pmap.c revision 207419
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 207419 2010-04-30 03:26:12Z kmacy $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#define PMAP_DIAGNOSTIC
107
108#include "opt_cpu.h"
109#include "opt_pmap.h"
110#include "opt_msgbuf.h"
111#include "opt_smp.h"
112#include "opt_xbox.h"
113
114#include <sys/param.h>
115#include <sys/systm.h>
116#include <sys/kernel.h>
117#include <sys/ktr.h>
118#include <sys/lock.h>
119#include <sys/malloc.h>
120#include <sys/mman.h>
121#include <sys/msgbuf.h>
122#include <sys/mutex.h>
123#include <sys/proc.h>
124#include <sys/sf_buf.h>
125#include <sys/sx.h>
126#include <sys/vmmeter.h>
127#include <sys/sched.h>
128#include <sys/sysctl.h>
129#ifdef SMP
130#include <sys/smp.h>
131#endif
132
133#include <vm/vm.h>
134#include <vm/vm_param.h>
135#include <vm/vm_kern.h>
136#include <vm/vm_page.h>
137#include <vm/vm_map.h>
138#include <vm/vm_object.h>
139#include <vm/vm_extern.h>
140#include <vm/vm_pageout.h>
141#include <vm/vm_pager.h>
142#include <vm/uma.h>
143
144#include <machine/cpu.h>
145#include <machine/cputypes.h>
146#include <machine/md_var.h>
147#include <machine/pcb.h>
148#include <machine/specialreg.h>
149#ifdef SMP
150#include <machine/smp.h>
151#endif
152
153#ifdef XBOX
154#include <machine/xbox.h>
155#endif
156
157#include <xen/interface/xen.h>
158#include <xen/hypervisor.h>
159#include <machine/xen/hypercall.h>
160#include <machine/xen/xenvar.h>
161#include <machine/xen/xenfunc.h>
162
163#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
164#define CPU_ENABLE_SSE
165#endif
166
167#ifndef PMAP_SHPGPERPROC
168#define PMAP_SHPGPERPROC 200
169#endif
170
171#if defined(DIAGNOSTIC)
172#define PMAP_DIAGNOSTIC
173#endif
174
175#if !defined(PMAP_DIAGNOSTIC)
176#ifdef __GNUC_GNU_INLINE__
177#define PMAP_INLINE	inline
178#else
179#define PMAP_INLINE	extern inline
180#endif
181#else
182#define PMAP_INLINE
183#endif
184
185#define PV_STATS
186#ifdef PV_STATS
187#define PV_STAT(x)	do { x ; } while (0)
188#else
189#define PV_STAT(x)	do { } while (0)
190#endif
191
192#define	pa_index(pa)	((pa) >> PDRSHIFT)
193#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
194
195/*
196 * Get PDEs and PTEs for user/kernel address space
197 */
198#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
199#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
200
201#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
202#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
203#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
204#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
205#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
206
207#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
208
209struct pmap kernel_pmap_store;
210LIST_HEAD(pmaplist, pmap);
211static struct pmaplist allpmaps;
212static struct mtx allpmaps_lock;
213
214vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
215vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
216int pgeflag = 0;		/* PG_G or-in */
217int pseflag = 0;		/* PG_PS or-in */
218
219int nkpt;
220vm_offset_t kernel_vm_end;
221extern u_int32_t KERNend;
222
223#ifdef PAE
224pt_entry_t pg_nx;
225#if !defined(XEN)
226static uma_zone_t pdptzone;
227#endif
228#endif
229
230static int pat_works;			/* Is page attribute table sane? */
231
232/*
233 * Data for the pv entry allocation mechanism
234 */
235static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
236static struct md_page *pv_table;
237static int shpgperproc = PMAP_SHPGPERPROC;
238
239struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
240int pv_maxchunks;			/* How many chunks we have KVA for */
241vm_offset_t pv_vafree;			/* freelist stored in the PTE */
242
243/*
244 * All those kernel PT submaps that BSD is so fond of
245 */
246struct sysmaps {
247	struct	mtx lock;
248	pt_entry_t *CMAP1;
249	pt_entry_t *CMAP2;
250	caddr_t	CADDR1;
251	caddr_t	CADDR2;
252};
253static struct sysmaps sysmaps_pcpu[MAXCPU];
254static pt_entry_t *CMAP3;
255caddr_t ptvmmap = 0;
256static caddr_t CADDR3;
257struct msgbuf *msgbufp = 0;
258
259/*
260 * Crashdump maps.
261 */
262static caddr_t crashdumpmap;
263
264static pt_entry_t *PMAP1 = 0, *PMAP2;
265static pt_entry_t *PADDR1 = 0, *PADDR2;
266#ifdef SMP
267static int PMAP1cpu;
268static int PMAP1changedcpu;
269SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
270	   &PMAP1changedcpu, 0,
271	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
272#endif
273static int PMAP1changed;
274SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
275	   &PMAP1changed, 0,
276	   "Number of times pmap_pte_quick changed PMAP1");
277static int PMAP1unchanged;
278SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
279	   &PMAP1unchanged, 0,
280	   "Number of times pmap_pte_quick didn't change PMAP1");
281static struct mtx PMAP2mutex;
282
283SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
284static int pg_ps_enabled;
285SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
286    "Are large page mappings enabled?");
287
288SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
289	"Max number of PV entries");
290SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
291	"Page share factor per proc");
292SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
293    "2/4MB page mapping counters");
294
295static u_long pmap_pde_mappings;
296SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
297    &pmap_pde_mappings, 0, "2/4MB page mappings");
298
299static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
300static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
301
302static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
303    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
304static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
305    vm_page_t *free);
306static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
307    vm_page_t *free);
308static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
309					vm_offset_t va);
310static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
311static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
312    vm_page_t m);
313
314static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
315
316static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
317static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
318static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
319static void pmap_pte_release(pt_entry_t *pte);
320static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
321static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
322static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
323static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
324
325static __inline void pagezero(void *page);
326
327#if defined(PAE) && !defined(XEN)
328static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
329#endif
330#ifndef XEN
331static void pmap_set_pg(void);
332#endif
333
334CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
335CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
336
337/*
338 * If you get an error here, then you set KVA_PAGES wrong! See the
339 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
340 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
341 */
342CTASSERT(KERNBASE % (1 << 24) == 0);
343
344
345
346void
347pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
348{
349	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
350
351	switch (type) {
352	case SH_PD_SET_VA:
353#if 0
354		xen_queue_pt_update(shadow_pdir_ma,
355				    xpmap_ptom(val & ~(PG_RW)));
356#endif
357		xen_queue_pt_update(pdir_ma,
358				    xpmap_ptom(val));
359		break;
360	case SH_PD_SET_VA_MA:
361#if 0
362		xen_queue_pt_update(shadow_pdir_ma,
363				    val & ~(PG_RW));
364#endif
365		xen_queue_pt_update(pdir_ma, val);
366		break;
367	case SH_PD_SET_VA_CLEAR:
368#if 0
369		xen_queue_pt_update(shadow_pdir_ma, 0);
370#endif
371		xen_queue_pt_update(pdir_ma, 0);
372		break;
373	}
374}
375
376/*
377 * Move the kernel virtual free pointer to the next
378 * 4MB.  This is used to help improve performance
379 * by using a large (4MB) page for much of the kernel
380 * (.text, .data, .bss)
381 */
382static vm_offset_t
383pmap_kmem_choose(vm_offset_t addr)
384{
385	vm_offset_t newaddr = addr;
386
387#ifndef DISABLE_PSE
388	if (cpu_feature & CPUID_PSE)
389		newaddr = (addr + PDRMASK) & ~PDRMASK;
390#endif
391	return newaddr;
392}
393
394/*
395 *	Bootstrap the system enough to run with virtual memory.
396 *
397 *	On the i386 this is called after mapping has already been enabled
398 *	and just syncs the pmap module with what has already been done.
399 *	[We can't call it easily with mapping off since the kernel is not
400 *	mapped with PA == VA, hence we would have to relocate every address
401 *	from the linked base (virtual) address "KERNBASE" to the actual
402 *	(physical) address starting relative to 0]
403 */
404void
405pmap_bootstrap(vm_paddr_t firstaddr)
406{
407	vm_offset_t va;
408	pt_entry_t *pte, *unused;
409	struct sysmaps *sysmaps;
410	int i;
411
412	/*
413	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
414	 * large. It should instead be correctly calculated in locore.s and
415	 * not based on 'first' (which is a physical address, not a virtual
416	 * address, for the start of unused physical memory). The kernel
417	 * page tables are NOT double mapped and thus should not be included
418	 * in this calculation.
419	 */
420	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
421	virtual_avail = pmap_kmem_choose(virtual_avail);
422
423	virtual_end = VM_MAX_KERNEL_ADDRESS;
424
425	/*
426	 * Initialize the kernel pmap (which is statically allocated).
427	 */
428	PMAP_LOCK_INIT(kernel_pmap);
429	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
430#ifdef PAE
431	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
432#endif
433	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
434	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
435	LIST_INIT(&allpmaps);
436	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
437	mtx_lock_spin(&allpmaps_lock);
438	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
439	mtx_unlock_spin(&allpmaps_lock);
440	if (nkpt == 0)
441		nkpt = NKPT;
442
443	/*
444	 * Reserve some special page table entries/VA space for temporary
445	 * mapping of pages.
446	 */
447#define	SYSMAP(c, p, v, n)	\
448	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
449
450	va = virtual_avail;
451	pte = vtopte(va);
452
453	/*
454	 * CMAP1/CMAP2 are used for zeroing and copying pages.
455	 * CMAP3 is used for the idle process page zeroing.
456	 */
457	for (i = 0; i < MAXCPU; i++) {
458		sysmaps = &sysmaps_pcpu[i];
459		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
460		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
461		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
462		PT_SET_MA(sysmaps->CADDR1, 0);
463		PT_SET_MA(sysmaps->CADDR2, 0);
464	}
465	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
466	PT_SET_MA(CADDR3, 0);
467
468	/*
469	 * Crashdump maps.
470	 */
471	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
472
473	/*
474	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
475	 */
476	SYSMAP(caddr_t, unused, ptvmmap, 1)
477
478	/*
479	 * msgbufp is used to map the system message buffer.
480	 */
481	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
482
483	/*
484	 * ptemap is used for pmap_pte_quick
485	 */
486	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
487	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
488
489	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
490
491	virtual_avail = va;
492
493	/*
494	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
495	 * physical memory region that is used by the ACPI wakeup code.  This
496	 * mapping must not have PG_G set.
497	 */
498#ifndef XEN
499	/*
500	 * leave here deliberately to show that this is not supported
501	 */
502#ifdef XBOX
503	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
504	 * an early stadium, we cannot yet neatly map video memory ... :-(
505	 * Better fixes are very welcome! */
506	if (!arch_i386_is_xbox)
507#endif
508	for (i = 1; i < NKPT; i++)
509		PTD[i] = 0;
510
511	/* Initialize the PAT MSR if present. */
512	pmap_init_pat();
513
514	/* Turn on PG_G on kernel page(s) */
515	pmap_set_pg();
516#endif
517}
518
519/*
520 * Setup the PAT MSR.
521 */
522void
523pmap_init_pat(void)
524{
525	uint64_t pat_msr;
526
527	/* Bail if this CPU doesn't implement PAT. */
528	if (!(cpu_feature & CPUID_PAT))
529		return;
530
531	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
532	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
533		/*
534		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
535		 * Program 4 and 5 as WP and WC.
536		 * Leave 6 and 7 as UC and UC-.
537		 */
538		pat_msr = rdmsr(MSR_PAT);
539		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
540		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
541		    PAT_VALUE(5, PAT_WRITE_COMBINING);
542		pat_works = 1;
543	} else {
544		/*
545		 * Due to some Intel errata, we can only safely use the lower 4
546		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
547		 * of UC-.
548		 *
549		 *   Intel Pentium III Processor Specification Update
550		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
551		 * or Mode C Paging)
552		 *
553		 *   Intel Pentium IV  Processor Specification Update
554		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
555		 */
556		pat_msr = rdmsr(MSR_PAT);
557		pat_msr &= ~PAT_MASK(2);
558		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
559		pat_works = 0;
560	}
561	wrmsr(MSR_PAT, pat_msr);
562}
563
564#ifndef XEN
565/*
566 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
567 */
568static void
569pmap_set_pg(void)
570{
571	pd_entry_t pdir;
572	pt_entry_t *pte;
573	vm_offset_t va, endva;
574	int i;
575
576	if (pgeflag == 0)
577		return;
578
579	i = KERNLOAD/NBPDR;
580	endva = KERNBASE + KERNend;
581
582	if (pseflag) {
583		va = KERNBASE + KERNLOAD;
584		while (va  < endva) {
585			pdir = kernel_pmap->pm_pdir[KPTDI+i];
586			pdir |= pgeflag;
587			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
588			invltlb();	/* Play it safe, invltlb() every time */
589			i++;
590			va += NBPDR;
591		}
592	} else {
593		va = (vm_offset_t)btext;
594		while (va < endva) {
595			pte = vtopte(va);
596			if (*pte & PG_V)
597				*pte |= pgeflag;
598			invltlb();	/* Play it safe, invltlb() every time */
599			va += PAGE_SIZE;
600		}
601	}
602}
603#endif
604
605/*
606 * Initialize a vm_page's machine-dependent fields.
607 */
608void
609pmap_page_init(vm_page_t m)
610{
611
612	TAILQ_INIT(&m->md.pv_list);
613	m->md.pat_mode = PAT_WRITE_BACK;
614}
615
616#if defined(PAE) && !defined(XEN)
617static void *
618pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
619{
620
621	/* Inform UMA that this allocator uses kernel_map/object. */
622	*flags = UMA_SLAB_KERNEL;
623	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
624	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
625}
626#endif
627
628/*
629 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
630 * Requirements:
631 *  - Must deal with pages in order to ensure that none of the PG_* bits
632 *    are ever set, PG_V in particular.
633 *  - Assumes we can write to ptes without pte_store() atomic ops, even
634 *    on PAE systems.  This should be ok.
635 *  - Assumes nothing will ever test these addresses for 0 to indicate
636 *    no mapping instead of correctly checking PG_V.
637 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
638 * Because PG_V is never set, there can be no mappings to invalidate.
639 */
640static int ptelist_count = 0;
641static vm_offset_t
642pmap_ptelist_alloc(vm_offset_t *head)
643{
644	vm_offset_t va;
645	vm_offset_t *phead = (vm_offset_t *)*head;
646
647	if (ptelist_count == 0) {
648		printf("out of memory!!!!!!\n");
649		return (0);	/* Out of memory */
650	}
651	ptelist_count--;
652	va = phead[ptelist_count];
653	return (va);
654}
655
656static void
657pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
658{
659	vm_offset_t *phead = (vm_offset_t *)*head;
660
661	phead[ptelist_count++] = va;
662}
663
664static void
665pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
666{
667	int i, nstackpages;
668	vm_offset_t va;
669	vm_page_t m;
670
671	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
672	for (i = 0; i < nstackpages; i++) {
673		va = (vm_offset_t)base + i * PAGE_SIZE;
674		m = vm_page_alloc(NULL, i,
675		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
676		    VM_ALLOC_ZERO);
677		pmap_qenter(va, &m, 1);
678	}
679
680	*head = (vm_offset_t)base;
681	for (i = npages - 1; i >= nstackpages; i--) {
682		va = (vm_offset_t)base + i * PAGE_SIZE;
683		pmap_ptelist_free(head, va);
684	}
685}
686
687
688/*
689 *	Initialize the pmap module.
690 *	Called by vm_init, to initialize any structures that the pmap
691 *	system needs to map virtual memory.
692 */
693void
694pmap_init(void)
695{
696	vm_page_t mpte;
697	vm_size_t s;
698	int i, pv_npg;
699
700	/*
701	 * Initialize the vm page array entries for the kernel pmap's
702	 * page table pages.
703	 */
704	for (i = 0; i < nkpt; i++) {
705		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
706		KASSERT(mpte >= vm_page_array &&
707		    mpte < &vm_page_array[vm_page_array_size],
708		    ("pmap_init: page table page is out of range"));
709		mpte->pindex = i + KPTDI;
710		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
711	}
712
713        /*
714	 * Initialize the address space (zone) for the pv entries.  Set a
715	 * high water mark so that the system can recover from excessive
716	 * numbers of pv entries.
717	 */
718	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
719	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
720	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
721	pv_entry_max = roundup(pv_entry_max, _NPCPV);
722	pv_entry_high_water = 9 * (pv_entry_max / 10);
723
724	/*
725	 * Are large page mappings enabled?
726	 */
727	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
728
729	/*
730	 * Calculate the size of the pv head table for superpages.
731	 */
732	for (i = 0; phys_avail[i + 1]; i += 2);
733	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
734
735	/*
736	 * Allocate memory for the pv head table for superpages.
737	 */
738	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
739	s = round_page(s);
740	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
741	for (i = 0; i < pv_npg; i++)
742		TAILQ_INIT(&pv_table[i].pv_list);
743
744	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
745	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
746	    PAGE_SIZE * pv_maxchunks);
747	if (pv_chunkbase == NULL)
748		panic("pmap_init: not enough kvm for pv chunks");
749	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
750#if defined(PAE) && !defined(XEN)
751	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
752	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
753	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
754	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
755#endif
756}
757
758
759/***************************************************
760 * Low level helper routines.....
761 ***************************************************/
762
763/*
764 * Determine the appropriate bits to set in a PTE or PDE for a specified
765 * caching mode.
766 */
767int
768pmap_cache_bits(int mode, boolean_t is_pde)
769{
770	int pat_flag, pat_index, cache_bits;
771
772	/* The PAT bit is different for PTE's and PDE's. */
773	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
774
775	/* If we don't support PAT, map extended modes to older ones. */
776	if (!(cpu_feature & CPUID_PAT)) {
777		switch (mode) {
778		case PAT_UNCACHEABLE:
779		case PAT_WRITE_THROUGH:
780		case PAT_WRITE_BACK:
781			break;
782		case PAT_UNCACHED:
783		case PAT_WRITE_COMBINING:
784		case PAT_WRITE_PROTECTED:
785			mode = PAT_UNCACHEABLE;
786			break;
787		}
788	}
789
790	/* Map the caching mode to a PAT index. */
791	if (pat_works) {
792		switch (mode) {
793			case PAT_UNCACHEABLE:
794				pat_index = 3;
795				break;
796			case PAT_WRITE_THROUGH:
797				pat_index = 1;
798				break;
799			case PAT_WRITE_BACK:
800				pat_index = 0;
801				break;
802			case PAT_UNCACHED:
803				pat_index = 2;
804				break;
805			case PAT_WRITE_COMBINING:
806				pat_index = 5;
807				break;
808			case PAT_WRITE_PROTECTED:
809				pat_index = 4;
810				break;
811			default:
812				panic("Unknown caching mode %d\n", mode);
813		}
814	} else {
815		switch (mode) {
816			case PAT_UNCACHED:
817			case PAT_UNCACHEABLE:
818			case PAT_WRITE_PROTECTED:
819				pat_index = 3;
820				break;
821			case PAT_WRITE_THROUGH:
822				pat_index = 1;
823				break;
824			case PAT_WRITE_BACK:
825				pat_index = 0;
826				break;
827			case PAT_WRITE_COMBINING:
828				pat_index = 2;
829				break;
830			default:
831				panic("Unknown caching mode %d\n", mode);
832		}
833	}
834
835	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
836	cache_bits = 0;
837	if (pat_index & 0x4)
838		cache_bits |= pat_flag;
839	if (pat_index & 0x2)
840		cache_bits |= PG_NC_PCD;
841	if (pat_index & 0x1)
842		cache_bits |= PG_NC_PWT;
843	return (cache_bits);
844}
845#ifdef SMP
846/*
847 * For SMP, these functions have to use the IPI mechanism for coherence.
848 *
849 * N.B.: Before calling any of the following TLB invalidation functions,
850 * the calling processor must ensure that all stores updating a non-
851 * kernel page table are globally performed.  Otherwise, another
852 * processor could cache an old, pre-update entry without being
853 * invalidated.  This can happen one of two ways: (1) The pmap becomes
854 * active on another processor after its pm_active field is checked by
855 * one of the following functions but before a store updating the page
856 * table is globally performed. (2) The pmap becomes active on another
857 * processor before its pm_active field is checked but due to
858 * speculative loads one of the following functions stills reads the
859 * pmap as inactive on the other processor.
860 *
861 * The kernel page table is exempt because its pm_active field is
862 * immutable.  The kernel page table is always active on every
863 * processor.
864 */
865void
866pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
867{
868	u_int cpumask;
869	u_int other_cpus;
870
871	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
872	    pmap, va);
873
874	sched_pin();
875	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
876		invlpg(va);
877		smp_invlpg(va);
878	} else {
879		cpumask = PCPU_GET(cpumask);
880		other_cpus = PCPU_GET(other_cpus);
881		if (pmap->pm_active & cpumask)
882			invlpg(va);
883		if (pmap->pm_active & other_cpus)
884			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
885	}
886	sched_unpin();
887	PT_UPDATES_FLUSH();
888}
889
890void
891pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
892{
893	u_int cpumask;
894	u_int other_cpus;
895	vm_offset_t addr;
896
897	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
898	    pmap, sva, eva);
899
900	sched_pin();
901	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
902		for (addr = sva; addr < eva; addr += PAGE_SIZE)
903			invlpg(addr);
904		smp_invlpg_range(sva, eva);
905	} else {
906		cpumask = PCPU_GET(cpumask);
907		other_cpus = PCPU_GET(other_cpus);
908		if (pmap->pm_active & cpumask)
909			for (addr = sva; addr < eva; addr += PAGE_SIZE)
910				invlpg(addr);
911		if (pmap->pm_active & other_cpus)
912			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
913			    sva, eva);
914	}
915	sched_unpin();
916	PT_UPDATES_FLUSH();
917}
918
919void
920pmap_invalidate_all(pmap_t pmap)
921{
922	u_int cpumask;
923	u_int other_cpus;
924
925	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
926
927	sched_pin();
928	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
929		invltlb();
930		smp_invltlb();
931	} else {
932		cpumask = PCPU_GET(cpumask);
933		other_cpus = PCPU_GET(other_cpus);
934		if (pmap->pm_active & cpumask)
935			invltlb();
936		if (pmap->pm_active & other_cpus)
937			smp_masked_invltlb(pmap->pm_active & other_cpus);
938	}
939	sched_unpin();
940}
941
942void
943pmap_invalidate_cache(void)
944{
945
946	sched_pin();
947	wbinvd();
948	smp_cache_flush();
949	sched_unpin();
950}
951#else /* !SMP */
952/*
953 * Normal, non-SMP, 486+ invalidation functions.
954 * We inline these within pmap.c for speed.
955 */
956PMAP_INLINE void
957pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
958{
959	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
960	    pmap, va);
961
962	if (pmap == kernel_pmap || pmap->pm_active)
963		invlpg(va);
964	PT_UPDATES_FLUSH();
965}
966
967PMAP_INLINE void
968pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
969{
970	vm_offset_t addr;
971
972	if (eva - sva > PAGE_SIZE)
973		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
974		    pmap, sva, eva);
975
976	if (pmap == kernel_pmap || pmap->pm_active)
977		for (addr = sva; addr < eva; addr += PAGE_SIZE)
978			invlpg(addr);
979	PT_UPDATES_FLUSH();
980}
981
982PMAP_INLINE void
983pmap_invalidate_all(pmap_t pmap)
984{
985
986	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
987
988	if (pmap == kernel_pmap || pmap->pm_active)
989		invltlb();
990}
991
992PMAP_INLINE void
993pmap_invalidate_cache(void)
994{
995
996	wbinvd();
997}
998#endif /* !SMP */
999
1000void
1001pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1002{
1003
1004	KASSERT((sva & PAGE_MASK) == 0,
1005	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1006	KASSERT((eva & PAGE_MASK) == 0,
1007	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1008
1009	if (cpu_feature & CPUID_SS)
1010		; /* If "Self Snoop" is supported, do nothing. */
1011	else if (cpu_feature & CPUID_CLFSH) {
1012
1013		/*
1014		 * Otherwise, do per-cache line flush.  Use the mfence
1015		 * instruction to insure that previous stores are
1016		 * included in the write-back.  The processor
1017		 * propagates flush to other processors in the cache
1018		 * coherence domain.
1019		 */
1020		mfence();
1021		for (; sva < eva; sva += cpu_clflush_line_size)
1022			clflush(sva);
1023		mfence();
1024	} else {
1025
1026		/*
1027		 * No targeted cache flush methods are supported by CPU,
1028		 * globally invalidate cache as a last resort.
1029		 */
1030		pmap_invalidate_cache();
1031	}
1032}
1033
1034/*
1035 * Are we current address space or kernel?  N.B. We return FALSE when
1036 * a pmap's page table is in use because a kernel thread is borrowing
1037 * it.  The borrowed page table can change spontaneously, making any
1038 * dependence on its continued use subject to a race condition.
1039 */
1040static __inline int
1041pmap_is_current(pmap_t pmap)
1042{
1043
1044	return (pmap == kernel_pmap ||
1045	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1046		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1047}
1048
1049/*
1050 * If the given pmap is not the current or kernel pmap, the returned pte must
1051 * be released by passing it to pmap_pte_release().
1052 */
1053pt_entry_t *
1054pmap_pte(pmap_t pmap, vm_offset_t va)
1055{
1056	pd_entry_t newpf;
1057	pd_entry_t *pde;
1058
1059	pde = pmap_pde(pmap, va);
1060	if (*pde & PG_PS)
1061		return (pde);
1062	if (*pde != 0) {
1063		/* are we current address space or kernel? */
1064		if (pmap_is_current(pmap))
1065			return (vtopte(va));
1066		mtx_lock(&PMAP2mutex);
1067		newpf = *pde & PG_FRAME;
1068		if ((*PMAP2 & PG_FRAME) != newpf) {
1069			vm_page_lock_queues();
1070			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1071			vm_page_unlock_queues();
1072			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1073			    pmap, va, (*PMAP2 & 0xffffffff));
1074		}
1075
1076		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1077	}
1078	return (0);
1079}
1080
1081/*
1082 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1083 * being NULL.
1084 */
1085static __inline void
1086pmap_pte_release(pt_entry_t *pte)
1087{
1088
1089	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1090		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1091		    *PMAP2);
1092		PT_SET_VA(PMAP2, 0, TRUE);
1093		mtx_unlock(&PMAP2mutex);
1094	}
1095}
1096
1097static __inline void
1098invlcaddr(void *caddr)
1099{
1100
1101	invlpg((u_int)caddr);
1102	PT_UPDATES_FLUSH();
1103}
1104
1105/*
1106 * Super fast pmap_pte routine best used when scanning
1107 * the pv lists.  This eliminates many coarse-grained
1108 * invltlb calls.  Note that many of the pv list
1109 * scans are across different pmaps.  It is very wasteful
1110 * to do an entire invltlb for checking a single mapping.
1111 *
1112 * If the given pmap is not the current pmap, vm_page_queue_mtx
1113 * must be held and curthread pinned to a CPU.
1114 */
1115static pt_entry_t *
1116pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1117{
1118	pd_entry_t newpf;
1119	pd_entry_t *pde;
1120
1121	pde = pmap_pde(pmap, va);
1122	if (*pde & PG_PS)
1123		return (pde);
1124	if (*pde != 0) {
1125		/* are we current address space or kernel? */
1126		if (pmap_is_current(pmap))
1127			return (vtopte(va));
1128		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1129		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1130		newpf = *pde & PG_FRAME;
1131		if ((*PMAP1 & PG_FRAME) != newpf) {
1132			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1133			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1134			    pmap, va, (u_long)*PMAP1);
1135
1136#ifdef SMP
1137			PMAP1cpu = PCPU_GET(cpuid);
1138#endif
1139			PMAP1changed++;
1140		} else
1141#ifdef SMP
1142		if (PMAP1cpu != PCPU_GET(cpuid)) {
1143			PMAP1cpu = PCPU_GET(cpuid);
1144			invlcaddr(PADDR1);
1145			PMAP1changedcpu++;
1146		} else
1147#endif
1148			PMAP1unchanged++;
1149		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1150	}
1151	return (0);
1152}
1153
1154/*
1155 *	Routine:	pmap_extract
1156 *	Function:
1157 *		Extract the physical page address associated
1158 *		with the given map/virtual_address pair.
1159 */
1160vm_paddr_t
1161pmap_extract(pmap_t pmap, vm_offset_t va)
1162{
1163	vm_paddr_t rtval;
1164	pt_entry_t *pte;
1165	pd_entry_t pde;
1166	pt_entry_t pteval;
1167
1168	rtval = 0;
1169	PMAP_LOCK(pmap);
1170	pde = pmap->pm_pdir[va >> PDRSHIFT];
1171	if (pde != 0) {
1172		if ((pde & PG_PS) != 0) {
1173			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1174			PMAP_UNLOCK(pmap);
1175			return rtval;
1176		}
1177		pte = pmap_pte(pmap, va);
1178		pteval = *pte ? xpmap_mtop(*pte) : 0;
1179		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1180		pmap_pte_release(pte);
1181	}
1182	PMAP_UNLOCK(pmap);
1183	return (rtval);
1184}
1185
1186/*
1187 *	Routine:	pmap_extract_ma
1188 *	Function:
1189 *		Like pmap_extract, but returns machine address
1190 */
1191vm_paddr_t
1192pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1193{
1194	vm_paddr_t rtval;
1195	pt_entry_t *pte;
1196	pd_entry_t pde;
1197
1198	rtval = 0;
1199	PMAP_LOCK(pmap);
1200	pde = pmap->pm_pdir[va >> PDRSHIFT];
1201	if (pde != 0) {
1202		if ((pde & PG_PS) != 0) {
1203			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1204			PMAP_UNLOCK(pmap);
1205			return rtval;
1206		}
1207		pte = pmap_pte(pmap, va);
1208		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1209		pmap_pte_release(pte);
1210	}
1211	PMAP_UNLOCK(pmap);
1212	return (rtval);
1213}
1214
1215/*
1216 *	Routine:	pmap_extract_and_hold
1217 *	Function:
1218 *		Atomically extract and hold the physical page
1219 *		with the given pmap and virtual address pair
1220 *		if that mapping permits the given protection.
1221 */
1222vm_page_t
1223pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1224{
1225	pd_entry_t pde;
1226	pt_entry_t pte;
1227	vm_page_t m;
1228	vm_paddr_t pa;
1229
1230	pa = 0;
1231	m = NULL;
1232	PMAP_LOCK(pmap);
1233retry:
1234	pde = PT_GET(pmap_pde(pmap, va));
1235	if (pde != 0) {
1236		if (pde & PG_PS) {
1237			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1238				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1239				       (va & PDRMASK), &pa))
1240					goto retry;
1241				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1242				    (va & PDRMASK));
1243				vm_page_hold(m);
1244			}
1245		} else {
1246			sched_pin();
1247			pte = PT_GET(pmap_pte_quick(pmap, va));
1248			if (*PMAP1)
1249				PT_SET_MA(PADDR1, 0);
1250			if ((pte & PG_V) &&
1251			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1252				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1253					goto retry;
1254				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1255				vm_page_hold(m);
1256			}
1257			sched_unpin();
1258		}
1259	}
1260	PA_UNLOCK_COND(pa);
1261	PMAP_UNLOCK(pmap);
1262	return (m);
1263}
1264
1265/***************************************************
1266 * Low level mapping routines.....
1267 ***************************************************/
1268
1269/*
1270 * Add a wired page to the kva.
1271 * Note: not SMP coherent.
1272 */
1273void
1274pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1275{
1276	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1277}
1278
1279void
1280pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1281{
1282	pt_entry_t *pte;
1283
1284	pte = vtopte(va);
1285	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1286}
1287
1288
1289static __inline void
1290pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1291{
1292	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1293}
1294
1295/*
1296 * Remove a page from the kernel pagetables.
1297 * Note: not SMP coherent.
1298 */
1299PMAP_INLINE void
1300pmap_kremove(vm_offset_t va)
1301{
1302	pt_entry_t *pte;
1303
1304	pte = vtopte(va);
1305	PT_CLEAR_VA(pte, FALSE);
1306}
1307
1308/*
1309 *	Used to map a range of physical addresses into kernel
1310 *	virtual address space.
1311 *
1312 *	The value passed in '*virt' is a suggested virtual address for
1313 *	the mapping. Architectures which can support a direct-mapped
1314 *	physical to virtual region can return the appropriate address
1315 *	within that region, leaving '*virt' unchanged. Other
1316 *	architectures should map the pages starting at '*virt' and
1317 *	update '*virt' with the first usable address after the mapped
1318 *	region.
1319 */
1320vm_offset_t
1321pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1322{
1323	vm_offset_t va, sva;
1324
1325	va = sva = *virt;
1326	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1327	    va, start, end, prot);
1328	while (start < end) {
1329		pmap_kenter(va, start);
1330		va += PAGE_SIZE;
1331		start += PAGE_SIZE;
1332	}
1333	pmap_invalidate_range(kernel_pmap, sva, va);
1334	*virt = va;
1335	return (sva);
1336}
1337
1338
1339/*
1340 * Add a list of wired pages to the kva
1341 * this routine is only used for temporary
1342 * kernel mappings that do not need to have
1343 * page modification or references recorded.
1344 * Note that old mappings are simply written
1345 * over.  The page *must* be wired.
1346 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1347 */
1348void
1349pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1350{
1351	pt_entry_t *endpte, *pte;
1352	vm_paddr_t pa;
1353	vm_offset_t va = sva;
1354	int mclcount = 0;
1355	multicall_entry_t mcl[16];
1356	multicall_entry_t *mclp = mcl;
1357	int error;
1358
1359	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1360	pte = vtopte(sva);
1361	endpte = pte + count;
1362	while (pte < endpte) {
1363		pa = xpmap_ptom(VM_PAGE_TO_PHYS(*ma)) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1364
1365		mclp->op = __HYPERVISOR_update_va_mapping;
1366		mclp->args[0] = va;
1367		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1368		mclp->args[2] = (uint32_t)(pa >> 32);
1369		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1370
1371		va += PAGE_SIZE;
1372		pte++;
1373		ma++;
1374		mclp++;
1375		mclcount++;
1376		if (mclcount == 16) {
1377			error = HYPERVISOR_multicall(mcl, mclcount);
1378			mclp = mcl;
1379			mclcount = 0;
1380			KASSERT(error == 0, ("bad multicall %d", error));
1381		}
1382	}
1383	if (mclcount) {
1384		error = HYPERVISOR_multicall(mcl, mclcount);
1385		KASSERT(error == 0, ("bad multicall %d", error));
1386	}
1387
1388#ifdef INVARIANTS
1389	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1390		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1391#endif
1392}
1393
1394
1395/*
1396 * This routine tears out page mappings from the
1397 * kernel -- it is meant only for temporary mappings.
1398 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1399 */
1400void
1401pmap_qremove(vm_offset_t sva, int count)
1402{
1403	vm_offset_t va;
1404
1405	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1406	va = sva;
1407	vm_page_lock_queues();
1408	critical_enter();
1409	while (count-- > 0) {
1410		pmap_kremove(va);
1411		va += PAGE_SIZE;
1412	}
1413	pmap_invalidate_range(kernel_pmap, sva, va);
1414	critical_exit();
1415	vm_page_unlock_queues();
1416}
1417
1418/***************************************************
1419 * Page table page management routines.....
1420 ***************************************************/
1421static __inline void
1422pmap_free_zero_pages(vm_page_t free)
1423{
1424	vm_page_t m;
1425
1426	while (free != NULL) {
1427		m = free;
1428		free = m->right;
1429		vm_page_free_zero(m);
1430	}
1431}
1432
1433/*
1434 * This routine unholds page table pages, and if the hold count
1435 * drops to zero, then it decrements the wire count.
1436 */
1437static __inline int
1438pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1439{
1440
1441	--m->wire_count;
1442	if (m->wire_count == 0)
1443		return _pmap_unwire_pte_hold(pmap, m, free);
1444	else
1445		return 0;
1446}
1447
1448static int
1449_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1450{
1451	vm_offset_t pteva;
1452
1453	PT_UPDATES_FLUSH();
1454	/*
1455	 * unmap the page table page
1456	 */
1457	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1458	/*
1459	 * page *might* contain residual mapping :-/
1460	 */
1461	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1462	pmap_zero_page(m);
1463	--pmap->pm_stats.resident_count;
1464
1465	/*
1466	 * This is a release store so that the ordinary store unmapping
1467	 * the page table page is globally performed before TLB shoot-
1468	 * down is begun.
1469	 */
1470	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1471
1472	/*
1473	 * Do an invltlb to make the invalidated mapping
1474	 * take effect immediately.
1475	 */
1476	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1477	pmap_invalidate_page(pmap, pteva);
1478
1479	/*
1480	 * Put page on a list so that it is released after
1481	 * *ALL* TLB shootdown is done
1482	 */
1483	m->right = *free;
1484	*free = m;
1485
1486	return 1;
1487}
1488
1489/*
1490 * After removing a page table entry, this routine is used to
1491 * conditionally free the page, and manage the hold/wire counts.
1492 */
1493static int
1494pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1495{
1496	pd_entry_t ptepde;
1497	vm_page_t mpte;
1498
1499	if (va >= VM_MAXUSER_ADDRESS)
1500		return 0;
1501	ptepde = PT_GET(pmap_pde(pmap, va));
1502	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1503	return pmap_unwire_pte_hold(pmap, mpte, free);
1504}
1505
1506void
1507pmap_pinit0(pmap_t pmap)
1508{
1509
1510	PMAP_LOCK_INIT(pmap);
1511	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1512#ifdef PAE
1513	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1514#endif
1515	pmap->pm_active = 0;
1516	PCPU_SET(curpmap, pmap);
1517	TAILQ_INIT(&pmap->pm_pvchunk);
1518	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1519	mtx_lock_spin(&allpmaps_lock);
1520	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1521	mtx_unlock_spin(&allpmaps_lock);
1522}
1523
1524/*
1525 * Initialize a preallocated and zeroed pmap structure,
1526 * such as one in a vmspace structure.
1527 */
1528int
1529pmap_pinit(pmap_t pmap)
1530{
1531	vm_page_t m, ptdpg[NPGPTD + 1];
1532	int npgptd = NPGPTD + 1;
1533	static int color;
1534	int i;
1535
1536	PMAP_LOCK_INIT(pmap);
1537
1538	/*
1539	 * No need to allocate page table space yet but we do need a valid
1540	 * page directory table.
1541	 */
1542	if (pmap->pm_pdir == NULL) {
1543		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1544		    NBPTD);
1545		if (pmap->pm_pdir == NULL) {
1546			PMAP_LOCK_DESTROY(pmap);
1547			return (0);
1548		}
1549#if defined(XEN) && defined(PAE)
1550		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1551#endif
1552
1553#if defined(PAE) && !defined(XEN)
1554		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1555		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1556		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1557		    ("pmap_pinit: pdpt misaligned"));
1558		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1559		    ("pmap_pinit: pdpt above 4g"));
1560#endif
1561	}
1562
1563	/*
1564	 * allocate the page directory page(s)
1565	 */
1566	for (i = 0; i < npgptd;) {
1567		m = vm_page_alloc(NULL, color++,
1568		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1569		    VM_ALLOC_ZERO);
1570		if (m == NULL)
1571			VM_WAIT;
1572		else {
1573			ptdpg[i++] = m;
1574		}
1575	}
1576	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1577	for (i = 0; i < NPGPTD; i++) {
1578		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1579			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1580	}
1581
1582	mtx_lock_spin(&allpmaps_lock);
1583	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1584	mtx_unlock_spin(&allpmaps_lock);
1585	/* Wire in kernel global address entries. */
1586
1587	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1588#ifdef PAE
1589#ifdef XEN
1590	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1591	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1592		bzero(pmap->pm_pdpt, PAGE_SIZE);
1593#endif
1594	for (i = 0; i < NPGPTD; i++) {
1595		vm_paddr_t ma;
1596
1597		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1598		pmap->pm_pdpt[i] = ma | PG_V;
1599
1600	}
1601#endif
1602#ifdef XEN
1603	for (i = 0; i < NPGPTD; i++) {
1604		pt_entry_t *pd;
1605		vm_paddr_t ma;
1606
1607		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1608		pd = pmap->pm_pdir + (i * NPDEPG);
1609		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1610#if 0
1611		xen_pgd_pin(ma);
1612#endif
1613	}
1614
1615#ifdef PAE
1616	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1617#endif
1618	vm_page_lock_queues();
1619	xen_flush_queue();
1620	xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD])));
1621	for (i = 0; i < NPGPTD; i++) {
1622		vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1623		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1624	}
1625	xen_flush_queue();
1626	vm_page_unlock_queues();
1627#endif
1628	pmap->pm_active = 0;
1629	TAILQ_INIT(&pmap->pm_pvchunk);
1630	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1631
1632	return (1);
1633}
1634
1635/*
1636 * this routine is called if the page table page is not
1637 * mapped correctly.
1638 */
1639static vm_page_t
1640_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1641{
1642	vm_paddr_t ptema;
1643	vm_page_t m;
1644
1645	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1646	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1647	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1648
1649	/*
1650	 * Allocate a page table page.
1651	 */
1652	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1653	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1654		if (flags & M_WAITOK) {
1655			PMAP_UNLOCK(pmap);
1656			vm_page_unlock_queues();
1657			VM_WAIT;
1658			vm_page_lock_queues();
1659			PMAP_LOCK(pmap);
1660		}
1661
1662		/*
1663		 * Indicate the need to retry.  While waiting, the page table
1664		 * page may have been allocated.
1665		 */
1666		return (NULL);
1667	}
1668	if ((m->flags & PG_ZERO) == 0)
1669		pmap_zero_page(m);
1670
1671	/*
1672	 * Map the pagetable page into the process address space, if
1673	 * it isn't already there.
1674	 */
1675	pmap->pm_stats.resident_count++;
1676
1677	ptema = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1678	xen_pt_pin(ptema);
1679	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1680		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1681
1682	KASSERT(pmap->pm_pdir[ptepindex],
1683	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1684	return (m);
1685}
1686
1687static vm_page_t
1688pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1689{
1690	unsigned ptepindex;
1691	pd_entry_t ptema;
1692	vm_page_t m;
1693
1694	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1695	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1696	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1697
1698	/*
1699	 * Calculate pagetable page index
1700	 */
1701	ptepindex = va >> PDRSHIFT;
1702retry:
1703	/*
1704	 * Get the page directory entry
1705	 */
1706	ptema = pmap->pm_pdir[ptepindex];
1707
1708	/*
1709	 * This supports switching from a 4MB page to a
1710	 * normal 4K page.
1711	 */
1712	if (ptema & PG_PS) {
1713		/*
1714		 * XXX
1715		 */
1716		pmap->pm_pdir[ptepindex] = 0;
1717		ptema = 0;
1718		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1719		pmap_invalidate_all(kernel_pmap);
1720	}
1721
1722	/*
1723	 * If the page table page is mapped, we just increment the
1724	 * hold count, and activate it.
1725	 */
1726	if (ptema & PG_V) {
1727		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1728		m->wire_count++;
1729	} else {
1730		/*
1731		 * Here if the pte page isn't mapped, or if it has
1732		 * been deallocated.
1733		 */
1734		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1735		    pmap, va, flags);
1736		m = _pmap_allocpte(pmap, ptepindex, flags);
1737		if (m == NULL && (flags & M_WAITOK))
1738			goto retry;
1739
1740		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1741	}
1742	return (m);
1743}
1744
1745
1746/***************************************************
1747* Pmap allocation/deallocation routines.
1748 ***************************************************/
1749
1750#ifdef SMP
1751/*
1752 * Deal with a SMP shootdown of other users of the pmap that we are
1753 * trying to dispose of.  This can be a bit hairy.
1754 */
1755static cpumask_t *lazymask;
1756static u_int lazyptd;
1757static volatile u_int lazywait;
1758
1759void pmap_lazyfix_action(void);
1760
1761void
1762pmap_lazyfix_action(void)
1763{
1764	cpumask_t mymask = PCPU_GET(cpumask);
1765
1766#ifdef COUNT_IPIS
1767	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1768#endif
1769	if (rcr3() == lazyptd)
1770		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1771	atomic_clear_int(lazymask, mymask);
1772	atomic_store_rel_int(&lazywait, 1);
1773}
1774
1775static void
1776pmap_lazyfix_self(cpumask_t mymask)
1777{
1778
1779	if (rcr3() == lazyptd)
1780		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1781	atomic_clear_int(lazymask, mymask);
1782}
1783
1784
1785static void
1786pmap_lazyfix(pmap_t pmap)
1787{
1788	cpumask_t mymask, mask;
1789	u_int spins;
1790
1791	while ((mask = pmap->pm_active) != 0) {
1792		spins = 50000000;
1793		mask = mask & -mask;	/* Find least significant set bit */
1794		mtx_lock_spin(&smp_ipi_mtx);
1795#ifdef PAE
1796		lazyptd = vtophys(pmap->pm_pdpt);
1797#else
1798		lazyptd = vtophys(pmap->pm_pdir);
1799#endif
1800		mymask = PCPU_GET(cpumask);
1801		if (mask == mymask) {
1802			lazymask = &pmap->pm_active;
1803			pmap_lazyfix_self(mymask);
1804		} else {
1805			atomic_store_rel_int((u_int *)&lazymask,
1806			    (u_int)&pmap->pm_active);
1807			atomic_store_rel_int(&lazywait, 0);
1808			ipi_selected(mask, IPI_LAZYPMAP);
1809			while (lazywait == 0) {
1810				ia32_pause();
1811				if (--spins == 0)
1812					break;
1813			}
1814		}
1815		mtx_unlock_spin(&smp_ipi_mtx);
1816		if (spins == 0)
1817			printf("pmap_lazyfix: spun for 50000000\n");
1818	}
1819}
1820
1821#else	/* SMP */
1822
1823/*
1824 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1825 * unlikely to have to even execute this code, including the fact
1826 * that the cleanup is deferred until the parent does a wait(2), which
1827 * means that another userland process has run.
1828 */
1829static void
1830pmap_lazyfix(pmap_t pmap)
1831{
1832	u_int cr3;
1833
1834	cr3 = vtophys(pmap->pm_pdir);
1835	if (cr3 == rcr3()) {
1836		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1837		pmap->pm_active &= ~(PCPU_GET(cpumask));
1838	}
1839}
1840#endif	/* SMP */
1841
1842/*
1843 * Release any resources held by the given physical map.
1844 * Called when a pmap initialized by pmap_pinit is being released.
1845 * Should only be called if the map contains no valid mappings.
1846 */
1847void
1848pmap_release(pmap_t pmap)
1849{
1850	vm_page_t m, ptdpg[2*NPGPTD+1];
1851	vm_paddr_t ma;
1852	int i;
1853#ifdef XEN
1854#ifdef PAE
1855	int npgptd = NPGPTD + 1;
1856#else
1857	int npgptd = NPGPTD;
1858#endif
1859#else
1860	int npgptd = NPGPTD;
1861#endif
1862	KASSERT(pmap->pm_stats.resident_count == 0,
1863	    ("pmap_release: pmap resident count %ld != 0",
1864	    pmap->pm_stats.resident_count));
1865	PT_UPDATES_FLUSH();
1866
1867	pmap_lazyfix(pmap);
1868	mtx_lock_spin(&allpmaps_lock);
1869	LIST_REMOVE(pmap, pm_list);
1870	mtx_unlock_spin(&allpmaps_lock);
1871
1872	for (i = 0; i < NPGPTD; i++)
1873		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1874	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1875#if defined(PAE) && defined(XEN)
1876	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1877#endif
1878
1879	for (i = 0; i < npgptd; i++) {
1880		m = ptdpg[i];
1881		ma = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1882		/* unpinning L1 and L2 treated the same */
1883                xen_pgd_unpin(ma);
1884#ifdef PAE
1885		KASSERT(xpmap_ptom(VM_PAGE_TO_PHYS(m)) == (pmap->pm_pdpt[i] & PG_FRAME),
1886		    ("pmap_release: got wrong ptd page"));
1887#endif
1888		m->wire_count--;
1889		atomic_subtract_int(&cnt.v_wire_count, 1);
1890		vm_page_free(m);
1891	}
1892	PMAP_LOCK_DESTROY(pmap);
1893}
1894
1895static int
1896kvm_size(SYSCTL_HANDLER_ARGS)
1897{
1898	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1899
1900	return sysctl_handle_long(oidp, &ksize, 0, req);
1901}
1902SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1903    0, 0, kvm_size, "IU", "Size of KVM");
1904
1905static int
1906kvm_free(SYSCTL_HANDLER_ARGS)
1907{
1908	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1909
1910	return sysctl_handle_long(oidp, &kfree, 0, req);
1911}
1912SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1913    0, 0, kvm_free, "IU", "Amount of KVM free");
1914
1915/*
1916 * grow the number of kernel page table entries, if needed
1917 */
1918void
1919pmap_growkernel(vm_offset_t addr)
1920{
1921	struct pmap *pmap;
1922	vm_paddr_t ptppaddr;
1923	vm_page_t nkpg;
1924	pd_entry_t newpdir;
1925
1926	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1927	if (kernel_vm_end == 0) {
1928		kernel_vm_end = KERNBASE;
1929		nkpt = 0;
1930		while (pdir_pde(PTD, kernel_vm_end)) {
1931			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1932			nkpt++;
1933			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1934				kernel_vm_end = kernel_map->max_offset;
1935				break;
1936			}
1937		}
1938	}
1939	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1940	if (addr - 1 >= kernel_map->max_offset)
1941		addr = kernel_map->max_offset;
1942	while (kernel_vm_end < addr) {
1943		if (pdir_pde(PTD, kernel_vm_end)) {
1944			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1945			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1946				kernel_vm_end = kernel_map->max_offset;
1947				break;
1948			}
1949			continue;
1950		}
1951
1952		/*
1953		 * This index is bogus, but out of the way
1954		 */
1955		nkpg = vm_page_alloc(NULL, nkpt,
1956		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1957		if (!nkpg)
1958			panic("pmap_growkernel: no memory to grow kernel");
1959
1960		nkpt++;
1961
1962		pmap_zero_page(nkpg);
1963		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1964		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1965		vm_page_lock_queues();
1966		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1967		mtx_lock_spin(&allpmaps_lock);
1968		LIST_FOREACH(pmap, &allpmaps, pm_list)
1969			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1970
1971		mtx_unlock_spin(&allpmaps_lock);
1972		vm_page_unlock_queues();
1973
1974		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1975		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1976			kernel_vm_end = kernel_map->max_offset;
1977			break;
1978		}
1979	}
1980}
1981
1982
1983/***************************************************
1984 * page management routines.
1985 ***************************************************/
1986
1987CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1988CTASSERT(_NPCM == 11);
1989
1990static __inline struct pv_chunk *
1991pv_to_chunk(pv_entry_t pv)
1992{
1993
1994	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1995}
1996
1997#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1998
1999#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2000#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2001
2002static uint32_t pc_freemask[11] = {
2003	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2004	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2005	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2006	PC_FREE0_9, PC_FREE10
2007};
2008
2009SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2010	"Current number of pv entries");
2011
2012#ifdef PV_STATS
2013static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2014
2015SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2016	"Current number of pv entry chunks");
2017SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2018	"Current number of pv entry chunks allocated");
2019SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2020	"Current number of pv entry chunks frees");
2021SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2022	"Number of times tried to get a chunk page but failed.");
2023
2024static long pv_entry_frees, pv_entry_allocs;
2025static int pv_entry_spare;
2026
2027SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2028	"Current number of pv entry frees");
2029SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2030	"Current number of pv entry allocs");
2031SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2032	"Current number of spare pv entries");
2033
2034static int pmap_collect_inactive, pmap_collect_active;
2035
2036SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2037	"Current number times pmap_collect called on inactive queue");
2038SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2039	"Current number times pmap_collect called on active queue");
2040#endif
2041
2042/*
2043 * We are in a serious low memory condition.  Resort to
2044 * drastic measures to free some pages so we can allocate
2045 * another pv entry chunk.  This is normally called to
2046 * unmap inactive pages, and if necessary, active pages.
2047 */
2048static void
2049pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2050{
2051	pmap_t pmap;
2052	pt_entry_t *pte, tpte;
2053	pv_entry_t next_pv, pv;
2054	vm_offset_t va;
2055	vm_page_t m, free;
2056
2057	sched_pin();
2058	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2059		if (m->hold_count || m->busy)
2060			continue;
2061		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2062			va = pv->pv_va;
2063			pmap = PV_PMAP(pv);
2064			/* Avoid deadlock and lock recursion. */
2065			if (pmap > locked_pmap)
2066				PMAP_LOCK(pmap);
2067			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2068				continue;
2069			pmap->pm_stats.resident_count--;
2070			pte = pmap_pte_quick(pmap, va);
2071			tpte = pte_load_clear(pte);
2072			KASSERT((tpte & PG_W) == 0,
2073			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2074			if (tpte & PG_A)
2075				vm_page_flag_set(m, PG_REFERENCED);
2076			if (tpte & PG_M) {
2077				KASSERT((tpte & PG_RW),
2078	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
2079				    va, (uintmax_t)tpte));
2080				vm_page_dirty(m);
2081			}
2082			free = NULL;
2083			pmap_unuse_pt(pmap, va, &free);
2084			pmap_invalidate_page(pmap, va);
2085			pmap_free_zero_pages(free);
2086			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2087			if (TAILQ_EMPTY(&m->md.pv_list))
2088				vm_page_flag_clear(m, PG_WRITEABLE);
2089			free_pv_entry(pmap, pv);
2090			if (pmap != locked_pmap)
2091				PMAP_UNLOCK(pmap);
2092		}
2093	}
2094	sched_unpin();
2095}
2096
2097
2098/*
2099 * free the pv_entry back to the free list
2100 */
2101static void
2102free_pv_entry(pmap_t pmap, pv_entry_t pv)
2103{
2104	vm_page_t m;
2105	struct pv_chunk *pc;
2106	int idx, field, bit;
2107
2108	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2109	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2110	PV_STAT(pv_entry_frees++);
2111	PV_STAT(pv_entry_spare++);
2112	pv_entry_count--;
2113	pc = pv_to_chunk(pv);
2114	idx = pv - &pc->pc_pventry[0];
2115	field = idx / 32;
2116	bit = idx % 32;
2117	pc->pc_map[field] |= 1ul << bit;
2118	/* move to head of list */
2119	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2120	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2121	for (idx = 0; idx < _NPCM; idx++)
2122		if (pc->pc_map[idx] != pc_freemask[idx])
2123			return;
2124	PV_STAT(pv_entry_spare -= _NPCPV);
2125	PV_STAT(pc_chunk_count--);
2126	PV_STAT(pc_chunk_frees++);
2127	/* entire chunk is free, return it */
2128	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2129	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2130	pmap_qremove((vm_offset_t)pc, 1);
2131	vm_page_unwire(m, 0);
2132	vm_page_free(m);
2133	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2134}
2135
2136/*
2137 * get a new pv_entry, allocating a block from the system
2138 * when needed.
2139 */
2140static pv_entry_t
2141get_pv_entry(pmap_t pmap, int try)
2142{
2143	static const struct timeval printinterval = { 60, 0 };
2144	static struct timeval lastprint;
2145	static vm_pindex_t colour;
2146	struct vpgqueues *pq;
2147	int bit, field;
2148	pv_entry_t pv;
2149	struct pv_chunk *pc;
2150	vm_page_t m;
2151
2152	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2153	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2154	PV_STAT(pv_entry_allocs++);
2155	pv_entry_count++;
2156	if (pv_entry_count > pv_entry_high_water)
2157		if (ratecheck(&lastprint, &printinterval))
2158			printf("Approaching the limit on PV entries, consider "
2159			    "increasing either the vm.pmap.shpgperproc or the "
2160			    "vm.pmap.pv_entry_max tunable.\n");
2161	pq = NULL;
2162retry:
2163	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2164	if (pc != NULL) {
2165		for (field = 0; field < _NPCM; field++) {
2166			if (pc->pc_map[field]) {
2167				bit = bsfl(pc->pc_map[field]);
2168				break;
2169			}
2170		}
2171		if (field < _NPCM) {
2172			pv = &pc->pc_pventry[field * 32 + bit];
2173			pc->pc_map[field] &= ~(1ul << bit);
2174			/* If this was the last item, move it to tail */
2175			for (field = 0; field < _NPCM; field++)
2176				if (pc->pc_map[field] != 0) {
2177					PV_STAT(pv_entry_spare--);
2178					return (pv);	/* not full, return */
2179				}
2180			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2181			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2182			PV_STAT(pv_entry_spare--);
2183			return (pv);
2184		}
2185	}
2186	/*
2187	 * Access to the ptelist "pv_vafree" is synchronized by the page
2188	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2189	 * remain non-empty until pmap_ptelist_alloc() completes.
2190	 */
2191	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2192	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2193	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2194		if (try) {
2195			pv_entry_count--;
2196			PV_STAT(pc_chunk_tryfail++);
2197			return (NULL);
2198		}
2199		/*
2200		 * Reclaim pv entries: At first, destroy mappings to
2201		 * inactive pages.  After that, if a pv chunk entry
2202		 * is still needed, destroy mappings to active pages.
2203		 */
2204		if (pq == NULL) {
2205			PV_STAT(pmap_collect_inactive++);
2206			pq = &vm_page_queues[PQ_INACTIVE];
2207		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2208			PV_STAT(pmap_collect_active++);
2209			pq = &vm_page_queues[PQ_ACTIVE];
2210		} else
2211			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2212		pmap_collect(pmap, pq);
2213		goto retry;
2214	}
2215	PV_STAT(pc_chunk_count++);
2216	PV_STAT(pc_chunk_allocs++);
2217	colour++;
2218	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2219	pmap_qenter((vm_offset_t)pc, &m, 1);
2220	if ((m->flags & PG_ZERO) == 0)
2221		pagezero(pc);
2222	pc->pc_pmap = pmap;
2223	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2224	for (field = 1; field < _NPCM; field++)
2225		pc->pc_map[field] = pc_freemask[field];
2226	pv = &pc->pc_pventry[0];
2227	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2228	PV_STAT(pv_entry_spare += _NPCPV - 1);
2229	return (pv);
2230}
2231
2232static void
2233pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2234{
2235	pv_entry_t pv;
2236
2237	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2238	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2239	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2240		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
2241			break;
2242	}
2243	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
2244	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2245	if (TAILQ_EMPTY(&m->md.pv_list))
2246		vm_page_flag_clear(m, PG_WRITEABLE);
2247	free_pv_entry(pmap, pv);
2248}
2249
2250/*
2251 * Create a pv entry for page at pa for
2252 * (pmap, va).
2253 */
2254static void
2255pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2256{
2257	pv_entry_t pv;
2258
2259	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2260	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2261	pv = get_pv_entry(pmap, FALSE);
2262	pv->pv_va = va;
2263	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2264}
2265
2266/*
2267 * Conditionally create a pv entry.
2268 */
2269static boolean_t
2270pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2271{
2272	pv_entry_t pv;
2273
2274	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2275	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2276	if (pv_entry_count < pv_entry_high_water &&
2277	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2278		pv->pv_va = va;
2279		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2280		return (TRUE);
2281	} else
2282		return (FALSE);
2283}
2284
2285/*
2286 * pmap_remove_pte: do the things to unmap a page in a process
2287 */
2288static int
2289pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2290{
2291	pt_entry_t oldpte;
2292	vm_page_t m;
2293
2294	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2295	    pmap, (u_long)*ptq, va);
2296
2297	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2298	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2299	oldpte = *ptq;
2300	PT_SET_VA_MA(ptq, 0, TRUE);
2301	if (oldpte & PG_W)
2302		pmap->pm_stats.wired_count -= 1;
2303	/*
2304	 * Machines that don't support invlpg, also don't support
2305	 * PG_G.
2306	 */
2307	if (oldpte & PG_G)
2308		pmap_invalidate_page(kernel_pmap, va);
2309	pmap->pm_stats.resident_count -= 1;
2310	/*
2311	 * XXX This is not strictly correctly, but somewhere along the line
2312	 * we are losing the managed bit on some pages. It is unclear to me
2313	 * why, but I think the most likely explanation is that xen's writable
2314	 * page table implementation doesn't respect the unused bits.
2315	 */
2316	if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
2317		) {
2318		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2319
2320		if (!(oldpte & PG_MANAGED))
2321			printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2322
2323		if (oldpte & PG_M) {
2324			KASSERT((oldpte & PG_RW),
2325	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
2326			    va, (uintmax_t)oldpte));
2327			vm_page_dirty(m);
2328		}
2329		if (oldpte & PG_A)
2330			vm_page_flag_set(m, PG_REFERENCED);
2331		pmap_remove_entry(pmap, m, va);
2332	} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
2333		printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2334
2335	return (pmap_unuse_pt(pmap, va, free));
2336}
2337
2338/*
2339 * Remove a single page from a process address space
2340 */
2341static void
2342pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2343{
2344	pt_entry_t *pte;
2345
2346	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2347	    pmap, va);
2348
2349	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2350	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2351	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2352	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2353		return;
2354	pmap_remove_pte(pmap, pte, va, free);
2355	pmap_invalidate_page(pmap, va);
2356	if (*PMAP1)
2357		PT_SET_MA(PADDR1, 0);
2358
2359}
2360
2361/*
2362 *	Remove the given range of addresses from the specified map.
2363 *
2364 *	It is assumed that the start and end are properly
2365 *	rounded to the page size.
2366 */
2367void
2368pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2369{
2370	vm_offset_t pdnxt;
2371	pd_entry_t ptpaddr;
2372	pt_entry_t *pte;
2373	vm_page_t free = NULL;
2374	int anyvalid;
2375
2376	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2377	    pmap, sva, eva);
2378
2379	/*
2380	 * Perform an unsynchronized read.  This is, however, safe.
2381	 */
2382	if (pmap->pm_stats.resident_count == 0)
2383		return;
2384
2385	anyvalid = 0;
2386
2387	vm_page_lock_queues();
2388	sched_pin();
2389	PMAP_LOCK(pmap);
2390
2391	/*
2392	 * special handling of removing one page.  a very
2393	 * common operation and easy to short circuit some
2394	 * code.
2395	 */
2396	if ((sva + PAGE_SIZE == eva) &&
2397	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2398		pmap_remove_page(pmap, sva, &free);
2399		goto out;
2400	}
2401
2402	for (; sva < eva; sva = pdnxt) {
2403		unsigned pdirindex;
2404
2405		/*
2406		 * Calculate index for next page table.
2407		 */
2408		pdnxt = (sva + NBPDR) & ~PDRMASK;
2409		if (pmap->pm_stats.resident_count == 0)
2410			break;
2411
2412		pdirindex = sva >> PDRSHIFT;
2413		ptpaddr = pmap->pm_pdir[pdirindex];
2414
2415		/*
2416		 * Weed out invalid mappings. Note: we assume that the page
2417		 * directory table is always allocated, and in kernel virtual.
2418		 */
2419		if (ptpaddr == 0)
2420			continue;
2421
2422		/*
2423		 * Check for large page.
2424		 */
2425		if ((ptpaddr & PG_PS) != 0) {
2426			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2427			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2428			anyvalid = 1;
2429			continue;
2430		}
2431
2432		/*
2433		 * Limit our scan to either the end of the va represented
2434		 * by the current page table page, or to the end of the
2435		 * range being removed.
2436		 */
2437		if (pdnxt > eva)
2438			pdnxt = eva;
2439
2440		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2441		    sva += PAGE_SIZE) {
2442			if ((*pte & PG_V) == 0)
2443				continue;
2444
2445			/*
2446			 * The TLB entry for a PG_G mapping is invalidated
2447			 * by pmap_remove_pte().
2448			 */
2449			if ((*pte & PG_G) == 0)
2450				anyvalid = 1;
2451			if (pmap_remove_pte(pmap, pte, sva, &free))
2452				break;
2453		}
2454	}
2455	PT_UPDATES_FLUSH();
2456	if (*PMAP1)
2457		PT_SET_VA_MA(PMAP1, 0, TRUE);
2458out:
2459	if (anyvalid)
2460		pmap_invalidate_all(pmap);
2461	sched_unpin();
2462	vm_page_unlock_queues();
2463	PMAP_UNLOCK(pmap);
2464	pmap_free_zero_pages(free);
2465}
2466
2467/*
2468 *	Routine:	pmap_remove_all
2469 *	Function:
2470 *		Removes this physical page from
2471 *		all physical maps in which it resides.
2472 *		Reflects back modify bits to the pager.
2473 *
2474 *	Notes:
2475 *		Original versions of this routine were very
2476 *		inefficient because they iteratively called
2477 *		pmap_remove (slow...)
2478 */
2479
2480void
2481pmap_remove_all(vm_page_t m)
2482{
2483	pv_entry_t pv;
2484	pmap_t pmap;
2485	pt_entry_t *pte, tpte;
2486	vm_page_t free;
2487
2488#if defined(PMAP_DIAGNOSTIC)
2489	/*
2490	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
2491	 */
2492	if (m->flags & PG_FICTITIOUS) {
2493		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%jx",
2494		    VM_PAGE_TO_PHYS(m) & 0xffffffff);
2495	}
2496#endif
2497	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2498	sched_pin();
2499	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2500		pmap = PV_PMAP(pv);
2501		PMAP_LOCK(pmap);
2502		pmap->pm_stats.resident_count--;
2503		pte = pmap_pte_quick(pmap, pv->pv_va);
2504
2505		tpte = *pte;
2506		PT_SET_VA_MA(pte, 0, TRUE);
2507		if (tpte & PG_W)
2508			pmap->pm_stats.wired_count--;
2509		if (tpte & PG_A)
2510			vm_page_flag_set(m, PG_REFERENCED);
2511
2512		/*
2513		 * Update the vm_page_t clean and reference bits.
2514		 */
2515		if (tpte & PG_M) {
2516			KASSERT((tpte & PG_RW),
2517	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2518			    pv->pv_va, (uintmax_t)tpte));
2519			vm_page_dirty(m);
2520		}
2521		free = NULL;
2522		pmap_unuse_pt(pmap, pv->pv_va, &free);
2523		pmap_invalidate_page(pmap, pv->pv_va);
2524		pmap_free_zero_pages(free);
2525		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2526		free_pv_entry(pmap, pv);
2527		PMAP_UNLOCK(pmap);
2528	}
2529	vm_page_flag_clear(m, PG_WRITEABLE);
2530	PT_UPDATES_FLUSH();
2531	if (*PMAP1)
2532		PT_SET_MA(PADDR1, 0);
2533	sched_unpin();
2534}
2535
2536/*
2537 *	Set the physical protection on the
2538 *	specified range of this map as requested.
2539 */
2540void
2541pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2542{
2543	vm_offset_t pdnxt;
2544	pd_entry_t ptpaddr;
2545	pt_entry_t *pte;
2546	int anychanged;
2547
2548	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2549	    pmap, sva, eva, prot);
2550
2551	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2552		pmap_remove(pmap, sva, eva);
2553		return;
2554	}
2555
2556#ifdef PAE
2557	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2558	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2559		return;
2560#else
2561	if (prot & VM_PROT_WRITE)
2562		return;
2563#endif
2564
2565	anychanged = 0;
2566
2567	vm_page_lock_queues();
2568	sched_pin();
2569	PMAP_LOCK(pmap);
2570	for (; sva < eva; sva = pdnxt) {
2571		pt_entry_t obits, pbits;
2572		unsigned pdirindex;
2573
2574		pdnxt = (sva + NBPDR) & ~PDRMASK;
2575
2576		pdirindex = sva >> PDRSHIFT;
2577		ptpaddr = pmap->pm_pdir[pdirindex];
2578
2579		/*
2580		 * Weed out invalid mappings. Note: we assume that the page
2581		 * directory table is always allocated, and in kernel virtual.
2582		 */
2583		if (ptpaddr == 0)
2584			continue;
2585
2586		/*
2587		 * Check for large page.
2588		 */
2589		if ((ptpaddr & PG_PS) != 0) {
2590			if ((prot & VM_PROT_WRITE) == 0)
2591				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2592#ifdef PAE
2593			if ((prot & VM_PROT_EXECUTE) == 0)
2594				pmap->pm_pdir[pdirindex] |= pg_nx;
2595#endif
2596			anychanged = 1;
2597			continue;
2598		}
2599
2600		if (pdnxt > eva)
2601			pdnxt = eva;
2602
2603		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2604		    sva += PAGE_SIZE) {
2605			vm_page_t m;
2606
2607retry:
2608			/*
2609			 * Regardless of whether a pte is 32 or 64 bits in
2610			 * size, PG_RW, PG_A, and PG_M are among the least
2611			 * significant 32 bits.
2612			 */
2613			obits = pbits = *pte;
2614			if ((pbits & PG_V) == 0)
2615				continue;
2616
2617			if ((prot & VM_PROT_WRITE) == 0) {
2618				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2619				    (PG_MANAGED | PG_M | PG_RW)) {
2620					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2621					    PG_FRAME);
2622					vm_page_dirty(m);
2623				}
2624				pbits &= ~(PG_RW | PG_M);
2625			}
2626#ifdef PAE
2627			if ((prot & VM_PROT_EXECUTE) == 0)
2628				pbits |= pg_nx;
2629#endif
2630
2631			if (pbits != obits) {
2632#ifdef XEN
2633				obits = *pte;
2634				PT_SET_VA_MA(pte, pbits, TRUE);
2635				if (*pte != pbits)
2636					goto retry;
2637#else
2638#ifdef PAE
2639				if (!atomic_cmpset_64(pte, obits, pbits))
2640					goto retry;
2641#else
2642				if (!atomic_cmpset_int((u_int *)pte, obits,
2643				    pbits))
2644					goto retry;
2645#endif
2646#endif
2647				if (obits & PG_G)
2648					pmap_invalidate_page(pmap, sva);
2649				else
2650					anychanged = 1;
2651			}
2652		}
2653	}
2654	PT_UPDATES_FLUSH();
2655	if (*PMAP1)
2656		PT_SET_VA_MA(PMAP1, 0, TRUE);
2657	if (anychanged)
2658		pmap_invalidate_all(pmap);
2659	sched_unpin();
2660	vm_page_unlock_queues();
2661	PMAP_UNLOCK(pmap);
2662}
2663
2664/*
2665 *	Insert the given physical page (p) at
2666 *	the specified virtual address (v) in the
2667 *	target physical map with the protection requested.
2668 *
2669 *	If specified, the page will be wired down, meaning
2670 *	that the related pte can not be reclaimed.
2671 *
2672 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2673 *	or lose information.  That is, this routine must actually
2674 *	insert this page into the given map NOW.
2675 */
2676void
2677pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2678    vm_prot_t prot, boolean_t wired)
2679{
2680	vm_paddr_t pa;
2681	pd_entry_t *pde;
2682	pt_entry_t *pte;
2683	vm_paddr_t opa;
2684	pt_entry_t origpte, newpte;
2685	vm_page_t mpte, om;
2686	boolean_t invlva;
2687
2688	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2689	    pmap, va, access, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired);
2690	va = trunc_page(va);
2691#ifdef PMAP_DIAGNOSTIC
2692	if (va > VM_MAX_KERNEL_ADDRESS)
2693		panic("pmap_enter: toobig");
2694	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2695		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2696#endif
2697
2698	mpte = NULL;
2699
2700	vm_page_lock_queues();
2701	PMAP_LOCK(pmap);
2702	sched_pin();
2703
2704	/*
2705	 * In the case that a page table page is not
2706	 * resident, we are creating it here.
2707	 */
2708	if (va < VM_MAXUSER_ADDRESS) {
2709		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2710	}
2711#if 0 && defined(PMAP_DIAGNOSTIC)
2712	else {
2713		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2714		origpte = *pdeaddr;
2715		if ((origpte & PG_V) == 0) {
2716			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2717				pmap->pm_pdir[PTDPTDI], origpte, va);
2718		}
2719	}
2720#endif
2721
2722	pde = pmap_pde(pmap, va);
2723	if ((*pde & PG_PS) != 0)
2724		panic("pmap_enter: attempted pmap_enter on 4MB page");
2725	pte = pmap_pte_quick(pmap, va);
2726
2727	/*
2728	 * Page Directory table entry not valid, we need a new PT page
2729	 */
2730	if (pte == NULL) {
2731		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2732			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2733	}
2734
2735	pa = VM_PAGE_TO_PHYS(m);
2736	om = NULL;
2737	opa = origpte = 0;
2738
2739#if 0
2740	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2741		pte, *pte));
2742#endif
2743	origpte = *pte;
2744	if (origpte)
2745		origpte = xpmap_mtop(origpte);
2746	opa = origpte & PG_FRAME;
2747
2748	/*
2749	 * Mapping has not changed, must be protection or wiring change.
2750	 */
2751	if (origpte && (opa == pa)) {
2752		/*
2753		 * Wiring change, just update stats. We don't worry about
2754		 * wiring PT pages as they remain resident as long as there
2755		 * are valid mappings in them. Hence, if a user page is wired,
2756		 * the PT page will be also.
2757		 */
2758		if (wired && ((origpte & PG_W) == 0))
2759			pmap->pm_stats.wired_count++;
2760		else if (!wired && (origpte & PG_W))
2761			pmap->pm_stats.wired_count--;
2762
2763		/*
2764		 * Remove extra pte reference
2765		 */
2766		if (mpte)
2767			mpte->wire_count--;
2768
2769		/*
2770		 * We might be turning off write access to the page,
2771		 * so we go ahead and sense modify status.
2772		 */
2773		if (origpte & PG_MANAGED) {
2774			om = m;
2775			pa |= PG_MANAGED;
2776		}
2777		goto validate;
2778	}
2779	/*
2780	 * Mapping has changed, invalidate old range and fall through to
2781	 * handle validating new mapping.
2782	 */
2783	if (opa) {
2784		if (origpte & PG_W)
2785			pmap->pm_stats.wired_count--;
2786		if (origpte & PG_MANAGED) {
2787			om = PHYS_TO_VM_PAGE(opa);
2788			pmap_remove_entry(pmap, om, va);
2789		} else if (va < VM_MAXUSER_ADDRESS)
2790			printf("va=0x%x is unmanaged :-( \n", va);
2791
2792		if (mpte != NULL) {
2793			mpte->wire_count--;
2794			KASSERT(mpte->wire_count > 0,
2795			    ("pmap_enter: missing reference to page table page,"
2796			     " va: 0x%x", va));
2797		}
2798	} else
2799		pmap->pm_stats.resident_count++;
2800
2801	/*
2802	 * Enter on the PV list if part of our managed memory.
2803	 */
2804	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2805		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2806		    ("pmap_enter: managed mapping within the clean submap"));
2807		pmap_insert_entry(pmap, va, m);
2808		pa |= PG_MANAGED;
2809	}
2810
2811	/*
2812	 * Increment counters
2813	 */
2814	if (wired)
2815		pmap->pm_stats.wired_count++;
2816
2817validate:
2818	/*
2819	 * Now validate mapping with desired protection/wiring.
2820	 */
2821	newpte = (pt_entry_t)(pa | PG_V);
2822	if ((prot & VM_PROT_WRITE) != 0) {
2823		newpte |= PG_RW;
2824		vm_page_flag_set(m, PG_WRITEABLE);
2825	}
2826#ifdef PAE
2827	if ((prot & VM_PROT_EXECUTE) == 0)
2828		newpte |= pg_nx;
2829#endif
2830	if (wired)
2831		newpte |= PG_W;
2832	if (va < VM_MAXUSER_ADDRESS)
2833		newpte |= PG_U;
2834	if (pmap == kernel_pmap)
2835		newpte |= pgeflag;
2836
2837	critical_enter();
2838	/*
2839	 * if the mapping or permission bits are different, we need
2840	 * to update the pte.
2841	 */
2842	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2843		if (origpte) {
2844			invlva = FALSE;
2845			origpte = *pte;
2846			PT_SET_VA(pte, newpte | PG_A, FALSE);
2847			if (origpte & PG_A) {
2848				if (origpte & PG_MANAGED)
2849					vm_page_flag_set(om, PG_REFERENCED);
2850				if (opa != VM_PAGE_TO_PHYS(m))
2851					invlva = TRUE;
2852#ifdef PAE
2853				if ((origpte & PG_NX) == 0 &&
2854				    (newpte & PG_NX) != 0)
2855					invlva = TRUE;
2856#endif
2857			}
2858			if (origpte & PG_M) {
2859				KASSERT((origpte & PG_RW),
2860	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2861				    va, (uintmax_t)origpte));
2862				if ((origpte & PG_MANAGED) != 0)
2863					vm_page_dirty(om);
2864				if ((prot & VM_PROT_WRITE) == 0)
2865					invlva = TRUE;
2866			}
2867			if (invlva)
2868				pmap_invalidate_page(pmap, va);
2869		} else{
2870			PT_SET_VA(pte, newpte | PG_A, FALSE);
2871		}
2872
2873	}
2874	PT_UPDATES_FLUSH();
2875	critical_exit();
2876	if (*PMAP1)
2877		PT_SET_VA_MA(PMAP1, 0, TRUE);
2878	sched_unpin();
2879	vm_page_unlock_queues();
2880	PMAP_UNLOCK(pmap);
2881}
2882
2883/*
2884 * Maps a sequence of resident pages belonging to the same object.
2885 * The sequence begins with the given page m_start.  This page is
2886 * mapped at the given virtual address start.  Each subsequent page is
2887 * mapped at a virtual address that is offset from start by the same
2888 * amount as the page is offset from m_start within the object.  The
2889 * last page in the sequence is the page with the largest offset from
2890 * m_start that can be mapped at a virtual address less than the given
2891 * virtual address end.  Not every virtual page between start and end
2892 * is mapped; only those for which a resident page exists with the
2893 * corresponding offset from m_start are mapped.
2894 */
2895void
2896pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2897    vm_page_t m_start, vm_prot_t prot)
2898{
2899	vm_page_t m, mpte;
2900	vm_pindex_t diff, psize;
2901	multicall_entry_t mcl[16];
2902	multicall_entry_t *mclp = mcl;
2903	int error, count = 0;
2904
2905	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2906	psize = atop(end - start);
2907
2908	mpte = NULL;
2909	m = m_start;
2910	PMAP_LOCK(pmap);
2911	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2912		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2913		    prot, mpte);
2914		m = TAILQ_NEXT(m, listq);
2915		if (count == 16) {
2916			error = HYPERVISOR_multicall(mcl, count);
2917			KASSERT(error == 0, ("bad multicall %d", error));
2918			mclp = mcl;
2919			count = 0;
2920		}
2921	}
2922	if (count) {
2923		error = HYPERVISOR_multicall(mcl, count);
2924		KASSERT(error == 0, ("bad multicall %d", error));
2925	}
2926
2927	PMAP_UNLOCK(pmap);
2928}
2929
2930/*
2931 * this code makes some *MAJOR* assumptions:
2932 * 1. Current pmap & pmap exists.
2933 * 2. Not wired.
2934 * 3. Read access.
2935 * 4. No page table pages.
2936 * but is *MUCH* faster than pmap_enter...
2937 */
2938
2939void
2940pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2941{
2942	multicall_entry_t mcl, *mclp;
2943	int count = 0;
2944	mclp = &mcl;
2945
2946	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2947	    pmap, va, m, prot);
2948
2949	PMAP_LOCK(pmap);
2950	(void) pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2951	if (count)
2952		HYPERVISOR_multicall(&mcl, count);
2953	PMAP_UNLOCK(pmap);
2954}
2955
2956#ifdef notyet
2957void
2958pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2959{
2960	int i, error, index = 0;
2961	multicall_entry_t mcl[16];
2962	multicall_entry_t *mclp = mcl;
2963
2964	PMAP_LOCK(pmap);
2965	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2966		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2967			continue;
2968
2969		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2970		if (index == 16) {
2971			error = HYPERVISOR_multicall(mcl, index);
2972			mclp = mcl;
2973			index = 0;
2974			KASSERT(error == 0, ("bad multicall %d", error));
2975		}
2976	}
2977	if (index) {
2978		error = HYPERVISOR_multicall(mcl, index);
2979		KASSERT(error == 0, ("bad multicall %d", error));
2980	}
2981
2982	PMAP_UNLOCK(pmap);
2983}
2984#endif
2985
2986static vm_page_t
2987pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2988    vm_prot_t prot, vm_page_t mpte)
2989{
2990	pt_entry_t *pte;
2991	vm_paddr_t pa;
2992	vm_page_t free;
2993	multicall_entry_t *mcl = *mclpp;
2994
2995	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2996	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2997	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2998	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2999	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3000
3001	/*
3002	 * In the case that a page table page is not
3003	 * resident, we are creating it here.
3004	 */
3005	if (va < VM_MAXUSER_ADDRESS) {
3006		unsigned ptepindex;
3007		pd_entry_t ptema;
3008
3009		/*
3010		 * Calculate pagetable page index
3011		 */
3012		ptepindex = va >> PDRSHIFT;
3013		if (mpte && (mpte->pindex == ptepindex)) {
3014			mpte->wire_count++;
3015		} else {
3016			/*
3017			 * Get the page directory entry
3018			 */
3019			ptema = pmap->pm_pdir[ptepindex];
3020
3021			/*
3022			 * If the page table page is mapped, we just increment
3023			 * the hold count, and activate it.
3024			 */
3025			if (ptema & PG_V) {
3026				if (ptema & PG_PS)
3027					panic("pmap_enter_quick: unexpected mapping into 4MB page");
3028				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
3029				mpte->wire_count++;
3030			} else {
3031				mpte = _pmap_allocpte(pmap, ptepindex,
3032				    M_NOWAIT);
3033				if (mpte == NULL)
3034					return (mpte);
3035			}
3036		}
3037	} else {
3038		mpte = NULL;
3039	}
3040
3041	/*
3042	 * This call to vtopte makes the assumption that we are
3043	 * entering the page into the current pmap.  In order to support
3044	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3045	 * But that isn't as quick as vtopte.
3046	 */
3047	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3048	pte = vtopte(va);
3049	if (*pte & PG_V) {
3050		if (mpte != NULL) {
3051			mpte->wire_count--;
3052			mpte = NULL;
3053		}
3054		return (mpte);
3055	}
3056
3057	/*
3058	 * Enter on the PV list if part of our managed memory.
3059	 */
3060	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3061	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3062		if (mpte != NULL) {
3063			free = NULL;
3064			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3065				pmap_invalidate_page(pmap, va);
3066				pmap_free_zero_pages(free);
3067			}
3068
3069			mpte = NULL;
3070		}
3071		return (mpte);
3072	}
3073
3074	/*
3075	 * Increment counters
3076	 */
3077	pmap->pm_stats.resident_count++;
3078
3079	pa = VM_PAGE_TO_PHYS(m);
3080#ifdef PAE
3081	if ((prot & VM_PROT_EXECUTE) == 0)
3082		pa |= pg_nx;
3083#endif
3084
3085#if 0
3086	/*
3087	 * Now validate mapping with RO protection
3088	 */
3089	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3090		pte_store(pte, pa | PG_V | PG_U);
3091	else
3092		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3093#else
3094	/*
3095	 * Now validate mapping with RO protection
3096	 */
3097	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3098		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3099	else
3100		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3101
3102	mcl->op = __HYPERVISOR_update_va_mapping;
3103	mcl->args[0] = va;
3104	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3105	mcl->args[2] = (uint32_t)(pa >> 32);
3106	mcl->args[3] = 0;
3107	*mclpp = mcl + 1;
3108	*count = *count + 1;
3109#endif
3110	return mpte;
3111}
3112
3113/*
3114 * Make a temporary mapping for a physical address.  This is only intended
3115 * to be used for panic dumps.
3116 */
3117void *
3118pmap_kenter_temporary(vm_paddr_t pa, int i)
3119{
3120	vm_offset_t va;
3121	vm_paddr_t ma = xpmap_ptom(pa);
3122
3123	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3124	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3125	invlpg(va);
3126	return ((void *)crashdumpmap);
3127}
3128
3129/*
3130 * This code maps large physical mmap regions into the
3131 * processor address space.  Note that some shortcuts
3132 * are taken, but the code works.
3133 */
3134void
3135pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3136		    vm_object_t object, vm_pindex_t pindex,
3137		    vm_size_t size)
3138{
3139	pd_entry_t *pde;
3140	vm_paddr_t pa, ptepa;
3141	vm_page_t p;
3142	int pat_mode;
3143
3144	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3145	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3146	    ("pmap_object_init_pt: non-device object"));
3147	if (pseflag &&
3148	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3149		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3150			return;
3151		p = vm_page_lookup(object, pindex);
3152		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3153		    ("pmap_object_init_pt: invalid page %p", p));
3154		pat_mode = p->md.pat_mode;
3155		/*
3156		 * Abort the mapping if the first page is not physically
3157		 * aligned to a 2/4MB page boundary.
3158		 */
3159		ptepa = VM_PAGE_TO_PHYS(p);
3160		if (ptepa & (NBPDR - 1))
3161			return;
3162		/*
3163		 * Skip the first page.  Abort the mapping if the rest of
3164		 * the pages are not physically contiguous or have differing
3165		 * memory attributes.
3166		 */
3167		p = TAILQ_NEXT(p, listq);
3168		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3169		    pa += PAGE_SIZE) {
3170			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3171			    ("pmap_object_init_pt: invalid page %p", p));
3172			if (pa != VM_PAGE_TO_PHYS(p) ||
3173			    pat_mode != p->md.pat_mode)
3174				return;
3175			p = TAILQ_NEXT(p, listq);
3176		}
3177		/* Map using 2/4MB pages. */
3178		PMAP_LOCK(pmap);
3179		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3180		    size; pa += NBPDR) {
3181			pde = pmap_pde(pmap, addr);
3182			if (*pde == 0) {
3183				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3184				    PG_U | PG_RW | PG_V);
3185				pmap->pm_stats.resident_count += NBPDR /
3186				    PAGE_SIZE;
3187				pmap_pde_mappings++;
3188			}
3189			/* Else continue on if the PDE is already valid. */
3190			addr += NBPDR;
3191		}
3192		PMAP_UNLOCK(pmap);
3193	}
3194}
3195
3196/*
3197 *	Routine:	pmap_change_wiring
3198 *	Function:	Change the wiring attribute for a map/virtual-address
3199 *			pair.
3200 *	In/out conditions:
3201 *			The mapping must already exist in the pmap.
3202 */
3203void
3204pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3205{
3206	pt_entry_t *pte;
3207
3208	vm_page_lock_queues();
3209	PMAP_LOCK(pmap);
3210	pte = pmap_pte(pmap, va);
3211
3212	if (wired && !pmap_pte_w(pte)) {
3213		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3214		pmap->pm_stats.wired_count++;
3215	} else if (!wired && pmap_pte_w(pte)) {
3216		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3217		pmap->pm_stats.wired_count--;
3218	}
3219
3220	/*
3221	 * Wiring is not a hardware characteristic so there is no need to
3222	 * invalidate TLB.
3223	 */
3224	pmap_pte_release(pte);
3225	PMAP_UNLOCK(pmap);
3226	vm_page_unlock_queues();
3227}
3228
3229
3230
3231/*
3232 *	Copy the range specified by src_addr/len
3233 *	from the source map to the range dst_addr/len
3234 *	in the destination map.
3235 *
3236 *	This routine is only advisory and need not do anything.
3237 */
3238
3239void
3240pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3241	  vm_offset_t src_addr)
3242{
3243	vm_page_t   free;
3244	vm_offset_t addr;
3245	vm_offset_t end_addr = src_addr + len;
3246	vm_offset_t pdnxt;
3247
3248	if (dst_addr != src_addr)
3249		return;
3250
3251	if (!pmap_is_current(src_pmap)) {
3252		CTR2(KTR_PMAP,
3253		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3254		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3255
3256		return;
3257	}
3258	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3259	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3260
3261	vm_page_lock_queues();
3262	if (dst_pmap < src_pmap) {
3263		PMAP_LOCK(dst_pmap);
3264		PMAP_LOCK(src_pmap);
3265	} else {
3266		PMAP_LOCK(src_pmap);
3267		PMAP_LOCK(dst_pmap);
3268	}
3269	sched_pin();
3270	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3271		pt_entry_t *src_pte, *dst_pte;
3272		vm_page_t dstmpte, srcmpte;
3273		pd_entry_t srcptepaddr;
3274		unsigned ptepindex;
3275
3276		if (addr >= UPT_MIN_ADDRESS)
3277			panic("pmap_copy: invalid to pmap_copy page tables");
3278
3279		pdnxt = (addr + NBPDR) & ~PDRMASK;
3280		ptepindex = addr >> PDRSHIFT;
3281
3282		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3283		if (srcptepaddr == 0)
3284			continue;
3285
3286		if (srcptepaddr & PG_PS) {
3287			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3288				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3289				dst_pmap->pm_stats.resident_count +=
3290				    NBPDR / PAGE_SIZE;
3291			}
3292			continue;
3293		}
3294
3295		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3296		if (srcmpte->wire_count == 0)
3297			panic("pmap_copy: source page table page is unused");
3298
3299		if (pdnxt > end_addr)
3300			pdnxt = end_addr;
3301
3302		src_pte = vtopte(addr);
3303		while (addr < pdnxt) {
3304			pt_entry_t ptetemp;
3305			ptetemp = *src_pte;
3306			/*
3307			 * we only virtual copy managed pages
3308			 */
3309			if ((ptetemp & PG_MANAGED) != 0) {
3310				dstmpte = pmap_allocpte(dst_pmap, addr,
3311				    M_NOWAIT);
3312				if (dstmpte == NULL)
3313					break;
3314				dst_pte = pmap_pte_quick(dst_pmap, addr);
3315				if (*dst_pte == 0 &&
3316				    pmap_try_insert_pv_entry(dst_pmap, addr,
3317				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3318					/*
3319					 * Clear the wired, modified, and
3320					 * accessed (referenced) bits
3321					 * during the copy.
3322					 */
3323					KASSERT(ptetemp != 0, ("src_pte not set"));
3324					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3325					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3326					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3327						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3328					dst_pmap->pm_stats.resident_count++;
3329	 			} else {
3330					free = NULL;
3331					if (pmap_unwire_pte_hold(dst_pmap,
3332					    dstmpte, &free)) {
3333						pmap_invalidate_page(dst_pmap,
3334						    addr);
3335						pmap_free_zero_pages(free);
3336					}
3337				}
3338				if (dstmpte->wire_count >= srcmpte->wire_count)
3339					break;
3340			}
3341			addr += PAGE_SIZE;
3342			src_pte++;
3343		}
3344	}
3345	PT_UPDATES_FLUSH();
3346	sched_unpin();
3347	vm_page_unlock_queues();
3348	PMAP_UNLOCK(src_pmap);
3349	PMAP_UNLOCK(dst_pmap);
3350}
3351
3352static __inline void
3353pagezero(void *page)
3354{
3355#if defined(I686_CPU)
3356	if (cpu_class == CPUCLASS_686) {
3357#if defined(CPU_ENABLE_SSE)
3358		if (cpu_feature & CPUID_SSE2)
3359			sse2_pagezero(page);
3360		else
3361#endif
3362			i686_pagezero(page);
3363	} else
3364#endif
3365		bzero(page, PAGE_SIZE);
3366}
3367
3368/*
3369 *	pmap_zero_page zeros the specified hardware page by mapping
3370 *	the page into KVM and using bzero to clear its contents.
3371 */
3372void
3373pmap_zero_page(vm_page_t m)
3374{
3375	struct sysmaps *sysmaps;
3376
3377	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3378	mtx_lock(&sysmaps->lock);
3379	if (*sysmaps->CMAP2)
3380		panic("pmap_zero_page: CMAP2 busy");
3381	sched_pin();
3382	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3383	pagezero(sysmaps->CADDR2);
3384	PT_SET_MA(sysmaps->CADDR2, 0);
3385	sched_unpin();
3386	mtx_unlock(&sysmaps->lock);
3387}
3388
3389/*
3390 *	pmap_zero_page_area zeros the specified hardware page by mapping
3391 *	the page into KVM and using bzero to clear its contents.
3392 *
3393 *	off and size may not cover an area beyond a single hardware page.
3394 */
3395void
3396pmap_zero_page_area(vm_page_t m, int off, int size)
3397{
3398	struct sysmaps *sysmaps;
3399
3400	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3401	mtx_lock(&sysmaps->lock);
3402	if (*sysmaps->CMAP2)
3403		panic("pmap_zero_page: CMAP2 busy");
3404	sched_pin();
3405	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3406
3407	if (off == 0 && size == PAGE_SIZE)
3408		pagezero(sysmaps->CADDR2);
3409	else
3410		bzero((char *)sysmaps->CADDR2 + off, size);
3411	PT_SET_MA(sysmaps->CADDR2, 0);
3412	sched_unpin();
3413	mtx_unlock(&sysmaps->lock);
3414}
3415
3416/*
3417 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3418 *	the page into KVM and using bzero to clear its contents.  This
3419 *	is intended to be called from the vm_pagezero process only and
3420 *	outside of Giant.
3421 */
3422void
3423pmap_zero_page_idle(vm_page_t m)
3424{
3425
3426	if (*CMAP3)
3427		panic("pmap_zero_page: CMAP3 busy");
3428	sched_pin();
3429	PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3430	pagezero(CADDR3);
3431	PT_SET_MA(CADDR3, 0);
3432	sched_unpin();
3433}
3434
3435/*
3436 *	pmap_copy_page copies the specified (machine independent)
3437 *	page by mapping the page into virtual memory and using
3438 *	bcopy to copy the page, one machine dependent page at a
3439 *	time.
3440 */
3441void
3442pmap_copy_page(vm_page_t src, vm_page_t dst)
3443{
3444	struct sysmaps *sysmaps;
3445
3446	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3447	mtx_lock(&sysmaps->lock);
3448	if (*sysmaps->CMAP1)
3449		panic("pmap_copy_page: CMAP1 busy");
3450	if (*sysmaps->CMAP2)
3451		panic("pmap_copy_page: CMAP2 busy");
3452	sched_pin();
3453	PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A);
3454	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M);
3455	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3456	PT_SET_MA(sysmaps->CADDR1, 0);
3457	PT_SET_MA(sysmaps->CADDR2, 0);
3458	sched_unpin();
3459	mtx_unlock(&sysmaps->lock);
3460}
3461
3462/*
3463 * Returns true if the pmap's pv is one of the first
3464 * 16 pvs linked to from this page.  This count may
3465 * be changed upwards or downwards in the future; it
3466 * is only necessary that true be returned for a small
3467 * subset of pmaps for proper page aging.
3468 */
3469boolean_t
3470pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3471{
3472	pv_entry_t pv;
3473	int loops = 0;
3474
3475	if (m->flags & PG_FICTITIOUS)
3476		return (FALSE);
3477
3478	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3479	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3480		if (PV_PMAP(pv) == pmap) {
3481			return TRUE;
3482		}
3483		loops++;
3484		if (loops >= 16)
3485			break;
3486	}
3487	return (FALSE);
3488}
3489
3490/*
3491 *	pmap_page_wired_mappings:
3492 *
3493 *	Return the number of managed mappings to the given physical page
3494 *	that are wired.
3495 */
3496int
3497pmap_page_wired_mappings(vm_page_t m)
3498{
3499	pv_entry_t pv;
3500	pt_entry_t *pte;
3501	pmap_t pmap;
3502	int count;
3503
3504	count = 0;
3505	if ((m->flags & PG_FICTITIOUS) != 0)
3506		return (count);
3507	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3508	sched_pin();
3509	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3510		pmap = PV_PMAP(pv);
3511		PMAP_LOCK(pmap);
3512		pte = pmap_pte_quick(pmap, pv->pv_va);
3513		if ((*pte & PG_W) != 0)
3514			count++;
3515		PMAP_UNLOCK(pmap);
3516	}
3517	sched_unpin();
3518	return (count);
3519}
3520
3521/*
3522 * Returns TRUE if the given page is mapped individually or as part of
3523 * a 4mpage.  Otherwise, returns FALSE.
3524 */
3525boolean_t
3526pmap_page_is_mapped(vm_page_t m)
3527{
3528	struct md_page *pvh;
3529
3530	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3531		return (FALSE);
3532	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3533	if (TAILQ_EMPTY(&m->md.pv_list)) {
3534		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3535		return (!TAILQ_EMPTY(&pvh->pv_list));
3536	} else
3537		return (TRUE);
3538}
3539
3540/*
3541 * Remove all pages from specified address space
3542 * this aids process exit speeds.  Also, this code
3543 * is special cased for current process only, but
3544 * can have the more generic (and slightly slower)
3545 * mode enabled.  This is much faster than pmap_remove
3546 * in the case of running down an entire address space.
3547 */
3548void
3549pmap_remove_pages(pmap_t pmap)
3550{
3551	pt_entry_t *pte, tpte;
3552	vm_page_t m, free = NULL;
3553	pv_entry_t pv;
3554	struct pv_chunk *pc, *npc;
3555	int field, idx;
3556	int32_t bit;
3557	uint32_t inuse, bitmask;
3558	int allfree;
3559
3560	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3561
3562	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3563		printf("warning: pmap_remove_pages called with non-current pmap\n");
3564		return;
3565	}
3566	vm_page_lock_queues();
3567	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3568	PMAP_LOCK(pmap);
3569	sched_pin();
3570	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3571		allfree = 1;
3572		for (field = 0; field < _NPCM; field++) {
3573			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3574			while (inuse != 0) {
3575				bit = bsfl(inuse);
3576				bitmask = 1UL << bit;
3577				idx = field * 32 + bit;
3578				pv = &pc->pc_pventry[idx];
3579				inuse &= ~bitmask;
3580
3581				pte = vtopte(pv->pv_va);
3582				tpte = *pte ? xpmap_mtop(*pte) : 0;
3583
3584				if (tpte == 0) {
3585					printf(
3586					    "TPTE at %p  IS ZERO @ VA %08x\n",
3587					    pte, pv->pv_va);
3588					panic("bad pte");
3589				}
3590
3591/*
3592 * We cannot remove wired pages from a process' mapping at this time
3593 */
3594				if (tpte & PG_W) {
3595					allfree = 0;
3596					continue;
3597				}
3598
3599				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3600				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3601				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3602				    m, (uintmax_t)m->phys_addr,
3603				    (uintmax_t)tpte));
3604
3605				KASSERT(m < &vm_page_array[vm_page_array_size],
3606					("pmap_remove_pages: bad tpte %#jx",
3607					(uintmax_t)tpte));
3608
3609
3610				PT_CLEAR_VA(pte, FALSE);
3611
3612				/*
3613				 * Update the vm_page_t clean/reference bits.
3614				 */
3615				if (tpte & PG_M)
3616					vm_page_dirty(m);
3617
3618				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3619				if (TAILQ_EMPTY(&m->md.pv_list))
3620					vm_page_flag_clear(m, PG_WRITEABLE);
3621
3622				pmap_unuse_pt(pmap, pv->pv_va, &free);
3623
3624				/* Mark free */
3625				PV_STAT(pv_entry_frees++);
3626				PV_STAT(pv_entry_spare++);
3627				pv_entry_count--;
3628				pc->pc_map[field] |= bitmask;
3629				pmap->pm_stats.resident_count--;
3630			}
3631		}
3632		PT_UPDATES_FLUSH();
3633		if (allfree) {
3634			PV_STAT(pv_entry_spare -= _NPCPV);
3635			PV_STAT(pc_chunk_count--);
3636			PV_STAT(pc_chunk_frees++);
3637			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3638			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3639			pmap_qremove((vm_offset_t)pc, 1);
3640			vm_page_unwire(m, 0);
3641			vm_page_free(m);
3642			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3643		}
3644	}
3645	PT_UPDATES_FLUSH();
3646	if (*PMAP1)
3647		PT_SET_MA(PADDR1, 0);
3648
3649	sched_unpin();
3650	pmap_invalidate_all(pmap);
3651	vm_page_unlock_queues();
3652	PMAP_UNLOCK(pmap);
3653	pmap_free_zero_pages(free);
3654}
3655
3656/*
3657 *	pmap_is_modified:
3658 *
3659 *	Return whether or not the specified physical page was modified
3660 *	in any physical maps.
3661 */
3662boolean_t
3663pmap_is_modified(vm_page_t m)
3664{
3665	pv_entry_t pv;
3666	pt_entry_t *pte;
3667	pmap_t pmap;
3668	boolean_t rv;
3669
3670	rv = FALSE;
3671	if (m->flags & PG_FICTITIOUS)
3672		return (rv);
3673
3674	sched_pin();
3675	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3676	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3677		pmap = PV_PMAP(pv);
3678		PMAP_LOCK(pmap);
3679		pte = pmap_pte_quick(pmap, pv->pv_va);
3680		rv = (*pte & PG_M) != 0;
3681		PMAP_UNLOCK(pmap);
3682		if (rv)
3683			break;
3684	}
3685	if (*PMAP1)
3686		PT_SET_MA(PADDR1, 0);
3687	sched_unpin();
3688	return (rv);
3689}
3690
3691/*
3692 *	pmap_is_prefaultable:
3693 *
3694 *	Return whether or not the specified virtual address is elgible
3695 *	for prefault.
3696 */
3697static boolean_t
3698pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3699{
3700	pt_entry_t *pte;
3701	boolean_t rv = FALSE;
3702
3703	return (rv);
3704
3705	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3706		pte = vtopte(addr);
3707		rv = (*pte == 0);
3708	}
3709	return (rv);
3710}
3711
3712boolean_t
3713pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3714{
3715	boolean_t rv;
3716
3717	PMAP_LOCK(pmap);
3718	rv = pmap_is_prefaultable_locked(pmap, addr);
3719	PMAP_UNLOCK(pmap);
3720	return (rv);
3721}
3722
3723boolean_t
3724pmap_is_referenced(vm_page_t m)
3725{
3726	pv_entry_t pv;
3727	pt_entry_t *pte;
3728	pmap_t pmap;
3729	boolean_t rv;
3730
3731	rv = FALSE;
3732	if (m->flags & PG_FICTITIOUS)
3733		return (rv);
3734	sched_pin();
3735	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3736	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3737		pmap = PV_PMAP(pv);
3738		PMAP_LOCK(pmap);
3739		pte = pmap_pte_quick(pmap, pv->pv_va);
3740		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3741		PMAP_UNLOCK(pmap);
3742		if (rv)
3743			break;
3744	}
3745	if (*PMAP1)
3746		PT_SET_MA(PADDR1, 0);
3747	sched_unpin();
3748	return (rv);
3749}
3750
3751void
3752pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3753{
3754	int i, npages = round_page(len) >> PAGE_SHIFT;
3755	for (i = 0; i < npages; i++) {
3756		pt_entry_t *pte;
3757		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3758		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3759		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3760		pmap_pte_release(pte);
3761	}
3762}
3763
3764void
3765pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3766{
3767	int i, npages = round_page(len) >> PAGE_SHIFT;
3768	for (i = 0; i < npages; i++) {
3769		pt_entry_t *pte;
3770		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3771		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3772		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3773		pmap_pte_release(pte);
3774	}
3775}
3776
3777/*
3778 * Clear the write and modified bits in each of the given page's mappings.
3779 */
3780void
3781pmap_remove_write(vm_page_t m)
3782{
3783	pv_entry_t pv;
3784	pmap_t pmap;
3785	pt_entry_t oldpte, *pte;
3786
3787	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3788	if ((m->flags & PG_FICTITIOUS) != 0 ||
3789	    (m->flags & PG_WRITEABLE) == 0)
3790		return;
3791	sched_pin();
3792	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3793		pmap = PV_PMAP(pv);
3794		PMAP_LOCK(pmap);
3795		pte = pmap_pte_quick(pmap, pv->pv_va);
3796retry:
3797		oldpte = *pte;
3798		if ((oldpte & PG_RW) != 0) {
3799			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3800
3801			/*
3802			 * Regardless of whether a pte is 32 or 64 bits
3803			 * in size, PG_RW and PG_M are among the least
3804			 * significant 32 bits.
3805			 */
3806			PT_SET_VA_MA(pte, newpte, TRUE);
3807			if (*pte != newpte)
3808				goto retry;
3809
3810			if ((oldpte & PG_M) != 0)
3811				vm_page_dirty(m);
3812			pmap_invalidate_page(pmap, pv->pv_va);
3813		}
3814		PMAP_UNLOCK(pmap);
3815	}
3816	vm_page_flag_clear(m, PG_WRITEABLE);
3817	PT_UPDATES_FLUSH();
3818	if (*PMAP1)
3819		PT_SET_MA(PADDR1, 0);
3820	sched_unpin();
3821}
3822
3823/*
3824 *	pmap_ts_referenced:
3825 *
3826 *	Return a count of reference bits for a page, clearing those bits.
3827 *	It is not necessary for every reference bit to be cleared, but it
3828 *	is necessary that 0 only be returned when there are truly no
3829 *	reference bits set.
3830 *
3831 *	XXX: The exact number of bits to check and clear is a matter that
3832 *	should be tested and standardized at some point in the future for
3833 *	optimal aging of shared pages.
3834 */
3835int
3836pmap_ts_referenced(vm_page_t m)
3837{
3838	pv_entry_t pv, pvf, pvn;
3839	pmap_t pmap;
3840	pt_entry_t *pte;
3841	int rtval = 0;
3842
3843	if (m->flags & PG_FICTITIOUS)
3844		return (rtval);
3845	sched_pin();
3846	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3847	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3848		pvf = pv;
3849		do {
3850			pvn = TAILQ_NEXT(pv, pv_list);
3851			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3852			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3853			pmap = PV_PMAP(pv);
3854			PMAP_LOCK(pmap);
3855			pte = pmap_pte_quick(pmap, pv->pv_va);
3856			if ((*pte & PG_A) != 0) {
3857				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3858				pmap_invalidate_page(pmap, pv->pv_va);
3859				rtval++;
3860				if (rtval > 4)
3861					pvn = NULL;
3862			}
3863			PMAP_UNLOCK(pmap);
3864		} while ((pv = pvn) != NULL && pv != pvf);
3865	}
3866	PT_UPDATES_FLUSH();
3867	if (*PMAP1)
3868		PT_SET_MA(PADDR1, 0);
3869
3870	sched_unpin();
3871	return (rtval);
3872}
3873
3874/*
3875 *	Clear the modify bits on the specified physical page.
3876 */
3877void
3878pmap_clear_modify(vm_page_t m)
3879{
3880	pv_entry_t pv;
3881	pmap_t pmap;
3882	pt_entry_t *pte;
3883
3884	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3885	if ((m->flags & PG_FICTITIOUS) != 0)
3886		return;
3887	sched_pin();
3888	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3889		pmap = PV_PMAP(pv);
3890		PMAP_LOCK(pmap);
3891		pte = pmap_pte_quick(pmap, pv->pv_va);
3892		if ((*pte & PG_M) != 0) {
3893			/*
3894			 * Regardless of whether a pte is 32 or 64 bits
3895			 * in size, PG_M is among the least significant
3896			 * 32 bits.
3897			 */
3898			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3899			pmap_invalidate_page(pmap, pv->pv_va);
3900		}
3901		PMAP_UNLOCK(pmap);
3902	}
3903	sched_unpin();
3904}
3905
3906/*
3907 *	pmap_clear_reference:
3908 *
3909 *	Clear the reference bit on the specified physical page.
3910 */
3911void
3912pmap_clear_reference(vm_page_t m)
3913{
3914	pv_entry_t pv;
3915	pmap_t pmap;
3916	pt_entry_t *pte;
3917
3918	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3919	if ((m->flags & PG_FICTITIOUS) != 0)
3920		return;
3921	sched_pin();
3922	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3923		pmap = PV_PMAP(pv);
3924		PMAP_LOCK(pmap);
3925		pte = pmap_pte_quick(pmap, pv->pv_va);
3926		if ((*pte & PG_A) != 0) {
3927			/*
3928			 * Regardless of whether a pte is 32 or 64 bits
3929			 * in size, PG_A is among the least significant
3930			 * 32 bits.
3931			 */
3932			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3933			pmap_invalidate_page(pmap, pv->pv_va);
3934		}
3935		PMAP_UNLOCK(pmap);
3936	}
3937	sched_unpin();
3938}
3939
3940/*
3941 * Miscellaneous support routines follow
3942 */
3943
3944/*
3945 * Map a set of physical memory pages into the kernel virtual
3946 * address space. Return a pointer to where it is mapped. This
3947 * routine is intended to be used for mapping device memory,
3948 * NOT real memory.
3949 */
3950void *
3951pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3952{
3953	vm_offset_t va, offset;
3954	vm_size_t tmpsize;
3955
3956	offset = pa & PAGE_MASK;
3957	size = roundup(offset + size, PAGE_SIZE);
3958	pa = pa & PG_FRAME;
3959
3960	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3961		va = KERNBASE + pa;
3962	else
3963		va = kmem_alloc_nofault(kernel_map, size);
3964	if (!va)
3965		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3966
3967	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3968		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3969	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3970	pmap_invalidate_cache_range(va, va + size);
3971	return ((void *)(va + offset));
3972}
3973
3974void *
3975pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3976{
3977
3978	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3979}
3980
3981void *
3982pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3983{
3984
3985	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3986}
3987
3988void
3989pmap_unmapdev(vm_offset_t va, vm_size_t size)
3990{
3991	vm_offset_t base, offset, tmpva;
3992
3993	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3994		return;
3995	base = trunc_page(va);
3996	offset = va & PAGE_MASK;
3997	size = roundup(offset + size, PAGE_SIZE);
3998	critical_enter();
3999	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4000		pmap_kremove(tmpva);
4001	pmap_invalidate_range(kernel_pmap, va, tmpva);
4002	critical_exit();
4003	kmem_free(kernel_map, base, size);
4004}
4005
4006/*
4007 * Sets the memory attribute for the specified page.
4008 */
4009void
4010pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4011{
4012	struct sysmaps *sysmaps;
4013	vm_offset_t sva, eva;
4014
4015	m->md.pat_mode = ma;
4016	if ((m->flags & PG_FICTITIOUS) != 0)
4017		return;
4018
4019	/*
4020	 * If "m" is a normal page, flush it from the cache.
4021	 * See pmap_invalidate_cache_range().
4022	 *
4023	 * First, try to find an existing mapping of the page by sf
4024	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4025	 * flushes the cache.
4026	 */
4027	if (sf_buf_invalidate_cache(m))
4028		return;
4029
4030	/*
4031	 * If page is not mapped by sf buffer, but CPU does not
4032	 * support self snoop, map the page transient and do
4033	 * invalidation. In the worst case, whole cache is flushed by
4034	 * pmap_invalidate_cache_range().
4035	 */
4036	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4037		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4038		mtx_lock(&sysmaps->lock);
4039		if (*sysmaps->CMAP2)
4040			panic("pmap_page_set_memattr: CMAP2 busy");
4041		sched_pin();
4042		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4043		    xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M |
4044		    pmap_cache_bits(m->md.pat_mode, 0));
4045		invlcaddr(sysmaps->CADDR2);
4046		sva = (vm_offset_t)sysmaps->CADDR2;
4047		eva = sva + PAGE_SIZE;
4048	} else
4049		sva = eva = 0; /* gcc */
4050	pmap_invalidate_cache_range(sva, eva);
4051	if (sva != 0) {
4052		PT_SET_MA(sysmaps->CADDR2, 0);
4053		sched_unpin();
4054		mtx_unlock(&sysmaps->lock);
4055	}
4056}
4057
4058int
4059pmap_change_attr(va, size, mode)
4060	vm_offset_t va;
4061	vm_size_t size;
4062	int mode;
4063{
4064	vm_offset_t base, offset, tmpva;
4065	pt_entry_t *pte;
4066	u_int opte, npte;
4067	pd_entry_t *pde;
4068	boolean_t changed;
4069
4070	base = trunc_page(va);
4071	offset = va & PAGE_MASK;
4072	size = roundup(offset + size, PAGE_SIZE);
4073
4074	/* Only supported on kernel virtual addresses. */
4075	if (base <= VM_MAXUSER_ADDRESS)
4076		return (EINVAL);
4077
4078	/* 4MB pages and pages that aren't mapped aren't supported. */
4079	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4080		pde = pmap_pde(kernel_pmap, tmpva);
4081		if (*pde & PG_PS)
4082			return (EINVAL);
4083		if ((*pde & PG_V) == 0)
4084			return (EINVAL);
4085		pte = vtopte(va);
4086		if ((*pte & PG_V) == 0)
4087			return (EINVAL);
4088	}
4089
4090	changed = FALSE;
4091
4092	/*
4093	 * Ok, all the pages exist and are 4k, so run through them updating
4094	 * their cache mode.
4095	 */
4096	for (tmpva = base; size > 0; ) {
4097		pte = vtopte(tmpva);
4098
4099		/*
4100		 * The cache mode bits are all in the low 32-bits of the
4101		 * PTE, so we can just spin on updating the low 32-bits.
4102		 */
4103		do {
4104			opte = *(u_int *)pte;
4105			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4106			npte |= pmap_cache_bits(mode, 0);
4107			PT_SET_VA_MA(pte, npte, TRUE);
4108		} while (npte != opte && (*pte != npte));
4109		if (npte != opte)
4110			changed = TRUE;
4111		tmpva += PAGE_SIZE;
4112		size -= PAGE_SIZE;
4113	}
4114
4115	/*
4116	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4117	 * be, etc.
4118	 */
4119	if (changed) {
4120		pmap_invalidate_range(kernel_pmap, base, tmpva);
4121		pmap_invalidate_cache_range(base, tmpva);
4122	}
4123	return (0);
4124}
4125
4126/*
4127 * perform the pmap work for mincore
4128 */
4129int
4130pmap_mincore(pmap_t pmap, vm_offset_t addr)
4131{
4132	pt_entry_t *ptep, pte;
4133	vm_page_t m;
4134	int val = 0;
4135
4136	PMAP_LOCK(pmap);
4137	ptep = pmap_pte(pmap, addr);
4138	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4139	pmap_pte_release(ptep);
4140	PMAP_UNLOCK(pmap);
4141
4142	if (pte != 0) {
4143		vm_paddr_t pa;
4144
4145		val = MINCORE_INCORE;
4146		if ((pte & PG_MANAGED) == 0)
4147			return val;
4148
4149		pa = pte & PG_FRAME;
4150
4151		m = PHYS_TO_VM_PAGE(pa);
4152
4153		/*
4154		 * Modified by us
4155		 */
4156		if (pte & PG_M)
4157			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4158		else {
4159			/*
4160			 * Modified by someone else
4161			 */
4162			vm_page_lock_queues();
4163			if (m->dirty || pmap_is_modified(m))
4164				val |= MINCORE_MODIFIED_OTHER;
4165			vm_page_unlock_queues();
4166		}
4167		/*
4168		 * Referenced by us
4169		 */
4170		if (pte & PG_A)
4171			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4172		else {
4173			/*
4174			 * Referenced by someone else
4175			 */
4176			vm_page_lock_queues();
4177			if ((m->flags & PG_REFERENCED) ||
4178			    pmap_is_referenced(m))
4179				val |= MINCORE_REFERENCED_OTHER;
4180			vm_page_unlock_queues();
4181		}
4182	}
4183	return val;
4184}
4185
4186void
4187pmap_activate(struct thread *td)
4188{
4189	pmap_t	pmap, oldpmap;
4190	u_int32_t  cr3;
4191
4192	critical_enter();
4193	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4194	oldpmap = PCPU_GET(curpmap);
4195#if defined(SMP)
4196	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4197	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4198#else
4199	oldpmap->pm_active &= ~1;
4200	pmap->pm_active |= 1;
4201#endif
4202#ifdef PAE
4203	cr3 = vtophys(pmap->pm_pdpt);
4204#else
4205	cr3 = vtophys(pmap->pm_pdir);
4206#endif
4207	/*
4208	 * pmap_activate is for the current thread on the current cpu
4209	 */
4210	td->td_pcb->pcb_cr3 = cr3;
4211	PT_UPDATES_FLUSH();
4212	load_cr3(cr3);
4213	PCPU_SET(curpmap, pmap);
4214	critical_exit();
4215}
4216
4217void
4218pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4219{
4220}
4221
4222/*
4223 *	Increase the starting virtual address of the given mapping if a
4224 *	different alignment might result in more superpage mappings.
4225 */
4226void
4227pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4228    vm_offset_t *addr, vm_size_t size)
4229{
4230	vm_offset_t superpage_offset;
4231
4232	if (size < NBPDR)
4233		return;
4234	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4235		offset += ptoa(object->pg_color);
4236	superpage_offset = offset & PDRMASK;
4237	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4238	    (*addr & PDRMASK) == superpage_offset)
4239		return;
4240	if ((*addr & PDRMASK) < superpage_offset)
4241		*addr = (*addr & ~PDRMASK) + superpage_offset;
4242	else
4243		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4244}
4245
4246#ifdef XEN
4247
4248void
4249pmap_suspend()
4250{
4251	pmap_t pmap;
4252	int i, pdir, offset;
4253	vm_paddr_t pdirma;
4254	mmu_update_t mu[4];
4255
4256	/*
4257	 * We need to remove the recursive mapping structure from all
4258	 * our pmaps so that Xen doesn't get confused when it restores
4259	 * the page tables. The recursive map lives at page directory
4260	 * index PTDPTDI. We assume that the suspend code has stopped
4261	 * the other vcpus (if any).
4262	 */
4263	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4264		for (i = 0; i < 4; i++) {
4265			/*
4266			 * Figure out which page directory (L2) page
4267			 * contains this bit of the recursive map and
4268			 * the offset within that page of the map
4269			 * entry
4270			 */
4271			pdir = (PTDPTDI + i) / NPDEPG;
4272			offset = (PTDPTDI + i) % NPDEPG;
4273			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4274			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4275			mu[i].val = 0;
4276		}
4277		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4278	}
4279}
4280
4281void
4282pmap_resume()
4283{
4284	pmap_t pmap;
4285	int i, pdir, offset;
4286	vm_paddr_t pdirma;
4287	mmu_update_t mu[4];
4288
4289	/*
4290	 * Restore the recursive map that we removed on suspend.
4291	 */
4292	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4293		for (i = 0; i < 4; i++) {
4294			/*
4295			 * Figure out which page directory (L2) page
4296			 * contains this bit of the recursive map and
4297			 * the offset within that page of the map
4298			 * entry
4299			 */
4300			pdir = (PTDPTDI + i) / NPDEPG;
4301			offset = (PTDPTDI + i) % NPDEPG;
4302			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4303			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4304			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4305		}
4306		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4307	}
4308}
4309
4310#endif
4311
4312#if defined(PMAP_DEBUG)
4313pmap_pid_dump(int pid)
4314{
4315	pmap_t pmap;
4316	struct proc *p;
4317	int npte = 0;
4318	int index;
4319
4320	sx_slock(&allproc_lock);
4321	FOREACH_PROC_IN_SYSTEM(p) {
4322		if (p->p_pid != pid)
4323			continue;
4324
4325		if (p->p_vmspace) {
4326			int i,j;
4327			index = 0;
4328			pmap = vmspace_pmap(p->p_vmspace);
4329			for (i = 0; i < NPDEPTD; i++) {
4330				pd_entry_t *pde;
4331				pt_entry_t *pte;
4332				vm_offset_t base = i << PDRSHIFT;
4333
4334				pde = &pmap->pm_pdir[i];
4335				if (pde && pmap_pde_v(pde)) {
4336					for (j = 0; j < NPTEPG; j++) {
4337						vm_offset_t va = base + (j << PAGE_SHIFT);
4338						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4339							if (index) {
4340								index = 0;
4341								printf("\n");
4342							}
4343							sx_sunlock(&allproc_lock);
4344							return npte;
4345						}
4346						pte = pmap_pte(pmap, va);
4347						if (pte && pmap_pte_v(pte)) {
4348							pt_entry_t pa;
4349							vm_page_t m;
4350							pa = PT_GET(pte);
4351							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4352							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4353								va, pa, m->hold_count, m->wire_count, m->flags);
4354							npte++;
4355							index++;
4356							if (index >= 2) {
4357								index = 0;
4358								printf("\n");
4359							} else {
4360								printf(" ");
4361							}
4362						}
4363					}
4364				}
4365			}
4366		}
4367	}
4368	sx_sunlock(&allproc_lock);
4369	return npte;
4370}
4371#endif
4372
4373#if defined(DEBUG)
4374
4375static void	pads(pmap_t pm);
4376void		pmap_pvdump(vm_paddr_t pa);
4377
4378/* print address space of pmap*/
4379static void
4380pads(pmap_t pm)
4381{
4382	int i, j;
4383	vm_paddr_t va;
4384	pt_entry_t *ptep;
4385
4386	if (pm == kernel_pmap)
4387		return;
4388	for (i = 0; i < NPDEPTD; i++)
4389		if (pm->pm_pdir[i])
4390			for (j = 0; j < NPTEPG; j++) {
4391				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4392				if (pm == kernel_pmap && va < KERNBASE)
4393					continue;
4394				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4395					continue;
4396				ptep = pmap_pte(pm, va);
4397				if (pmap_pte_v(ptep))
4398					printf("%x:%x ", va, *ptep);
4399			};
4400
4401}
4402
4403void
4404pmap_pvdump(vm_paddr_t pa)
4405{
4406	pv_entry_t pv;
4407	pmap_t pmap;
4408	vm_page_t m;
4409
4410	printf("pa %x", pa);
4411	m = PHYS_TO_VM_PAGE(pa);
4412	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4413		pmap = PV_PMAP(pv);
4414		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4415		pads(pmap);
4416	}
4417	printf(" ");
4418}
4419#endif
4420