614#if defined(PAE) && !defined(XEN)
615static void *
616pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
617{
618
619	/* Inform UMA that this allocator uses kernel_map/object. */
620	*flags = UMA_SLAB_KERNEL;
621	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
622	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
623}
624#endif
625
626/*
627 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
628 * Requirements:
629 *  - Must deal with pages in order to ensure that none of the PG_* bits
630 *    are ever set, PG_V in particular.
631 *  - Assumes we can write to ptes without pte_store() atomic ops, even
632 *    on PAE systems.  This should be ok.
633 *  - Assumes nothing will ever test these addresses for 0 to indicate
634 *    no mapping instead of correctly checking PG_V.
635 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
636 * Because PG_V is never set, there can be no mappings to invalidate.
637 */
638static int ptelist_count = 0;
639static vm_offset_t
640pmap_ptelist_alloc(vm_offset_t *head)
641{
642	vm_offset_t va;
643	vm_offset_t *phead = (vm_offset_t *)*head;
644
645	if (ptelist_count == 0) {
646		printf("out of memory!!!!!!\n");
647		return (0);	/* Out of memory */
648	}
649	ptelist_count--;
650	va = phead[ptelist_count];
651	return (va);
652}
653
654static void
655pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
656{
657	vm_offset_t *phead = (vm_offset_t *)*head;
658
659	phead[ptelist_count++] = va;
660}
661
662static void
663pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
664{
665	int i, nstackpages;
666	vm_offset_t va;
667	vm_page_t m;
668
669	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
670	for (i = 0; i < nstackpages; i++) {
671		va = (vm_offset_t)base + i * PAGE_SIZE;
672		m = vm_page_alloc(NULL, i,
673		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
674		    VM_ALLOC_ZERO);
675		pmap_qenter(va, &m, 1);
676	}
677
678	*head = (vm_offset_t)base;
679	for (i = npages - 1; i >= nstackpages; i--) {
680		va = (vm_offset_t)base + i * PAGE_SIZE;
681		pmap_ptelist_free(head, va);
682	}
683}
684
685
686/*
687 *	Initialize the pmap module.
688 *	Called by vm_init, to initialize any structures that the pmap
689 *	system needs to map virtual memory.
690 */
691void
692pmap_init(void)
693{
694	vm_page_t mpte;
695	vm_size_t s;
696	int i, pv_npg;
697
698	/*
699	 * Initialize the vm page array entries for the kernel pmap's
700	 * page table pages.
701	 */
702	for (i = 0; i < nkpt; i++) {
703		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
704		KASSERT(mpte >= vm_page_array &&
705		    mpte < &vm_page_array[vm_page_array_size],
706		    ("pmap_init: page table page is out of range"));
707		mpte->pindex = i + KPTDI;
708		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
709	}
710
711        /*
712	 * Initialize the address space (zone) for the pv entries.  Set a
713	 * high water mark so that the system can recover from excessive
714	 * numbers of pv entries.
715	 */
716	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
717	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
718	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
719	pv_entry_max = roundup(pv_entry_max, _NPCPV);
720	pv_entry_high_water = 9 * (pv_entry_max / 10);
721
722	/*
723	 * Are large page mappings enabled?
724	 */
725	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
726
727	/*
728	 * Calculate the size of the pv head table for superpages.
729	 */
730	for (i = 0; phys_avail[i + 1]; i += 2);
731	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
732
733	/*
734	 * Allocate memory for the pv head table for superpages.
735	 */
736	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
737	s = round_page(s);
738	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
739	for (i = 0; i < pv_npg; i++)
740		TAILQ_INIT(&pv_table[i].pv_list);
741
742	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
743	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
744	    PAGE_SIZE * pv_maxchunks);
745	if (pv_chunkbase == NULL)
746		panic("pmap_init: not enough kvm for pv chunks");
747	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
748#if defined(PAE) && !defined(XEN)
749	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
750	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
751	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
752	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
753#endif
754}
755
756
757/***************************************************
758 * Low level helper routines.....
759 ***************************************************/
760
761/*
762 * Determine the appropriate bits to set in a PTE or PDE for a specified
763 * caching mode.
764 */
765int
766pmap_cache_bits(int mode, boolean_t is_pde)
767{
768	int pat_flag, pat_index, cache_bits;
769
770	/* The PAT bit is different for PTE's and PDE's. */
771	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
772
773	/* If we don't support PAT, map extended modes to older ones. */
774	if (!(cpu_feature & CPUID_PAT)) {
775		switch (mode) {
776		case PAT_UNCACHEABLE:
777		case PAT_WRITE_THROUGH:
778		case PAT_WRITE_BACK:
779			break;
780		case PAT_UNCACHED:
781		case PAT_WRITE_COMBINING:
782		case PAT_WRITE_PROTECTED:
783			mode = PAT_UNCACHEABLE;
784			break;
785		}
786	}
787
788	/* Map the caching mode to a PAT index. */
789	if (pat_works) {
790		switch (mode) {
791			case PAT_UNCACHEABLE:
792				pat_index = 3;
793				break;
794			case PAT_WRITE_THROUGH:
795				pat_index = 1;
796				break;
797			case PAT_WRITE_BACK:
798				pat_index = 0;
799				break;
800			case PAT_UNCACHED:
801				pat_index = 2;
802				break;
803			case PAT_WRITE_COMBINING:
804				pat_index = 5;
805				break;
806			case PAT_WRITE_PROTECTED:
807				pat_index = 4;
808				break;
809			default:
810				panic("Unknown caching mode %d\n", mode);
811		}
812	} else {
813		switch (mode) {
814			case PAT_UNCACHED:
815			case PAT_UNCACHEABLE:
816			case PAT_WRITE_PROTECTED:
817				pat_index = 3;
818				break;
819			case PAT_WRITE_THROUGH:
820				pat_index = 1;
821				break;
822			case PAT_WRITE_BACK:
823				pat_index = 0;
824				break;
825			case PAT_WRITE_COMBINING:
826				pat_index = 2;
827				break;
828			default:
829				panic("Unknown caching mode %d\n", mode);
830		}
831	}
832
833	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
834	cache_bits = 0;
835	if (pat_index & 0x4)
836		cache_bits |= pat_flag;
837	if (pat_index & 0x2)
838		cache_bits |= PG_NC_PCD;
839	if (pat_index & 0x1)
840		cache_bits |= PG_NC_PWT;
841	return (cache_bits);
842}
843#ifdef SMP
844/*
845 * For SMP, these functions have to use the IPI mechanism for coherence.
846 *
847 * N.B.: Before calling any of the following TLB invalidation functions,
848 * the calling processor must ensure that all stores updating a non-
849 * kernel page table are globally performed.  Otherwise, another
850 * processor could cache an old, pre-update entry without being
851 * invalidated.  This can happen one of two ways: (1) The pmap becomes
852 * active on another processor after its pm_active field is checked by
853 * one of the following functions but before a store updating the page
854 * table is globally performed. (2) The pmap becomes active on another
855 * processor before its pm_active field is checked but due to
856 * speculative loads one of the following functions stills reads the
857 * pmap as inactive on the other processor.
858 *
859 * The kernel page table is exempt because its pm_active field is
860 * immutable.  The kernel page table is always active on every
861 * processor.
862 */
863void
864pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
865{
866	cpumask_t cpumask, other_cpus;
867
868	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
869	    pmap, va);
870
871	sched_pin();
872	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
873		invlpg(va);
874		smp_invlpg(va);
875	} else {
876		cpumask = PCPU_GET(cpumask);
877		other_cpus = PCPU_GET(other_cpus);
878		if (pmap->pm_active & cpumask)
879			invlpg(va);
880		if (pmap->pm_active & other_cpus)
881			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
882	}
883	sched_unpin();
884	PT_UPDATES_FLUSH();
885}
886
887void
888pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
889{
890	cpumask_t cpumask, other_cpus;
891	vm_offset_t addr;
892
893	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
894	    pmap, sva, eva);
895
896	sched_pin();
897	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
898		for (addr = sva; addr < eva; addr += PAGE_SIZE)
899			invlpg(addr);
900		smp_invlpg_range(sva, eva);
901	} else {
902		cpumask = PCPU_GET(cpumask);
903		other_cpus = PCPU_GET(other_cpus);
904		if (pmap->pm_active & cpumask)
905			for (addr = sva; addr < eva; addr += PAGE_SIZE)
906				invlpg(addr);
907		if (pmap->pm_active & other_cpus)
908			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
909			    sva, eva);
910	}
911	sched_unpin();
912	PT_UPDATES_FLUSH();
913}
914
915void
916pmap_invalidate_all(pmap_t pmap)
917{
918	cpumask_t cpumask, other_cpus;
919
920	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
921
922	sched_pin();
923	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
924		invltlb();
925		smp_invltlb();
926	} else {
927		cpumask = PCPU_GET(cpumask);
928		other_cpus = PCPU_GET(other_cpus);
929		if (pmap->pm_active & cpumask)
930			invltlb();
931		if (pmap->pm_active & other_cpus)
932			smp_masked_invltlb(pmap->pm_active & other_cpus);
933	}
934	sched_unpin();
935}
936
937void
938pmap_invalidate_cache(void)
939{
940
941	sched_pin();
942	wbinvd();
943	smp_cache_flush();
944	sched_unpin();
945}
946#else /* !SMP */
947/*
948 * Normal, non-SMP, 486+ invalidation functions.
949 * We inline these within pmap.c for speed.
950 */
951PMAP_INLINE void
952pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
953{
954	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
955	    pmap, va);
956
957	if (pmap == kernel_pmap || pmap->pm_active)
958		invlpg(va);
959	PT_UPDATES_FLUSH();
960}
961
962PMAP_INLINE void
963pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
964{
965	vm_offset_t addr;
966
967	if (eva - sva > PAGE_SIZE)
968		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
969		    pmap, sva, eva);
970
971	if (pmap == kernel_pmap || pmap->pm_active)
972		for (addr = sva; addr < eva; addr += PAGE_SIZE)
973			invlpg(addr);
974	PT_UPDATES_FLUSH();
975}
976
977PMAP_INLINE void
978pmap_invalidate_all(pmap_t pmap)
979{
980
981	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
982
983	if (pmap == kernel_pmap || pmap->pm_active)
984		invltlb();
985}
986
987PMAP_INLINE void
988pmap_invalidate_cache(void)
989{
990
991	wbinvd();
992}
993#endif /* !SMP */
994
995void
996pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
997{
998
999	KASSERT((sva & PAGE_MASK) == 0,
1000	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1001	KASSERT((eva & PAGE_MASK) == 0,
1002	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1003
1004	if (cpu_feature & CPUID_SS)
1005		; /* If "Self Snoop" is supported, do nothing. */
1006	else if (cpu_feature & CPUID_CLFSH) {
1007
1008		/*
1009		 * Otherwise, do per-cache line flush.  Use the mfence
1010		 * instruction to insure that previous stores are
1011		 * included in the write-back.  The processor
1012		 * propagates flush to other processors in the cache
1013		 * coherence domain.
1014		 */
1015		mfence();
1016		for (; sva < eva; sva += cpu_clflush_line_size)
1017			clflush(sva);
1018		mfence();
1019	} else {
1020
1021		/*
1022		 * No targeted cache flush methods are supported by CPU,
1023		 * globally invalidate cache as a last resort.
1024		 */
1025		pmap_invalidate_cache();
1026	}
1027}
1028
1029/*
1030 * Are we current address space or kernel?  N.B. We return FALSE when
1031 * a pmap's page table is in use because a kernel thread is borrowing
1032 * it.  The borrowed page table can change spontaneously, making any
1033 * dependence on its continued use subject to a race condition.
1034 */
1035static __inline int
1036pmap_is_current(pmap_t pmap)
1037{
1038
1039	return (pmap == kernel_pmap ||
1040	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1041		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1042}
1043
1044/*
1045 * If the given pmap is not the current or kernel pmap, the returned pte must
1046 * be released by passing it to pmap_pte_release().
1047 */
1048pt_entry_t *
1049pmap_pte(pmap_t pmap, vm_offset_t va)
1050{
1051	pd_entry_t newpf;
1052	pd_entry_t *pde;
1053
1054	pde = pmap_pde(pmap, va);
1055	if (*pde & PG_PS)
1056		return (pde);
1057	if (*pde != 0) {
1058		/* are we current address space or kernel? */
1059		if (pmap_is_current(pmap))
1060			return (vtopte(va));
1061		mtx_lock(&PMAP2mutex);
1062		newpf = *pde & PG_FRAME;
1063		if ((*PMAP2 & PG_FRAME) != newpf) {
1064			vm_page_lock_queues();
1065			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1066			vm_page_unlock_queues();
1067			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1068			    pmap, va, (*PMAP2 & 0xffffffff));
1069		}
1070
1071		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1072	}
1073	return (0);
1074}
1075
1076/*
1077 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1078 * being NULL.
1079 */
1080static __inline void
1081pmap_pte_release(pt_entry_t *pte)
1082{
1083
1084	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1085		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1086		    *PMAP2);
1087		PT_SET_VA(PMAP2, 0, TRUE);
1088		mtx_unlock(&PMAP2mutex);
1089	}
1090}
1091
1092static __inline void
1093invlcaddr(void *caddr)
1094{
1095
1096	invlpg((u_int)caddr);
1097	PT_UPDATES_FLUSH();
1098}
1099
1100/*
1101 * Super fast pmap_pte routine best used when scanning
1102 * the pv lists.  This eliminates many coarse-grained
1103 * invltlb calls.  Note that many of the pv list
1104 * scans are across different pmaps.  It is very wasteful
1105 * to do an entire invltlb for checking a single mapping.
1106 *
1107 * If the given pmap is not the current pmap, vm_page_queue_mtx
1108 * must be held and curthread pinned to a CPU.
1109 */
1110static pt_entry_t *
1111pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1112{
1113	pd_entry_t newpf;
1114	pd_entry_t *pde;
1115
1116	pde = pmap_pde(pmap, va);
1117	if (*pde & PG_PS)
1118		return (pde);
1119	if (*pde != 0) {
1120		/* are we current address space or kernel? */
1121		if (pmap_is_current(pmap))
1122			return (vtopte(va));
1123		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1124		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1125		newpf = *pde & PG_FRAME;
1126		if ((*PMAP1 & PG_FRAME) != newpf) {
1127			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1128			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1129			    pmap, va, (u_long)*PMAP1);
1130
1131#ifdef SMP
1132			PMAP1cpu = PCPU_GET(cpuid);
1133#endif
1134			PMAP1changed++;
1135		} else
1136#ifdef SMP
1137		if (PMAP1cpu != PCPU_GET(cpuid)) {
1138			PMAP1cpu = PCPU_GET(cpuid);
1139			invlcaddr(PADDR1);
1140			PMAP1changedcpu++;
1141		} else
1142#endif
1143			PMAP1unchanged++;
1144		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1145	}
1146	return (0);
1147}
1148
1149/*
1150 *	Routine:	pmap_extract
1151 *	Function:
1152 *		Extract the physical page address associated
1153 *		with the given map/virtual_address pair.
1154 */
1155vm_paddr_t
1156pmap_extract(pmap_t pmap, vm_offset_t va)
1157{
1158	vm_paddr_t rtval;
1159	pt_entry_t *pte;
1160	pd_entry_t pde;
1161	pt_entry_t pteval;
1162
1163	rtval = 0;
1164	PMAP_LOCK(pmap);
1165	pde = pmap->pm_pdir[va >> PDRSHIFT];
1166	if (pde != 0) {
1167		if ((pde & PG_PS) != 0) {
1168			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1169			PMAP_UNLOCK(pmap);
1170			return rtval;
1171		}
1172		pte = pmap_pte(pmap, va);
1173		pteval = *pte ? xpmap_mtop(*pte) : 0;
1174		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1175		pmap_pte_release(pte);
1176	}
1177	PMAP_UNLOCK(pmap);
1178	return (rtval);
1179}
1180
1181/*
1182 *	Routine:	pmap_extract_ma
1183 *	Function:
1184 *		Like pmap_extract, but returns machine address
1185 */
1186vm_paddr_t
1187pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1188{
1189	vm_paddr_t rtval;
1190	pt_entry_t *pte;
1191	pd_entry_t pde;
1192
1193	rtval = 0;
1194	PMAP_LOCK(pmap);
1195	pde = pmap->pm_pdir[va >> PDRSHIFT];
1196	if (pde != 0) {
1197		if ((pde & PG_PS) != 0) {
1198			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1199			PMAP_UNLOCK(pmap);
1200			return rtval;
1201		}
1202		pte = pmap_pte(pmap, va);
1203		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1204		pmap_pte_release(pte);
1205	}
1206	PMAP_UNLOCK(pmap);
1207	return (rtval);
1208}
1209
1210/*
1211 *	Routine:	pmap_extract_and_hold
1212 *	Function:
1213 *		Atomically extract and hold the physical page
1214 *		with the given pmap and virtual address pair
1215 *		if that mapping permits the given protection.
1216 */
1217vm_page_t
1218pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1219{
1220	pd_entry_t pde;
1221	pt_entry_t pte;
1222	vm_page_t m;
1223	vm_paddr_t pa;
1224
1225	pa = 0;
1226	m = NULL;
1227	PMAP_LOCK(pmap);
1228retry:
1229	pde = PT_GET(pmap_pde(pmap, va));
1230	if (pde != 0) {
1231		if (pde & PG_PS) {
1232			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1233				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1234				       (va & PDRMASK), &pa))
1235					goto retry;
1236				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1237				    (va & PDRMASK));
1238				vm_page_hold(m);
1239			}
1240		} else {
1241			sched_pin();
1242			pte = PT_GET(pmap_pte_quick(pmap, va));
1243			if (*PMAP1)
1244				PT_SET_MA(PADDR1, 0);
1245			if ((pte & PG_V) &&
1246			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1247				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1248					goto retry;
1249				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1250				vm_page_hold(m);
1251			}
1252			sched_unpin();
1253		}
1254	}
1255	PA_UNLOCK_COND(pa);
1256	PMAP_UNLOCK(pmap);
1257	return (m);
1258}
1259
1260/***************************************************
1261 * Low level mapping routines.....
1262 ***************************************************/
1263
1264/*
1265 * Add a wired page to the kva.
1266 * Note: not SMP coherent.
1267 */
1268void
1269pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1270{
1271	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1272}
1273
1274void
1275pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1276{
1277	pt_entry_t *pte;
1278
1279	pte = vtopte(va);
1280	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1281}
1282
1283
1284static __inline void
1285pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1286{
1287	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1288}
1289
1290/*
1291 * Remove a page from the kernel pagetables.
1292 * Note: not SMP coherent.
1293 */
1294PMAP_INLINE void
1295pmap_kremove(vm_offset_t va)
1296{
1297	pt_entry_t *pte;
1298
1299	pte = vtopte(va);
1300	PT_CLEAR_VA(pte, FALSE);
1301}
1302
1303/*
1304 *	Used to map a range of physical addresses into kernel
1305 *	virtual address space.
1306 *
1307 *	The value passed in '*virt' is a suggested virtual address for
1308 *	the mapping. Architectures which can support a direct-mapped
1309 *	physical to virtual region can return the appropriate address
1310 *	within that region, leaving '*virt' unchanged. Other
1311 *	architectures should map the pages starting at '*virt' and
1312 *	update '*virt' with the first usable address after the mapped
1313 *	region.
1314 */
1315vm_offset_t
1316pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1317{
1318	vm_offset_t va, sva;
1319
1320	va = sva = *virt;
1321	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1322	    va, start, end, prot);
1323	while (start < end) {
1324		pmap_kenter(va, start);
1325		va += PAGE_SIZE;
1326		start += PAGE_SIZE;
1327	}
1328	pmap_invalidate_range(kernel_pmap, sva, va);
1329	*virt = va;
1330	return (sva);
1331}
1332
1333
1334/*
1335 * Add a list of wired pages to the kva
1336 * this routine is only used for temporary
1337 * kernel mappings that do not need to have
1338 * page modification or references recorded.
1339 * Note that old mappings are simply written
1340 * over.  The page *must* be wired.
1341 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1342 */
1343void
1344pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1345{
1346	pt_entry_t *endpte, *pte;
1347	vm_paddr_t pa;
1348	vm_offset_t va = sva;
1349	int mclcount = 0;
1350	multicall_entry_t mcl[16];
1351	multicall_entry_t *mclp = mcl;
1352	int error;
1353
1354	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1355	pte = vtopte(sva);
1356	endpte = pte + count;
1357	while (pte < endpte) {
1358		pa = xpmap_ptom(VM_PAGE_TO_PHYS(*ma)) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1359
1360		mclp->op = __HYPERVISOR_update_va_mapping;
1361		mclp->args[0] = va;
1362		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1363		mclp->args[2] = (uint32_t)(pa >> 32);
1364		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1365
1366		va += PAGE_SIZE;
1367		pte++;
1368		ma++;
1369		mclp++;
1370		mclcount++;
1371		if (mclcount == 16) {
1372			error = HYPERVISOR_multicall(mcl, mclcount);
1373			mclp = mcl;
1374			mclcount = 0;
1375			KASSERT(error == 0, ("bad multicall %d", error));
1376		}
1377	}
1378	if (mclcount) {
1379		error = HYPERVISOR_multicall(mcl, mclcount);
1380		KASSERT(error == 0, ("bad multicall %d", error));
1381	}
1382
1383#ifdef INVARIANTS
1384	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1385		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1386#endif
1387}
1388
1389
1390/*
1391 * This routine tears out page mappings from the
1392 * kernel -- it is meant only for temporary mappings.
1393 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1394 */
1395void
1396pmap_qremove(vm_offset_t sva, int count)
1397{
1398	vm_offset_t va;
1399
1400	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1401	va = sva;
1402	vm_page_lock_queues();
1403	critical_enter();
1404	while (count-- > 0) {
1405		pmap_kremove(va);
1406		va += PAGE_SIZE;
1407	}
1408	pmap_invalidate_range(kernel_pmap, sva, va);
1409	critical_exit();
1410	vm_page_unlock_queues();
1411}
1412
1413/***************************************************
1414 * Page table page management routines.....
1415 ***************************************************/
1416static __inline void
1417pmap_free_zero_pages(vm_page_t free)
1418{
1419	vm_page_t m;
1420
1421	while (free != NULL) {
1422		m = free;
1423		free = m->right;
1424		vm_page_free_zero(m);
1425	}
1426}
1427
1428/*
1429 * This routine unholds page table pages, and if the hold count
1430 * drops to zero, then it decrements the wire count.
1431 */
1432static __inline int
1433pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1434{
1435
1436	--m->wire_count;
1437	if (m->wire_count == 0)
1438		return _pmap_unwire_pte_hold(pmap, m, free);
1439	else
1440		return 0;
1441}
1442
1443static int
1444_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1445{
1446	vm_offset_t pteva;
1447
1448	PT_UPDATES_FLUSH();
1449	/*
1450	 * unmap the page table page
1451	 */
1452	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1453	/*
1454	 * page *might* contain residual mapping :-/
1455	 */
1456	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1457	pmap_zero_page(m);
1458	--pmap->pm_stats.resident_count;
1459
1460	/*
1461	 * This is a release store so that the ordinary store unmapping
1462	 * the page table page is globally performed before TLB shoot-
1463	 * down is begun.
1464	 */
1465	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1466
1467	/*
1468	 * Do an invltlb to make the invalidated mapping
1469	 * take effect immediately.
1470	 */
1471	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1472	pmap_invalidate_page(pmap, pteva);
1473
1474	/*
1475	 * Put page on a list so that it is released after
1476	 * *ALL* TLB shootdown is done
1477	 */
1478	m->right = *free;
1479	*free = m;
1480
1481	return 1;
1482}
1483
1484/*
1485 * After removing a page table entry, this routine is used to
1486 * conditionally free the page, and manage the hold/wire counts.
1487 */
1488static int
1489pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1490{
1491	pd_entry_t ptepde;
1492	vm_page_t mpte;
1493
1494	if (va >= VM_MAXUSER_ADDRESS)
1495		return 0;
1496	ptepde = PT_GET(pmap_pde(pmap, va));
1497	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1498	return pmap_unwire_pte_hold(pmap, mpte, free);
1499}
1500
1501void
1502pmap_pinit0(pmap_t pmap)
1503{
1504
1505	PMAP_LOCK_INIT(pmap);
1506	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1507#ifdef PAE
1508	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1509#endif
1510	pmap->pm_active = 0;
1511	PCPU_SET(curpmap, pmap);
1512	TAILQ_INIT(&pmap->pm_pvchunk);
1513	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1514	mtx_lock_spin(&allpmaps_lock);
1515	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1516	mtx_unlock_spin(&allpmaps_lock);
1517}
1518
1519/*
1520 * Initialize a preallocated and zeroed pmap structure,
1521 * such as one in a vmspace structure.
1522 */
1523int
1524pmap_pinit(pmap_t pmap)
1525{
1526	vm_page_t m, ptdpg[NPGPTD + 1];
1527	int npgptd = NPGPTD + 1;
1528	static int color;
1529	int i;
1530
1531	PMAP_LOCK_INIT(pmap);
1532
1533	/*
1534	 * No need to allocate page table space yet but we do need a valid
1535	 * page directory table.
1536	 */
1537	if (pmap->pm_pdir == NULL) {
1538		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1539		    NBPTD);
1540		if (pmap->pm_pdir == NULL) {
1541			PMAP_LOCK_DESTROY(pmap);
1542			return (0);
1543		}
1544#if defined(XEN) && defined(PAE)
1545		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1546#endif
1547
1548#if defined(PAE) && !defined(XEN)
1549		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1550		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1551		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1552		    ("pmap_pinit: pdpt misaligned"));
1553		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1554		    ("pmap_pinit: pdpt above 4g"));
1555#endif
1556	}
1557
1558	/*
1559	 * allocate the page directory page(s)
1560	 */
1561	for (i = 0; i < npgptd;) {
1562		m = vm_page_alloc(NULL, color++,
1563		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1564		    VM_ALLOC_ZERO);
1565		if (m == NULL)
1566			VM_WAIT;
1567		else {
1568			ptdpg[i++] = m;
1569		}
1570	}
1571	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1572	for (i = 0; i < NPGPTD; i++) {
1573		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1574			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1575	}
1576
1577	mtx_lock_spin(&allpmaps_lock);
1578	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1579	mtx_unlock_spin(&allpmaps_lock);
1580	/* Wire in kernel global address entries. */
1581
1582	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1583#ifdef PAE
1584#ifdef XEN
1585	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1586	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1587		bzero(pmap->pm_pdpt, PAGE_SIZE);
1588#endif
1589	for (i = 0; i < NPGPTD; i++) {
1590		vm_paddr_t ma;
1591
1592		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1593		pmap->pm_pdpt[i] = ma | PG_V;
1594
1595	}
1596#endif
1597#ifdef XEN
1598	for (i = 0; i < NPGPTD; i++) {
1599		pt_entry_t *pd;
1600		vm_paddr_t ma;
1601
1602		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1603		pd = pmap->pm_pdir + (i * NPDEPG);
1604		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1605#if 0
1606		xen_pgd_pin(ma);
1607#endif
1608	}
1609
1610#ifdef PAE
1611	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1612#endif
1613	vm_page_lock_queues();
1614	xen_flush_queue();
1615	xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD])));
1616	for (i = 0; i < NPGPTD; i++) {
1617		vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1618		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1619	}
1620	xen_flush_queue();
1621	vm_page_unlock_queues();
1622#endif
1623	pmap->pm_active = 0;
1624	TAILQ_INIT(&pmap->pm_pvchunk);
1625	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1626
1627	return (1);
1628}
1629
1630/*
1631 * this routine is called if the page table page is not
1632 * mapped correctly.
1633 */
1634static vm_page_t
1635_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1636{
1637	vm_paddr_t ptema;
1638	vm_page_t m;
1639
1640	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1641	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1642	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1643
1644	/*
1645	 * Allocate a page table page.
1646	 */
1647	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1648	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1649		if (flags & M_WAITOK) {
1650			PMAP_UNLOCK(pmap);
1651			vm_page_unlock_queues();
1652			VM_WAIT;
1653			vm_page_lock_queues();
1654			PMAP_LOCK(pmap);
1655		}
1656
1657		/*
1658		 * Indicate the need to retry.  While waiting, the page table
1659		 * page may have been allocated.
1660		 */
1661		return (NULL);
1662	}
1663	if ((m->flags & PG_ZERO) == 0)
1664		pmap_zero_page(m);
1665
1666	/*
1667	 * Map the pagetable page into the process address space, if
1668	 * it isn't already there.
1669	 */
1670	pmap->pm_stats.resident_count++;
1671
1672	ptema = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1673	xen_pt_pin(ptema);
1674	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1675		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1676
1677	KASSERT(pmap->pm_pdir[ptepindex],
1678	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1679	return (m);
1680}
1681
1682static vm_page_t
1683pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1684{
1685	unsigned ptepindex;
1686	pd_entry_t ptema;
1687	vm_page_t m;
1688
1689	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1690	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1691	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1692
1693	/*
1694	 * Calculate pagetable page index
1695	 */
1696	ptepindex = va >> PDRSHIFT;
1697retry:
1698	/*
1699	 * Get the page directory entry
1700	 */
1701	ptema = pmap->pm_pdir[ptepindex];
1702
1703	/*
1704	 * This supports switching from a 4MB page to a
1705	 * normal 4K page.
1706	 */
1707	if (ptema & PG_PS) {
1708		/*
1709		 * XXX
1710		 */
1711		pmap->pm_pdir[ptepindex] = 0;
1712		ptema = 0;
1713		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1714		pmap_invalidate_all(kernel_pmap);
1715	}
1716
1717	/*
1718	 * If the page table page is mapped, we just increment the
1719	 * hold count, and activate it.
1720	 */
1721	if (ptema & PG_V) {
1722		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1723		m->wire_count++;
1724	} else {
1725		/*
1726		 * Here if the pte page isn't mapped, or if it has
1727		 * been deallocated.
1728		 */
1729		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1730		    pmap, va, flags);
1731		m = _pmap_allocpte(pmap, ptepindex, flags);
1732		if (m == NULL && (flags & M_WAITOK))
1733			goto retry;
1734
1735		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1736	}
1737	return (m);
1738}
1739
1740
1741/***************************************************
1742* Pmap allocation/deallocation routines.
1743 ***************************************************/
1744
1745#ifdef SMP
1746/*
1747 * Deal with a SMP shootdown of other users of the pmap that we are
1748 * trying to dispose of.  This can be a bit hairy.
1749 */
1750static cpumask_t *lazymask;
1751static u_int lazyptd;
1752static volatile u_int lazywait;
1753
1754void pmap_lazyfix_action(void);
1755
1756void
1757pmap_lazyfix_action(void)
1758{
1759	cpumask_t mymask = PCPU_GET(cpumask);
1760
1761#ifdef COUNT_IPIS
1762	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1763#endif
1764	if (rcr3() == lazyptd)
1765		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1766	atomic_clear_int(lazymask, mymask);
1767	atomic_store_rel_int(&lazywait, 1);
1768}
1769
1770static void
1771pmap_lazyfix_self(cpumask_t mymask)
1772{
1773
1774	if (rcr3() == lazyptd)
1775		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1776	atomic_clear_int(lazymask, mymask);
1777}
1778
1779
1780static void
1781pmap_lazyfix(pmap_t pmap)
1782{
1783	cpumask_t mymask, mask;
1784	u_int spins;
1785
1786	while ((mask = pmap->pm_active) != 0) {
1787		spins = 50000000;
1788		mask = mask & -mask;	/* Find least significant set bit */
1789		mtx_lock_spin(&smp_ipi_mtx);
1790#ifdef PAE
1791		lazyptd = vtophys(pmap->pm_pdpt);
1792#else
1793		lazyptd = vtophys(pmap->pm_pdir);
1794#endif
1795		mymask = PCPU_GET(cpumask);
1796		if (mask == mymask) {
1797			lazymask = &pmap->pm_active;
1798			pmap_lazyfix_self(mymask);
1799		} else {
1800			atomic_store_rel_int((u_int *)&lazymask,
1801			    (u_int)&pmap->pm_active);
1802			atomic_store_rel_int(&lazywait, 0);
1803			ipi_selected(mask, IPI_LAZYPMAP);
1804			while (lazywait == 0) {
1805				ia32_pause();
1806				if (--spins == 0)
1807					break;
1808			}
1809		}
1810		mtx_unlock_spin(&smp_ipi_mtx);
1811		if (spins == 0)
1812			printf("pmap_lazyfix: spun for 50000000\n");
1813	}
1814}
1815
1816#else	/* SMP */
1817
1818/*
1819 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1820 * unlikely to have to even execute this code, including the fact
1821 * that the cleanup is deferred until the parent does a wait(2), which
1822 * means that another userland process has run.
1823 */
1824static void
1825pmap_lazyfix(pmap_t pmap)
1826{
1827	u_int cr3;
1828
1829	cr3 = vtophys(pmap->pm_pdir);
1830	if (cr3 == rcr3()) {
1831		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1832		pmap->pm_active &= ~(PCPU_GET(cpumask));
1833	}
1834}
1835#endif	/* SMP */
1836
1837/*
1838 * Release any resources held by the given physical map.
1839 * Called when a pmap initialized by pmap_pinit is being released.
1840 * Should only be called if the map contains no valid mappings.
1841 */
1842void
1843pmap_release(pmap_t pmap)
1844{
1845	vm_page_t m, ptdpg[2*NPGPTD+1];
1846	vm_paddr_t ma;
1847	int i;
1848#ifdef XEN
1849#ifdef PAE
1850	int npgptd = NPGPTD + 1;
1851#else
1852	int npgptd = NPGPTD;
1853#endif
1854#else
1855	int npgptd = NPGPTD;
1856#endif
1857	KASSERT(pmap->pm_stats.resident_count == 0,
1858	    ("pmap_release: pmap resident count %ld != 0",
1859	    pmap->pm_stats.resident_count));
1860	PT_UPDATES_FLUSH();
1861
1862	pmap_lazyfix(pmap);
1863	mtx_lock_spin(&allpmaps_lock);
1864	LIST_REMOVE(pmap, pm_list);
1865	mtx_unlock_spin(&allpmaps_lock);
1866
1867	for (i = 0; i < NPGPTD; i++)
1868		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1869	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1870#if defined(PAE) && defined(XEN)
1871	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1872#endif
1873
1874	for (i = 0; i < npgptd; i++) {
1875		m = ptdpg[i];
1876		ma = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1877		/* unpinning L1 and L2 treated the same */
1878#if 0
1879                xen_pgd_unpin(ma);
1880#else
1881		if (i == NPGPTD)
1882	                xen_pgd_unpin(ma);
1883#endif
1884#ifdef PAE
1885		if (i < NPGPTD)
1886			KASSERT(xpmap_ptom(VM_PAGE_TO_PHYS(m)) == (pmap->pm_pdpt[i] & PG_FRAME),
1887			    ("pmap_release: got wrong ptd page"));
1888#endif
1889		m->wire_count--;
1890		atomic_subtract_int(&cnt.v_wire_count, 1);
1891		vm_page_free(m);
1892	}
1893#ifdef PAE
1894	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1895#endif
1896	PMAP_LOCK_DESTROY(pmap);
1897}
1898
1899static int
1900kvm_size(SYSCTL_HANDLER_ARGS)
1901{
1902	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1903
1904	return sysctl_handle_long(oidp, &ksize, 0, req);
1905}
1906SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1907    0, 0, kvm_size, "IU", "Size of KVM");
1908
1909static int
1910kvm_free(SYSCTL_HANDLER_ARGS)
1911{
1912	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1913
1914	return sysctl_handle_long(oidp, &kfree, 0, req);
1915}
1916SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1917    0, 0, kvm_free, "IU", "Amount of KVM free");
1918
1919/*
1920 * grow the number of kernel page table entries, if needed
1921 */
1922void
1923pmap_growkernel(vm_offset_t addr)
1924{
1925	struct pmap *pmap;
1926	vm_paddr_t ptppaddr;
1927	vm_page_t nkpg;
1928	pd_entry_t newpdir;
1929
1930	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1931	if (kernel_vm_end == 0) {
1932		kernel_vm_end = KERNBASE;
1933		nkpt = 0;
1934		while (pdir_pde(PTD, kernel_vm_end)) {
1935			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1936			nkpt++;
1937			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1938				kernel_vm_end = kernel_map->max_offset;
1939				break;
1940			}
1941		}
1942	}
1943	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1944	if (addr - 1 >= kernel_map->max_offset)
1945		addr = kernel_map->max_offset;
1946	while (kernel_vm_end < addr) {
1947		if (pdir_pde(PTD, kernel_vm_end)) {
1948			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1949			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1950				kernel_vm_end = kernel_map->max_offset;
1951				break;
1952			}
1953			continue;
1954		}
1955
1956		/*
1957		 * This index is bogus, but out of the way
1958		 */
1959		nkpg = vm_page_alloc(NULL, nkpt,
1960		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1961		if (!nkpg)
1962			panic("pmap_growkernel: no memory to grow kernel");
1963
1964		nkpt++;
1965
1966		pmap_zero_page(nkpg);
1967		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1968		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1969		vm_page_lock_queues();
1970		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1971		mtx_lock_spin(&allpmaps_lock);
1972		LIST_FOREACH(pmap, &allpmaps, pm_list)
1973			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1974
1975		mtx_unlock_spin(&allpmaps_lock);
1976		vm_page_unlock_queues();
1977
1978		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1979		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1980			kernel_vm_end = kernel_map->max_offset;
1981			break;
1982		}
1983	}
1984}
1985
1986
1987/***************************************************
1988 * page management routines.
1989 ***************************************************/
1990
1991CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1992CTASSERT(_NPCM == 11);
1993
1994static __inline struct pv_chunk *
1995pv_to_chunk(pv_entry_t pv)
1996{
1997
1998	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1999}
2000
2001#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2002
2003#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2004#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2005
2006static uint32_t pc_freemask[11] = {
2007	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2008	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2009	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2010	PC_FREE0_9, PC_FREE10
2011};
2012
2013SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2014	"Current number of pv entries");
2015
2016#ifdef PV_STATS
2017static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2018
2019SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2020	"Current number of pv entry chunks");
2021SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2022	"Current number of pv entry chunks allocated");
2023SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2024	"Current number of pv entry chunks frees");
2025SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2026	"Number of times tried to get a chunk page but failed.");
2027
2028static long pv_entry_frees, pv_entry_allocs;
2029static int pv_entry_spare;
2030
2031SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2032	"Current number of pv entry frees");
2033SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2034	"Current number of pv entry allocs");
2035SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2036	"Current number of spare pv entries");
2037
2038static int pmap_collect_inactive, pmap_collect_active;
2039
2040SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2041	"Current number times pmap_collect called on inactive queue");
2042SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2043	"Current number times pmap_collect called on active queue");
2044#endif
2045
2046/*
2047 * We are in a serious low memory condition.  Resort to
2048 * drastic measures to free some pages so we can allocate
2049 * another pv entry chunk.  This is normally called to
2050 * unmap inactive pages, and if necessary, active pages.
2051 */
2052static void
2053pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2054{
2055	pmap_t pmap;
2056	pt_entry_t *pte, tpte;
2057	pv_entry_t next_pv, pv;
2058	vm_offset_t va;
2059	vm_page_t m, free;
2060
2061	sched_pin();
2062	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2063		if (m->hold_count || m->busy)
2064			continue;
2065		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2066			va = pv->pv_va;
2067			pmap = PV_PMAP(pv);
2068			/* Avoid deadlock and lock recursion. */
2069			if (pmap > locked_pmap)
2070				PMAP_LOCK(pmap);
2071			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2072				continue;
2073			pmap->pm_stats.resident_count--;
2074			pte = pmap_pte_quick(pmap, va);
2075			tpte = pte_load_clear(pte);
2076			KASSERT((tpte & PG_W) == 0,
2077			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2078			if (tpte & PG_A)
2079				vm_page_flag_set(m, PG_REFERENCED);
2080			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2081				vm_page_dirty(m);
2082			free = NULL;
2083			pmap_unuse_pt(pmap, va, &free);
2084			pmap_invalidate_page(pmap, va);
2085			pmap_free_zero_pages(free);
2086			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2087			free_pv_entry(pmap, pv);
2088			if (pmap != locked_pmap)
2089				PMAP_UNLOCK(pmap);
2090		}
2091		if (TAILQ_EMPTY(&m->md.pv_list))
2092			vm_page_flag_clear(m, PG_WRITEABLE);
2093	}
2094	sched_unpin();
2095}
2096
2097
2098/*
2099 * free the pv_entry back to the free list
2100 */
2101static void
2102free_pv_entry(pmap_t pmap, pv_entry_t pv)
2103{
2104	vm_page_t m;
2105	struct pv_chunk *pc;
2106	int idx, field, bit;
2107
2108	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2109	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2110	PV_STAT(pv_entry_frees++);
2111	PV_STAT(pv_entry_spare++);
2112	pv_entry_count--;
2113	pc = pv_to_chunk(pv);
2114	idx = pv - &pc->pc_pventry[0];
2115	field = idx / 32;
2116	bit = idx % 32;
2117	pc->pc_map[field] |= 1ul << bit;
2118	/* move to head of list */
2119	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2120	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2121	for (idx = 0; idx < _NPCM; idx++)
2122		if (pc->pc_map[idx] != pc_freemask[idx])
2123			return;
2124	PV_STAT(pv_entry_spare -= _NPCPV);
2125	PV_STAT(pc_chunk_count--);
2126	PV_STAT(pc_chunk_frees++);
2127	/* entire chunk is free, return it */
2128	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2129	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2130	pmap_qremove((vm_offset_t)pc, 1);
2131	vm_page_unwire(m, 0);
2132	vm_page_free(m);
2133	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2134}
2135
2136/*
2137 * get a new pv_entry, allocating a block from the system
2138 * when needed.
2139 */
2140static pv_entry_t
2141get_pv_entry(pmap_t pmap, int try)
2142{
2143	static const struct timeval printinterval = { 60, 0 };
2144	static struct timeval lastprint;
2145	static vm_pindex_t colour;
2146	struct vpgqueues *pq;
2147	int bit, field;
2148	pv_entry_t pv;
2149	struct pv_chunk *pc;
2150	vm_page_t m;
2151
2152	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2153	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2154	PV_STAT(pv_entry_allocs++);
2155	pv_entry_count++;
2156	if (pv_entry_count > pv_entry_high_water)
2157		if (ratecheck(&lastprint, &printinterval))
2158			printf("Approaching the limit on PV entries, consider "
2159			    "increasing either the vm.pmap.shpgperproc or the "
2160			    "vm.pmap.pv_entry_max tunable.\n");
2161	pq = NULL;
2162retry:
2163	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2164	if (pc != NULL) {
2165		for (field = 0; field < _NPCM; field++) {
2166			if (pc->pc_map[field]) {
2167				bit = bsfl(pc->pc_map[field]);
2168				break;
2169			}
2170		}
2171		if (field < _NPCM) {
2172			pv = &pc->pc_pventry[field * 32 + bit];
2173			pc->pc_map[field] &= ~(1ul << bit);
2174			/* If this was the last item, move it to tail */
2175			for (field = 0; field < _NPCM; field++)
2176				if (pc->pc_map[field] != 0) {
2177					PV_STAT(pv_entry_spare--);
2178					return (pv);	/* not full, return */
2179				}
2180			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2181			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2182			PV_STAT(pv_entry_spare--);
2183			return (pv);
2184		}
2185	}
2186	/*
2187	 * Access to the ptelist "pv_vafree" is synchronized by the page
2188	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2189	 * remain non-empty until pmap_ptelist_alloc() completes.
2190	 */
2191	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2192	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2193	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2194		if (try) {
2195			pv_entry_count--;
2196			PV_STAT(pc_chunk_tryfail++);
2197			return (NULL);
2198		}
2199		/*
2200		 * Reclaim pv entries: At first, destroy mappings to
2201		 * inactive pages.  After that, if a pv chunk entry
2202		 * is still needed, destroy mappings to active pages.
2203		 */
2204		if (pq == NULL) {
2205			PV_STAT(pmap_collect_inactive++);
2206			pq = &vm_page_queues[PQ_INACTIVE];
2207		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2208			PV_STAT(pmap_collect_active++);
2209			pq = &vm_page_queues[PQ_ACTIVE];
2210		} else
2211			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2212		pmap_collect(pmap, pq);
2213		goto retry;
2214	}
2215	PV_STAT(pc_chunk_count++);
2216	PV_STAT(pc_chunk_allocs++);
2217	colour++;
2218	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2219	pmap_qenter((vm_offset_t)pc, &m, 1);
2220	if ((m->flags & PG_ZERO) == 0)
2221		pagezero(pc);
2222	pc->pc_pmap = pmap;
2223	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2224	for (field = 1; field < _NPCM; field++)
2225		pc->pc_map[field] = pc_freemask[field];
2226	pv = &pc->pc_pventry[0];
2227	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2228	PV_STAT(pv_entry_spare += _NPCPV - 1);
2229	return (pv);
2230}
2231
2232static __inline pv_entry_t
2233pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2234{
2235	pv_entry_t pv;
2236
2237	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2238	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2239		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2240			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2241			break;
2242		}
2243	}
2244	return (pv);
2245}
2246
2247static void
2248pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2249{
2250	pv_entry_t pv;
2251
2252	pv = pmap_pvh_remove(pvh, pmap, va);
2253	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2254	free_pv_entry(pmap, pv);
2255}
2256
2257static void
2258pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2259{
2260
2261	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2262	pmap_pvh_free(&m->md, pmap, va);
2263	if (TAILQ_EMPTY(&m->md.pv_list))
2264		vm_page_flag_clear(m, PG_WRITEABLE);
2265}
2266
2267/*
2268 * Conditionally create a pv entry.
2269 */
2270static boolean_t
2271pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2272{
2273	pv_entry_t pv;
2274
2275	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2276	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2277	if (pv_entry_count < pv_entry_high_water &&
2278	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2279		pv->pv_va = va;
2280		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2281		return (TRUE);
2282	} else
2283		return (FALSE);
2284}
2285
2286/*
2287 * pmap_remove_pte: do the things to unmap a page in a process
2288 */
2289static int
2290pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2291{
2292	pt_entry_t oldpte;
2293	vm_page_t m;
2294
2295	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2296	    pmap, (u_long)*ptq, va);
2297
2298	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2299	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2300	oldpte = *ptq;
2301	PT_SET_VA_MA(ptq, 0, TRUE);
2302	if (oldpte & PG_W)
2303		pmap->pm_stats.wired_count -= 1;
2304	/*
2305	 * Machines that don't support invlpg, also don't support
2306	 * PG_G.
2307	 */
2308	if (oldpte & PG_G)
2309		pmap_invalidate_page(kernel_pmap, va);
2310	pmap->pm_stats.resident_count -= 1;
2311	/*
2312	 * XXX This is not strictly correctly, but somewhere along the line
2313	 * we are losing the managed bit on some pages. It is unclear to me
2314	 * why, but I think the most likely explanation is that xen's writable
2315	 * page table implementation doesn't respect the unused bits.
2316	 */
2317	if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
2318		) {
2319		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2320
2321		if (!(oldpte & PG_MANAGED))
2322			printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2323
2324		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2325			vm_page_dirty(m);
2326		if (oldpte & PG_A)
2327			vm_page_flag_set(m, PG_REFERENCED);
2328		pmap_remove_entry(pmap, m, va);
2329	} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
2330		printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2331
2332	return (pmap_unuse_pt(pmap, va, free));
2333}
2334
2335/*
2336 * Remove a single page from a process address space
2337 */
2338static void
2339pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2340{
2341	pt_entry_t *pte;
2342
2343	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2344	    pmap, va);
2345
2346	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2347	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2348	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2349	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2350		return;
2351	pmap_remove_pte(pmap, pte, va, free);
2352	pmap_invalidate_page(pmap, va);
2353	if (*PMAP1)
2354		PT_SET_MA(PADDR1, 0);
2355
2356}
2357
2358/*
2359 *	Remove the given range of addresses from the specified map.
2360 *
2361 *	It is assumed that the start and end are properly
2362 *	rounded to the page size.
2363 */
2364void
2365pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2366{
2367	vm_offset_t pdnxt;
2368	pd_entry_t ptpaddr;
2369	pt_entry_t *pte;
2370	vm_page_t free = NULL;
2371	int anyvalid;
2372
2373	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2374	    pmap, sva, eva);
2375
2376	/*
2377	 * Perform an unsynchronized read.  This is, however, safe.
2378	 */
2379	if (pmap->pm_stats.resident_count == 0)
2380		return;
2381
2382	anyvalid = 0;
2383
2384	vm_page_lock_queues();
2385	sched_pin();
2386	PMAP_LOCK(pmap);
2387
2388	/*
2389	 * special handling of removing one page.  a very
2390	 * common operation and easy to short circuit some
2391	 * code.
2392	 */
2393	if ((sva + PAGE_SIZE == eva) &&
2394	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2395		pmap_remove_page(pmap, sva, &free);
2396		goto out;
2397	}
2398
2399	for (; sva < eva; sva = pdnxt) {
2400		unsigned pdirindex;
2401
2402		/*
2403		 * Calculate index for next page table.
2404		 */
2405		pdnxt = (sva + NBPDR) & ~PDRMASK;
2406		if (pmap->pm_stats.resident_count == 0)
2407			break;
2408
2409		pdirindex = sva >> PDRSHIFT;
2410		ptpaddr = pmap->pm_pdir[pdirindex];
2411
2412		/*
2413		 * Weed out invalid mappings. Note: we assume that the page
2414		 * directory table is always allocated, and in kernel virtual.
2415		 */
2416		if (ptpaddr == 0)
2417			continue;
2418
2419		/*
2420		 * Check for large page.
2421		 */
2422		if ((ptpaddr & PG_PS) != 0) {
2423			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2424			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2425			anyvalid = 1;
2426			continue;
2427		}
2428
2429		/*
2430		 * Limit our scan to either the end of the va represented
2431		 * by the current page table page, or to the end of the
2432		 * range being removed.
2433		 */
2434		if (pdnxt > eva)
2435			pdnxt = eva;
2436
2437		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2438		    sva += PAGE_SIZE) {
2439			if ((*pte & PG_V) == 0)
2440				continue;
2441
2442			/*
2443			 * The TLB entry for a PG_G mapping is invalidated
2444			 * by pmap_remove_pte().
2445			 */
2446			if ((*pte & PG_G) == 0)
2447				anyvalid = 1;
2448			if (pmap_remove_pte(pmap, pte, sva, &free))
2449				break;
2450		}
2451	}
2452	PT_UPDATES_FLUSH();
2453	if (*PMAP1)
2454		PT_SET_VA_MA(PMAP1, 0, TRUE);
2455out:
2456	if (anyvalid)
2457		pmap_invalidate_all(pmap);
2458	sched_unpin();
2459	vm_page_unlock_queues();
2460	PMAP_UNLOCK(pmap);
2461	pmap_free_zero_pages(free);
2462}
2463
2464/*
2465 *	Routine:	pmap_remove_all
2466 *	Function:
2467 *		Removes this physical page from
2468 *		all physical maps in which it resides.
2469 *		Reflects back modify bits to the pager.
2470 *
2471 *	Notes:
2472 *		Original versions of this routine were very
2473 *		inefficient because they iteratively called
2474 *		pmap_remove (slow...)
2475 */
2476
2477void
2478pmap_remove_all(vm_page_t m)
2479{
2480	pv_entry_t pv;
2481	pmap_t pmap;
2482	pt_entry_t *pte, tpte;
2483	vm_page_t free;
2484
2485	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2486	    ("pmap_remove_all: page %p is fictitious", m));
2487	free = NULL;
2488	vm_page_lock_queues();
2489	sched_pin();
2490	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2491		pmap = PV_PMAP(pv);
2492		PMAP_LOCK(pmap);
2493		pmap->pm_stats.resident_count--;
2494		pte = pmap_pte_quick(pmap, pv->pv_va);
2495
2496		tpte = *pte;
2497		PT_SET_VA_MA(pte, 0, TRUE);
2498		if (tpte & PG_W)
2499			pmap->pm_stats.wired_count--;
2500		if (tpte & PG_A)
2501			vm_page_flag_set(m, PG_REFERENCED);
2502
2503		/*
2504		 * Update the vm_page_t clean and reference bits.
2505		 */
2506		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2507			vm_page_dirty(m);
2508		pmap_unuse_pt(pmap, pv->pv_va, &free);
2509		pmap_invalidate_page(pmap, pv->pv_va);
2510		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2511		free_pv_entry(pmap, pv);
2512		PMAP_UNLOCK(pmap);
2513	}
2514	vm_page_flag_clear(m, PG_WRITEABLE);
2515	PT_UPDATES_FLUSH();
2516	if (*PMAP1)
2517		PT_SET_MA(PADDR1, 0);
2518	sched_unpin();
2519	vm_page_unlock_queues();
2520	pmap_free_zero_pages(free);
2521}
2522
2523/*
2524 *	Set the physical protection on the
2525 *	specified range of this map as requested.
2526 */
2527void
2528pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2529{
2530	vm_offset_t pdnxt;
2531	pd_entry_t ptpaddr;
2532	pt_entry_t *pte;
2533	int anychanged;
2534
2535	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2536	    pmap, sva, eva, prot);
2537
2538	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2539		pmap_remove(pmap, sva, eva);
2540		return;
2541	}
2542
2543#ifdef PAE
2544	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2545	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2546		return;
2547#else
2548	if (prot & VM_PROT_WRITE)
2549		return;
2550#endif
2551
2552	anychanged = 0;
2553
2554	vm_page_lock_queues();
2555	sched_pin();
2556	PMAP_LOCK(pmap);
2557	for (; sva < eva; sva = pdnxt) {
2558		pt_entry_t obits, pbits;
2559		unsigned pdirindex;
2560
2561		pdnxt = (sva + NBPDR) & ~PDRMASK;
2562
2563		pdirindex = sva >> PDRSHIFT;
2564		ptpaddr = pmap->pm_pdir[pdirindex];
2565
2566		/*
2567		 * Weed out invalid mappings. Note: we assume that the page
2568		 * directory table is always allocated, and in kernel virtual.
2569		 */
2570		if (ptpaddr == 0)
2571			continue;
2572
2573		/*
2574		 * Check for large page.
2575		 */
2576		if ((ptpaddr & PG_PS) != 0) {
2577			if ((prot & VM_PROT_WRITE) == 0)
2578				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2579#ifdef PAE
2580			if ((prot & VM_PROT_EXECUTE) == 0)
2581				pmap->pm_pdir[pdirindex] |= pg_nx;
2582#endif
2583			anychanged = 1;
2584			continue;
2585		}
2586
2587		if (pdnxt > eva)
2588			pdnxt = eva;
2589
2590		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2591		    sva += PAGE_SIZE) {
2592			vm_page_t m;
2593
2594retry:
2595			/*
2596			 * Regardless of whether a pte is 32 or 64 bits in
2597			 * size, PG_RW, PG_A, and PG_M are among the least
2598			 * significant 32 bits.
2599			 */
2600			obits = pbits = *pte;
2601			if ((pbits & PG_V) == 0)
2602				continue;
2603
2604			if ((prot & VM_PROT_WRITE) == 0) {
2605				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2606				    (PG_MANAGED | PG_M | PG_RW)) {
2607					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2608					    PG_FRAME);
2609					vm_page_dirty(m);
2610				}
2611				pbits &= ~(PG_RW | PG_M);
2612			}
2613#ifdef PAE
2614			if ((prot & VM_PROT_EXECUTE) == 0)
2615				pbits |= pg_nx;
2616#endif
2617
2618			if (pbits != obits) {
2619#ifdef XEN
2620				obits = *pte;
2621				PT_SET_VA_MA(pte, pbits, TRUE);
2622				if (*pte != pbits)
2623					goto retry;
2624#else
2625#ifdef PAE
2626				if (!atomic_cmpset_64(pte, obits, pbits))
2627					goto retry;
2628#else
2629				if (!atomic_cmpset_int((u_int *)pte, obits,
2630				    pbits))
2631					goto retry;
2632#endif
2633#endif
2634				if (obits & PG_G)
2635					pmap_invalidate_page(pmap, sva);
2636				else
2637					anychanged = 1;
2638			}
2639		}
2640	}
2641	PT_UPDATES_FLUSH();
2642	if (*PMAP1)
2643		PT_SET_VA_MA(PMAP1, 0, TRUE);
2644	if (anychanged)
2645		pmap_invalidate_all(pmap);
2646	sched_unpin();
2647	vm_page_unlock_queues();
2648	PMAP_UNLOCK(pmap);
2649}
2650
2651/*
2652 *	Insert the given physical page (p) at
2653 *	the specified virtual address (v) in the
2654 *	target physical map with the protection requested.
2655 *
2656 *	If specified, the page will be wired down, meaning
2657 *	that the related pte can not be reclaimed.
2658 *
2659 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2660 *	or lose information.  That is, this routine must actually
2661 *	insert this page into the given map NOW.
2662 */
2663void
2664pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2665    vm_prot_t prot, boolean_t wired)
2666{
2667	pd_entry_t *pde;
2668	pt_entry_t *pte;
2669	pt_entry_t newpte, origpte;
2670	pv_entry_t pv;
2671	vm_paddr_t opa, pa;
2672	vm_page_t mpte, om;
2673	boolean_t invlva;
2674
2675	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2676	    pmap, va, access, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired);
2677	va = trunc_page(va);
2678	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2679	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2680	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2681	    va));
2682	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
2683	    (m->oflags & VPO_BUSY) != 0,
2684	    ("pmap_enter: page %p is not busy", m));
2685
2686	mpte = NULL;
2687
2688	vm_page_lock_queues();
2689	PMAP_LOCK(pmap);
2690	sched_pin();
2691
2692	/*
2693	 * In the case that a page table page is not
2694	 * resident, we are creating it here.
2695	 */
2696	if (va < VM_MAXUSER_ADDRESS) {
2697		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2698	}
2699
2700	pde = pmap_pde(pmap, va);
2701	if ((*pde & PG_PS) != 0)
2702		panic("pmap_enter: attempted pmap_enter on 4MB page");
2703	pte = pmap_pte_quick(pmap, va);
2704
2705	/*
2706	 * Page Directory table entry not valid, we need a new PT page
2707	 */
2708	if (pte == NULL) {
2709		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2710			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2711	}
2712
2713	pa = VM_PAGE_TO_PHYS(m);
2714	om = NULL;
2715	opa = origpte = 0;
2716
2717#if 0
2718	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2719		pte, *pte));
2720#endif
2721	origpte = *pte;
2722	if (origpte)
2723		origpte = xpmap_mtop(origpte);
2724	opa = origpte & PG_FRAME;
2725
2726	/*
2727	 * Mapping has not changed, must be protection or wiring change.
2728	 */
2729	if (origpte && (opa == pa)) {
2730		/*
2731		 * Wiring change, just update stats. We don't worry about
2732		 * wiring PT pages as they remain resident as long as there
2733		 * are valid mappings in them. Hence, if a user page is wired,
2734		 * the PT page will be also.
2735		 */
2736		if (wired && ((origpte & PG_W) == 0))
2737			pmap->pm_stats.wired_count++;
2738		else if (!wired && (origpte & PG_W))
2739			pmap->pm_stats.wired_count--;
2740
2741		/*
2742		 * Remove extra pte reference
2743		 */
2744		if (mpte)
2745			mpte->wire_count--;
2746
2747		if (origpte & PG_MANAGED) {
2748			om = m;
2749			pa |= PG_MANAGED;
2750		}
2751		goto validate;
2752	}
2753
2754	pv = NULL;
2755
2756	/*
2757	 * Mapping has changed, invalidate old range and fall through to
2758	 * handle validating new mapping.
2759	 */
2760	if (opa) {
2761		if (origpte & PG_W)
2762			pmap->pm_stats.wired_count--;
2763		if (origpte & PG_MANAGED) {
2764			om = PHYS_TO_VM_PAGE(opa);
2765			pv = pmap_pvh_remove(&om->md, pmap, va);
2766		} else if (va < VM_MAXUSER_ADDRESS)
2767			printf("va=0x%x is unmanaged :-( \n", va);
2768
2769		if (mpte != NULL) {
2770			mpte->wire_count--;
2771			KASSERT(mpte->wire_count > 0,
2772			    ("pmap_enter: missing reference to page table page,"
2773			     " va: 0x%x", va));
2774		}
2775	} else
2776		pmap->pm_stats.resident_count++;
2777
2778	/*
2779	 * Enter on the PV list if part of our managed memory.
2780	 */
2781	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2782		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2783		    ("pmap_enter: managed mapping within the clean submap"));
2784		if (pv == NULL)
2785			pv = get_pv_entry(pmap, FALSE);
2786		pv->pv_va = va;
2787		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2788		pa |= PG_MANAGED;
2789	} else if (pv != NULL)
2790		free_pv_entry(pmap, pv);
2791
2792	/*
2793	 * Increment counters
2794	 */
2795	if (wired)
2796		pmap->pm_stats.wired_count++;
2797
2798validate:
2799	/*
2800	 * Now validate mapping with desired protection/wiring.
2801	 */
2802	newpte = (pt_entry_t)(pa | PG_V);
2803	if ((prot & VM_PROT_WRITE) != 0) {
2804		newpte |= PG_RW;
2805		if ((newpte & PG_MANAGED) != 0)
2806			vm_page_flag_set(m, PG_WRITEABLE);
2807	}
2808#ifdef PAE
2809	if ((prot & VM_PROT_EXECUTE) == 0)
2810		newpte |= pg_nx;
2811#endif
2812	if (wired)
2813		newpte |= PG_W;
2814	if (va < VM_MAXUSER_ADDRESS)
2815		newpte |= PG_U;
2816	if (pmap == kernel_pmap)
2817		newpte |= pgeflag;
2818
2819	critical_enter();
2820	/*
2821	 * if the mapping or permission bits are different, we need
2822	 * to update the pte.
2823	 */
2824	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2825		if (origpte) {
2826			invlva = FALSE;
2827			origpte = *pte;
2828			PT_SET_VA(pte, newpte | PG_A, FALSE);
2829			if (origpte & PG_A) {
2830				if (origpte & PG_MANAGED)
2831					vm_page_flag_set(om, PG_REFERENCED);
2832				if (opa != VM_PAGE_TO_PHYS(m))
2833					invlva = TRUE;
2834#ifdef PAE
2835				if ((origpte & PG_NX) == 0 &&
2836				    (newpte & PG_NX) != 0)
2837					invlva = TRUE;
2838#endif
2839			}
2840			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2841				if ((origpte & PG_MANAGED) != 0)
2842					vm_page_dirty(om);
2843				if ((prot & VM_PROT_WRITE) == 0)
2844					invlva = TRUE;
2845			}
2846			if ((origpte & PG_MANAGED) != 0 &&
2847			    TAILQ_EMPTY(&om->md.pv_list))
2848				vm_page_flag_clear(om, PG_WRITEABLE);
2849			if (invlva)
2850				pmap_invalidate_page(pmap, va);
2851		} else{
2852			PT_SET_VA(pte, newpte | PG_A, FALSE);
2853		}
2854
2855	}
2856	PT_UPDATES_FLUSH();
2857	critical_exit();
2858	if (*PMAP1)
2859		PT_SET_VA_MA(PMAP1, 0, TRUE);
2860	sched_unpin();
2861	vm_page_unlock_queues();
2862	PMAP_UNLOCK(pmap);
2863}
2864
2865/*
2866 * Maps a sequence of resident pages belonging to the same object.
2867 * The sequence begins with the given page m_start.  This page is
2868 * mapped at the given virtual address start.  Each subsequent page is
2869 * mapped at a virtual address that is offset from start by the same
2870 * amount as the page is offset from m_start within the object.  The
2871 * last page in the sequence is the page with the largest offset from
2872 * m_start that can be mapped at a virtual address less than the given
2873 * virtual address end.  Not every virtual page between start and end
2874 * is mapped; only those for which a resident page exists with the
2875 * corresponding offset from m_start are mapped.
2876 */
2877void
2878pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2879    vm_page_t m_start, vm_prot_t prot)
2880{
2881	vm_page_t m, mpte;
2882	vm_pindex_t diff, psize;
2883	multicall_entry_t mcl[16];
2884	multicall_entry_t *mclp = mcl;
2885	int error, count = 0;
2886
2887	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2888	psize = atop(end - start);
2889
2890	mpte = NULL;
2891	m = m_start;
2892	vm_page_lock_queues();
2893	PMAP_LOCK(pmap);
2894	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2895		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2896		    prot, mpte);
2897		m = TAILQ_NEXT(m, listq);
2898		if (count == 16) {
2899			error = HYPERVISOR_multicall(mcl, count);
2900			KASSERT(error == 0, ("bad multicall %d", error));
2901			mclp = mcl;
2902			count = 0;
2903		}
2904	}
2905	if (count) {
2906		error = HYPERVISOR_multicall(mcl, count);
2907		KASSERT(error == 0, ("bad multicall %d", error));
2908	}
2909	vm_page_unlock_queues();
2910	PMAP_UNLOCK(pmap);
2911}
2912
2913/*
2914 * this code makes some *MAJOR* assumptions:
2915 * 1. Current pmap & pmap exists.
2916 * 2. Not wired.
2917 * 3. Read access.
2918 * 4. No page table pages.
2919 * but is *MUCH* faster than pmap_enter...
2920 */
2921
2922void
2923pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2924{
2925	multicall_entry_t mcl, *mclp;
2926	int count = 0;
2927	mclp = &mcl;
2928
2929	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2930	    pmap, va, m, prot);
2931
2932	vm_page_lock_queues();
2933	PMAP_LOCK(pmap);
2934	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2935	if (count)
2936		HYPERVISOR_multicall(&mcl, count);
2937	vm_page_unlock_queues();
2938	PMAP_UNLOCK(pmap);
2939}
2940
2941#ifdef notyet
2942void
2943pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2944{
2945	int i, error, index = 0;
2946	multicall_entry_t mcl[16];
2947	multicall_entry_t *mclp = mcl;
2948
2949	PMAP_LOCK(pmap);
2950	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2951		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2952			continue;
2953
2954		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2955		if (index == 16) {
2956			error = HYPERVISOR_multicall(mcl, index);
2957			mclp = mcl;
2958			index = 0;
2959			KASSERT(error == 0, ("bad multicall %d", error));
2960		}
2961	}
2962	if (index) {
2963		error = HYPERVISOR_multicall(mcl, index);
2964		KASSERT(error == 0, ("bad multicall %d", error));
2965	}
2966
2967	PMAP_UNLOCK(pmap);
2968}
2969#endif
2970
2971static vm_page_t
2972pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2973    vm_prot_t prot, vm_page_t mpte)
2974{
2975	pt_entry_t *pte;
2976	vm_paddr_t pa;
2977	vm_page_t free;
2978	multicall_entry_t *mcl = *mclpp;
2979
2980	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2981	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2982	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2983	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2984	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2985
2986	/*
2987	 * In the case that a page table page is not
2988	 * resident, we are creating it here.
2989	 */
2990	if (va < VM_MAXUSER_ADDRESS) {
2991		unsigned ptepindex;
2992		pd_entry_t ptema;
2993
2994		/*
2995		 * Calculate pagetable page index
2996		 */
2997		ptepindex = va >> PDRSHIFT;
2998		if (mpte && (mpte->pindex == ptepindex)) {
2999			mpte->wire_count++;
3000		} else {
3001			/*
3002			 * Get the page directory entry
3003			 */
3004			ptema = pmap->pm_pdir[ptepindex];
3005
3006			/*
3007			 * If the page table page is mapped, we just increment
3008			 * the hold count, and activate it.
3009			 */
3010			if (ptema & PG_V) {
3011				if (ptema & PG_PS)
3012					panic("pmap_enter_quick: unexpected mapping into 4MB page");
3013				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
3014				mpte->wire_count++;
3015			} else {
3016				mpte = _pmap_allocpte(pmap, ptepindex,
3017				    M_NOWAIT);
3018				if (mpte == NULL)
3019					return (mpte);
3020			}
3021		}
3022	} else {
3023		mpte = NULL;
3024	}
3025
3026	/*
3027	 * This call to vtopte makes the assumption that we are
3028	 * entering the page into the current pmap.  In order to support
3029	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3030	 * But that isn't as quick as vtopte.
3031	 */
3032	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3033	pte = vtopte(va);
3034	if (*pte & PG_V) {
3035		if (mpte != NULL) {
3036			mpte->wire_count--;
3037			mpte = NULL;
3038		}
3039		return (mpte);
3040	}
3041
3042	/*
3043	 * Enter on the PV list if part of our managed memory.
3044	 */
3045	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3046	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3047		if (mpte != NULL) {
3048			free = NULL;
3049			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3050				pmap_invalidate_page(pmap, va);
3051				pmap_free_zero_pages(free);
3052			}
3053
3054			mpte = NULL;
3055		}
3056		return (mpte);
3057	}
3058
3059	/*
3060	 * Increment counters
3061	 */
3062	pmap->pm_stats.resident_count++;
3063
3064	pa = VM_PAGE_TO_PHYS(m);
3065#ifdef PAE
3066	if ((prot & VM_PROT_EXECUTE) == 0)
3067		pa |= pg_nx;
3068#endif
3069
3070#if 0
3071	/*
3072	 * Now validate mapping with RO protection
3073	 */
3074	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3075		pte_store(pte, pa | PG_V | PG_U);
3076	else
3077		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3078#else
3079	/*
3080	 * Now validate mapping with RO protection
3081	 */
3082	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3083		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3084	else
3085		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3086
3087	mcl->op = __HYPERVISOR_update_va_mapping;
3088	mcl->args[0] = va;
3089	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3090	mcl->args[2] = (uint32_t)(pa >> 32);
3091	mcl->args[3] = 0;
3092	*mclpp = mcl + 1;
3093	*count = *count + 1;
3094#endif
3095	return mpte;
3096}
3097
3098/*
3099 * Make a temporary mapping for a physical address.  This is only intended
3100 * to be used for panic dumps.
3101 */
3102void *
3103pmap_kenter_temporary(vm_paddr_t pa, int i)
3104{
3105	vm_offset_t va;
3106	vm_paddr_t ma = xpmap_ptom(pa);
3107
3108	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3109	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3110	invlpg(va);
3111	return ((void *)crashdumpmap);
3112}
3113
3114/*
3115 * This code maps large physical mmap regions into the
3116 * processor address space.  Note that some shortcuts
3117 * are taken, but the code works.
3118 */
3119void
3120pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3121		    vm_object_t object, vm_pindex_t pindex,
3122		    vm_size_t size)
3123{
3124	pd_entry_t *pde;
3125	vm_paddr_t pa, ptepa;
3126	vm_page_t p;
3127	int pat_mode;
3128
3129	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3130	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3131	    ("pmap_object_init_pt: non-device object"));
3132	if (pseflag &&
3133	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3134		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3135			return;
3136		p = vm_page_lookup(object, pindex);
3137		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3138		    ("pmap_object_init_pt: invalid page %p", p));
3139		pat_mode = p->md.pat_mode;
3140		/*
3141		 * Abort the mapping if the first page is not physically
3142		 * aligned to a 2/4MB page boundary.
3143		 */
3144		ptepa = VM_PAGE_TO_PHYS(p);
3145		if (ptepa & (NBPDR - 1))
3146			return;
3147		/*
3148		 * Skip the first page.  Abort the mapping if the rest of
3149		 * the pages are not physically contiguous or have differing
3150		 * memory attributes.
3151		 */
3152		p = TAILQ_NEXT(p, listq);
3153		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3154		    pa += PAGE_SIZE) {
3155			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3156			    ("pmap_object_init_pt: invalid page %p", p));
3157			if (pa != VM_PAGE_TO_PHYS(p) ||
3158			    pat_mode != p->md.pat_mode)
3159				return;
3160			p = TAILQ_NEXT(p, listq);
3161		}
3162		/* Map using 2/4MB pages. */
3163		PMAP_LOCK(pmap);
3164		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3165		    size; pa += NBPDR) {
3166			pde = pmap_pde(pmap, addr);
3167			if (*pde == 0) {
3168				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3169				    PG_U | PG_RW | PG_V);
3170				pmap->pm_stats.resident_count += NBPDR /
3171				    PAGE_SIZE;
3172				pmap_pde_mappings++;
3173			}
3174			/* Else continue on if the PDE is already valid. */
3175			addr += NBPDR;
3176		}
3177		PMAP_UNLOCK(pmap);
3178	}
3179}
3180
3181/*
3182 *	Routine:	pmap_change_wiring
3183 *	Function:	Change the wiring attribute for a map/virtual-address
3184 *			pair.
3185 *	In/out conditions:
3186 *			The mapping must already exist in the pmap.
3187 */
3188void
3189pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3190{
3191	pt_entry_t *pte;
3192
3193	vm_page_lock_queues();
3194	PMAP_LOCK(pmap);
3195	pte = pmap_pte(pmap, va);
3196
3197	if (wired && !pmap_pte_w(pte)) {
3198		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3199		pmap->pm_stats.wired_count++;
3200	} else if (!wired && pmap_pte_w(pte)) {
3201		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3202		pmap->pm_stats.wired_count--;
3203	}
3204
3205	/*
3206	 * Wiring is not a hardware characteristic so there is no need to
3207	 * invalidate TLB.
3208	 */
3209	pmap_pte_release(pte);
3210	PMAP_UNLOCK(pmap);
3211	vm_page_unlock_queues();
3212}
3213
3214
3215
3216/*
3217 *	Copy the range specified by src_addr/len
3218 *	from the source map to the range dst_addr/len
3219 *	in the destination map.
3220 *
3221 *	This routine is only advisory and need not do anything.
3222 */
3223
3224void
3225pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3226	  vm_offset_t src_addr)
3227{
3228	vm_page_t   free;
3229	vm_offset_t addr;
3230	vm_offset_t end_addr = src_addr + len;
3231	vm_offset_t pdnxt;
3232
3233	if (dst_addr != src_addr)
3234		return;
3235
3236	if (!pmap_is_current(src_pmap)) {
3237		CTR2(KTR_PMAP,
3238		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3239		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3240
3241		return;
3242	}
3243	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3244	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3245
3246	vm_page_lock_queues();
3247	if (dst_pmap < src_pmap) {
3248		PMAP_LOCK(dst_pmap);
3249		PMAP_LOCK(src_pmap);
3250	} else {
3251		PMAP_LOCK(src_pmap);
3252		PMAP_LOCK(dst_pmap);
3253	}
3254	sched_pin();
3255	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3256		pt_entry_t *src_pte, *dst_pte;
3257		vm_page_t dstmpte, srcmpte;
3258		pd_entry_t srcptepaddr;
3259		unsigned ptepindex;
3260
3261		KASSERT(addr < UPT_MIN_ADDRESS,
3262		    ("pmap_copy: invalid to pmap_copy page tables"));
3263
3264		pdnxt = (addr + NBPDR) & ~PDRMASK;
3265		ptepindex = addr >> PDRSHIFT;
3266
3267		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3268		if (srcptepaddr == 0)
3269			continue;
3270
3271		if (srcptepaddr & PG_PS) {
3272			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3273				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3274				dst_pmap->pm_stats.resident_count +=
3275				    NBPDR / PAGE_SIZE;
3276			}
3277			continue;
3278		}
3279
3280		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3281		KASSERT(srcmpte->wire_count > 0,
3282		    ("pmap_copy: source page table page is unused"));
3283
3284		if (pdnxt > end_addr)
3285			pdnxt = end_addr;
3286
3287		src_pte = vtopte(addr);
3288		while (addr < pdnxt) {
3289			pt_entry_t ptetemp;
3290			ptetemp = *src_pte;
3291			/*
3292			 * we only virtual copy managed pages
3293			 */
3294			if ((ptetemp & PG_MANAGED) != 0) {
3295				dstmpte = pmap_allocpte(dst_pmap, addr,
3296				    M_NOWAIT);
3297				if (dstmpte == NULL)
3298					break;
3299				dst_pte = pmap_pte_quick(dst_pmap, addr);
3300				if (*dst_pte == 0 &&
3301				    pmap_try_insert_pv_entry(dst_pmap, addr,
3302				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3303					/*
3304					 * Clear the wired, modified, and
3305					 * accessed (referenced) bits
3306					 * during the copy.
3307					 */
3308					KASSERT(ptetemp != 0, ("src_pte not set"));
3309					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3310					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3311					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3312						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3313					dst_pmap->pm_stats.resident_count++;
3314	 			} else {
3315					free = NULL;
3316					if (pmap_unwire_pte_hold(dst_pmap,
3317					    dstmpte, &free)) {
3318						pmap_invalidate_page(dst_pmap,
3319						    addr);
3320						pmap_free_zero_pages(free);
3321					}
3322				}
3323				if (dstmpte->wire_count >= srcmpte->wire_count)
3324					break;
3325			}
3326			addr += PAGE_SIZE;
3327			src_pte++;
3328		}
3329	}
3330	PT_UPDATES_FLUSH();
3331	sched_unpin();
3332	vm_page_unlock_queues();
3333	PMAP_UNLOCK(src_pmap);
3334	PMAP_UNLOCK(dst_pmap);
3335}
3336
3337static __inline void
3338pagezero(void *page)
3339{
3340#if defined(I686_CPU)
3341	if (cpu_class == CPUCLASS_686) {
3342#if defined(CPU_ENABLE_SSE)
3343		if (cpu_feature & CPUID_SSE2)
3344			sse2_pagezero(page);
3345		else
3346#endif
3347			i686_pagezero(page);
3348	} else
3349#endif
3350		bzero(page, PAGE_SIZE);
3351}
3352
3353/*
3354 *	pmap_zero_page zeros the specified hardware page by mapping
3355 *	the page into KVM and using bzero to clear its contents.
3356 */
3357void
3358pmap_zero_page(vm_page_t m)
3359{
3360	struct sysmaps *sysmaps;
3361
3362	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3363	mtx_lock(&sysmaps->lock);
3364	if (*sysmaps->CMAP2)
3365		panic("pmap_zero_page: CMAP2 busy");
3366	sched_pin();
3367	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3368	pagezero(sysmaps->CADDR2);
3369	PT_SET_MA(sysmaps->CADDR2, 0);
3370	sched_unpin();
3371	mtx_unlock(&sysmaps->lock);
3372}
3373
3374/*
3375 *	pmap_zero_page_area zeros the specified hardware page by mapping
3376 *	the page into KVM and using bzero to clear its contents.
3377 *
3378 *	off and size may not cover an area beyond a single hardware page.
3379 */
3380void
3381pmap_zero_page_area(vm_page_t m, int off, int size)
3382{
3383	struct sysmaps *sysmaps;
3384
3385	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3386	mtx_lock(&sysmaps->lock);
3387	if (*sysmaps->CMAP2)
3388		panic("pmap_zero_page: CMAP2 busy");
3389	sched_pin();
3390	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3391
3392	if (off == 0 && size == PAGE_SIZE)
3393		pagezero(sysmaps->CADDR2);
3394	else
3395		bzero((char *)sysmaps->CADDR2 + off, size);
3396	PT_SET_MA(sysmaps->CADDR2, 0);
3397	sched_unpin();
3398	mtx_unlock(&sysmaps->lock);
3399}
3400
3401/*
3402 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3403 *	the page into KVM and using bzero to clear its contents.  This
3404 *	is intended to be called from the vm_pagezero process only and
3405 *	outside of Giant.
3406 */
3407void
3408pmap_zero_page_idle(vm_page_t m)
3409{
3410
3411	if (*CMAP3)
3412		panic("pmap_zero_page: CMAP3 busy");
3413	sched_pin();
3414	PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3415	pagezero(CADDR3);
3416	PT_SET_MA(CADDR3, 0);
3417	sched_unpin();
3418}
3419
3420/*
3421 *	pmap_copy_page copies the specified (machine independent)
3422 *	page by mapping the page into virtual memory and using
3423 *	bcopy to copy the page, one machine dependent page at a
3424 *	time.
3425 */
3426void
3427pmap_copy_page(vm_page_t src, vm_page_t dst)
3428{
3429	struct sysmaps *sysmaps;
3430
3431	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3432	mtx_lock(&sysmaps->lock);
3433	if (*sysmaps->CMAP1)
3434		panic("pmap_copy_page: CMAP1 busy");
3435	if (*sysmaps->CMAP2)
3436		panic("pmap_copy_page: CMAP2 busy");
3437	sched_pin();
3438	PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A);
3439	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M);
3440	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3441	PT_SET_MA(sysmaps->CADDR1, 0);
3442	PT_SET_MA(sysmaps->CADDR2, 0);
3443	sched_unpin();
3444	mtx_unlock(&sysmaps->lock);
3445}
3446
3447/*
3448 * Returns true if the pmap's pv is one of the first
3449 * 16 pvs linked to from this page.  This count may
3450 * be changed upwards or downwards in the future; it
3451 * is only necessary that true be returned for a small
3452 * subset of pmaps for proper page aging.
3453 */
3454boolean_t
3455pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3456{
3457	pv_entry_t pv;
3458	int loops = 0;
3459	boolean_t rv;
3460
3461	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3462	    ("pmap_page_exists_quick: page %p is not managed", m));
3463	rv = FALSE;
3464	vm_page_lock_queues();
3465	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3466		if (PV_PMAP(pv) == pmap) {
3467			rv = TRUE;
3468			break;
3469		}
3470		loops++;
3471		if (loops >= 16)
3472			break;
3473	}
3474	vm_page_unlock_queues();
3475	return (rv);
3476}
3477
3478/*
3479 *	pmap_page_wired_mappings:
3480 *
3481 *	Return the number of managed mappings to the given physical page
3482 *	that are wired.
3483 */
3484int
3485pmap_page_wired_mappings(vm_page_t m)
3486{
3487	pv_entry_t pv;
3488	pt_entry_t *pte;
3489	pmap_t pmap;
3490	int count;
3491
3492	count = 0;
3493	if ((m->flags & PG_FICTITIOUS) != 0)
3494		return (count);
3495	vm_page_lock_queues();
3496	sched_pin();
3497	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3498		pmap = PV_PMAP(pv);
3499		PMAP_LOCK(pmap);
3500		pte = pmap_pte_quick(pmap, pv->pv_va);
3501		if ((*pte & PG_W) != 0)
3502			count++;
3503		PMAP_UNLOCK(pmap);
3504	}
3505	sched_unpin();
3506	vm_page_unlock_queues();
3507	return (count);
3508}
3509
3510/*
3511 * Returns TRUE if the given page is mapped individually or as part of
3512 * a 4mpage.  Otherwise, returns FALSE.
3513 */
3514boolean_t
3515pmap_page_is_mapped(vm_page_t m)
3516{
3517	boolean_t rv;
3518
3519	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3520		return (FALSE);
3521	vm_page_lock_queues();
3522	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
3523	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
3524	vm_page_unlock_queues();
3525	return (rv);
3526}
3527
3528/*
3529 * Remove all pages from specified address space
3530 * this aids process exit speeds.  Also, this code
3531 * is special cased for current process only, but
3532 * can have the more generic (and slightly slower)
3533 * mode enabled.  This is much faster than pmap_remove
3534 * in the case of running down an entire address space.
3535 */
3536void
3537pmap_remove_pages(pmap_t pmap)
3538{
3539	pt_entry_t *pte, tpte;
3540	vm_page_t m, free = NULL;
3541	pv_entry_t pv;
3542	struct pv_chunk *pc, *npc;
3543	int field, idx;
3544	int32_t bit;
3545	uint32_t inuse, bitmask;
3546	int allfree;
3547
3548	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3549
3550	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3551		printf("warning: pmap_remove_pages called with non-current pmap\n");
3552		return;
3553	}
3554	vm_page_lock_queues();
3555	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3556	PMAP_LOCK(pmap);
3557	sched_pin();
3558	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3559		allfree = 1;
3560		for (field = 0; field < _NPCM; field++) {
3561			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3562			while (inuse != 0) {
3563				bit = bsfl(inuse);
3564				bitmask = 1UL << bit;
3565				idx = field * 32 + bit;
3566				pv = &pc->pc_pventry[idx];
3567				inuse &= ~bitmask;
3568
3569				pte = vtopte(pv->pv_va);
3570				tpte = *pte ? xpmap_mtop(*pte) : 0;
3571
3572				if (tpte == 0) {
3573					printf(
3574					    "TPTE at %p  IS ZERO @ VA %08x\n",
3575					    pte, pv->pv_va);
3576					panic("bad pte");
3577				}
3578
3579/*
3580 * We cannot remove wired pages from a process' mapping at this time
3581 */
3582				if (tpte & PG_W) {
3583					allfree = 0;
3584					continue;
3585				}
3586
3587				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3588				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3589				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3590				    m, (uintmax_t)m->phys_addr,
3591				    (uintmax_t)tpte));
3592
3593				KASSERT(m < &vm_page_array[vm_page_array_size],
3594					("pmap_remove_pages: bad tpte %#jx",
3595					(uintmax_t)tpte));
3596
3597
3598				PT_CLEAR_VA(pte, FALSE);
3599
3600				/*
3601				 * Update the vm_page_t clean/reference bits.
3602				 */
3603				if (tpte & PG_M)
3604					vm_page_dirty(m);
3605
3606				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3607				if (TAILQ_EMPTY(&m->md.pv_list))
3608					vm_page_flag_clear(m, PG_WRITEABLE);
3609
3610				pmap_unuse_pt(pmap, pv->pv_va, &free);
3611
3612				/* Mark free */
3613				PV_STAT(pv_entry_frees++);
3614				PV_STAT(pv_entry_spare++);
3615				pv_entry_count--;
3616				pc->pc_map[field] |= bitmask;
3617				pmap->pm_stats.resident_count--;
3618			}
3619		}
3620		PT_UPDATES_FLUSH();
3621		if (allfree) {
3622			PV_STAT(pv_entry_spare -= _NPCPV);
3623			PV_STAT(pc_chunk_count--);
3624			PV_STAT(pc_chunk_frees++);
3625			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3626			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3627			pmap_qremove((vm_offset_t)pc, 1);
3628			vm_page_unwire(m, 0);
3629			vm_page_free(m);
3630			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3631		}
3632	}
3633	PT_UPDATES_FLUSH();
3634	if (*PMAP1)
3635		PT_SET_MA(PADDR1, 0);
3636
3637	sched_unpin();
3638	pmap_invalidate_all(pmap);
3639	vm_page_unlock_queues();
3640	PMAP_UNLOCK(pmap);
3641	pmap_free_zero_pages(free);
3642}
3643
3644/*
3645 *	pmap_is_modified:
3646 *
3647 *	Return whether or not the specified physical page was modified
3648 *	in any physical maps.
3649 */
3650boolean_t
3651pmap_is_modified(vm_page_t m)
3652{
3653	pv_entry_t pv;
3654	pt_entry_t *pte;
3655	pmap_t pmap;
3656	boolean_t rv;
3657
3658	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3659	    ("pmap_is_modified: page %p is not managed", m));
3660	rv = FALSE;
3661
3662	/*
3663	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
3664	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
3665	 * is clear, no PTEs can have PG_M set.
3666	 */
3667	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3668	if ((m->oflags & VPO_BUSY) == 0 &&
3669	    (m->flags & PG_WRITEABLE) == 0)
3670		return (rv);
3671	vm_page_lock_queues();
3672	sched_pin();
3673	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3674		pmap = PV_PMAP(pv);
3675		PMAP_LOCK(pmap);
3676		pte = pmap_pte_quick(pmap, pv->pv_va);
3677		rv = (*pte & PG_M) != 0;
3678		PMAP_UNLOCK(pmap);
3679		if (rv)
3680			break;
3681	}
3682	if (*PMAP1)
3683		PT_SET_MA(PADDR1, 0);
3684	sched_unpin();
3685	vm_page_unlock_queues();
3686	return (rv);
3687}
3688
3689/*
3690 *	pmap_is_prefaultable:
3691 *
3692 *	Return whether or not the specified virtual address is elgible
3693 *	for prefault.
3694 */
3695static boolean_t
3696pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3697{
3698	pt_entry_t *pte;
3699	boolean_t rv = FALSE;
3700
3701	return (rv);
3702
3703	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3704		pte = vtopte(addr);
3705		rv = (*pte == 0);
3706	}
3707	return (rv);
3708}
3709
3710boolean_t
3711pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3712{
3713	boolean_t rv;
3714
3715	PMAP_LOCK(pmap);
3716	rv = pmap_is_prefaultable_locked(pmap, addr);
3717	PMAP_UNLOCK(pmap);
3718	return (rv);
3719}
3720
3721boolean_t
3722pmap_is_referenced(vm_page_t m)
3723{
3724	pv_entry_t pv;
3725	pt_entry_t *pte;
3726	pmap_t pmap;
3727	boolean_t rv;
3728
3729	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3730	    ("pmap_is_referenced: page %p is not managed", m));
3731	rv = FALSE;
3732	vm_page_lock_queues();
3733	sched_pin();
3734	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3735		pmap = PV_PMAP(pv);
3736		PMAP_LOCK(pmap);
3737		pte = pmap_pte_quick(pmap, pv->pv_va);
3738		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3739		PMAP_UNLOCK(pmap);
3740		if (rv)
3741			break;
3742	}
3743	if (*PMAP1)
3744		PT_SET_MA(PADDR1, 0);
3745	sched_unpin();
3746	vm_page_unlock_queues();
3747	return (rv);
3748}
3749
3750void
3751pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3752{
3753	int i, npages = round_page(len) >> PAGE_SHIFT;
3754	for (i = 0; i < npages; i++) {
3755		pt_entry_t *pte;
3756		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3757		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3758		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3759		pmap_pte_release(pte);
3760	}
3761}
3762
3763void
3764pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3765{
3766	int i, npages = round_page(len) >> PAGE_SHIFT;
3767	for (i = 0; i < npages; i++) {
3768		pt_entry_t *pte;
3769		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3770		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3771		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3772		pmap_pte_release(pte);
3773	}
3774}
3775
3776/*
3777 * Clear the write and modified bits in each of the given page's mappings.
3778 */
3779void
3780pmap_remove_write(vm_page_t m)
3781{
3782	pv_entry_t pv;
3783	pmap_t pmap;
3784	pt_entry_t oldpte, *pte;
3785
3786	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3787	    ("pmap_remove_write: page %p is not managed", m));
3788
3789	/*
3790	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
3791	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
3792	 * is clear, no page table entries need updating.
3793	 */
3794	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3795	if ((m->oflags & VPO_BUSY) == 0 &&
3796	    (m->flags & PG_WRITEABLE) == 0)
3797		return;
3798	vm_page_lock_queues();
3799	sched_pin();
3800	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3801		pmap = PV_PMAP(pv);
3802		PMAP_LOCK(pmap);
3803		pte = pmap_pte_quick(pmap, pv->pv_va);
3804retry:
3805		oldpte = *pte;
3806		if ((oldpte & PG_RW) != 0) {
3807			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3808
3809			/*
3810			 * Regardless of whether a pte is 32 or 64 bits
3811			 * in size, PG_RW and PG_M are among the least
3812			 * significant 32 bits.
3813			 */
3814			PT_SET_VA_MA(pte, newpte, TRUE);
3815			if (*pte != newpte)
3816				goto retry;
3817
3818			if ((oldpte & PG_M) != 0)
3819				vm_page_dirty(m);
3820			pmap_invalidate_page(pmap, pv->pv_va);
3821		}
3822		PMAP_UNLOCK(pmap);
3823	}
3824	vm_page_flag_clear(m, PG_WRITEABLE);
3825	PT_UPDATES_FLUSH();
3826	if (*PMAP1)
3827		PT_SET_MA(PADDR1, 0);
3828	sched_unpin();
3829	vm_page_unlock_queues();
3830}
3831
3832/*
3833 *	pmap_ts_referenced:
3834 *
3835 *	Return a count of reference bits for a page, clearing those bits.
3836 *	It is not necessary for every reference bit to be cleared, but it
3837 *	is necessary that 0 only be returned when there are truly no
3838 *	reference bits set.
3839 *
3840 *	XXX: The exact number of bits to check and clear is a matter that
3841 *	should be tested and standardized at some point in the future for
3842 *	optimal aging of shared pages.
3843 */
3844int
3845pmap_ts_referenced(vm_page_t m)
3846{
3847	pv_entry_t pv, pvf, pvn;
3848	pmap_t pmap;
3849	pt_entry_t *pte;
3850	int rtval = 0;
3851
3852	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3853	    ("pmap_ts_referenced: page %p is not managed", m));
3854	vm_page_lock_queues();
3855	sched_pin();
3856	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3857		pvf = pv;
3858		do {
3859			pvn = TAILQ_NEXT(pv, pv_list);
3860			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3861			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3862			pmap = PV_PMAP(pv);
3863			PMAP_LOCK(pmap);
3864			pte = pmap_pte_quick(pmap, pv->pv_va);
3865			if ((*pte & PG_A) != 0) {
3866				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3867				pmap_invalidate_page(pmap, pv->pv_va);
3868				rtval++;
3869				if (rtval > 4)
3870					pvn = NULL;
3871			}
3872			PMAP_UNLOCK(pmap);
3873		} while ((pv = pvn) != NULL && pv != pvf);
3874	}
3875	PT_UPDATES_FLUSH();
3876	if (*PMAP1)
3877		PT_SET_MA(PADDR1, 0);
3878
3879	sched_unpin();
3880	vm_page_unlock_queues();
3881	return (rtval);
3882}
3883
3884/*
3885 *	Clear the modify bits on the specified physical page.
3886 */
3887void
3888pmap_clear_modify(vm_page_t m)
3889{
3890	pv_entry_t pv;
3891	pmap_t pmap;
3892	pt_entry_t *pte;
3893
3894	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3895	    ("pmap_clear_modify: page %p is not managed", m));
3896	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
3897	KASSERT((m->oflags & VPO_BUSY) == 0,
3898	    ("pmap_clear_modify: page %p is busy", m));
3899
3900	/*
3901	 * If the page is not PG_WRITEABLE, then no PTEs can have PG_M set.
3902	 * If the object containing the page is locked and the page is not
3903	 * VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
3904	 */
3905	if ((m->flags & PG_WRITEABLE) == 0)
3906		return;
3907	vm_page_lock_queues();
3908	sched_pin();
3909	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3910		pmap = PV_PMAP(pv);
3911		PMAP_LOCK(pmap);
3912		pte = pmap_pte_quick(pmap, pv->pv_va);
3913		if ((*pte & PG_M) != 0) {
3914			/*
3915			 * Regardless of whether a pte is 32 or 64 bits
3916			 * in size, PG_M is among the least significant
3917			 * 32 bits.
3918			 */
3919			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3920			pmap_invalidate_page(pmap, pv->pv_va);
3921		}
3922		PMAP_UNLOCK(pmap);
3923	}
3924	sched_unpin();
3925	vm_page_unlock_queues();
3926}
3927
3928/*
3929 *	pmap_clear_reference:
3930 *
3931 *	Clear the reference bit on the specified physical page.
3932 */
3933void
3934pmap_clear_reference(vm_page_t m)
3935{
3936	pv_entry_t pv;
3937	pmap_t pmap;
3938	pt_entry_t *pte;
3939
3940	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
3941	    ("pmap_clear_reference: page %p is not managed", m));
3942	vm_page_lock_queues();
3943	sched_pin();
3944	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3945		pmap = PV_PMAP(pv);
3946		PMAP_LOCK(pmap);
3947		pte = pmap_pte_quick(pmap, pv->pv_va);
3948		if ((*pte & PG_A) != 0) {
3949			/*
3950			 * Regardless of whether a pte is 32 or 64 bits
3951			 * in size, PG_A is among the least significant
3952			 * 32 bits.
3953			 */
3954			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3955			pmap_invalidate_page(pmap, pv->pv_va);
3956		}
3957		PMAP_UNLOCK(pmap);
3958	}
3959	sched_unpin();
3960	vm_page_unlock_queues();
3961}
3962
3963/*
3964 * Miscellaneous support routines follow
3965 */
3966
3967/*
3968 * Map a set of physical memory pages into the kernel virtual
3969 * address space. Return a pointer to where it is mapped. This
3970 * routine is intended to be used for mapping device memory,
3971 * NOT real memory.
3972 */
3973void *
3974pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3975{
3976	vm_offset_t va, offset;
3977	vm_size_t tmpsize;
3978
3979	offset = pa & PAGE_MASK;
3980	size = roundup(offset + size, PAGE_SIZE);
3981	pa = pa & PG_FRAME;
3982
3983	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3984		va = KERNBASE + pa;
3985	else
3986		va = kmem_alloc_nofault(kernel_map, size);
3987	if (!va)
3988		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3989
3990	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3991		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3992	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3993	pmap_invalidate_cache_range(va, va + size);
3994	return ((void *)(va + offset));
3995}
3996
3997void *
3998pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3999{
4000
4001	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4002}
4003
4004void *
4005pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4006{
4007
4008	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4009}
4010
4011void
4012pmap_unmapdev(vm_offset_t va, vm_size_t size)
4013{
4014	vm_offset_t base, offset, tmpva;
4015
4016	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4017		return;
4018	base = trunc_page(va);
4019	offset = va & PAGE_MASK;
4020	size = roundup(offset + size, PAGE_SIZE);
4021	critical_enter();
4022	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4023		pmap_kremove(tmpva);
4024	pmap_invalidate_range(kernel_pmap, va, tmpva);
4025	critical_exit();
4026	kmem_free(kernel_map, base, size);
4027}
4028
4029/*
4030 * Sets the memory attribute for the specified page.
4031 */
4032void
4033pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4034{
4035	struct sysmaps *sysmaps;
4036	vm_offset_t sva, eva;
4037
4038	m->md.pat_mode = ma;
4039	if ((m->flags & PG_FICTITIOUS) != 0)
4040		return;
4041
4042	/*
4043	 * If "m" is a normal page, flush it from the cache.
4044	 * See pmap_invalidate_cache_range().
4045	 *
4046	 * First, try to find an existing mapping of the page by sf
4047	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4048	 * flushes the cache.
4049	 */
4050	if (sf_buf_invalidate_cache(m))
4051		return;
4052
4053	/*
4054	 * If page is not mapped by sf buffer, but CPU does not
4055	 * support self snoop, map the page transient and do
4056	 * invalidation. In the worst case, whole cache is flushed by
4057	 * pmap_invalidate_cache_range().
4058	 */
4059	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4060		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4061		mtx_lock(&sysmaps->lock);
4062		if (*sysmaps->CMAP2)
4063			panic("pmap_page_set_memattr: CMAP2 busy");
4064		sched_pin();
4065		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4066		    xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M |
4067		    pmap_cache_bits(m->md.pat_mode, 0));
4068		invlcaddr(sysmaps->CADDR2);
4069		sva = (vm_offset_t)sysmaps->CADDR2;
4070		eva = sva + PAGE_SIZE;
4071	} else
4072		sva = eva = 0; /* gcc */
4073	pmap_invalidate_cache_range(sva, eva);
4074	if (sva != 0) {
4075		PT_SET_MA(sysmaps->CADDR2, 0);
4076		sched_unpin();
4077		mtx_unlock(&sysmaps->lock);
4078	}
4079}
4080
4081int
4082pmap_change_attr(va, size, mode)
4083	vm_offset_t va;
4084	vm_size_t size;
4085	int mode;
4086{
4087	vm_offset_t base, offset, tmpva;
4088	pt_entry_t *pte;
4089	u_int opte, npte;
4090	pd_entry_t *pde;
4091	boolean_t changed;
4092
4093	base = trunc_page(va);
4094	offset = va & PAGE_MASK;
4095	size = roundup(offset + size, PAGE_SIZE);
4096
4097	/* Only supported on kernel virtual addresses. */
4098	if (base <= VM_MAXUSER_ADDRESS)
4099		return (EINVAL);
4100
4101	/* 4MB pages and pages that aren't mapped aren't supported. */
4102	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4103		pde = pmap_pde(kernel_pmap, tmpva);
4104		if (*pde & PG_PS)
4105			return (EINVAL);
4106		if ((*pde & PG_V) == 0)
4107			return (EINVAL);
4108		pte = vtopte(va);
4109		if ((*pte & PG_V) == 0)
4110			return (EINVAL);
4111	}
4112
4113	changed = FALSE;
4114
4115	/*
4116	 * Ok, all the pages exist and are 4k, so run through them updating
4117	 * their cache mode.
4118	 */
4119	for (tmpva = base; size > 0; ) {
4120		pte = vtopte(tmpva);
4121
4122		/*
4123		 * The cache mode bits are all in the low 32-bits of the
4124		 * PTE, so we can just spin on updating the low 32-bits.
4125		 */
4126		do {
4127			opte = *(u_int *)pte;
4128			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4129			npte |= pmap_cache_bits(mode, 0);
4130			PT_SET_VA_MA(pte, npte, TRUE);
4131		} while (npte != opte && (*pte != npte));
4132		if (npte != opte)
4133			changed = TRUE;
4134		tmpva += PAGE_SIZE;
4135		size -= PAGE_SIZE;
4136	}
4137
4138	/*
4139	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4140	 * be, etc.
4141	 */
4142	if (changed) {
4143		pmap_invalidate_range(kernel_pmap, base, tmpva);
4144		pmap_invalidate_cache_range(base, tmpva);
4145	}
4146	return (0);
4147}
4148
4149/*
4150 * perform the pmap work for mincore
4151 */
4152int
4153pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4154{
4155	pt_entry_t *ptep, pte;
4156	vm_paddr_t pa;
4157	int val;
4158
4159	PMAP_LOCK(pmap);
4160retry:
4161	ptep = pmap_pte(pmap, addr);
4162	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4163	pmap_pte_release(ptep);
4164	val = 0;
4165	if ((pte & PG_V) != 0) {
4166		val |= MINCORE_INCORE;
4167		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4168			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4169		if ((pte & PG_A) != 0)
4170			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4171	}
4172	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4173	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4174	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4175		pa = pte & PG_FRAME;
4176		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4177		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4178			goto retry;
4179	} else
4180		PA_UNLOCK_COND(*locked_pa);
4181	PMAP_UNLOCK(pmap);
4182	return (val);
4183}
4184
4185void
4186pmap_activate(struct thread *td)
4187{
4188	pmap_t	pmap, oldpmap;
4189	u_int32_t  cr3;
4190
4191	critical_enter();
4192	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4193	oldpmap = PCPU_GET(curpmap);
4194#if defined(SMP)
4195	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4196	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4197#else
4198	oldpmap->pm_active &= ~1;
4199	pmap->pm_active |= 1;
4200#endif
4201#ifdef PAE
4202	cr3 = vtophys(pmap->pm_pdpt);
4203#else
4204	cr3 = vtophys(pmap->pm_pdir);
4205#endif
4206	/*
4207	 * pmap_activate is for the current thread on the current cpu
4208	 */
4209	td->td_pcb->pcb_cr3 = cr3;
4210	PT_UPDATES_FLUSH();
4211	load_cr3(cr3);
4212	PCPU_SET(curpmap, pmap);
4213	critical_exit();
4214}
4215
4216void
4217pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4218{
4219}
4220
4221/*
4222 *	Increase the starting virtual address of the given mapping if a
4223 *	different alignment might result in more superpage mappings.
4224 */
4225void
4226pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4227    vm_offset_t *addr, vm_size_t size)
4228{
4229	vm_offset_t superpage_offset;
4230
4231	if (size < NBPDR)
4232		return;
4233	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4234		offset += ptoa(object->pg_color);
4235	superpage_offset = offset & PDRMASK;
4236	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4237	    (*addr & PDRMASK) == superpage_offset)
4238		return;
4239	if ((*addr & PDRMASK) < superpage_offset)
4240		*addr = (*addr & ~PDRMASK) + superpage_offset;
4241	else
4242		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4243}
4244
4245#ifdef XEN
4246
4247void
4248pmap_suspend()
4249{
4250	pmap_t pmap;
4251	int i, pdir, offset;
4252	vm_paddr_t pdirma;
4253	mmu_update_t mu[4];
4254
4255	/*
4256	 * We need to remove the recursive mapping structure from all
4257	 * our pmaps so that Xen doesn't get confused when it restores
4258	 * the page tables. The recursive map lives at page directory
4259	 * index PTDPTDI. We assume that the suspend code has stopped
4260	 * the other vcpus (if any).
4261	 */
4262	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4263		for (i = 0; i < 4; i++) {
4264			/*
4265			 * Figure out which page directory (L2) page
4266			 * contains this bit of the recursive map and
4267			 * the offset within that page of the map
4268			 * entry
4269			 */
4270			pdir = (PTDPTDI + i) / NPDEPG;
4271			offset = (PTDPTDI + i) % NPDEPG;
4272			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4273			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4274			mu[i].val = 0;
4275		}
4276		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4277	}
4278}
4279
4280void
4281pmap_resume()
4282{
4283	pmap_t pmap;
4284	int i, pdir, offset;
4285	vm_paddr_t pdirma;
4286	mmu_update_t mu[4];
4287
4288	/*
4289	 * Restore the recursive map that we removed on suspend.
4290	 */
4291	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4292		for (i = 0; i < 4; i++) {
4293			/*
4294			 * Figure out which page directory (L2) page
4295			 * contains this bit of the recursive map and
4296			 * the offset within that page of the map
4297			 * entry
4298			 */
4299			pdir = (PTDPTDI + i) / NPDEPG;
4300			offset = (PTDPTDI + i) % NPDEPG;
4301			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4302			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4303			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4304		}
4305		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4306	}
4307}
4308
4309#endif
4310
4311#if defined(PMAP_DEBUG)
4312pmap_pid_dump(int pid)
4313{
4314	pmap_t pmap;
4315	struct proc *p;
4316	int npte = 0;
4317	int index;
4318
4319	sx_slock(&allproc_lock);
4320	FOREACH_PROC_IN_SYSTEM(p) {
4321		if (p->p_pid != pid)
4322			continue;
4323
4324		if (p->p_vmspace) {
4325			int i,j;
4326			index = 0;
4327			pmap = vmspace_pmap(p->p_vmspace);
4328			for (i = 0; i < NPDEPTD; i++) {
4329				pd_entry_t *pde;
4330				pt_entry_t *pte;
4331				vm_offset_t base = i << PDRSHIFT;
4332
4333				pde = &pmap->pm_pdir[i];
4334				if (pde && pmap_pde_v(pde)) {
4335					for (j = 0; j < NPTEPG; j++) {
4336						vm_offset_t va = base + (j << PAGE_SHIFT);
4337						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4338							if (index) {
4339								index = 0;
4340								printf("\n");
4341							}
4342							sx_sunlock(&allproc_lock);
4343							return npte;
4344						}
4345						pte = pmap_pte(pmap, va);
4346						if (pte && pmap_pte_v(pte)) {
4347							pt_entry_t pa;
4348							vm_page_t m;
4349							pa = PT_GET(pte);
4350							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4351							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4352								va, pa, m->hold_count, m->wire_count, m->flags);
4353							npte++;
4354							index++;
4355							if (index >= 2) {
4356								index = 0;
4357								printf("\n");
4358							} else {
4359								printf(" ");
4360							}
4361						}
4362					}
4363				}
4364			}
4365		}
4366	}
4367	sx_sunlock(&allproc_lock);
4368	return npte;
4369}
4370#endif
4371
4372#if defined(DEBUG)
4373
4374static void	pads(pmap_t pm);
4375void		pmap_pvdump(vm_paddr_t pa);
4376
4377/* print address space of pmap*/
4378static void
4379pads(pmap_t pm)
4380{
4381	int i, j;
4382	vm_paddr_t va;
4383	pt_entry_t *ptep;
4384
4385	if (pm == kernel_pmap)
4386		return;
4387	for (i = 0; i < NPDEPTD; i++)
4388		if (pm->pm_pdir[i])
4389			for (j = 0; j < NPTEPG; j++) {
4390				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4391				if (pm == kernel_pmap && va < KERNBASE)
4392					continue;
4393				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4394					continue;
4395				ptep = pmap_pte(pm, va);
4396				if (pmap_pte_v(ptep))
4397					printf("%x:%x ", va, *ptep);
4398			};
4399
4400}
4401
4402void
4403pmap_pvdump(vm_paddr_t pa)
4404{
4405	pv_entry_t pv;
4406	pmap_t pmap;
4407	vm_page_t m;
4408
4409	printf("pa %x", pa);
4410	m = PHYS_TO_VM_PAGE(pa);
4411	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4412		pmap = PV_PMAP(pv);
4413		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4414		pads(pmap);
4415	}
4416	printf(" ");
4417}
4418#endif
4419