pmap.c revision 207410
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 207410 2010-04-30 00:46:43Z kmacy $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#define PMAP_DIAGNOSTIC
107
108#include "opt_cpu.h"
109#include "opt_pmap.h"
110#include "opt_msgbuf.h"
111#include "opt_smp.h"
112#include "opt_xbox.h"
113
114#include <sys/param.h>
115#include <sys/systm.h>
116#include <sys/kernel.h>
117#include <sys/ktr.h>
118#include <sys/lock.h>
119#include <sys/malloc.h>
120#include <sys/mman.h>
121#include <sys/msgbuf.h>
122#include <sys/mutex.h>
123#include <sys/proc.h>
124#include <sys/sf_buf.h>
125#include <sys/sx.h>
126#include <sys/vmmeter.h>
127#include <sys/sched.h>
128#include <sys/sysctl.h>
129#ifdef SMP
130#include <sys/smp.h>
131#endif
132
133#include <vm/vm.h>
134#include <vm/vm_param.h>
135#include <vm/vm_kern.h>
136#include <vm/vm_page.h>
137#include <vm/vm_map.h>
138#include <vm/vm_object.h>
139#include <vm/vm_extern.h>
140#include <vm/vm_pageout.h>
141#include <vm/vm_pager.h>
142#include <vm/uma.h>
143
144#include <machine/cpu.h>
145#include <machine/cputypes.h>
146#include <machine/md_var.h>
147#include <machine/pcb.h>
148#include <machine/specialreg.h>
149#ifdef SMP
150#include <machine/smp.h>
151#endif
152
153#ifdef XBOX
154#include <machine/xbox.h>
155#endif
156
157#include <xen/interface/xen.h>
158#include <xen/hypervisor.h>
159#include <machine/xen/hypercall.h>
160#include <machine/xen/xenvar.h>
161#include <machine/xen/xenfunc.h>
162
163#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
164#define CPU_ENABLE_SSE
165#endif
166
167#ifndef PMAP_SHPGPERPROC
168#define PMAP_SHPGPERPROC 200
169#endif
170
171#if defined(DIAGNOSTIC)
172#define PMAP_DIAGNOSTIC
173#endif
174
175#if !defined(PMAP_DIAGNOSTIC)
176#ifdef __GNUC_GNU_INLINE__
177#define PMAP_INLINE	inline
178#else
179#define PMAP_INLINE	extern inline
180#endif
181#else
182#define PMAP_INLINE
183#endif
184
185#define PV_STATS
186#ifdef PV_STATS
187#define PV_STAT(x)	do { x ; } while (0)
188#else
189#define PV_STAT(x)	do { } while (0)
190#endif
191
192#define	pa_index(pa)	((pa) >> PDRSHIFT)
193#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
194
195/*
196 * Get PDEs and PTEs for user/kernel address space
197 */
198#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
199#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
200
201#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
202#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
203#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
204#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
205#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
206
207#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
208
209struct pmap kernel_pmap_store;
210LIST_HEAD(pmaplist, pmap);
211static struct pmaplist allpmaps;
212static struct mtx allpmaps_lock;
213
214vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
215vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
216int pgeflag = 0;		/* PG_G or-in */
217int pseflag = 0;		/* PG_PS or-in */
218
219int nkpt;
220vm_offset_t kernel_vm_end;
221extern u_int32_t KERNend;
222
223#ifdef PAE
224pt_entry_t pg_nx;
225#if !defined(XEN)
226static uma_zone_t pdptzone;
227#endif
228#endif
229
230static int pat_works;			/* Is page attribute table sane? */
231
232/*
233 * Data for the pv entry allocation mechanism
234 */
235static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
236static struct md_page *pv_table;
237static int shpgperproc = PMAP_SHPGPERPROC;
238
239struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
240int pv_maxchunks;			/* How many chunks we have KVA for */
241vm_offset_t pv_vafree;			/* freelist stored in the PTE */
242
243/*
244 * All those kernel PT submaps that BSD is so fond of
245 */
246struct sysmaps {
247	struct	mtx lock;
248	pt_entry_t *CMAP1;
249	pt_entry_t *CMAP2;
250	caddr_t	CADDR1;
251	caddr_t	CADDR2;
252};
253static struct sysmaps sysmaps_pcpu[MAXCPU];
254static pt_entry_t *CMAP3;
255caddr_t ptvmmap = 0;
256static caddr_t CADDR3;
257struct msgbuf *msgbufp = 0;
258
259/*
260 * Crashdump maps.
261 */
262static caddr_t crashdumpmap;
263
264static pt_entry_t *PMAP1 = 0, *PMAP2;
265static pt_entry_t *PADDR1 = 0, *PADDR2;
266#ifdef SMP
267static int PMAP1cpu;
268static int PMAP1changedcpu;
269SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
270	   &PMAP1changedcpu, 0,
271	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
272#endif
273static int PMAP1changed;
274SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
275	   &PMAP1changed, 0,
276	   "Number of times pmap_pte_quick changed PMAP1");
277static int PMAP1unchanged;
278SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
279	   &PMAP1unchanged, 0,
280	   "Number of times pmap_pte_quick didn't change PMAP1");
281static struct mtx PMAP2mutex;
282
283SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
284static int pg_ps_enabled;
285SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
286    "Are large page mappings enabled?");
287
288SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
289	"Max number of PV entries");
290SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
291	"Page share factor per proc");
292
293static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
294static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
295
296static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
297    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
298static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
299    vm_page_t *free);
300static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
301    vm_page_t *free);
302static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
303					vm_offset_t va);
304static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
305static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
306    vm_page_t m);
307
308static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
309
310static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
311static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
312static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
313static void pmap_pte_release(pt_entry_t *pte);
314static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
315static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
316static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
317static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
318
319static __inline void pagezero(void *page);
320
321#if defined(PAE) && !defined(XEN)
322static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
323#endif
324#ifndef XEN
325static void pmap_set_pg(void);
326#endif
327
328CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
329CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
330
331/*
332 * If you get an error here, then you set KVA_PAGES wrong! See the
333 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
334 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
335 */
336CTASSERT(KERNBASE % (1 << 24) == 0);
337
338
339
340void
341pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
342{
343	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
344
345	switch (type) {
346	case SH_PD_SET_VA:
347#if 0
348		xen_queue_pt_update(shadow_pdir_ma,
349				    xpmap_ptom(val & ~(PG_RW)));
350#endif
351		xen_queue_pt_update(pdir_ma,
352				    xpmap_ptom(val));
353		break;
354	case SH_PD_SET_VA_MA:
355#if 0
356		xen_queue_pt_update(shadow_pdir_ma,
357				    val & ~(PG_RW));
358#endif
359		xen_queue_pt_update(pdir_ma, val);
360		break;
361	case SH_PD_SET_VA_CLEAR:
362#if 0
363		xen_queue_pt_update(shadow_pdir_ma, 0);
364#endif
365		xen_queue_pt_update(pdir_ma, 0);
366		break;
367	}
368}
369
370/*
371 * Move the kernel virtual free pointer to the next
372 * 4MB.  This is used to help improve performance
373 * by using a large (4MB) page for much of the kernel
374 * (.text, .data, .bss)
375 */
376static vm_offset_t
377pmap_kmem_choose(vm_offset_t addr)
378{
379	vm_offset_t newaddr = addr;
380
381#ifndef DISABLE_PSE
382	if (cpu_feature & CPUID_PSE)
383		newaddr = (addr + PDRMASK) & ~PDRMASK;
384#endif
385	return newaddr;
386}
387
388/*
389 *	Bootstrap the system enough to run with virtual memory.
390 *
391 *	On the i386 this is called after mapping has already been enabled
392 *	and just syncs the pmap module with what has already been done.
393 *	[We can't call it easily with mapping off since the kernel is not
394 *	mapped with PA == VA, hence we would have to relocate every address
395 *	from the linked base (virtual) address "KERNBASE" to the actual
396 *	(physical) address starting relative to 0]
397 */
398void
399pmap_bootstrap(vm_paddr_t firstaddr)
400{
401	vm_offset_t va;
402	pt_entry_t *pte, *unused;
403	struct sysmaps *sysmaps;
404	int i;
405
406	/*
407	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
408	 * large. It should instead be correctly calculated in locore.s and
409	 * not based on 'first' (which is a physical address, not a virtual
410	 * address, for the start of unused physical memory). The kernel
411	 * page tables are NOT double mapped and thus should not be included
412	 * in this calculation.
413	 */
414	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
415	virtual_avail = pmap_kmem_choose(virtual_avail);
416
417	virtual_end = VM_MAX_KERNEL_ADDRESS;
418
419	/*
420	 * Initialize the kernel pmap (which is statically allocated).
421	 */
422	PMAP_LOCK_INIT(kernel_pmap);
423	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
424#ifdef PAE
425	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
426#endif
427	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
428	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
429	LIST_INIT(&allpmaps);
430	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
431	mtx_lock_spin(&allpmaps_lock);
432	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
433	mtx_unlock_spin(&allpmaps_lock);
434	if (nkpt == 0)
435		nkpt = NKPT;
436
437	/*
438	 * Reserve some special page table entries/VA space for temporary
439	 * mapping of pages.
440	 */
441#define	SYSMAP(c, p, v, n)	\
442	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
443
444	va = virtual_avail;
445	pte = vtopte(va);
446
447	/*
448	 * CMAP1/CMAP2 are used for zeroing and copying pages.
449	 * CMAP3 is used for the idle process page zeroing.
450	 */
451	for (i = 0; i < MAXCPU; i++) {
452		sysmaps = &sysmaps_pcpu[i];
453		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
454		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
455		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
456		PT_SET_MA(sysmaps->CADDR1, 0);
457		PT_SET_MA(sysmaps->CADDR2, 0);
458	}
459	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
460	PT_SET_MA(CADDR3, 0);
461
462	/*
463	 * Crashdump maps.
464	 */
465	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
466
467	/*
468	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
469	 */
470	SYSMAP(caddr_t, unused, ptvmmap, 1)
471
472	/*
473	 * msgbufp is used to map the system message buffer.
474	 */
475	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
476
477	/*
478	 * ptemap is used for pmap_pte_quick
479	 */
480	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
481	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
482
483	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
484
485	virtual_avail = va;
486
487	/*
488	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
489	 * physical memory region that is used by the ACPI wakeup code.  This
490	 * mapping must not have PG_G set.
491	 */
492#ifndef XEN
493	/*
494	 * leave here deliberately to show that this is not supported
495	 */
496#ifdef XBOX
497	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
498	 * an early stadium, we cannot yet neatly map video memory ... :-(
499	 * Better fixes are very welcome! */
500	if (!arch_i386_is_xbox)
501#endif
502	for (i = 1; i < NKPT; i++)
503		PTD[i] = 0;
504
505	/* Initialize the PAT MSR if present. */
506	pmap_init_pat();
507
508	/* Turn on PG_G on kernel page(s) */
509	pmap_set_pg();
510#endif
511}
512
513/*
514 * Setup the PAT MSR.
515 */
516void
517pmap_init_pat(void)
518{
519	uint64_t pat_msr;
520
521	/* Bail if this CPU doesn't implement PAT. */
522	if (!(cpu_feature & CPUID_PAT))
523		return;
524
525	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
526	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
527		/*
528		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
529		 * Program 4 and 5 as WP and WC.
530		 * Leave 6 and 7 as UC and UC-.
531		 */
532		pat_msr = rdmsr(MSR_PAT);
533		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
534		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
535		    PAT_VALUE(5, PAT_WRITE_COMBINING);
536		pat_works = 1;
537	} else {
538		/*
539		 * Due to some Intel errata, we can only safely use the lower 4
540		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
541		 * of UC-.
542		 *
543		 *   Intel Pentium III Processor Specification Update
544		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
545		 * or Mode C Paging)
546		 *
547		 *   Intel Pentium IV  Processor Specification Update
548		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
549		 */
550		pat_msr = rdmsr(MSR_PAT);
551		pat_msr &= ~PAT_MASK(2);
552		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
553		pat_works = 0;
554	}
555	wrmsr(MSR_PAT, pat_msr);
556}
557
558#ifndef XEN
559/*
560 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
561 */
562static void
563pmap_set_pg(void)
564{
565	pd_entry_t pdir;
566	pt_entry_t *pte;
567	vm_offset_t va, endva;
568	int i;
569
570	if (pgeflag == 0)
571		return;
572
573	i = KERNLOAD/NBPDR;
574	endva = KERNBASE + KERNend;
575
576	if (pseflag) {
577		va = KERNBASE + KERNLOAD;
578		while (va  < endva) {
579			pdir = kernel_pmap->pm_pdir[KPTDI+i];
580			pdir |= pgeflag;
581			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
582			invltlb();	/* Play it safe, invltlb() every time */
583			i++;
584			va += NBPDR;
585		}
586	} else {
587		va = (vm_offset_t)btext;
588		while (va < endva) {
589			pte = vtopte(va);
590			if (*pte & PG_V)
591				*pte |= pgeflag;
592			invltlb();	/* Play it safe, invltlb() every time */
593			va += PAGE_SIZE;
594		}
595	}
596}
597#endif
598
599/*
600 * Initialize a vm_page's machine-dependent fields.
601 */
602void
603pmap_page_init(vm_page_t m)
604{
605
606	TAILQ_INIT(&m->md.pv_list);
607	m->md.pat_mode = PAT_WRITE_BACK;
608}
609
610#if defined(PAE) && !defined(XEN)
611static void *
612pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
613{
614
615	/* Inform UMA that this allocator uses kernel_map/object. */
616	*flags = UMA_SLAB_KERNEL;
617	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
618	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
619}
620#endif
621
622/*
623 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
624 * Requirements:
625 *  - Must deal with pages in order to ensure that none of the PG_* bits
626 *    are ever set, PG_V in particular.
627 *  - Assumes we can write to ptes without pte_store() atomic ops, even
628 *    on PAE systems.  This should be ok.
629 *  - Assumes nothing will ever test these addresses for 0 to indicate
630 *    no mapping instead of correctly checking PG_V.
631 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
632 * Because PG_V is never set, there can be no mappings to invalidate.
633 */
634static int ptelist_count = 0;
635static vm_offset_t
636pmap_ptelist_alloc(vm_offset_t *head)
637{
638	vm_offset_t va;
639	vm_offset_t *phead = (vm_offset_t *)*head;
640
641	if (ptelist_count == 0) {
642		printf("out of memory!!!!!!\n");
643		return (0);	/* Out of memory */
644	}
645	ptelist_count--;
646	va = phead[ptelist_count];
647	return (va);
648}
649
650static void
651pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
652{
653	vm_offset_t *phead = (vm_offset_t *)*head;
654
655	phead[ptelist_count++] = va;
656}
657
658static void
659pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
660{
661	int i, nstackpages;
662	vm_offset_t va;
663	vm_page_t m;
664
665	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
666	for (i = 0; i < nstackpages; i++) {
667		va = (vm_offset_t)base + i * PAGE_SIZE;
668		m = vm_page_alloc(NULL, i,
669		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
670		    VM_ALLOC_ZERO);
671		pmap_qenter(va, &m, 1);
672	}
673
674	*head = (vm_offset_t)base;
675	for (i = npages - 1; i >= nstackpages; i--) {
676		va = (vm_offset_t)base + i * PAGE_SIZE;
677		pmap_ptelist_free(head, va);
678	}
679}
680
681
682/*
683 *	Initialize the pmap module.
684 *	Called by vm_init, to initialize any structures that the pmap
685 *	system needs to map virtual memory.
686 */
687void
688pmap_init(void)
689{
690	vm_page_t mpte;
691	vm_size_t s;
692	int i, pv_npg;
693
694	/*
695	 * Initialize the vm page array entries for the kernel pmap's
696	 * page table pages.
697	 */
698	for (i = 0; i < nkpt; i++) {
699		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
700		KASSERT(mpte >= vm_page_array &&
701		    mpte < &vm_page_array[vm_page_array_size],
702		    ("pmap_init: page table page is out of range"));
703		mpte->pindex = i + KPTDI;
704		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
705	}
706
707        /*
708	 * Initialize the address space (zone) for the pv entries.  Set a
709	 * high water mark so that the system can recover from excessive
710	 * numbers of pv entries.
711	 */
712	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
713	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
714	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
715	pv_entry_max = roundup(pv_entry_max, _NPCPV);
716	pv_entry_high_water = 9 * (pv_entry_max / 10);
717
718	/*
719	 * Are large page mappings enabled?
720	 */
721	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
722
723	/*
724	 * Calculate the size of the pv head table for superpages.
725	 */
726	for (i = 0; phys_avail[i + 1]; i += 2);
727	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
728
729	/*
730	 * Allocate memory for the pv head table for superpages.
731	 */
732	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
733	s = round_page(s);
734	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
735	for (i = 0; i < pv_npg; i++)
736		TAILQ_INIT(&pv_table[i].pv_list);
737
738	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
739	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
740	    PAGE_SIZE * pv_maxchunks);
741	if (pv_chunkbase == NULL)
742		panic("pmap_init: not enough kvm for pv chunks");
743	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
744#if defined(PAE) && !defined(XEN)
745	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
746	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
747	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
748	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
749#endif
750}
751
752
753/***************************************************
754 * Low level helper routines.....
755 ***************************************************/
756
757/*
758 * Determine the appropriate bits to set in a PTE or PDE for a specified
759 * caching mode.
760 */
761int
762pmap_cache_bits(int mode, boolean_t is_pde)
763{
764	int pat_flag, pat_index, cache_bits;
765
766	/* The PAT bit is different for PTE's and PDE's. */
767	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
768
769	/* If we don't support PAT, map extended modes to older ones. */
770	if (!(cpu_feature & CPUID_PAT)) {
771		switch (mode) {
772		case PAT_UNCACHEABLE:
773		case PAT_WRITE_THROUGH:
774		case PAT_WRITE_BACK:
775			break;
776		case PAT_UNCACHED:
777		case PAT_WRITE_COMBINING:
778		case PAT_WRITE_PROTECTED:
779			mode = PAT_UNCACHEABLE;
780			break;
781		}
782	}
783
784	/* Map the caching mode to a PAT index. */
785	if (pat_works) {
786		switch (mode) {
787			case PAT_UNCACHEABLE:
788				pat_index = 3;
789				break;
790			case PAT_WRITE_THROUGH:
791				pat_index = 1;
792				break;
793			case PAT_WRITE_BACK:
794				pat_index = 0;
795				break;
796			case PAT_UNCACHED:
797				pat_index = 2;
798				break;
799			case PAT_WRITE_COMBINING:
800				pat_index = 5;
801				break;
802			case PAT_WRITE_PROTECTED:
803				pat_index = 4;
804				break;
805			default:
806				panic("Unknown caching mode %d\n", mode);
807		}
808	} else {
809		switch (mode) {
810			case PAT_UNCACHED:
811			case PAT_UNCACHEABLE:
812			case PAT_WRITE_PROTECTED:
813				pat_index = 3;
814				break;
815			case PAT_WRITE_THROUGH:
816				pat_index = 1;
817				break;
818			case PAT_WRITE_BACK:
819				pat_index = 0;
820				break;
821			case PAT_WRITE_COMBINING:
822				pat_index = 2;
823				break;
824			default:
825				panic("Unknown caching mode %d\n", mode);
826		}
827	}
828
829	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
830	cache_bits = 0;
831	if (pat_index & 0x4)
832		cache_bits |= pat_flag;
833	if (pat_index & 0x2)
834		cache_bits |= PG_NC_PCD;
835	if (pat_index & 0x1)
836		cache_bits |= PG_NC_PWT;
837	return (cache_bits);
838}
839#ifdef SMP
840/*
841 * For SMP, these functions have to use the IPI mechanism for coherence.
842 *
843 * N.B.: Before calling any of the following TLB invalidation functions,
844 * the calling processor must ensure that all stores updating a non-
845 * kernel page table are globally performed.  Otherwise, another
846 * processor could cache an old, pre-update entry without being
847 * invalidated.  This can happen one of two ways: (1) The pmap becomes
848 * active on another processor after its pm_active field is checked by
849 * one of the following functions but before a store updating the page
850 * table is globally performed. (2) The pmap becomes active on another
851 * processor before its pm_active field is checked but due to
852 * speculative loads one of the following functions stills reads the
853 * pmap as inactive on the other processor.
854 *
855 * The kernel page table is exempt because its pm_active field is
856 * immutable.  The kernel page table is always active on every
857 * processor.
858 */
859void
860pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
861{
862	u_int cpumask;
863	u_int other_cpus;
864
865	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
866	    pmap, va);
867
868	sched_pin();
869	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
870		invlpg(va);
871		smp_invlpg(va);
872	} else {
873		cpumask = PCPU_GET(cpumask);
874		other_cpus = PCPU_GET(other_cpus);
875		if (pmap->pm_active & cpumask)
876			invlpg(va);
877		if (pmap->pm_active & other_cpus)
878			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
879	}
880	sched_unpin();
881	PT_UPDATES_FLUSH();
882}
883
884void
885pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
886{
887	u_int cpumask;
888	u_int other_cpus;
889	vm_offset_t addr;
890
891	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
892	    pmap, sva, eva);
893
894	sched_pin();
895	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
896		for (addr = sva; addr < eva; addr += PAGE_SIZE)
897			invlpg(addr);
898		smp_invlpg_range(sva, eva);
899	} else {
900		cpumask = PCPU_GET(cpumask);
901		other_cpus = PCPU_GET(other_cpus);
902		if (pmap->pm_active & cpumask)
903			for (addr = sva; addr < eva; addr += PAGE_SIZE)
904				invlpg(addr);
905		if (pmap->pm_active & other_cpus)
906			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
907			    sva, eva);
908	}
909	sched_unpin();
910	PT_UPDATES_FLUSH();
911}
912
913void
914pmap_invalidate_all(pmap_t pmap)
915{
916	u_int cpumask;
917	u_int other_cpus;
918
919	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
920
921	sched_pin();
922	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
923		invltlb();
924		smp_invltlb();
925	} else {
926		cpumask = PCPU_GET(cpumask);
927		other_cpus = PCPU_GET(other_cpus);
928		if (pmap->pm_active & cpumask)
929			invltlb();
930		if (pmap->pm_active & other_cpus)
931			smp_masked_invltlb(pmap->pm_active & other_cpus);
932	}
933	sched_unpin();
934}
935
936void
937pmap_invalidate_cache(void)
938{
939
940	sched_pin();
941	wbinvd();
942	smp_cache_flush();
943	sched_unpin();
944}
945#else /* !SMP */
946/*
947 * Normal, non-SMP, 486+ invalidation functions.
948 * We inline these within pmap.c for speed.
949 */
950PMAP_INLINE void
951pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
952{
953	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
954	    pmap, va);
955
956	if (pmap == kernel_pmap || pmap->pm_active)
957		invlpg(va);
958	PT_UPDATES_FLUSH();
959}
960
961PMAP_INLINE void
962pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
963{
964	vm_offset_t addr;
965
966	if (eva - sva > PAGE_SIZE)
967		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
968		    pmap, sva, eva);
969
970	if (pmap == kernel_pmap || pmap->pm_active)
971		for (addr = sva; addr < eva; addr += PAGE_SIZE)
972			invlpg(addr);
973	PT_UPDATES_FLUSH();
974}
975
976PMAP_INLINE void
977pmap_invalidate_all(pmap_t pmap)
978{
979
980	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
981
982	if (pmap == kernel_pmap || pmap->pm_active)
983		invltlb();
984}
985
986PMAP_INLINE void
987pmap_invalidate_cache(void)
988{
989
990	wbinvd();
991}
992#endif /* !SMP */
993
994void
995pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
996{
997
998	KASSERT((sva & PAGE_MASK) == 0,
999	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1000	KASSERT((eva & PAGE_MASK) == 0,
1001	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1002
1003	if (cpu_feature & CPUID_SS)
1004		; /* If "Self Snoop" is supported, do nothing. */
1005	else if (cpu_feature & CPUID_CLFSH) {
1006
1007		/*
1008		 * Otherwise, do per-cache line flush.  Use the mfence
1009		 * instruction to insure that previous stores are
1010		 * included in the write-back.  The processor
1011		 * propagates flush to other processors in the cache
1012		 * coherence domain.
1013		 */
1014		mfence();
1015		for (; sva < eva; sva += cpu_clflush_line_size)
1016			clflush(sva);
1017		mfence();
1018	} else {
1019
1020		/*
1021		 * No targeted cache flush methods are supported by CPU,
1022		 * globally invalidate cache as a last resort.
1023		 */
1024		pmap_invalidate_cache();
1025	}
1026}
1027
1028/*
1029 * Are we current address space or kernel?  N.B. We return FALSE when
1030 * a pmap's page table is in use because a kernel thread is borrowing
1031 * it.  The borrowed page table can change spontaneously, making any
1032 * dependence on its continued use subject to a race condition.
1033 */
1034static __inline int
1035pmap_is_current(pmap_t pmap)
1036{
1037
1038	return (pmap == kernel_pmap ||
1039	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1040		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1041}
1042
1043/*
1044 * If the given pmap is not the current or kernel pmap, the returned pte must
1045 * be released by passing it to pmap_pte_release().
1046 */
1047pt_entry_t *
1048pmap_pte(pmap_t pmap, vm_offset_t va)
1049{
1050	pd_entry_t newpf;
1051	pd_entry_t *pde;
1052
1053	pde = pmap_pde(pmap, va);
1054	if (*pde & PG_PS)
1055		return (pde);
1056	if (*pde != 0) {
1057		/* are we current address space or kernel? */
1058		if (pmap_is_current(pmap))
1059			return (vtopte(va));
1060		mtx_lock(&PMAP2mutex);
1061		newpf = *pde & PG_FRAME;
1062		if ((*PMAP2 & PG_FRAME) != newpf) {
1063			vm_page_lock_queues();
1064			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1065			vm_page_unlock_queues();
1066			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1067			    pmap, va, (*PMAP2 & 0xffffffff));
1068		}
1069
1070		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1071	}
1072	return (0);
1073}
1074
1075/*
1076 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1077 * being NULL.
1078 */
1079static __inline void
1080pmap_pte_release(pt_entry_t *pte)
1081{
1082
1083	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1084		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1085		    *PMAP2);
1086		PT_SET_VA(PMAP2, 0, TRUE);
1087		mtx_unlock(&PMAP2mutex);
1088	}
1089}
1090
1091static __inline void
1092invlcaddr(void *caddr)
1093{
1094
1095	invlpg((u_int)caddr);
1096	PT_UPDATES_FLUSH();
1097}
1098
1099/*
1100 * Super fast pmap_pte routine best used when scanning
1101 * the pv lists.  This eliminates many coarse-grained
1102 * invltlb calls.  Note that many of the pv list
1103 * scans are across different pmaps.  It is very wasteful
1104 * to do an entire invltlb for checking a single mapping.
1105 *
1106 * If the given pmap is not the current pmap, vm_page_queue_mtx
1107 * must be held and curthread pinned to a CPU.
1108 */
1109static pt_entry_t *
1110pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1111{
1112	pd_entry_t newpf;
1113	pd_entry_t *pde;
1114
1115	pde = pmap_pde(pmap, va);
1116	if (*pde & PG_PS)
1117		return (pde);
1118	if (*pde != 0) {
1119		/* are we current address space or kernel? */
1120		if (pmap_is_current(pmap))
1121			return (vtopte(va));
1122		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1123		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1124		newpf = *pde & PG_FRAME;
1125		if ((*PMAP1 & PG_FRAME) != newpf) {
1126			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1127			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1128			    pmap, va, (u_long)*PMAP1);
1129
1130#ifdef SMP
1131			PMAP1cpu = PCPU_GET(cpuid);
1132#endif
1133			PMAP1changed++;
1134		} else
1135#ifdef SMP
1136		if (PMAP1cpu != PCPU_GET(cpuid)) {
1137			PMAP1cpu = PCPU_GET(cpuid);
1138			invlcaddr(PADDR1);
1139			PMAP1changedcpu++;
1140		} else
1141#endif
1142			PMAP1unchanged++;
1143		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1144	}
1145	return (0);
1146}
1147
1148/*
1149 *	Routine:	pmap_extract
1150 *	Function:
1151 *		Extract the physical page address associated
1152 *		with the given map/virtual_address pair.
1153 */
1154vm_paddr_t
1155pmap_extract(pmap_t pmap, vm_offset_t va)
1156{
1157	vm_paddr_t rtval;
1158	pt_entry_t *pte;
1159	pd_entry_t pde;
1160	pt_entry_t pteval;
1161
1162	rtval = 0;
1163	PMAP_LOCK(pmap);
1164	pde = pmap->pm_pdir[va >> PDRSHIFT];
1165	if (pde != 0) {
1166		if ((pde & PG_PS) != 0) {
1167			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1168			PMAP_UNLOCK(pmap);
1169			return rtval;
1170		}
1171		pte = pmap_pte(pmap, va);
1172		pteval = *pte ? xpmap_mtop(*pte) : 0;
1173		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1174		pmap_pte_release(pte);
1175	}
1176	PMAP_UNLOCK(pmap);
1177	return (rtval);
1178}
1179
1180/*
1181 *	Routine:	pmap_extract_ma
1182 *	Function:
1183 *		Like pmap_extract, but returns machine address
1184 */
1185vm_paddr_t
1186pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1187{
1188	vm_paddr_t rtval;
1189	pt_entry_t *pte;
1190	pd_entry_t pde;
1191
1192	rtval = 0;
1193	PMAP_LOCK(pmap);
1194	pde = pmap->pm_pdir[va >> PDRSHIFT];
1195	if (pde != 0) {
1196		if ((pde & PG_PS) != 0) {
1197			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1198			PMAP_UNLOCK(pmap);
1199			return rtval;
1200		}
1201		pte = pmap_pte(pmap, va);
1202		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1203		pmap_pte_release(pte);
1204	}
1205	PMAP_UNLOCK(pmap);
1206	return (rtval);
1207}
1208
1209/*
1210 *	Routine:	pmap_extract_and_hold
1211 *	Function:
1212 *		Atomically extract and hold the physical page
1213 *		with the given pmap and virtual address pair
1214 *		if that mapping permits the given protection.
1215 */
1216vm_page_t
1217pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1218{
1219	pd_entry_t pde;
1220	pt_entry_t pte;
1221	vm_page_t m;
1222	vm_paddr_t pa;
1223
1224	pa = 0;
1225	m = NULL;
1226	PMAP_LOCK(pmap);
1227retry:
1228	pde = PT_GET(pmap_pde(pmap, va));
1229	if (pde != 0) {
1230		if (pde & PG_PS) {
1231			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1232				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1233				       (va & PDRMASK), &pa))
1234					goto retry;
1235				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1236				    (va & PDRMASK));
1237				vm_page_hold(m);
1238			}
1239		} else {
1240			sched_pin();
1241			pte = PT_GET(pmap_pte_quick(pmap, va));
1242			if (*PMAP1)
1243				PT_SET_MA(PADDR1, 0);
1244			if ((pte & PG_V) &&
1245			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1246				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1247					goto retry;
1248				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1249				vm_page_hold(m);
1250			}
1251			sched_unpin();
1252		}
1253	}
1254	PA_UNLOCK_COND(pa);
1255	PMAP_UNLOCK(pmap);
1256	return (m);
1257}
1258
1259/***************************************************
1260 * Low level mapping routines.....
1261 ***************************************************/
1262
1263/*
1264 * Add a wired page to the kva.
1265 * Note: not SMP coherent.
1266 */
1267void
1268pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1269{
1270	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1271}
1272
1273void
1274pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1275{
1276	pt_entry_t *pte;
1277
1278	pte = vtopte(va);
1279	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1280}
1281
1282
1283static __inline void
1284pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1285{
1286	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1287}
1288
1289/*
1290 * Remove a page from the kernel pagetables.
1291 * Note: not SMP coherent.
1292 */
1293PMAP_INLINE void
1294pmap_kremove(vm_offset_t va)
1295{
1296	pt_entry_t *pte;
1297
1298	pte = vtopte(va);
1299	PT_CLEAR_VA(pte, FALSE);
1300}
1301
1302/*
1303 *	Used to map a range of physical addresses into kernel
1304 *	virtual address space.
1305 *
1306 *	The value passed in '*virt' is a suggested virtual address for
1307 *	the mapping. Architectures which can support a direct-mapped
1308 *	physical to virtual region can return the appropriate address
1309 *	within that region, leaving '*virt' unchanged. Other
1310 *	architectures should map the pages starting at '*virt' and
1311 *	update '*virt' with the first usable address after the mapped
1312 *	region.
1313 */
1314vm_offset_t
1315pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1316{
1317	vm_offset_t va, sva;
1318
1319	va = sva = *virt;
1320	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1321	    va, start, end, prot);
1322	while (start < end) {
1323		pmap_kenter(va, start);
1324		va += PAGE_SIZE;
1325		start += PAGE_SIZE;
1326	}
1327	pmap_invalidate_range(kernel_pmap, sva, va);
1328	*virt = va;
1329	return (sva);
1330}
1331
1332
1333/*
1334 * Add a list of wired pages to the kva
1335 * this routine is only used for temporary
1336 * kernel mappings that do not need to have
1337 * page modification or references recorded.
1338 * Note that old mappings are simply written
1339 * over.  The page *must* be wired.
1340 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1341 */
1342void
1343pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1344{
1345	pt_entry_t *endpte, *pte;
1346	vm_paddr_t pa;
1347	vm_offset_t va = sva;
1348	int mclcount = 0;
1349	multicall_entry_t mcl[16];
1350	multicall_entry_t *mclp = mcl;
1351	int error;
1352
1353	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1354	pte = vtopte(sva);
1355	endpte = pte + count;
1356	while (pte < endpte) {
1357		pa = xpmap_ptom(VM_PAGE_TO_PHYS(*ma)) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1358
1359		mclp->op = __HYPERVISOR_update_va_mapping;
1360		mclp->args[0] = va;
1361		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1362		mclp->args[2] = (uint32_t)(pa >> 32);
1363		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1364
1365		va += PAGE_SIZE;
1366		pte++;
1367		ma++;
1368		mclp++;
1369		mclcount++;
1370		if (mclcount == 16) {
1371			error = HYPERVISOR_multicall(mcl, mclcount);
1372			mclp = mcl;
1373			mclcount = 0;
1374			KASSERT(error == 0, ("bad multicall %d", error));
1375		}
1376	}
1377	if (mclcount) {
1378		error = HYPERVISOR_multicall(mcl, mclcount);
1379		KASSERT(error == 0, ("bad multicall %d", error));
1380	}
1381
1382#ifdef INVARIANTS
1383	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1384		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1385#endif
1386}
1387
1388
1389/*
1390 * This routine tears out page mappings from the
1391 * kernel -- it is meant only for temporary mappings.
1392 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1393 */
1394void
1395pmap_qremove(vm_offset_t sva, int count)
1396{
1397	vm_offset_t va;
1398
1399	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1400	va = sva;
1401	vm_page_lock_queues();
1402	critical_enter();
1403	while (count-- > 0) {
1404		pmap_kremove(va);
1405		va += PAGE_SIZE;
1406	}
1407	pmap_invalidate_range(kernel_pmap, sva, va);
1408	critical_exit();
1409	vm_page_unlock_queues();
1410}
1411
1412/***************************************************
1413 * Page table page management routines.....
1414 ***************************************************/
1415static __inline void
1416pmap_free_zero_pages(vm_page_t free)
1417{
1418	vm_page_t m;
1419
1420	while (free != NULL) {
1421		m = free;
1422		free = m->right;
1423		vm_page_free_zero(m);
1424	}
1425}
1426
1427/*
1428 * This routine unholds page table pages, and if the hold count
1429 * drops to zero, then it decrements the wire count.
1430 */
1431static __inline int
1432pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1433{
1434
1435	--m->wire_count;
1436	if (m->wire_count == 0)
1437		return _pmap_unwire_pte_hold(pmap, m, free);
1438	else
1439		return 0;
1440}
1441
1442static int
1443_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1444{
1445	vm_offset_t pteva;
1446
1447	PT_UPDATES_FLUSH();
1448	/*
1449	 * unmap the page table page
1450	 */
1451	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1452	/*
1453	 * page *might* contain residual mapping :-/
1454	 */
1455	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1456	pmap_zero_page(m);
1457	--pmap->pm_stats.resident_count;
1458
1459	/*
1460	 * This is a release store so that the ordinary store unmapping
1461	 * the page table page is globally performed before TLB shoot-
1462	 * down is begun.
1463	 */
1464	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1465
1466	/*
1467	 * Do an invltlb to make the invalidated mapping
1468	 * take effect immediately.
1469	 */
1470	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1471	pmap_invalidate_page(pmap, pteva);
1472
1473	/*
1474	 * Put page on a list so that it is released after
1475	 * *ALL* TLB shootdown is done
1476	 */
1477	m->right = *free;
1478	*free = m;
1479
1480	return 1;
1481}
1482
1483/*
1484 * After removing a page table entry, this routine is used to
1485 * conditionally free the page, and manage the hold/wire counts.
1486 */
1487static int
1488pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1489{
1490	pd_entry_t ptepde;
1491	vm_page_t mpte;
1492
1493	if (va >= VM_MAXUSER_ADDRESS)
1494		return 0;
1495	ptepde = PT_GET(pmap_pde(pmap, va));
1496	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1497	return pmap_unwire_pte_hold(pmap, mpte, free);
1498}
1499
1500void
1501pmap_pinit0(pmap_t pmap)
1502{
1503
1504	PMAP_LOCK_INIT(pmap);
1505	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1506#ifdef PAE
1507	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1508#endif
1509	pmap->pm_active = 0;
1510	PCPU_SET(curpmap, pmap);
1511	TAILQ_INIT(&pmap->pm_pvchunk);
1512	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1513	mtx_lock_spin(&allpmaps_lock);
1514	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1515	mtx_unlock_spin(&allpmaps_lock);
1516}
1517
1518/*
1519 * Initialize a preallocated and zeroed pmap structure,
1520 * such as one in a vmspace structure.
1521 */
1522int
1523pmap_pinit(pmap_t pmap)
1524{
1525	vm_page_t m, ptdpg[NPGPTD + 1];
1526	int npgptd = NPGPTD + 1;
1527	static int color;
1528	int i;
1529
1530	PMAP_LOCK_INIT(pmap);
1531
1532	/*
1533	 * No need to allocate page table space yet but we do need a valid
1534	 * page directory table.
1535	 */
1536	if (pmap->pm_pdir == NULL) {
1537		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1538		    NBPTD);
1539		if (pmap->pm_pdir == NULL) {
1540			PMAP_LOCK_DESTROY(pmap);
1541			return (0);
1542		}
1543#if defined(XEN) && defined(PAE)
1544		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1545#endif
1546
1547#if defined(PAE) && !defined(XEN)
1548		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1549		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1550		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1551		    ("pmap_pinit: pdpt misaligned"));
1552		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1553		    ("pmap_pinit: pdpt above 4g"));
1554#endif
1555	}
1556
1557	/*
1558	 * allocate the page directory page(s)
1559	 */
1560	for (i = 0; i < npgptd;) {
1561		m = vm_page_alloc(NULL, color++,
1562		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1563		    VM_ALLOC_ZERO);
1564		if (m == NULL)
1565			VM_WAIT;
1566		else {
1567			ptdpg[i++] = m;
1568		}
1569	}
1570	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1571	for (i = 0; i < NPGPTD; i++) {
1572		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1573			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1574	}
1575
1576	mtx_lock_spin(&allpmaps_lock);
1577	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1578	mtx_unlock_spin(&allpmaps_lock);
1579	/* Wire in kernel global address entries. */
1580
1581	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1582#ifdef PAE
1583#ifdef XEN
1584	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1585	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1586		bzero(pmap->pm_pdpt, PAGE_SIZE);
1587#endif
1588	for (i = 0; i < NPGPTD; i++) {
1589		vm_paddr_t ma;
1590
1591		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1592		pmap->pm_pdpt[i] = ma | PG_V;
1593
1594	}
1595#endif
1596#ifdef XEN
1597	for (i = 0; i < NPGPTD; i++) {
1598		pt_entry_t *pd;
1599		vm_paddr_t ma;
1600
1601		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1602		pd = pmap->pm_pdir + (i * NPDEPG);
1603		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1604#if 0
1605		xen_pgd_pin(ma);
1606#endif
1607	}
1608
1609#ifdef PAE
1610	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1611#endif
1612	vm_page_lock_queues();
1613	xen_flush_queue();
1614	xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD])));
1615	for (i = 0; i < NPGPTD; i++) {
1616		vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1617		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1618	}
1619	xen_flush_queue();
1620	vm_page_unlock_queues();
1621#endif
1622	pmap->pm_active = 0;
1623	TAILQ_INIT(&pmap->pm_pvchunk);
1624	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1625
1626	return (1);
1627}
1628
1629/*
1630 * this routine is called if the page table page is not
1631 * mapped correctly.
1632 */
1633static vm_page_t
1634_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1635{
1636	vm_paddr_t ptema;
1637	vm_page_t m;
1638
1639	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1640	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1641	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1642
1643	/*
1644	 * Allocate a page table page.
1645	 */
1646	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1647	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1648		if (flags & M_WAITOK) {
1649			PMAP_UNLOCK(pmap);
1650			vm_page_unlock_queues();
1651			VM_WAIT;
1652			vm_page_lock_queues();
1653			PMAP_LOCK(pmap);
1654		}
1655
1656		/*
1657		 * Indicate the need to retry.  While waiting, the page table
1658		 * page may have been allocated.
1659		 */
1660		return (NULL);
1661	}
1662	if ((m->flags & PG_ZERO) == 0)
1663		pmap_zero_page(m);
1664
1665	/*
1666	 * Map the pagetable page into the process address space, if
1667	 * it isn't already there.
1668	 */
1669	pmap->pm_stats.resident_count++;
1670
1671	ptema = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1672	xen_pt_pin(ptema);
1673	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1674		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1675
1676	KASSERT(pmap->pm_pdir[ptepindex],
1677	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1678	return (m);
1679}
1680
1681static vm_page_t
1682pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1683{
1684	unsigned ptepindex;
1685	pd_entry_t ptema;
1686	vm_page_t m;
1687
1688	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1689	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1690	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1691
1692	/*
1693	 * Calculate pagetable page index
1694	 */
1695	ptepindex = va >> PDRSHIFT;
1696retry:
1697	/*
1698	 * Get the page directory entry
1699	 */
1700	ptema = pmap->pm_pdir[ptepindex];
1701
1702	/*
1703	 * This supports switching from a 4MB page to a
1704	 * normal 4K page.
1705	 */
1706	if (ptema & PG_PS) {
1707		/*
1708		 * XXX
1709		 */
1710		pmap->pm_pdir[ptepindex] = 0;
1711		ptema = 0;
1712		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1713		pmap_invalidate_all(kernel_pmap);
1714	}
1715
1716	/*
1717	 * If the page table page is mapped, we just increment the
1718	 * hold count, and activate it.
1719	 */
1720	if (ptema & PG_V) {
1721		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1722		m->wire_count++;
1723	} else {
1724		/*
1725		 * Here if the pte page isn't mapped, or if it has
1726		 * been deallocated.
1727		 */
1728		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1729		    pmap, va, flags);
1730		m = _pmap_allocpte(pmap, ptepindex, flags);
1731		if (m == NULL && (flags & M_WAITOK))
1732			goto retry;
1733
1734		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1735	}
1736	return (m);
1737}
1738
1739
1740/***************************************************
1741* Pmap allocation/deallocation routines.
1742 ***************************************************/
1743
1744#ifdef SMP
1745/*
1746 * Deal with a SMP shootdown of other users of the pmap that we are
1747 * trying to dispose of.  This can be a bit hairy.
1748 */
1749static cpumask_t *lazymask;
1750static u_int lazyptd;
1751static volatile u_int lazywait;
1752
1753void pmap_lazyfix_action(void);
1754
1755void
1756pmap_lazyfix_action(void)
1757{
1758	cpumask_t mymask = PCPU_GET(cpumask);
1759
1760#ifdef COUNT_IPIS
1761	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1762#endif
1763	if (rcr3() == lazyptd)
1764		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1765	atomic_clear_int(lazymask, mymask);
1766	atomic_store_rel_int(&lazywait, 1);
1767}
1768
1769static void
1770pmap_lazyfix_self(cpumask_t mymask)
1771{
1772
1773	if (rcr3() == lazyptd)
1774		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1775	atomic_clear_int(lazymask, mymask);
1776}
1777
1778
1779static void
1780pmap_lazyfix(pmap_t pmap)
1781{
1782	cpumask_t mymask, mask;
1783	u_int spins;
1784
1785	while ((mask = pmap->pm_active) != 0) {
1786		spins = 50000000;
1787		mask = mask & -mask;	/* Find least significant set bit */
1788		mtx_lock_spin(&smp_ipi_mtx);
1789#ifdef PAE
1790		lazyptd = vtophys(pmap->pm_pdpt);
1791#else
1792		lazyptd = vtophys(pmap->pm_pdir);
1793#endif
1794		mymask = PCPU_GET(cpumask);
1795		if (mask == mymask) {
1796			lazymask = &pmap->pm_active;
1797			pmap_lazyfix_self(mymask);
1798		} else {
1799			atomic_store_rel_int((u_int *)&lazymask,
1800			    (u_int)&pmap->pm_active);
1801			atomic_store_rel_int(&lazywait, 0);
1802			ipi_selected(mask, IPI_LAZYPMAP);
1803			while (lazywait == 0) {
1804				ia32_pause();
1805				if (--spins == 0)
1806					break;
1807			}
1808		}
1809		mtx_unlock_spin(&smp_ipi_mtx);
1810		if (spins == 0)
1811			printf("pmap_lazyfix: spun for 50000000\n");
1812	}
1813}
1814
1815#else	/* SMP */
1816
1817/*
1818 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1819 * unlikely to have to even execute this code, including the fact
1820 * that the cleanup is deferred until the parent does a wait(2), which
1821 * means that another userland process has run.
1822 */
1823static void
1824pmap_lazyfix(pmap_t pmap)
1825{
1826	u_int cr3;
1827
1828	cr3 = vtophys(pmap->pm_pdir);
1829	if (cr3 == rcr3()) {
1830		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1831		pmap->pm_active &= ~(PCPU_GET(cpumask));
1832	}
1833}
1834#endif	/* SMP */
1835
1836/*
1837 * Release any resources held by the given physical map.
1838 * Called when a pmap initialized by pmap_pinit is being released.
1839 * Should only be called if the map contains no valid mappings.
1840 */
1841void
1842pmap_release(pmap_t pmap)
1843{
1844	vm_page_t m, ptdpg[2*NPGPTD+1];
1845	vm_paddr_t ma;
1846	int i;
1847#ifdef XEN
1848#ifdef PAE
1849	int npgptd = NPGPTD + 1;
1850#else
1851	int npgptd = NPGPTD;
1852#endif
1853#else
1854	int npgptd = NPGPTD;
1855#endif
1856	KASSERT(pmap->pm_stats.resident_count == 0,
1857	    ("pmap_release: pmap resident count %ld != 0",
1858	    pmap->pm_stats.resident_count));
1859	PT_UPDATES_FLUSH();
1860
1861	pmap_lazyfix(pmap);
1862	mtx_lock_spin(&allpmaps_lock);
1863	LIST_REMOVE(pmap, pm_list);
1864	mtx_unlock_spin(&allpmaps_lock);
1865
1866	for (i = 0; i < NPGPTD; i++)
1867		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1868	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1869#if defined(PAE) && defined(XEN)
1870	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1871#endif
1872
1873	for (i = 0; i < npgptd; i++) {
1874		m = ptdpg[i];
1875		ma = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1876		/* unpinning L1 and L2 treated the same */
1877                xen_pgd_unpin(ma);
1878#ifdef PAE
1879		KASSERT(xpmap_ptom(VM_PAGE_TO_PHYS(m)) == (pmap->pm_pdpt[i] & PG_FRAME),
1880		    ("pmap_release: got wrong ptd page"));
1881#endif
1882		m->wire_count--;
1883		atomic_subtract_int(&cnt.v_wire_count, 1);
1884		vm_page_free(m);
1885	}
1886	PMAP_LOCK_DESTROY(pmap);
1887}
1888
1889static int
1890kvm_size(SYSCTL_HANDLER_ARGS)
1891{
1892	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1893
1894	return sysctl_handle_long(oidp, &ksize, 0, req);
1895}
1896SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1897    0, 0, kvm_size, "IU", "Size of KVM");
1898
1899static int
1900kvm_free(SYSCTL_HANDLER_ARGS)
1901{
1902	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1903
1904	return sysctl_handle_long(oidp, &kfree, 0, req);
1905}
1906SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1907    0, 0, kvm_free, "IU", "Amount of KVM free");
1908
1909/*
1910 * grow the number of kernel page table entries, if needed
1911 */
1912void
1913pmap_growkernel(vm_offset_t addr)
1914{
1915	struct pmap *pmap;
1916	vm_paddr_t ptppaddr;
1917	vm_page_t nkpg;
1918	pd_entry_t newpdir;
1919
1920	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1921	if (kernel_vm_end == 0) {
1922		kernel_vm_end = KERNBASE;
1923		nkpt = 0;
1924		while (pdir_pde(PTD, kernel_vm_end)) {
1925			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1926			nkpt++;
1927			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1928				kernel_vm_end = kernel_map->max_offset;
1929				break;
1930			}
1931		}
1932	}
1933	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1934	if (addr - 1 >= kernel_map->max_offset)
1935		addr = kernel_map->max_offset;
1936	while (kernel_vm_end < addr) {
1937		if (pdir_pde(PTD, kernel_vm_end)) {
1938			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1939			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1940				kernel_vm_end = kernel_map->max_offset;
1941				break;
1942			}
1943			continue;
1944		}
1945
1946		/*
1947		 * This index is bogus, but out of the way
1948		 */
1949		nkpg = vm_page_alloc(NULL, nkpt,
1950		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1951		if (!nkpg)
1952			panic("pmap_growkernel: no memory to grow kernel");
1953
1954		nkpt++;
1955
1956		pmap_zero_page(nkpg);
1957		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1958		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1959		vm_page_lock_queues();
1960		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1961		mtx_lock_spin(&allpmaps_lock);
1962		LIST_FOREACH(pmap, &allpmaps, pm_list)
1963			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1964
1965		mtx_unlock_spin(&allpmaps_lock);
1966		vm_page_unlock_queues();
1967
1968		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1969		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1970			kernel_vm_end = kernel_map->max_offset;
1971			break;
1972		}
1973	}
1974}
1975
1976
1977/***************************************************
1978 * page management routines.
1979 ***************************************************/
1980
1981CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1982CTASSERT(_NPCM == 11);
1983
1984static __inline struct pv_chunk *
1985pv_to_chunk(pv_entry_t pv)
1986{
1987
1988	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1989}
1990
1991#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1992
1993#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1994#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1995
1996static uint32_t pc_freemask[11] = {
1997	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1998	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1999	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2000	PC_FREE0_9, PC_FREE10
2001};
2002
2003SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2004	"Current number of pv entries");
2005
2006#ifdef PV_STATS
2007static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2008
2009SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2010	"Current number of pv entry chunks");
2011SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2012	"Current number of pv entry chunks allocated");
2013SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2014	"Current number of pv entry chunks frees");
2015SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2016	"Number of times tried to get a chunk page but failed.");
2017
2018static long pv_entry_frees, pv_entry_allocs;
2019static int pv_entry_spare;
2020
2021SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2022	"Current number of pv entry frees");
2023SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2024	"Current number of pv entry allocs");
2025SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2026	"Current number of spare pv entries");
2027
2028static int pmap_collect_inactive, pmap_collect_active;
2029
2030SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2031	"Current number times pmap_collect called on inactive queue");
2032SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2033	"Current number times pmap_collect called on active queue");
2034#endif
2035
2036/*
2037 * We are in a serious low memory condition.  Resort to
2038 * drastic measures to free some pages so we can allocate
2039 * another pv entry chunk.  This is normally called to
2040 * unmap inactive pages, and if necessary, active pages.
2041 */
2042static void
2043pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2044{
2045	pmap_t pmap;
2046	pt_entry_t *pte, tpte;
2047	pv_entry_t next_pv, pv;
2048	vm_offset_t va;
2049	vm_page_t m, free;
2050
2051	sched_pin();
2052	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2053		if (m->hold_count || m->busy)
2054			continue;
2055		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2056			va = pv->pv_va;
2057			pmap = PV_PMAP(pv);
2058			/* Avoid deadlock and lock recursion. */
2059			if (pmap > locked_pmap)
2060				PMAP_LOCK(pmap);
2061			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2062				continue;
2063			pmap->pm_stats.resident_count--;
2064			pte = pmap_pte_quick(pmap, va);
2065			tpte = pte_load_clear(pte);
2066			KASSERT((tpte & PG_W) == 0,
2067			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2068			if (tpte & PG_A)
2069				vm_page_flag_set(m, PG_REFERENCED);
2070			if (tpte & PG_M) {
2071				KASSERT((tpte & PG_RW),
2072	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
2073				    va, (uintmax_t)tpte));
2074				vm_page_dirty(m);
2075			}
2076			free = NULL;
2077			pmap_unuse_pt(pmap, va, &free);
2078			pmap_invalidate_page(pmap, va);
2079			pmap_free_zero_pages(free);
2080			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2081			if (TAILQ_EMPTY(&m->md.pv_list))
2082				vm_page_flag_clear(m, PG_WRITEABLE);
2083			free_pv_entry(pmap, pv);
2084			if (pmap != locked_pmap)
2085				PMAP_UNLOCK(pmap);
2086		}
2087	}
2088	sched_unpin();
2089}
2090
2091
2092/*
2093 * free the pv_entry back to the free list
2094 */
2095static void
2096free_pv_entry(pmap_t pmap, pv_entry_t pv)
2097{
2098	vm_page_t m;
2099	struct pv_chunk *pc;
2100	int idx, field, bit;
2101
2102	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2103	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2104	PV_STAT(pv_entry_frees++);
2105	PV_STAT(pv_entry_spare++);
2106	pv_entry_count--;
2107	pc = pv_to_chunk(pv);
2108	idx = pv - &pc->pc_pventry[0];
2109	field = idx / 32;
2110	bit = idx % 32;
2111	pc->pc_map[field] |= 1ul << bit;
2112	/* move to head of list */
2113	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2114	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2115	for (idx = 0; idx < _NPCM; idx++)
2116		if (pc->pc_map[idx] != pc_freemask[idx])
2117			return;
2118	PV_STAT(pv_entry_spare -= _NPCPV);
2119	PV_STAT(pc_chunk_count--);
2120	PV_STAT(pc_chunk_frees++);
2121	/* entire chunk is free, return it */
2122	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2123	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2124	pmap_qremove((vm_offset_t)pc, 1);
2125	vm_page_unwire(m, 0);
2126	vm_page_free(m);
2127	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2128}
2129
2130/*
2131 * get a new pv_entry, allocating a block from the system
2132 * when needed.
2133 */
2134static pv_entry_t
2135get_pv_entry(pmap_t pmap, int try)
2136{
2137	static const struct timeval printinterval = { 60, 0 };
2138	static struct timeval lastprint;
2139	static vm_pindex_t colour;
2140	struct vpgqueues *pq;
2141	int bit, field;
2142	pv_entry_t pv;
2143	struct pv_chunk *pc;
2144	vm_page_t m;
2145
2146	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2147	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2148	PV_STAT(pv_entry_allocs++);
2149	pv_entry_count++;
2150	if (pv_entry_count > pv_entry_high_water)
2151		if (ratecheck(&lastprint, &printinterval))
2152			printf("Approaching the limit on PV entries, consider "
2153			    "increasing either the vm.pmap.shpgperproc or the "
2154			    "vm.pmap.pv_entry_max tunable.\n");
2155	pq = NULL;
2156retry:
2157	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2158	if (pc != NULL) {
2159		for (field = 0; field < _NPCM; field++) {
2160			if (pc->pc_map[field]) {
2161				bit = bsfl(pc->pc_map[field]);
2162				break;
2163			}
2164		}
2165		if (field < _NPCM) {
2166			pv = &pc->pc_pventry[field * 32 + bit];
2167			pc->pc_map[field] &= ~(1ul << bit);
2168			/* If this was the last item, move it to tail */
2169			for (field = 0; field < _NPCM; field++)
2170				if (pc->pc_map[field] != 0) {
2171					PV_STAT(pv_entry_spare--);
2172					return (pv);	/* not full, return */
2173				}
2174			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2175			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2176			PV_STAT(pv_entry_spare--);
2177			return (pv);
2178		}
2179	}
2180	/*
2181	 * Access to the ptelist "pv_vafree" is synchronized by the page
2182	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2183	 * remain non-empty until pmap_ptelist_alloc() completes.
2184	 */
2185	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2186	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2187	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2188		if (try) {
2189			pv_entry_count--;
2190			PV_STAT(pc_chunk_tryfail++);
2191			return (NULL);
2192		}
2193		/*
2194		 * Reclaim pv entries: At first, destroy mappings to
2195		 * inactive pages.  After that, if a pv chunk entry
2196		 * is still needed, destroy mappings to active pages.
2197		 */
2198		if (pq == NULL) {
2199			PV_STAT(pmap_collect_inactive++);
2200			pq = &vm_page_queues[PQ_INACTIVE];
2201		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2202			PV_STAT(pmap_collect_active++);
2203			pq = &vm_page_queues[PQ_ACTIVE];
2204		} else
2205			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2206		pmap_collect(pmap, pq);
2207		goto retry;
2208	}
2209	PV_STAT(pc_chunk_count++);
2210	PV_STAT(pc_chunk_allocs++);
2211	colour++;
2212	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2213	pmap_qenter((vm_offset_t)pc, &m, 1);
2214	if ((m->flags & PG_ZERO) == 0)
2215		pagezero(pc);
2216	pc->pc_pmap = pmap;
2217	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2218	for (field = 1; field < _NPCM; field++)
2219		pc->pc_map[field] = pc_freemask[field];
2220	pv = &pc->pc_pventry[0];
2221	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2222	PV_STAT(pv_entry_spare += _NPCPV - 1);
2223	return (pv);
2224}
2225
2226static void
2227pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2228{
2229	pv_entry_t pv;
2230
2231	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2232	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2233	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2234		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
2235			break;
2236	}
2237	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
2238	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2239	if (TAILQ_EMPTY(&m->md.pv_list))
2240		vm_page_flag_clear(m, PG_WRITEABLE);
2241	free_pv_entry(pmap, pv);
2242}
2243
2244/*
2245 * Create a pv entry for page at pa for
2246 * (pmap, va).
2247 */
2248static void
2249pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2250{
2251	pv_entry_t pv;
2252
2253	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2254	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2255	pv = get_pv_entry(pmap, FALSE);
2256	pv->pv_va = va;
2257	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2258}
2259
2260/*
2261 * Conditionally create a pv entry.
2262 */
2263static boolean_t
2264pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2265{
2266	pv_entry_t pv;
2267
2268	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2269	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2270	if (pv_entry_count < pv_entry_high_water &&
2271	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2272		pv->pv_va = va;
2273		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2274		return (TRUE);
2275	} else
2276		return (FALSE);
2277}
2278
2279/*
2280 * pmap_remove_pte: do the things to unmap a page in a process
2281 */
2282static int
2283pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2284{
2285	pt_entry_t oldpte;
2286	vm_page_t m;
2287
2288	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2289	    pmap, (u_long)*ptq, va);
2290
2291	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2292	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2293	oldpte = *ptq;
2294	PT_SET_VA_MA(ptq, 0, TRUE);
2295	if (oldpte & PG_W)
2296		pmap->pm_stats.wired_count -= 1;
2297	/*
2298	 * Machines that don't support invlpg, also don't support
2299	 * PG_G.
2300	 */
2301	if (oldpte & PG_G)
2302		pmap_invalidate_page(kernel_pmap, va);
2303	pmap->pm_stats.resident_count -= 1;
2304	/*
2305	 * XXX This is not strictly correctly, but somewhere along the line
2306	 * we are losing the managed bit on some pages. It is unclear to me
2307	 * why, but I think the most likely explanation is that xen's writable
2308	 * page table implementation doesn't respect the unused bits.
2309	 */
2310	if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
2311		) {
2312		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2313
2314		if (!(oldpte & PG_MANAGED))
2315			printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2316
2317		if (oldpte & PG_M) {
2318			KASSERT((oldpte & PG_RW),
2319	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
2320			    va, (uintmax_t)oldpte));
2321			vm_page_dirty(m);
2322		}
2323		if (oldpte & PG_A)
2324			vm_page_flag_set(m, PG_REFERENCED);
2325		pmap_remove_entry(pmap, m, va);
2326	} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
2327		printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2328
2329	return (pmap_unuse_pt(pmap, va, free));
2330}
2331
2332/*
2333 * Remove a single page from a process address space
2334 */
2335static void
2336pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2337{
2338	pt_entry_t *pte;
2339
2340	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2341	    pmap, va);
2342
2343	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2344	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2345	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2346	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2347		return;
2348	pmap_remove_pte(pmap, pte, va, free);
2349	pmap_invalidate_page(pmap, va);
2350	if (*PMAP1)
2351		PT_SET_MA(PADDR1, 0);
2352
2353}
2354
2355/*
2356 *	Remove the given range of addresses from the specified map.
2357 *
2358 *	It is assumed that the start and end are properly
2359 *	rounded to the page size.
2360 */
2361void
2362pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2363{
2364	vm_offset_t pdnxt;
2365	pd_entry_t ptpaddr;
2366	pt_entry_t *pte;
2367	vm_page_t free = NULL;
2368	int anyvalid;
2369
2370	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2371	    pmap, sva, eva);
2372
2373	/*
2374	 * Perform an unsynchronized read.  This is, however, safe.
2375	 */
2376	if (pmap->pm_stats.resident_count == 0)
2377		return;
2378
2379	anyvalid = 0;
2380
2381	vm_page_lock_queues();
2382	sched_pin();
2383	PMAP_LOCK(pmap);
2384
2385	/*
2386	 * special handling of removing one page.  a very
2387	 * common operation and easy to short circuit some
2388	 * code.
2389	 */
2390	if ((sva + PAGE_SIZE == eva) &&
2391	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2392		pmap_remove_page(pmap, sva, &free);
2393		goto out;
2394	}
2395
2396	for (; sva < eva; sva = pdnxt) {
2397		unsigned pdirindex;
2398
2399		/*
2400		 * Calculate index for next page table.
2401		 */
2402		pdnxt = (sva + NBPDR) & ~PDRMASK;
2403		if (pmap->pm_stats.resident_count == 0)
2404			break;
2405
2406		pdirindex = sva >> PDRSHIFT;
2407		ptpaddr = pmap->pm_pdir[pdirindex];
2408
2409		/*
2410		 * Weed out invalid mappings. Note: we assume that the page
2411		 * directory table is always allocated, and in kernel virtual.
2412		 */
2413		if (ptpaddr == 0)
2414			continue;
2415
2416		/*
2417		 * Check for large page.
2418		 */
2419		if ((ptpaddr & PG_PS) != 0) {
2420			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2421			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2422			anyvalid = 1;
2423			continue;
2424		}
2425
2426		/*
2427		 * Limit our scan to either the end of the va represented
2428		 * by the current page table page, or to the end of the
2429		 * range being removed.
2430		 */
2431		if (pdnxt > eva)
2432			pdnxt = eva;
2433
2434		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2435		    sva += PAGE_SIZE) {
2436			if ((*pte & PG_V) == 0)
2437				continue;
2438
2439			/*
2440			 * The TLB entry for a PG_G mapping is invalidated
2441			 * by pmap_remove_pte().
2442			 */
2443			if ((*pte & PG_G) == 0)
2444				anyvalid = 1;
2445			if (pmap_remove_pte(pmap, pte, sva, &free))
2446				break;
2447		}
2448	}
2449	PT_UPDATES_FLUSH();
2450	if (*PMAP1)
2451		PT_SET_VA_MA(PMAP1, 0, TRUE);
2452out:
2453	if (anyvalid)
2454		pmap_invalidate_all(pmap);
2455	sched_unpin();
2456	vm_page_unlock_queues();
2457	PMAP_UNLOCK(pmap);
2458	pmap_free_zero_pages(free);
2459}
2460
2461/*
2462 *	Routine:	pmap_remove_all
2463 *	Function:
2464 *		Removes this physical page from
2465 *		all physical maps in which it resides.
2466 *		Reflects back modify bits to the pager.
2467 *
2468 *	Notes:
2469 *		Original versions of this routine were very
2470 *		inefficient because they iteratively called
2471 *		pmap_remove (slow...)
2472 */
2473
2474void
2475pmap_remove_all(vm_page_t m)
2476{
2477	pv_entry_t pv;
2478	pmap_t pmap;
2479	pt_entry_t *pte, tpte;
2480	vm_page_t free;
2481
2482#if defined(PMAP_DIAGNOSTIC)
2483	/*
2484	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
2485	 */
2486	if (m->flags & PG_FICTITIOUS) {
2487		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%jx",
2488		    VM_PAGE_TO_PHYS(m) & 0xffffffff);
2489	}
2490#endif
2491	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2492	sched_pin();
2493	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2494		pmap = PV_PMAP(pv);
2495		PMAP_LOCK(pmap);
2496		pmap->pm_stats.resident_count--;
2497		pte = pmap_pte_quick(pmap, pv->pv_va);
2498
2499		tpte = *pte;
2500		PT_SET_VA_MA(pte, 0, TRUE);
2501		if (tpte & PG_W)
2502			pmap->pm_stats.wired_count--;
2503		if (tpte & PG_A)
2504			vm_page_flag_set(m, PG_REFERENCED);
2505
2506		/*
2507		 * Update the vm_page_t clean and reference bits.
2508		 */
2509		if (tpte & PG_M) {
2510			KASSERT((tpte & PG_RW),
2511	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2512			    pv->pv_va, (uintmax_t)tpte));
2513			vm_page_dirty(m);
2514		}
2515		free = NULL;
2516		pmap_unuse_pt(pmap, pv->pv_va, &free);
2517		pmap_invalidate_page(pmap, pv->pv_va);
2518		pmap_free_zero_pages(free);
2519		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2520		free_pv_entry(pmap, pv);
2521		PMAP_UNLOCK(pmap);
2522	}
2523	vm_page_flag_clear(m, PG_WRITEABLE);
2524	PT_UPDATES_FLUSH();
2525	if (*PMAP1)
2526		PT_SET_MA(PADDR1, 0);
2527	sched_unpin();
2528}
2529
2530/*
2531 *	Set the physical protection on the
2532 *	specified range of this map as requested.
2533 */
2534void
2535pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2536{
2537	vm_offset_t pdnxt;
2538	pd_entry_t ptpaddr;
2539	pt_entry_t *pte;
2540	int anychanged;
2541
2542	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2543	    pmap, sva, eva, prot);
2544
2545	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2546		pmap_remove(pmap, sva, eva);
2547		return;
2548	}
2549
2550#ifdef PAE
2551	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2552	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2553		return;
2554#else
2555	if (prot & VM_PROT_WRITE)
2556		return;
2557#endif
2558
2559	anychanged = 0;
2560
2561	vm_page_lock_queues();
2562	sched_pin();
2563	PMAP_LOCK(pmap);
2564	for (; sva < eva; sva = pdnxt) {
2565		pt_entry_t obits, pbits;
2566		unsigned pdirindex;
2567
2568		pdnxt = (sva + NBPDR) & ~PDRMASK;
2569
2570		pdirindex = sva >> PDRSHIFT;
2571		ptpaddr = pmap->pm_pdir[pdirindex];
2572
2573		/*
2574		 * Weed out invalid mappings. Note: we assume that the page
2575		 * directory table is always allocated, and in kernel virtual.
2576		 */
2577		if (ptpaddr == 0)
2578			continue;
2579
2580		/*
2581		 * Check for large page.
2582		 */
2583		if ((ptpaddr & PG_PS) != 0) {
2584			if ((prot & VM_PROT_WRITE) == 0)
2585				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2586#ifdef PAE
2587			if ((prot & VM_PROT_EXECUTE) == 0)
2588				pmap->pm_pdir[pdirindex] |= pg_nx;
2589#endif
2590			anychanged = 1;
2591			continue;
2592		}
2593
2594		if (pdnxt > eva)
2595			pdnxt = eva;
2596
2597		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2598		    sva += PAGE_SIZE) {
2599			vm_page_t m;
2600
2601retry:
2602			/*
2603			 * Regardless of whether a pte is 32 or 64 bits in
2604			 * size, PG_RW, PG_A, and PG_M are among the least
2605			 * significant 32 bits.
2606			 */
2607			obits = pbits = *pte;
2608			if ((pbits & PG_V) == 0)
2609				continue;
2610
2611			if ((prot & VM_PROT_WRITE) == 0) {
2612				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2613				    (PG_MANAGED | PG_M | PG_RW)) {
2614					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2615					    PG_FRAME);
2616					vm_page_dirty(m);
2617				}
2618				pbits &= ~(PG_RW | PG_M);
2619			}
2620#ifdef PAE
2621			if ((prot & VM_PROT_EXECUTE) == 0)
2622				pbits |= pg_nx;
2623#endif
2624
2625			if (pbits != obits) {
2626#ifdef XEN
2627				obits = *pte;
2628				PT_SET_VA_MA(pte, pbits, TRUE);
2629				if (*pte != pbits)
2630					goto retry;
2631#else
2632#ifdef PAE
2633				if (!atomic_cmpset_64(pte, obits, pbits))
2634					goto retry;
2635#else
2636				if (!atomic_cmpset_int((u_int *)pte, obits,
2637				    pbits))
2638					goto retry;
2639#endif
2640#endif
2641				if (obits & PG_G)
2642					pmap_invalidate_page(pmap, sva);
2643				else
2644					anychanged = 1;
2645			}
2646		}
2647	}
2648	PT_UPDATES_FLUSH();
2649	if (*PMAP1)
2650		PT_SET_VA_MA(PMAP1, 0, TRUE);
2651	if (anychanged)
2652		pmap_invalidate_all(pmap);
2653	sched_unpin();
2654	vm_page_unlock_queues();
2655	PMAP_UNLOCK(pmap);
2656}
2657
2658/*
2659 *	Insert the given physical page (p) at
2660 *	the specified virtual address (v) in the
2661 *	target physical map with the protection requested.
2662 *
2663 *	If specified, the page will be wired down, meaning
2664 *	that the related pte can not be reclaimed.
2665 *
2666 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2667 *	or lose information.  That is, this routine must actually
2668 *	insert this page into the given map NOW.
2669 */
2670void
2671pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2672    vm_prot_t prot, boolean_t wired)
2673{
2674	vm_paddr_t pa;
2675	pd_entry_t *pde;
2676	pt_entry_t *pte;
2677	vm_paddr_t opa;
2678	pt_entry_t origpte, newpte;
2679	vm_page_t mpte, om;
2680	boolean_t invlva;
2681
2682	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2683	    pmap, va, access, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired);
2684	va = trunc_page(va);
2685#ifdef PMAP_DIAGNOSTIC
2686	if (va > VM_MAX_KERNEL_ADDRESS)
2687		panic("pmap_enter: toobig");
2688	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2689		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2690#endif
2691
2692	mpte = NULL;
2693
2694	vm_page_lock_queues();
2695	PMAP_LOCK(pmap);
2696	sched_pin();
2697
2698	/*
2699	 * In the case that a page table page is not
2700	 * resident, we are creating it here.
2701	 */
2702	if (va < VM_MAXUSER_ADDRESS) {
2703		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2704	}
2705#if 0 && defined(PMAP_DIAGNOSTIC)
2706	else {
2707		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2708		origpte = *pdeaddr;
2709		if ((origpte & PG_V) == 0) {
2710			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2711				pmap->pm_pdir[PTDPTDI], origpte, va);
2712		}
2713	}
2714#endif
2715
2716	pde = pmap_pde(pmap, va);
2717	if ((*pde & PG_PS) != 0)
2718		panic("pmap_enter: attempted pmap_enter on 4MB page");
2719	pte = pmap_pte_quick(pmap, va);
2720
2721	/*
2722	 * Page Directory table entry not valid, we need a new PT page
2723	 */
2724	if (pte == NULL) {
2725		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2726			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2727	}
2728
2729	pa = VM_PAGE_TO_PHYS(m);
2730	om = NULL;
2731	opa = origpte = 0;
2732
2733#if 0
2734	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2735		pte, *pte));
2736#endif
2737	origpte = *pte;
2738	if (origpte)
2739		origpte = xpmap_mtop(origpte);
2740	opa = origpte & PG_FRAME;
2741
2742	/*
2743	 * Mapping has not changed, must be protection or wiring change.
2744	 */
2745	if (origpte && (opa == pa)) {
2746		/*
2747		 * Wiring change, just update stats. We don't worry about
2748		 * wiring PT pages as they remain resident as long as there
2749		 * are valid mappings in them. Hence, if a user page is wired,
2750		 * the PT page will be also.
2751		 */
2752		if (wired && ((origpte & PG_W) == 0))
2753			pmap->pm_stats.wired_count++;
2754		else if (!wired && (origpte & PG_W))
2755			pmap->pm_stats.wired_count--;
2756
2757		/*
2758		 * Remove extra pte reference
2759		 */
2760		if (mpte)
2761			mpte->wire_count--;
2762
2763		/*
2764		 * We might be turning off write access to the page,
2765		 * so we go ahead and sense modify status.
2766		 */
2767		if (origpte & PG_MANAGED) {
2768			om = m;
2769			pa |= PG_MANAGED;
2770		}
2771		goto validate;
2772	}
2773	/*
2774	 * Mapping has changed, invalidate old range and fall through to
2775	 * handle validating new mapping.
2776	 */
2777	if (opa) {
2778		if (origpte & PG_W)
2779			pmap->pm_stats.wired_count--;
2780		if (origpte & PG_MANAGED) {
2781			om = PHYS_TO_VM_PAGE(opa);
2782			pmap_remove_entry(pmap, om, va);
2783		} else if (va < VM_MAXUSER_ADDRESS)
2784			printf("va=0x%x is unmanaged :-( \n", va);
2785
2786		if (mpte != NULL) {
2787			mpte->wire_count--;
2788			KASSERT(mpte->wire_count > 0,
2789			    ("pmap_enter: missing reference to page table page,"
2790			     " va: 0x%x", va));
2791		}
2792	} else
2793		pmap->pm_stats.resident_count++;
2794
2795	/*
2796	 * Enter on the PV list if part of our managed memory.
2797	 */
2798	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2799		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2800		    ("pmap_enter: managed mapping within the clean submap"));
2801		pmap_insert_entry(pmap, va, m);
2802		pa |= PG_MANAGED;
2803	}
2804
2805	/*
2806	 * Increment counters
2807	 */
2808	if (wired)
2809		pmap->pm_stats.wired_count++;
2810
2811validate:
2812	/*
2813	 * Now validate mapping with desired protection/wiring.
2814	 */
2815	newpte = (pt_entry_t)(pa | PG_V);
2816	if ((prot & VM_PROT_WRITE) != 0) {
2817		newpte |= PG_RW;
2818		vm_page_flag_set(m, PG_WRITEABLE);
2819	}
2820#ifdef PAE
2821	if ((prot & VM_PROT_EXECUTE) == 0)
2822		newpte |= pg_nx;
2823#endif
2824	if (wired)
2825		newpte |= PG_W;
2826	if (va < VM_MAXUSER_ADDRESS)
2827		newpte |= PG_U;
2828	if (pmap == kernel_pmap)
2829		newpte |= pgeflag;
2830
2831	critical_enter();
2832	/*
2833	 * if the mapping or permission bits are different, we need
2834	 * to update the pte.
2835	 */
2836	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2837		if (origpte) {
2838			invlva = FALSE;
2839			origpte = *pte;
2840			PT_SET_VA(pte, newpte | PG_A, FALSE);
2841			if (origpte & PG_A) {
2842				if (origpte & PG_MANAGED)
2843					vm_page_flag_set(om, PG_REFERENCED);
2844				if (opa != VM_PAGE_TO_PHYS(m))
2845					invlva = TRUE;
2846#ifdef PAE
2847				if ((origpte & PG_NX) == 0 &&
2848				    (newpte & PG_NX) != 0)
2849					invlva = TRUE;
2850#endif
2851			}
2852			if (origpte & PG_M) {
2853				KASSERT((origpte & PG_RW),
2854	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2855				    va, (uintmax_t)origpte));
2856				if ((origpte & PG_MANAGED) != 0)
2857					vm_page_dirty(om);
2858				if ((prot & VM_PROT_WRITE) == 0)
2859					invlva = TRUE;
2860			}
2861			if (invlva)
2862				pmap_invalidate_page(pmap, va);
2863		} else{
2864			PT_SET_VA(pte, newpte | PG_A, FALSE);
2865		}
2866
2867	}
2868	PT_UPDATES_FLUSH();
2869	critical_exit();
2870	if (*PMAP1)
2871		PT_SET_VA_MA(PMAP1, 0, TRUE);
2872	sched_unpin();
2873	vm_page_unlock_queues();
2874	PMAP_UNLOCK(pmap);
2875}
2876
2877/*
2878 * Maps a sequence of resident pages belonging to the same object.
2879 * The sequence begins with the given page m_start.  This page is
2880 * mapped at the given virtual address start.  Each subsequent page is
2881 * mapped at a virtual address that is offset from start by the same
2882 * amount as the page is offset from m_start within the object.  The
2883 * last page in the sequence is the page with the largest offset from
2884 * m_start that can be mapped at a virtual address less than the given
2885 * virtual address end.  Not every virtual page between start and end
2886 * is mapped; only those for which a resident page exists with the
2887 * corresponding offset from m_start are mapped.
2888 */
2889void
2890pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2891    vm_page_t m_start, vm_prot_t prot)
2892{
2893	vm_page_t m, mpte;
2894	vm_pindex_t diff, psize;
2895	multicall_entry_t mcl[16];
2896	multicall_entry_t *mclp = mcl;
2897	int error, count = 0;
2898
2899	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2900	psize = atop(end - start);
2901
2902	mpte = NULL;
2903	m = m_start;
2904	PMAP_LOCK(pmap);
2905	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2906		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2907		    prot, mpte);
2908		m = TAILQ_NEXT(m, listq);
2909		if (count == 16) {
2910			error = HYPERVISOR_multicall(mcl, count);
2911			KASSERT(error == 0, ("bad multicall %d", error));
2912			mclp = mcl;
2913			count = 0;
2914		}
2915	}
2916	if (count) {
2917		error = HYPERVISOR_multicall(mcl, count);
2918		KASSERT(error == 0, ("bad multicall %d", error));
2919	}
2920
2921	PMAP_UNLOCK(pmap);
2922}
2923
2924/*
2925 * this code makes some *MAJOR* assumptions:
2926 * 1. Current pmap & pmap exists.
2927 * 2. Not wired.
2928 * 3. Read access.
2929 * 4. No page table pages.
2930 * but is *MUCH* faster than pmap_enter...
2931 */
2932
2933void
2934pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2935{
2936	multicall_entry_t mcl, *mclp;
2937	int count = 0;
2938	mclp = &mcl;
2939
2940	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2941	    pmap, va, m, prot);
2942
2943	PMAP_LOCK(pmap);
2944	(void) pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2945	if (count)
2946		HYPERVISOR_multicall(&mcl, count);
2947	PMAP_UNLOCK(pmap);
2948}
2949
2950#ifdef notyet
2951void
2952pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2953{
2954	int i, error, index = 0;
2955	multicall_entry_t mcl[16];
2956	multicall_entry_t *mclp = mcl;
2957
2958	PMAP_LOCK(pmap);
2959	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2960		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2961			continue;
2962
2963		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2964		if (index == 16) {
2965			error = HYPERVISOR_multicall(mcl, index);
2966			mclp = mcl;
2967			index = 0;
2968			KASSERT(error == 0, ("bad multicall %d", error));
2969		}
2970	}
2971	if (index) {
2972		error = HYPERVISOR_multicall(mcl, index);
2973		KASSERT(error == 0, ("bad multicall %d", error));
2974	}
2975
2976	PMAP_UNLOCK(pmap);
2977}
2978#endif
2979
2980static vm_page_t
2981pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2982    vm_prot_t prot, vm_page_t mpte)
2983{
2984	pt_entry_t *pte;
2985	vm_paddr_t pa;
2986	vm_page_t free;
2987	multicall_entry_t *mcl = *mclpp;
2988
2989	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2990	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2991	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2992	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2993	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2994
2995	/*
2996	 * In the case that a page table page is not
2997	 * resident, we are creating it here.
2998	 */
2999	if (va < VM_MAXUSER_ADDRESS) {
3000		unsigned ptepindex;
3001		pd_entry_t ptema;
3002
3003		/*
3004		 * Calculate pagetable page index
3005		 */
3006		ptepindex = va >> PDRSHIFT;
3007		if (mpte && (mpte->pindex == ptepindex)) {
3008			mpte->wire_count++;
3009		} else {
3010			/*
3011			 * Get the page directory entry
3012			 */
3013			ptema = pmap->pm_pdir[ptepindex];
3014
3015			/*
3016			 * If the page table page is mapped, we just increment
3017			 * the hold count, and activate it.
3018			 */
3019			if (ptema & PG_V) {
3020				if (ptema & PG_PS)
3021					panic("pmap_enter_quick: unexpected mapping into 4MB page");
3022				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
3023				mpte->wire_count++;
3024			} else {
3025				mpte = _pmap_allocpte(pmap, ptepindex,
3026				    M_NOWAIT);
3027				if (mpte == NULL)
3028					return (mpte);
3029			}
3030		}
3031	} else {
3032		mpte = NULL;
3033	}
3034
3035	/*
3036	 * This call to vtopte makes the assumption that we are
3037	 * entering the page into the current pmap.  In order to support
3038	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3039	 * But that isn't as quick as vtopte.
3040	 */
3041	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3042	pte = vtopte(va);
3043	if (*pte & PG_V) {
3044		if (mpte != NULL) {
3045			mpte->wire_count--;
3046			mpte = NULL;
3047		}
3048		return (mpte);
3049	}
3050
3051	/*
3052	 * Enter on the PV list if part of our managed memory.
3053	 */
3054	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3055	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3056		if (mpte != NULL) {
3057			free = NULL;
3058			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3059				pmap_invalidate_page(pmap, va);
3060				pmap_free_zero_pages(free);
3061			}
3062
3063			mpte = NULL;
3064		}
3065		return (mpte);
3066	}
3067
3068	/*
3069	 * Increment counters
3070	 */
3071	pmap->pm_stats.resident_count++;
3072
3073	pa = VM_PAGE_TO_PHYS(m);
3074#ifdef PAE
3075	if ((prot & VM_PROT_EXECUTE) == 0)
3076		pa |= pg_nx;
3077#endif
3078
3079#if 0
3080	/*
3081	 * Now validate mapping with RO protection
3082	 */
3083	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3084		pte_store(pte, pa | PG_V | PG_U);
3085	else
3086		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3087#else
3088	/*
3089	 * Now validate mapping with RO protection
3090	 */
3091	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3092		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3093	else
3094		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3095
3096	mcl->op = __HYPERVISOR_update_va_mapping;
3097	mcl->args[0] = va;
3098	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3099	mcl->args[2] = (uint32_t)(pa >> 32);
3100	mcl->args[3] = 0;
3101	*mclpp = mcl + 1;
3102	*count = *count + 1;
3103#endif
3104	return mpte;
3105}
3106
3107/*
3108 * Make a temporary mapping for a physical address.  This is only intended
3109 * to be used for panic dumps.
3110 */
3111void *
3112pmap_kenter_temporary(vm_paddr_t pa, int i)
3113{
3114	vm_offset_t va;
3115	vm_paddr_t ma = xpmap_ptom(pa);
3116
3117	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3118	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3119	invlpg(va);
3120	return ((void *)crashdumpmap);
3121}
3122
3123/*
3124 * This code maps large physical mmap regions into the
3125 * processor address space.  Note that some shortcuts
3126 * are taken, but the code works.
3127 */
3128void
3129pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3130		    vm_object_t object, vm_pindex_t pindex,
3131		    vm_size_t size)
3132{
3133	vm_page_t p;
3134
3135	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3136	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3137	    ("pmap_object_init_pt: non-device object"));
3138	if (pseflag &&
3139	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
3140		int i;
3141		vm_page_t m[1];
3142		unsigned int ptepindex;
3143		int npdes;
3144		pd_entry_t ptepa;
3145
3146		PMAP_LOCK(pmap);
3147		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
3148			goto out;
3149		PMAP_UNLOCK(pmap);
3150retry:
3151		p = vm_page_lookup(object, pindex);
3152		if (p != NULL) {
3153			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
3154				goto retry;
3155		} else {
3156			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
3157			if (p == NULL)
3158				return;
3159			m[0] = p;
3160
3161			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
3162				vm_page_lock_queues();
3163				vm_page_free(p);
3164				vm_page_unlock_queues();
3165				return;
3166			}
3167
3168			p = vm_page_lookup(object, pindex);
3169			vm_page_wakeup(p);
3170		}
3171
3172		ptepa = VM_PAGE_TO_PHYS(p);
3173		if (ptepa & (NBPDR - 1))
3174			return;
3175
3176		p->valid = VM_PAGE_BITS_ALL;
3177
3178		PMAP_LOCK(pmap);
3179		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
3180		npdes = size >> PDRSHIFT;
3181		critical_enter();
3182		for(i = 0; i < npdes; i++) {
3183			PD_SET_VA(pmap, ptepindex,
3184			    ptepa | PG_U | PG_M | PG_RW | PG_V | PG_PS, FALSE);
3185			ptepa += NBPDR;
3186			ptepindex += 1;
3187		}
3188		pmap_invalidate_all(pmap);
3189		critical_exit();
3190out:
3191		PMAP_UNLOCK(pmap);
3192	}
3193}
3194
3195/*
3196 *	Routine:	pmap_change_wiring
3197 *	Function:	Change the wiring attribute for a map/virtual-address
3198 *			pair.
3199 *	In/out conditions:
3200 *			The mapping must already exist in the pmap.
3201 */
3202void
3203pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3204{
3205	pt_entry_t *pte;
3206
3207	vm_page_lock_queues();
3208	PMAP_LOCK(pmap);
3209	pte = pmap_pte(pmap, va);
3210
3211	if (wired && !pmap_pte_w(pte)) {
3212		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3213		pmap->pm_stats.wired_count++;
3214	} else if (!wired && pmap_pte_w(pte)) {
3215		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3216		pmap->pm_stats.wired_count--;
3217	}
3218
3219	/*
3220	 * Wiring is not a hardware characteristic so there is no need to
3221	 * invalidate TLB.
3222	 */
3223	pmap_pte_release(pte);
3224	PMAP_UNLOCK(pmap);
3225	vm_page_unlock_queues();
3226}
3227
3228
3229
3230/*
3231 *	Copy the range specified by src_addr/len
3232 *	from the source map to the range dst_addr/len
3233 *	in the destination map.
3234 *
3235 *	This routine is only advisory and need not do anything.
3236 */
3237
3238void
3239pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3240	  vm_offset_t src_addr)
3241{
3242	vm_page_t   free;
3243	vm_offset_t addr;
3244	vm_offset_t end_addr = src_addr + len;
3245	vm_offset_t pdnxt;
3246
3247	if (dst_addr != src_addr)
3248		return;
3249
3250	if (!pmap_is_current(src_pmap)) {
3251		CTR2(KTR_PMAP,
3252		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3253		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3254
3255		return;
3256	}
3257	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3258	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3259
3260	vm_page_lock_queues();
3261	if (dst_pmap < src_pmap) {
3262		PMAP_LOCK(dst_pmap);
3263		PMAP_LOCK(src_pmap);
3264	} else {
3265		PMAP_LOCK(src_pmap);
3266		PMAP_LOCK(dst_pmap);
3267	}
3268	sched_pin();
3269	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3270		pt_entry_t *src_pte, *dst_pte;
3271		vm_page_t dstmpte, srcmpte;
3272		pd_entry_t srcptepaddr;
3273		unsigned ptepindex;
3274
3275		if (addr >= UPT_MIN_ADDRESS)
3276			panic("pmap_copy: invalid to pmap_copy page tables");
3277
3278		pdnxt = (addr + NBPDR) & ~PDRMASK;
3279		ptepindex = addr >> PDRSHIFT;
3280
3281		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3282		if (srcptepaddr == 0)
3283			continue;
3284
3285		if (srcptepaddr & PG_PS) {
3286			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3287				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3288				dst_pmap->pm_stats.resident_count +=
3289				    NBPDR / PAGE_SIZE;
3290			}
3291			continue;
3292		}
3293
3294		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3295		if (srcmpte->wire_count == 0)
3296			panic("pmap_copy: source page table page is unused");
3297
3298		if (pdnxt > end_addr)
3299			pdnxt = end_addr;
3300
3301		src_pte = vtopte(addr);
3302		while (addr < pdnxt) {
3303			pt_entry_t ptetemp;
3304			ptetemp = *src_pte;
3305			/*
3306			 * we only virtual copy managed pages
3307			 */
3308			if ((ptetemp & PG_MANAGED) != 0) {
3309				dstmpte = pmap_allocpte(dst_pmap, addr,
3310				    M_NOWAIT);
3311				if (dstmpte == NULL)
3312					break;
3313				dst_pte = pmap_pte_quick(dst_pmap, addr);
3314				if (*dst_pte == 0 &&
3315				    pmap_try_insert_pv_entry(dst_pmap, addr,
3316				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3317					/*
3318					 * Clear the wired, modified, and
3319					 * accessed (referenced) bits
3320					 * during the copy.
3321					 */
3322					KASSERT(ptetemp != 0, ("src_pte not set"));
3323					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3324					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3325					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3326						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3327					dst_pmap->pm_stats.resident_count++;
3328	 			} else {
3329					free = NULL;
3330					if (pmap_unwire_pte_hold(dst_pmap,
3331					    dstmpte, &free)) {
3332						pmap_invalidate_page(dst_pmap,
3333						    addr);
3334						pmap_free_zero_pages(free);
3335					}
3336				}
3337				if (dstmpte->wire_count >= srcmpte->wire_count)
3338					break;
3339			}
3340			addr += PAGE_SIZE;
3341			src_pte++;
3342		}
3343	}
3344	PT_UPDATES_FLUSH();
3345	sched_unpin();
3346	vm_page_unlock_queues();
3347	PMAP_UNLOCK(src_pmap);
3348	PMAP_UNLOCK(dst_pmap);
3349}
3350
3351static __inline void
3352pagezero(void *page)
3353{
3354#if defined(I686_CPU)
3355	if (cpu_class == CPUCLASS_686) {
3356#if defined(CPU_ENABLE_SSE)
3357		if (cpu_feature & CPUID_SSE2)
3358			sse2_pagezero(page);
3359		else
3360#endif
3361			i686_pagezero(page);
3362	} else
3363#endif
3364		bzero(page, PAGE_SIZE);
3365}
3366
3367/*
3368 *	pmap_zero_page zeros the specified hardware page by mapping
3369 *	the page into KVM and using bzero to clear its contents.
3370 */
3371void
3372pmap_zero_page(vm_page_t m)
3373{
3374	struct sysmaps *sysmaps;
3375
3376	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3377	mtx_lock(&sysmaps->lock);
3378	if (*sysmaps->CMAP2)
3379		panic("pmap_zero_page: CMAP2 busy");
3380	sched_pin();
3381	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3382	pagezero(sysmaps->CADDR2);
3383	PT_SET_MA(sysmaps->CADDR2, 0);
3384	sched_unpin();
3385	mtx_unlock(&sysmaps->lock);
3386}
3387
3388/*
3389 *	pmap_zero_page_area zeros the specified hardware page by mapping
3390 *	the page into KVM and using bzero to clear its contents.
3391 *
3392 *	off and size may not cover an area beyond a single hardware page.
3393 */
3394void
3395pmap_zero_page_area(vm_page_t m, int off, int size)
3396{
3397	struct sysmaps *sysmaps;
3398
3399	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3400	mtx_lock(&sysmaps->lock);
3401	if (*sysmaps->CMAP2)
3402		panic("pmap_zero_page: CMAP2 busy");
3403	sched_pin();
3404	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3405
3406	if (off == 0 && size == PAGE_SIZE)
3407		pagezero(sysmaps->CADDR2);
3408	else
3409		bzero((char *)sysmaps->CADDR2 + off, size);
3410	PT_SET_MA(sysmaps->CADDR2, 0);
3411	sched_unpin();
3412	mtx_unlock(&sysmaps->lock);
3413}
3414
3415/*
3416 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3417 *	the page into KVM and using bzero to clear its contents.  This
3418 *	is intended to be called from the vm_pagezero process only and
3419 *	outside of Giant.
3420 */
3421void
3422pmap_zero_page_idle(vm_page_t m)
3423{
3424
3425	if (*CMAP3)
3426		panic("pmap_zero_page: CMAP3 busy");
3427	sched_pin();
3428	PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3429	pagezero(CADDR3);
3430	PT_SET_MA(CADDR3, 0);
3431	sched_unpin();
3432}
3433
3434/*
3435 *	pmap_copy_page copies the specified (machine independent)
3436 *	page by mapping the page into virtual memory and using
3437 *	bcopy to copy the page, one machine dependent page at a
3438 *	time.
3439 */
3440void
3441pmap_copy_page(vm_page_t src, vm_page_t dst)
3442{
3443	struct sysmaps *sysmaps;
3444
3445	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3446	mtx_lock(&sysmaps->lock);
3447	if (*sysmaps->CMAP1)
3448		panic("pmap_copy_page: CMAP1 busy");
3449	if (*sysmaps->CMAP2)
3450		panic("pmap_copy_page: CMAP2 busy");
3451	sched_pin();
3452	PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A);
3453	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M);
3454	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3455	PT_SET_MA(sysmaps->CADDR1, 0);
3456	PT_SET_MA(sysmaps->CADDR2, 0);
3457	sched_unpin();
3458	mtx_unlock(&sysmaps->lock);
3459}
3460
3461/*
3462 * Returns true if the pmap's pv is one of the first
3463 * 16 pvs linked to from this page.  This count may
3464 * be changed upwards or downwards in the future; it
3465 * is only necessary that true be returned for a small
3466 * subset of pmaps for proper page aging.
3467 */
3468boolean_t
3469pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3470{
3471	pv_entry_t pv;
3472	int loops = 0;
3473
3474	if (m->flags & PG_FICTITIOUS)
3475		return (FALSE);
3476
3477	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3478	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3479		if (PV_PMAP(pv) == pmap) {
3480			return TRUE;
3481		}
3482		loops++;
3483		if (loops >= 16)
3484			break;
3485	}
3486	return (FALSE);
3487}
3488
3489/*
3490 *	pmap_page_wired_mappings:
3491 *
3492 *	Return the number of managed mappings to the given physical page
3493 *	that are wired.
3494 */
3495int
3496pmap_page_wired_mappings(vm_page_t m)
3497{
3498	pv_entry_t pv;
3499	pt_entry_t *pte;
3500	pmap_t pmap;
3501	int count;
3502
3503	count = 0;
3504	if ((m->flags & PG_FICTITIOUS) != 0)
3505		return (count);
3506	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3507	sched_pin();
3508	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3509		pmap = PV_PMAP(pv);
3510		PMAP_LOCK(pmap);
3511		pte = pmap_pte_quick(pmap, pv->pv_va);
3512		if ((*pte & PG_W) != 0)
3513			count++;
3514		PMAP_UNLOCK(pmap);
3515	}
3516	sched_unpin();
3517	return (count);
3518}
3519
3520/*
3521 * Returns TRUE if the given page is mapped individually or as part of
3522 * a 4mpage.  Otherwise, returns FALSE.
3523 */
3524boolean_t
3525pmap_page_is_mapped(vm_page_t m)
3526{
3527	struct md_page *pvh;
3528
3529	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3530		return (FALSE);
3531	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3532	if (TAILQ_EMPTY(&m->md.pv_list)) {
3533		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3534		return (!TAILQ_EMPTY(&pvh->pv_list));
3535	} else
3536		return (TRUE);
3537}
3538
3539/*
3540 * Remove all pages from specified address space
3541 * this aids process exit speeds.  Also, this code
3542 * is special cased for current process only, but
3543 * can have the more generic (and slightly slower)
3544 * mode enabled.  This is much faster than pmap_remove
3545 * in the case of running down an entire address space.
3546 */
3547void
3548pmap_remove_pages(pmap_t pmap)
3549{
3550	pt_entry_t *pte, tpte;
3551	vm_page_t m, free = NULL;
3552	pv_entry_t pv;
3553	struct pv_chunk *pc, *npc;
3554	int field, idx;
3555	int32_t bit;
3556	uint32_t inuse, bitmask;
3557	int allfree;
3558
3559	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3560
3561	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3562		printf("warning: pmap_remove_pages called with non-current pmap\n");
3563		return;
3564	}
3565	vm_page_lock_queues();
3566	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3567	PMAP_LOCK(pmap);
3568	sched_pin();
3569	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3570		allfree = 1;
3571		for (field = 0; field < _NPCM; field++) {
3572			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3573			while (inuse != 0) {
3574				bit = bsfl(inuse);
3575				bitmask = 1UL << bit;
3576				idx = field * 32 + bit;
3577				pv = &pc->pc_pventry[idx];
3578				inuse &= ~bitmask;
3579
3580				pte = vtopte(pv->pv_va);
3581				tpte = *pte ? xpmap_mtop(*pte) : 0;
3582
3583				if (tpte == 0) {
3584					printf(
3585					    "TPTE at %p  IS ZERO @ VA %08x\n",
3586					    pte, pv->pv_va);
3587					panic("bad pte");
3588				}
3589
3590/*
3591 * We cannot remove wired pages from a process' mapping at this time
3592 */
3593				if (tpte & PG_W) {
3594					allfree = 0;
3595					continue;
3596				}
3597
3598				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3599				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3600				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3601				    m, (uintmax_t)m->phys_addr,
3602				    (uintmax_t)tpte));
3603
3604				KASSERT(m < &vm_page_array[vm_page_array_size],
3605					("pmap_remove_pages: bad tpte %#jx",
3606					(uintmax_t)tpte));
3607
3608
3609				PT_CLEAR_VA(pte, FALSE);
3610
3611				/*
3612				 * Update the vm_page_t clean/reference bits.
3613				 */
3614				if (tpte & PG_M)
3615					vm_page_dirty(m);
3616
3617				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3618				if (TAILQ_EMPTY(&m->md.pv_list))
3619					vm_page_flag_clear(m, PG_WRITEABLE);
3620
3621				pmap_unuse_pt(pmap, pv->pv_va, &free);
3622
3623				/* Mark free */
3624				PV_STAT(pv_entry_frees++);
3625				PV_STAT(pv_entry_spare++);
3626				pv_entry_count--;
3627				pc->pc_map[field] |= bitmask;
3628				pmap->pm_stats.resident_count--;
3629			}
3630		}
3631		PT_UPDATES_FLUSH();
3632		if (allfree) {
3633			PV_STAT(pv_entry_spare -= _NPCPV);
3634			PV_STAT(pc_chunk_count--);
3635			PV_STAT(pc_chunk_frees++);
3636			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3637			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3638			pmap_qremove((vm_offset_t)pc, 1);
3639			vm_page_unwire(m, 0);
3640			vm_page_free(m);
3641			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3642		}
3643	}
3644	PT_UPDATES_FLUSH();
3645	if (*PMAP1)
3646		PT_SET_MA(PADDR1, 0);
3647
3648	sched_unpin();
3649	pmap_invalidate_all(pmap);
3650	vm_page_unlock_queues();
3651	PMAP_UNLOCK(pmap);
3652	pmap_free_zero_pages(free);
3653}
3654
3655/*
3656 *	pmap_is_modified:
3657 *
3658 *	Return whether or not the specified physical page was modified
3659 *	in any physical maps.
3660 */
3661boolean_t
3662pmap_is_modified(vm_page_t m)
3663{
3664	pv_entry_t pv;
3665	pt_entry_t *pte;
3666	pmap_t pmap;
3667	boolean_t rv;
3668
3669	rv = FALSE;
3670	if (m->flags & PG_FICTITIOUS)
3671		return (rv);
3672
3673	sched_pin();
3674	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3675	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3676		pmap = PV_PMAP(pv);
3677		PMAP_LOCK(pmap);
3678		pte = pmap_pte_quick(pmap, pv->pv_va);
3679		rv = (*pte & PG_M) != 0;
3680		PMAP_UNLOCK(pmap);
3681		if (rv)
3682			break;
3683	}
3684	if (*PMAP1)
3685		PT_SET_MA(PADDR1, 0);
3686	sched_unpin();
3687	return (rv);
3688}
3689
3690/*
3691 *	pmap_is_prefaultable:
3692 *
3693 *	Return whether or not the specified virtual address is elgible
3694 *	for prefault.
3695 */
3696static boolean_t
3697pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3698{
3699	pt_entry_t *pte;
3700	boolean_t rv = FALSE;
3701
3702	return (rv);
3703
3704	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3705		pte = vtopte(addr);
3706		rv = (*pte == 0);
3707	}
3708	return (rv);
3709}
3710
3711boolean_t
3712pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3713{
3714	boolean_t rv;
3715
3716	PMAP_LOCK(pmap);
3717	rv = pmap_is_prefaultable_locked(pmap, addr);
3718	PMAP_UNLOCK(pmap);
3719	return (rv);
3720}
3721
3722boolean_t
3723pmap_is_referenced(vm_page_t m)
3724{
3725	pv_entry_t pv;
3726	pt_entry_t *pte;
3727	pmap_t pmap;
3728	boolean_t rv;
3729
3730	rv = FALSE;
3731	if (m->flags & PG_FICTITIOUS)
3732		return (rv);
3733	sched_pin();
3734	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3735	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3736		pmap = PV_PMAP(pv);
3737		PMAP_LOCK(pmap);
3738		pte = pmap_pte_quick(pmap, pv->pv_va);
3739		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3740		PMAP_UNLOCK(pmap);
3741		if (rv)
3742			break;
3743	}
3744	if (*PMAP1)
3745		PT_SET_MA(PADDR1, 0);
3746	sched_unpin();
3747	return (rv);
3748}
3749
3750void
3751pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3752{
3753	int i, npages = round_page(len) >> PAGE_SHIFT;
3754	for (i = 0; i < npages; i++) {
3755		pt_entry_t *pte;
3756		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3757		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3758		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3759		pmap_pte_release(pte);
3760	}
3761}
3762
3763void
3764pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3765{
3766	int i, npages = round_page(len) >> PAGE_SHIFT;
3767	for (i = 0; i < npages; i++) {
3768		pt_entry_t *pte;
3769		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3770		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3771		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3772		pmap_pte_release(pte);
3773	}
3774}
3775
3776/*
3777 * Clear the write and modified bits in each of the given page's mappings.
3778 */
3779void
3780pmap_remove_write(vm_page_t m)
3781{
3782	pv_entry_t pv;
3783	pmap_t pmap;
3784	pt_entry_t oldpte, *pte;
3785
3786	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3787	if ((m->flags & PG_FICTITIOUS) != 0 ||
3788	    (m->flags & PG_WRITEABLE) == 0)
3789		return;
3790	sched_pin();
3791	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3792		pmap = PV_PMAP(pv);
3793		PMAP_LOCK(pmap);
3794		pte = pmap_pte_quick(pmap, pv->pv_va);
3795retry:
3796		oldpte = *pte;
3797		if ((oldpte & PG_RW) != 0) {
3798			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3799
3800			/*
3801			 * Regardless of whether a pte is 32 or 64 bits
3802			 * in size, PG_RW and PG_M are among the least
3803			 * significant 32 bits.
3804			 */
3805			PT_SET_VA_MA(pte, newpte, TRUE);
3806			if (*pte != newpte)
3807				goto retry;
3808
3809			if ((oldpte & PG_M) != 0)
3810				vm_page_dirty(m);
3811			pmap_invalidate_page(pmap, pv->pv_va);
3812		}
3813		PMAP_UNLOCK(pmap);
3814	}
3815	vm_page_flag_clear(m, PG_WRITEABLE);
3816	PT_UPDATES_FLUSH();
3817	if (*PMAP1)
3818		PT_SET_MA(PADDR1, 0);
3819	sched_unpin();
3820}
3821
3822/*
3823 *	pmap_ts_referenced:
3824 *
3825 *	Return a count of reference bits for a page, clearing those bits.
3826 *	It is not necessary for every reference bit to be cleared, but it
3827 *	is necessary that 0 only be returned when there are truly no
3828 *	reference bits set.
3829 *
3830 *	XXX: The exact number of bits to check and clear is a matter that
3831 *	should be tested and standardized at some point in the future for
3832 *	optimal aging of shared pages.
3833 */
3834int
3835pmap_ts_referenced(vm_page_t m)
3836{
3837	pv_entry_t pv, pvf, pvn;
3838	pmap_t pmap;
3839	pt_entry_t *pte;
3840	int rtval = 0;
3841
3842	if (m->flags & PG_FICTITIOUS)
3843		return (rtval);
3844	sched_pin();
3845	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3846	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3847		pvf = pv;
3848		do {
3849			pvn = TAILQ_NEXT(pv, pv_list);
3850			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3851			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3852			pmap = PV_PMAP(pv);
3853			PMAP_LOCK(pmap);
3854			pte = pmap_pte_quick(pmap, pv->pv_va);
3855			if ((*pte & PG_A) != 0) {
3856				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3857				pmap_invalidate_page(pmap, pv->pv_va);
3858				rtval++;
3859				if (rtval > 4)
3860					pvn = NULL;
3861			}
3862			PMAP_UNLOCK(pmap);
3863		} while ((pv = pvn) != NULL && pv != pvf);
3864	}
3865	PT_UPDATES_FLUSH();
3866	if (*PMAP1)
3867		PT_SET_MA(PADDR1, 0);
3868
3869	sched_unpin();
3870	return (rtval);
3871}
3872
3873/*
3874 *	Clear the modify bits on the specified physical page.
3875 */
3876void
3877pmap_clear_modify(vm_page_t m)
3878{
3879	pv_entry_t pv;
3880	pmap_t pmap;
3881	pt_entry_t *pte;
3882
3883	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3884	if ((m->flags & PG_FICTITIOUS) != 0)
3885		return;
3886	sched_pin();
3887	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3888		pmap = PV_PMAP(pv);
3889		PMAP_LOCK(pmap);
3890		pte = pmap_pte_quick(pmap, pv->pv_va);
3891		if ((*pte & PG_M) != 0) {
3892			/*
3893			 * Regardless of whether a pte is 32 or 64 bits
3894			 * in size, PG_M is among the least significant
3895			 * 32 bits.
3896			 */
3897			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3898			pmap_invalidate_page(pmap, pv->pv_va);
3899		}
3900		PMAP_UNLOCK(pmap);
3901	}
3902	sched_unpin();
3903}
3904
3905/*
3906 *	pmap_clear_reference:
3907 *
3908 *	Clear the reference bit on the specified physical page.
3909 */
3910void
3911pmap_clear_reference(vm_page_t m)
3912{
3913	pv_entry_t pv;
3914	pmap_t pmap;
3915	pt_entry_t *pte;
3916
3917	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3918	if ((m->flags & PG_FICTITIOUS) != 0)
3919		return;
3920	sched_pin();
3921	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3922		pmap = PV_PMAP(pv);
3923		PMAP_LOCK(pmap);
3924		pte = pmap_pte_quick(pmap, pv->pv_va);
3925		if ((*pte & PG_A) != 0) {
3926			/*
3927			 * Regardless of whether a pte is 32 or 64 bits
3928			 * in size, PG_A is among the least significant
3929			 * 32 bits.
3930			 */
3931			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3932			pmap_invalidate_page(pmap, pv->pv_va);
3933		}
3934		PMAP_UNLOCK(pmap);
3935	}
3936	sched_unpin();
3937}
3938
3939/*
3940 * Miscellaneous support routines follow
3941 */
3942
3943/*
3944 * Map a set of physical memory pages into the kernel virtual
3945 * address space. Return a pointer to where it is mapped. This
3946 * routine is intended to be used for mapping device memory,
3947 * NOT real memory.
3948 */
3949void *
3950pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3951{
3952	vm_offset_t va, offset;
3953	vm_size_t tmpsize;
3954
3955	offset = pa & PAGE_MASK;
3956	size = roundup(offset + size, PAGE_SIZE);
3957	pa = pa & PG_FRAME;
3958
3959	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3960		va = KERNBASE + pa;
3961	else
3962		va = kmem_alloc_nofault(kernel_map, size);
3963	if (!va)
3964		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3965
3966	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3967		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3968	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3969	pmap_invalidate_cache_range(va, va + size);
3970	return ((void *)(va + offset));
3971}
3972
3973void *
3974pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3975{
3976
3977	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3978}
3979
3980void *
3981pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3982{
3983
3984	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3985}
3986
3987void
3988pmap_unmapdev(vm_offset_t va, vm_size_t size)
3989{
3990	vm_offset_t base, offset, tmpva;
3991
3992	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3993		return;
3994	base = trunc_page(va);
3995	offset = va & PAGE_MASK;
3996	size = roundup(offset + size, PAGE_SIZE);
3997	critical_enter();
3998	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3999		pmap_kremove(tmpva);
4000	pmap_invalidate_range(kernel_pmap, va, tmpva);
4001	critical_exit();
4002	kmem_free(kernel_map, base, size);
4003}
4004
4005/*
4006 * Sets the memory attribute for the specified page.
4007 */
4008void
4009pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4010{
4011	struct sysmaps *sysmaps;
4012	vm_offset_t sva, eva;
4013
4014	m->md.pat_mode = ma;
4015	if ((m->flags & PG_FICTITIOUS) != 0)
4016		return;
4017
4018	/*
4019	 * If "m" is a normal page, flush it from the cache.
4020	 * See pmap_invalidate_cache_range().
4021	 *
4022	 * First, try to find an existing mapping of the page by sf
4023	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4024	 * flushes the cache.
4025	 */
4026	if (sf_buf_invalidate_cache(m))
4027		return;
4028
4029	/*
4030	 * If page is not mapped by sf buffer, but CPU does not
4031	 * support self snoop, map the page transient and do
4032	 * invalidation. In the worst case, whole cache is flushed by
4033	 * pmap_invalidate_cache_range().
4034	 */
4035	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4036		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4037		mtx_lock(&sysmaps->lock);
4038		if (*sysmaps->CMAP2)
4039			panic("pmap_page_set_memattr: CMAP2 busy");
4040		sched_pin();
4041		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4042		    xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M |
4043		    pmap_cache_bits(m->md.pat_mode, 0));
4044		invlcaddr(sysmaps->CADDR2);
4045		sva = (vm_offset_t)sysmaps->CADDR2;
4046		eva = sva + PAGE_SIZE;
4047	} else
4048		sva = eva = 0; /* gcc */
4049	pmap_invalidate_cache_range(sva, eva);
4050	if (sva != 0) {
4051		PT_SET_MA(sysmaps->CADDR2, 0);
4052		sched_unpin();
4053		mtx_unlock(&sysmaps->lock);
4054	}
4055}
4056
4057int
4058pmap_change_attr(va, size, mode)
4059	vm_offset_t va;
4060	vm_size_t size;
4061	int mode;
4062{
4063	vm_offset_t base, offset, tmpva;
4064	pt_entry_t *pte;
4065	u_int opte, npte;
4066	pd_entry_t *pde;
4067	boolean_t changed;
4068
4069	base = trunc_page(va);
4070	offset = va & PAGE_MASK;
4071	size = roundup(offset + size, PAGE_SIZE);
4072
4073	/* Only supported on kernel virtual addresses. */
4074	if (base <= VM_MAXUSER_ADDRESS)
4075		return (EINVAL);
4076
4077	/* 4MB pages and pages that aren't mapped aren't supported. */
4078	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4079		pde = pmap_pde(kernel_pmap, tmpva);
4080		if (*pde & PG_PS)
4081			return (EINVAL);
4082		if ((*pde & PG_V) == 0)
4083			return (EINVAL);
4084		pte = vtopte(va);
4085		if ((*pte & PG_V) == 0)
4086			return (EINVAL);
4087	}
4088
4089	changed = FALSE;
4090
4091	/*
4092	 * Ok, all the pages exist and are 4k, so run through them updating
4093	 * their cache mode.
4094	 */
4095	for (tmpva = base; size > 0; ) {
4096		pte = vtopte(tmpva);
4097
4098		/*
4099		 * The cache mode bits are all in the low 32-bits of the
4100		 * PTE, so we can just spin on updating the low 32-bits.
4101		 */
4102		do {
4103			opte = *(u_int *)pte;
4104			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4105			npte |= pmap_cache_bits(mode, 0);
4106			PT_SET_VA_MA(pte, npte, TRUE);
4107		} while (npte != opte && (*pte != npte));
4108		if (npte != opte)
4109			changed = TRUE;
4110		tmpva += PAGE_SIZE;
4111		size -= PAGE_SIZE;
4112	}
4113
4114	/*
4115	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4116	 * be, etc.
4117	 */
4118	if (changed) {
4119		pmap_invalidate_range(kernel_pmap, base, tmpva);
4120		pmap_invalidate_cache_range(base, tmpva);
4121	}
4122	return (0);
4123}
4124
4125/*
4126 * perform the pmap work for mincore
4127 */
4128int
4129pmap_mincore(pmap_t pmap, vm_offset_t addr)
4130{
4131	pt_entry_t *ptep, pte;
4132	vm_page_t m;
4133	int val = 0;
4134
4135	PMAP_LOCK(pmap);
4136	ptep = pmap_pte(pmap, addr);
4137	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4138	pmap_pte_release(ptep);
4139	PMAP_UNLOCK(pmap);
4140
4141	if (pte != 0) {
4142		vm_paddr_t pa;
4143
4144		val = MINCORE_INCORE;
4145		if ((pte & PG_MANAGED) == 0)
4146			return val;
4147
4148		pa = pte & PG_FRAME;
4149
4150		m = PHYS_TO_VM_PAGE(pa);
4151
4152		/*
4153		 * Modified by us
4154		 */
4155		if (pte & PG_M)
4156			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4157		else {
4158			/*
4159			 * Modified by someone else
4160			 */
4161			vm_page_lock_queues();
4162			if (m->dirty || pmap_is_modified(m))
4163				val |= MINCORE_MODIFIED_OTHER;
4164			vm_page_unlock_queues();
4165		}
4166		/*
4167		 * Referenced by us
4168		 */
4169		if (pte & PG_A)
4170			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4171		else {
4172			/*
4173			 * Referenced by someone else
4174			 */
4175			vm_page_lock_queues();
4176			if ((m->flags & PG_REFERENCED) ||
4177			    pmap_is_referenced(m))
4178				val |= MINCORE_REFERENCED_OTHER;
4179			vm_page_unlock_queues();
4180		}
4181	}
4182	return val;
4183}
4184
4185void
4186pmap_activate(struct thread *td)
4187{
4188	pmap_t	pmap, oldpmap;
4189	u_int32_t  cr3;
4190
4191	critical_enter();
4192	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4193	oldpmap = PCPU_GET(curpmap);
4194#if defined(SMP)
4195	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4196	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4197#else
4198	oldpmap->pm_active &= ~1;
4199	pmap->pm_active |= 1;
4200#endif
4201#ifdef PAE
4202	cr3 = vtophys(pmap->pm_pdpt);
4203#else
4204	cr3 = vtophys(pmap->pm_pdir);
4205#endif
4206	/*
4207	 * pmap_activate is for the current thread on the current cpu
4208	 */
4209	td->td_pcb->pcb_cr3 = cr3;
4210	PT_UPDATES_FLUSH();
4211	load_cr3(cr3);
4212	PCPU_SET(curpmap, pmap);
4213	critical_exit();
4214}
4215
4216void
4217pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4218{
4219}
4220
4221/*
4222 *	Increase the starting virtual address of the given mapping if a
4223 *	different alignment might result in more superpage mappings.
4224 */
4225void
4226pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4227    vm_offset_t *addr, vm_size_t size)
4228{
4229	vm_offset_t superpage_offset;
4230
4231	if (size < NBPDR)
4232		return;
4233	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4234		offset += ptoa(object->pg_color);
4235	superpage_offset = offset & PDRMASK;
4236	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4237	    (*addr & PDRMASK) == superpage_offset)
4238		return;
4239	if ((*addr & PDRMASK) < superpage_offset)
4240		*addr = (*addr & ~PDRMASK) + superpage_offset;
4241	else
4242		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4243}
4244
4245#ifdef XEN
4246
4247void
4248pmap_suspend()
4249{
4250	pmap_t pmap;
4251	int i, pdir, offset;
4252	vm_paddr_t pdirma;
4253	mmu_update_t mu[4];
4254
4255	/*
4256	 * We need to remove the recursive mapping structure from all
4257	 * our pmaps so that Xen doesn't get confused when it restores
4258	 * the page tables. The recursive map lives at page directory
4259	 * index PTDPTDI. We assume that the suspend code has stopped
4260	 * the other vcpus (if any).
4261	 */
4262	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4263		for (i = 0; i < 4; i++) {
4264			/*
4265			 * Figure out which page directory (L2) page
4266			 * contains this bit of the recursive map and
4267			 * the offset within that page of the map
4268			 * entry
4269			 */
4270			pdir = (PTDPTDI + i) / NPDEPG;
4271			offset = (PTDPTDI + i) % NPDEPG;
4272			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4273			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4274			mu[i].val = 0;
4275		}
4276		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4277	}
4278}
4279
4280void
4281pmap_resume()
4282{
4283	pmap_t pmap;
4284	int i, pdir, offset;
4285	vm_paddr_t pdirma;
4286	mmu_update_t mu[4];
4287
4288	/*
4289	 * Restore the recursive map that we removed on suspend.
4290	 */
4291	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4292		for (i = 0; i < 4; i++) {
4293			/*
4294			 * Figure out which page directory (L2) page
4295			 * contains this bit of the recursive map and
4296			 * the offset within that page of the map
4297			 * entry
4298			 */
4299			pdir = (PTDPTDI + i) / NPDEPG;
4300			offset = (PTDPTDI + i) % NPDEPG;
4301			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4302			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4303			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4304		}
4305		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4306	}
4307}
4308
4309#endif
4310
4311#if defined(PMAP_DEBUG)
4312pmap_pid_dump(int pid)
4313{
4314	pmap_t pmap;
4315	struct proc *p;
4316	int npte = 0;
4317	int index;
4318
4319	sx_slock(&allproc_lock);
4320	FOREACH_PROC_IN_SYSTEM(p) {
4321		if (p->p_pid != pid)
4322			continue;
4323
4324		if (p->p_vmspace) {
4325			int i,j;
4326			index = 0;
4327			pmap = vmspace_pmap(p->p_vmspace);
4328			for (i = 0; i < NPDEPTD; i++) {
4329				pd_entry_t *pde;
4330				pt_entry_t *pte;
4331				vm_offset_t base = i << PDRSHIFT;
4332
4333				pde = &pmap->pm_pdir[i];
4334				if (pde && pmap_pde_v(pde)) {
4335					for (j = 0; j < NPTEPG; j++) {
4336						vm_offset_t va = base + (j << PAGE_SHIFT);
4337						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4338							if (index) {
4339								index = 0;
4340								printf("\n");
4341							}
4342							sx_sunlock(&allproc_lock);
4343							return npte;
4344						}
4345						pte = pmap_pte(pmap, va);
4346						if (pte && pmap_pte_v(pte)) {
4347							pt_entry_t pa;
4348							vm_page_t m;
4349							pa = PT_GET(pte);
4350							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4351							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4352								va, pa, m->hold_count, m->wire_count, m->flags);
4353							npte++;
4354							index++;
4355							if (index >= 2) {
4356								index = 0;
4357								printf("\n");
4358							} else {
4359								printf(" ");
4360							}
4361						}
4362					}
4363				}
4364			}
4365		}
4366	}
4367	sx_sunlock(&allproc_lock);
4368	return npte;
4369}
4370#endif
4371
4372#if defined(DEBUG)
4373
4374static void	pads(pmap_t pm);
4375void		pmap_pvdump(vm_paddr_t pa);
4376
4377/* print address space of pmap*/
4378static void
4379pads(pmap_t pm)
4380{
4381	int i, j;
4382	vm_paddr_t va;
4383	pt_entry_t *ptep;
4384
4385	if (pm == kernel_pmap)
4386		return;
4387	for (i = 0; i < NPDEPTD; i++)
4388		if (pm->pm_pdir[i])
4389			for (j = 0; j < NPTEPG; j++) {
4390				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4391				if (pm == kernel_pmap && va < KERNBASE)
4392					continue;
4393				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4394					continue;
4395				ptep = pmap_pte(pm, va);
4396				if (pmap_pte_v(ptep))
4397					printf("%x:%x ", va, *ptep);
4398			};
4399
4400}
4401
4402void
4403pmap_pvdump(vm_paddr_t pa)
4404{
4405	pv_entry_t pv;
4406	pmap_t pmap;
4407	vm_page_t m;
4408
4409	printf("pa %x", pa);
4410	m = PHYS_TO_VM_PAGE(pa);
4411	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4412		pmap = PV_PMAP(pv);
4413		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4414		pads(pmap);
4415	}
4416	printf(" ");
4417}
4418#endif
4419